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Abstract 
 

 

Changes in the underlying database occur due to proliferation of innovations from 

heterogeneous online and offline resources. Mining frequent patterns are costly in 

changing databases, since it requires scanning the database from the start. Incremental 

Mining of frequent patterns is a solution to deal with this problem. The incremental 

mining process uses previous mining result to get the desired knowledge by reducing 

mining costs in terms of time and space. This research focuses on incremental mining 

of frequent patterns using four approaches.  

Firstly, it is important to take into account the functionality i.e. Kind of patterns 

and performance (how to mine frequent patterns) of the patterns to be mined. One 

approach to find frequent patterns from frequently changing databases is to construct 

efficient data structures. A novel tree based data structure and mining algorithm 

called TIMFP (Tree for Incremental Mining of Frequent Pattern) is proposed, which 

is compact as well as based on “Build Once and Mine Many” property.  

Secondly, to measure the semantic significance of an item as per users‟ 

perspectives, a novel approach for mining high utility is presented. Focus of this 

research work is to introduce Average Maximum Utility (AvgMU) concept, which 

prunes items in early stages to avoid unnecessary staying of the items in the pruning 

phases.  

Thirdly, this work proposes a tree based algorithm called CIFMine (Constraint 

based Incremental Frequent Pattern Mining) to mine the incremental data by using a 

dataset filtering technique. In general, the goal of the pattern mining process is to 
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discover all the patterns from the data sources where not all the patterns may be 

suitable for the end user. This approach focuses on the constraints and specifies the 

desired properties of the patterns to mine that are likely to be of interest for the end 

user.  

Lastly, we have focused on Educational Data Mining (EDM) by focusing research 

trends, challenges and Educational Outcomes to enhance the quality of education. A 

modified constraint based algorithm “Modified TIMFP” (Modified Tree for 

Incremental Mining of Frequent Pattern) to construct and mine incremental 

educational data is proposed. All the approaches are tested using Synthetic and Real 

dataset.  

This research successfully establishes the fact that, approaches for Incremental 

Mining of frequent patterns are cost effective (in terms of time and space), efficient, 

scalable and produces optimal solutions for mining frequent patterns from different 

kind of data as compared to traditional frequent pattern mining approaches. 
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CHAPTER-1: INTRODUCTION 

 

 

 

This Chapter begins with a background of Data Mining. Gradually, the concept 

of Frequent Pattern Mining, Incremental Frequent Pattern Mining, Motivation 

of the Research, Problem Statement, Solution Approaches, and Contributions 

are discussed. The Chapter concludes with the documentation of organization 

of the thesis. 

 

1.1 Background  

For every organization to be in the right place at right times are the crucial factors to 

ensure right decision from large amount of data (Lim & Lee, 2010). To deal with the large 

amount of data stored in the database, Data Mining (DM) has been introduced. A widely 

accepted definition of DM is: “It is the process of discovering interesting knowledge from 

large amounts of data stored in databases, data warehouses, or other information 

repositories (Han & kamber, 2006)”. 

In literature, Data Mining is referred to as Data Archaeology, Data Pattern Processing, 

Information Discovery, Information Harvesting and Knowledge Extraction (Fayyad, 

Piatetsky-Shapiro, & Smyth, 1996). 

Data Mining deals with the data explorations model and finally provides the 

knowledge that helps decision makers in decision-making. Various DM techniques such as 

Frequent Pattern Mining, Association Rule Mining, Classification, Prediction, Clustering, 

and Neural Networks etc. are discussed in various literatures. 
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Frequent Pattern Mining (FPM) is an important research topic in the field of DM to 

discover interesting patterns in databases. A pattern is said to be interesting pattern if it 

appears at least as frequently as a predetermined minimum support threshold.  

FPM deals with various data mining tasks such as discovering patterns, association 

(Agrawal, Imielinski & Swami, 1993) (Yu & Chen, 2005), and correlation (Brin et al., 

1997) etc. Application areas of Frequent Pattern Mining include Behavior Analysis, Risk 

Pattern Analysis, Software bug analysis, Chemical and Biological trend analysis are a few 

to be mentioned. 

FPM focuses on the extraction of frequent patterns from the large amount of data. In 

real life applications, the huge volume of data is generated from online and offline sources 

which are incremental in nature. Day-to-day transaction on dataset involves addition of 

new instances as well as deletion of obsolete instances without reforming, rescanning the 

original dataset in repetitive manner. 

Mining frequent patterns is costly during changes of the underlying database. Most of 

the traditional approaches need repetitive scanning of the database as well as generating 

huge number of candidate sets (Han et al., 2007). 

The Incremental Mining (IM) uses previous mining result to get the desired 

information by reducing mining costs in terms of time and space (Su et al., 2009).  

The following are the important parameters/interestingness measures of Incremental 

Frequent Pattern Mining:  

1. Incremental database:  A database where new instances of transactions keep on 

adding and the obsolete instances are deleted. In literature, Incremental 

database is also referred as Dynamic database or Updated database. (Refer 

Figure 1.1). 
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2. Support: It reflects the usefulness of the rules. e.g. for a rule X=> Y, support 

can be written as:  

3. Confidence: It reflects the certainty of discovered rules. e.g. for a rule X=> Y 

Confidence can be written as: 

4. Minimum Support Threshold: The user or the domain experts define a 

threshold, which is known as Minimum Support Threshold. 

5. Pattern: A Pattern is an item or combination of items in a database that occurs 

more often than expected. 

6. Frequent Pattern: A Pattern whose frequency of occurrence is above or equal to 

the Minimum Support Threshold is known as a Frequent Pattern (Agrawal & 

Srikant, 1994). 

 

Figure 1.1:  Incremental database  

As the database are frequently changed, there is a possibility that some previous 

frequent patterns become invalid while some new interesting frequent patterns appear in 

the incremental database. In such type of situation, the important issue is how to utilize 

TotalCountYXFrequencyYXSupport /)()( 

)(/),()( XSupportYXSupportYXConfidence 
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the mining result to efficiently reflect these changes. Thus, mining of growing databases 

is an interesting area of research in Data Mining. 

The following issues are to be addressed to effectively extract knowledge from the 

growing databases: 

 Flexibility of exploring growing databases (to find frequent patterns, flexibility 

to changes in minimum support value etc.)  

 Cost of mining (I/O as well as memory, No. of scans, generation of candidate 

key etc.) 

 Updating of the knowledge base (suitable data structure, updating frequent 

patterns, effective data mining rules etc.) 

To address these issues, a new Data Mining technique called Incremental Frequent 

Pattern Mining (IFPM) has emerged. IFPM is a way of extracting frequent patterns from 

incremental database. Instead of scanning repeatedly the original database, this mining 

process uses previous mining patterns to get the resultant pattern by reducing costs in 

terms of running time and space (Refer Figure 1.2).  

 

Figure 1.2: Incremental Frequent Pattern Mining 
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1.2 Motivation 

Researchers have reported several approaches for Incremental Mining of frequent patterns. 

One approach to incremental mining of frequent patterns is to construct efficient data 

structures. Researchers have found that tree based data structures are most suitable for 

mining frequent patterns from incremental data such as Compressed and Arranged 

Transaction Sequences Tree (CATS) (Cheung & Zaïane, 2003), Canonical-order Tree 

(CanTree) (Leung et al., 2007), Fast Updated Frequent Pattern tree (FUFP) (Hong et al., 

2008), Pre-large itemsets-FUFP (Pre-FUFP) (Lin et al., 2009), Incremental Mining Binary 

Tree (IMBT) (Yang &Yang, 2009) etc. 

The common assumption of the above mentioned approaches is that, all patterns are 

equal in weight (Chuang, Huang, & Chen, 2008), but in real life applications it is not 

always possible to treat all patterns in equal or binary way, since the semantic significance 

of an item from the users‟ perspectives is highly significant. 

In order to address the above mentioned shortcoming, high utility mining (Lin, Lan, & 

Hong, 2012; Liu & Qu, 2012; Tseng et al., 2013; Lee, Park, & Moon, 2013; Song, Liu, & 

Li, 2014; Yun, Ryang, & Ryu, 2014) has emerged as an important research topic. High 

utility is the relative importance (Interest/Intensity) of each item greater than or equal to 

the user defined minimum utility threshold, equivalent to weighted frequent pattern in 

dynamic environments (Li, Yeh, & Chang, 2008; Ahmed et al., 2009; Tseng et al., 2010). 

In general, the goal of the frequent / high utility pattern mining is to discover all the 

patterns from the data sources. 

Most of the existing algorithms generate large number of potentially high utility 

patterns and require longer time for pruning using “Global Maximum Weight (GMW)”. 
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Introducing constraints in frequent patterns of incremental data can help users extract 

exactly what patterns they want, instead of generating the whole patterns. The goal of the 

pattern mining process is to discover all the patterns from the data sources where not all 

the patterns may be suitable for the end user. 

Most of the existing constraint based algorithms require several passes to scan the 

dataset even though user is interested in only few patterns (e.g. Gap with Index Apriori 

(GwI-Apriori), Maximum Constraint based method for generating Rare association rule 

Pattern mining tree (MCRP-Tree) etc.), resulting in large computing time, since they do 

not filter out the initial undesired transactions. 

Many researchers have tried various approaches for incremental mining of frequent 

patterns using different types of data. Apart from the business data, the researcher focus on 

educational data i.e. mining educational data to define goal-directed practices for ensuring 

educational institution's success at all levels (Romero &Ventura, 2013). 

The real world dynamic environment needs to consider the data which are incremental 

in nature. The motivation behind this research work is to find out the research gaps of the 

previous research works and find out optimal solutions in Incremental Mining of Frequent 

Patterns with a focus on educational data. 

1.3 Problem Statement  

To find out the Incremental Frequent Patterns using tree based approaches by applying 

semantic significance and various constraints from incremental data. The problem 

statement can be subdivided as follows: 

i. Let I be a set of N items I= {I_1, I_2…I_N} and a Database DB= {T_1, T_2… 

T_M} be a set of M transactions. For each transaction T_i (1≤ i ≤ M),  T_i ∈ I, an 
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incremental portion (Δ1
+
) of the database consists of some T_i in DB‟ and Δ1

-
 be 

the deleted portion of the DB‟ and Minimum Support Threshold „∞‟. 

 The problem is to mine Incremental Frequent Patterns from a given set of 

transactions of database (DB) which satisfies „∞‟ and changing as time 

advances (DB‟). 

ii. Let us integrate the weight factor to the statement (i). W be a set of „n‟ positive 

numbers W={w_1,w_2...w_n}. 

Average Maximum Utility (AvgMU) is 


N

NI

NNIWeight
0_

)_(  and  

New Utility is ntSupportCouAvgMUUTnew   

 The problem is to mine the Incremental High Utility Frequent Patterns from a 

given set of weighted transactions that changes as time advances and also 

satisfies downward closure property and prunes unnecessary items in early 

stages applying AvgMU.  

iii. Let us add the user specified length threshold „Θ‟ and user specified pattern „Ω‟ in 

statement (i) & (ii). 

 The problem is to discover the complete set of patterns from the database DB‟ 

using the mining results from DB, which satisfies the support „∞‟ of item „I‟, 

length constraints „Θ‟ and pattern constraint „Ω‟. 

iv. The problem is to generate Association Rules using frequent patterns with high 

confidence from educational data.  

1.4 Solution Approach 

We have four approaches for Incremental Mining of Frequent Patterns. The solution 

approach of this thesis is briefly described as below: 
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i. An approach for Incremental Mining of Frequent Patterns  

Mining frequent patterns from incremental data is costly as most of the approaches 

need repetitive scanning and generates a large number of candidate keys. Hence, it is 

important to develop an efficient method to enhance the performance of mining. This work 

proposes a novel tree based data structure for mining frequent pattern of incremental data 

called TIMFP (Tree for Incremental Mining of Frequent Pattern) to enhance the mining 

performance. 

The tree captures the contents of the transaction database, and arranges in  tree nodes 

according to the property of binary search tree which is unaffected by changes in item 

frequency. It is easily manageable when performed „Insertion‟, „Deletion‟ and „Update‟ 

operations. It satisfies the property “Build Once and Mine Many” which is suitable for 

incremental as well as interactive mining. We have compared TIMFP with 

o Canonical-order Tree (CanTree) 

o Compressed and Arranged Transaction Sequences Tree (CATS) and 

o Incremental Mining Binary Tree (IMBT). 

Experimental results show that, the proposed work (TIMFP) has better performance 

than other data structures in terms of: 

o Time required for constructing the tree and 

o Mining frequent patterns from the tree. 

ii. An approach for Incremental High Utility Frequent Pattern Mining  

Mining high utility pattern has become prominent as it provides semantic significance 

(utility/weighted patterns) associated with items in a transaction. Data analysis and 

respective strategies for mining high utility patterns is important in real world scenarios. 
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Recent researches focused on high utility pattern mining using tree based data structure. 

But, they suffer greater computation time, since they generate multiple tree branches. 

To cope up with these problems, this work proposes a novel data structure with 

Average Maximum Utility (AvgMU) and mining algorithm to mine high utility patterns 

from incremental data that reduces tree constructions and computation time. In mining 

operations, AvgMU is considered instead of Global Maximum Weight (GMW), which 

prunes the items in early stages to avoid unnecessary staying of the items in the pruning 

phases. 

The proposed algorithms are implemented using Synthetic, real datasets and compared 

with state-of-the-art tree based algorithms namely 

o Utility Pattern Growth (UP-Growth) 

o Utility Pattern Growth
+
 (UP-Growth

+
) 

o High Utility Itemset Miner (HUI-Miner) 

o Maximum Utility–Strategy1 (MU-Strategy1) and 

o Maximum Utility–Strategy2 (MU-Strategy2) 

It is found that the proposed tree based method has better performance (running time, 

scalability and memory consumption) than the other algorithms as compared in this 

research work. 

iii. An approach for Incremental Constraint based Frequent Pattern Mining 

Introducing constraints in frequent patterns of incremental data can help users extract 

exactly what patterns they want, instead of generating the whole patterns. The goal of the 

pattern mining process is to discover all the patterns from the data sources where not all 

the patterns may be suitable for the end user. This work proposes a tree based algorithm 

called CIFMine (Constraint based Incremental Frequent Pattern Mining) to mine the 
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incremental data by using a dataset filtering constraints like specific pattern,  weight and  

length of the pattern and user defined minimum support threshold which reduces the size 

of the dataset before constructing the tree. 

We have compared CIFMine with the following state-of-art algorithms 

o Maximum Constraint based method for generating Rare association rule 

Pattern mining tree)(MCRP-Tree) 

o RegularMine and  

o Gap with Index Apriori (GwI-Apriori)  

It was found that proposed algorithm is more suitable than listed algorithms in terms 

of computing time as it produces only those patterns that are likely to be of interest to the 

end user. 

iv. Approaches for Incremental Educational Data Mining  

We have focused on Educational Data Mining (EDM) and its research trends for 

quality education.  

Firstly, this work proposes a modified Constraint based algorithm called “Modified 

TIMFP” (Modified Tree for Incremental Mining of Frequent Pattern) to construct and 

mine incremental educational data more efficiently as compared to TIMFP (Jindal & Dutta 

Borah, 2015a). 

Secondly, we have focused on behavior pattern and participation of students in 

teaching / learning process. Finally, association rule have been obtained from such 

patterns.  
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1.5 Dataset Used 

Researchers found that widely-accepted synthetic data or the data that collects from real 

environment are most suitable for performance evaluation (Sun & Bai, 2008). Hence we 

have considered following dataset for performance evaluation of proposed approaches in 

our thesis. 

 Synthetic dataset(http://fimi.ua.ac.be/data/): 

o T10-I4-D100K: Taking into consideration of the above statements, we have 

considered “T10-I4-D100K” dataset (Agrawal & Srikant, 1994) which is 

moderately sparse
 
widely accepted synthetic dataset. 

 Real datasets (http://fimi.ua.ac.be/data/): 

o Pumsb: This dataset contains census data for population and housing, which 

is dense in nature. 

o Connect: This dataset contains online connection data which are dense in 

nature. 

o Kosarak: This dataset contains click-stream data collected from Hungarian 

on-line news portal, which is sparse in nature. 

o NU-MineBench 2.0: This is a chain store dataset, which is sparse in nature 

(Pisharath et al., 2005).  

 Educational domain (learning) datasets: 

o Teachable Peer Learner dataset (AlgebraI2010Dec-retry-ss) (Matsuda & 

Ritter, 2011): This dataset consist of students and tutor participation data in 

online study courses. 

o StatWay - Fall 2011: Austin Community College dataset (Koedinger et al., 

2010): This dataset consist of students and tutor participation data in online 

study courses. 

http://fimi.ua.ac.be/data/
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o AIEEE 2007 dataset: It is a student data set seeking admission in a 

particular branch through All India Engineering Entrance Examination 

(AIEEE). Therefore, it helps predict the approximate strength of student in 

the particular branch. This data set collected from National Informatics 

Centre (NIC) Delhi. In order to demonstrate the usefulness of our high 

utility mining process, we have assigned random numbers in student ranks 

and their preferences. 

o Motivation and Metacognition in Chinese Vocabulary Learning, 

Experiment 3 & 5 dataset (Koedinger et al., 2010): This dataset consist of 

students and tutor participation data in Vocabulary Learning study courses. 

1.6 Contribution of the Research 

The aim of this research is to develop approaches for incremental mining of frequent 

patterns which will reduce: 

a) Number of scans in a database 

b) Number of candidate sets in mining process 

c) Cost in terms of time and space 

These approaches should be scalable and produce optimal solutions for mining frequent 

patterns from different kind of data including educational data. 

We believe that this research will help the researchers to find out related advances, 

and limitations of each approach so that they can design a refined incremental mining 

algorithm which will improve the performance of an algorithm as stated above using 

different kind of data in different domain. 
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The summary of the contribution is described below: 

i. A novel tree based data structure and mining algorithm called TIMFP (Tree for 

Incremental Mining of Frequent Pattern) is proposed, which is compact as well as 

based on “Build Once and Mine Many” property.  

 This novel approach can be used by the Data Mining research community 

for construction of tree based data structure and mining algorithm for 

Incremental Mining of frequent patterns which is cost effective. 

ii. To measure the semantic significance of an item as per users‟ perspectives, a novel 

approach for mining high utility is presented. Focus of this research work is to 

introduce Average Maximum Utility (AvgMU) concept, which prunes items in 

early stages to avoid unnecessary staying of the items in the pruning phases.  

 This approach helps the research community to measure the semantic 

significance of items and increase the mining performance by pruning 

unnecessary items beforehand. 

iii. This work proposes a tree based algorithm called CIFMine (Constraint based 

Incremental Frequent Pattern Mining) to mine the incremental data by using a 

dataset filtering technique. This approach focuses on the constraints and specifies 

the desired properties of the patterns to mine that are likely to be of interest for the 

end user.  

  This approach helps the research community to provide faster tree 

construction and mining by filtering the unnecessary items beforehand 

as per user defined constrain.  

iv. We have focused on Educational Data Mining (EDM) by focusing research trends, 

challenges and educational outcomes to enhance the quality of education. A 

modified Constraint based algorithm “Modified TIMFP” (Modified Tree for 
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Incremental Mining of Frequent Pattern) to construct and mine incremental 

educational data is proposed. 

 This work helps the EDM research community by providing target 

oriented decision making process which enhances the quality of the 

education.  

1.7 Thesis Organization 

The thesis is comprised of seven chapters. In the first chapter, an overview of the Data 

Mining, Incremental Frequent Pattern Mining, Problem Statement, Solution Approach, a 

brief description of Datasets used, and Research Contribution is presented. The rest of the 

chapters are as follows: 

Chapter 2: This chapter discusses the studies of the state-of-art frequent pattern mining 

methods. There is a detail description about incremental Frequent Pattern Mining, High 

Utility Pattern Mining, Constraint Mining and Educational Data Mining algorithms. 

Research gaps are identified and research questions are formed based on the study in 

this chapter. Two papers have been published /communicated from this chapter, namely 

“Predictive Analytics in Higher Educational Context”. IT Professional, Publisher: IEEE 

Computer Society, 17 (4), 24-33, 2015, doi: 10.1109/MITP.2015.68  and “A Study of 

Incremental Mining of Association Rules” (communicated to an International Journal). 

Chapter 3: Our approach for incremental frequent pattern mining is stated in this chapter. 

There is a description about the limitation of the traditional frequent mining algorithms 

with the aim of clarifying how our incremental mining approach is suitable for mining 

dynamic data. 

A detail discussion of proposed Tree based data structure and Mining algorithm is 

presented in this chapter. A paper titled “A novel approach for mining frequent patterns 
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from incremental data” has been published in International Journal of Data Mining 

Modelling and Management, Publisher: Inderscience, 8 (3), 2016.  doi:10.1504/IJDMMM 

.2016.079071 from this chapter. 

Chapter 4: This chapter presents our approach for High Utility Pattern Mining. It 

discusses about how utility/weights are important in real world scenarios. We have 

introduced Average Maximum Utility (AvgMU) instead of Global Maximum Weight 

(GMW), which prunes the items in early stages and avoids unnecessary staying of the 

items in the pruning phases. 

Proposed algorithms for construction and mining of the tree are presented in this 

Chapter. A paper titled “An approach for high utility incremental pattern mining.” has 

been accepted (in press) in International Journal of Data Analysis Techniques and 

Strategies, Publisher: Inderscience, [Online]: http://www.inderscience.Cominfo /in eneral 

/forthcoming. php? Jcode = ijdats from this chapter. 

 Chapter 5: How constraints are beneficial for incremental mining of frequent patterns are 

discussed in this chapter. A dataset filtering technique is integrated with the proposed 

algorithm stated in Chapter 3 and found that constraints are suitable for mining 

incremental data.  

A paper titled “Constraint based filtering for Incremental Data Mining” has been 

published in proceedings of the 7
th

 IEEE International Conference on Computational 

Intelligence and Communication Networks, Jabalpur, India, December 12-14, 2015, from 

this chapter. 

Chapter 6: This chapter discusses how Educational Data Mining is helpful to enhance the 

quality of education. 
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Further, the approaches and constraint for frequent pattern mining from educational 

data are also discussed. Three papers have been published / accepted from this chapter, 

namely “A Survey on Educational Data Mining and Research Trends” in International 

Journal of Database Management Systems, Publisher: AIRCC, 5(3), 53-73, doi: 10.5121/ 

ijdms; “An approach to generate students‟ response on learning environment using 

Association Rule Mining” in proceedings of the IEEE International Conference on Data 

Mining and Intelligent Computing (pp.1-5). Delhi, India, September 5-6, 2014, doi: 

10.1109/ICDMIC.2014.6954225 and  “Constraint based Frequent Pattern Mining from 

Incremental Educational data: Educational Data Mining Approach” Accepted for 

publication at the 2016 IEEE International Conference on Teaching and Learning in 

Education, Universiti Tenaga Nasional, Malaysia, March 1-2, 2016. 

Chapter 7: The final chapter presents the conclusion and future scope of this research 

work. This chapter deliberates upon importance of our proposed methods for mining of 

frequent patterns and the need of incremental mining.  

A list of published/accepted/communicated paper relating to this research work in 

International/National Journals/Conferences of repute is given after Chapter 7.  

A list of references referred in this research work is given at the end of the thesis for ready 

reference. 

http://dx.doi.org/10.1109/ICDMIC.2014.6954225
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CHAPTER-2: LITERATURE REVIEW 
 

 

This chapter presents a literature review of Incremental Mining of Frequent 

Patterns, Incremental High Utility Frequent Pattern Mining, Incremental 

Constraint based Frequent Pattern Mining and Incremental Educational Data 

Mining. Research questions are formed, Research gaps are identified and future 

directions are provided based on the study in this chapter. 

2.1 Introduction 

The aim of this literature review is to make a comprehensive study of existing and ongoing 

research work, to explore the research gaps, and to propose solution for it. We have 

followed the following steps for literature review. 

 Planning the review 

o Identify the need of review 

 Conducting the review 

o Develop Research Questions (RQs) 

 Reporting the  review 

o Report review category wise 

o Identify the research gaps 

 Concluding the  review 

o Provide future direction 
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2.2 Planning the Review 

In real-world applications, there are many challenges emerged recently in the field of 

Frequent Pattern Mining. It is mainly concerned with the following parameters: 

 Changes of underlying databases as time advances 

 Semantic significance associated with a pattern and  

 Imposing of Constraints in a particular area 

Our research is concerned with the above parameters and hence we have categorized 

our work into four approaches as listed below. 

a) Incremental Mining of Frequent Patterns 

b) Incremental High Utility Frequent Pattern Mining 

c) Incremental Constraint based Frequent Pattern Mining 

d) Incremental Educational Data Mining 

2.3 Conducting the Review 

As a first step Research Questions (RQs) are formulated and are listed as follows: 

 RQ#1: What is the need for Incremental Mining?  

   (Solution:  Refer Chapter 1) 

 RQ#2:What are the published literature/approaches for Incremental mining of   

              frequent patterns?  

   (Solution:  Refer Chapter 2) 

 RQ#3:Can they be classified according to functionality? 

   (Solution:  Refer Chapter 3) 
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 RQ#4: Are they able to measure the semantic significance of an item as per  

                       users‟ perspectives?  

   (Solution:  Refer Chapter 4) 

 RQ#5: Does they satisfy users‟ constraints? 

  (Solution:  Refer Chapter 5) 

 RQ#6: Are they applicable in educational context? 

  (Solution:  Refer Chapter 6) 

 

We have studied the research papers published in various International/National journal 

and Conferences of repute. 

2.4 Reporting the Review 

In this section we have described the review on four approaches as listed in section 2.2 and 

finally we have identified the research gaps based on this study. 

2.4.1 A Review on Incremental Mining of Frequent Patterns 

Incremental data can be defined as dynamic data that changes with time. In real world 

applications, underlying database consists of Incremental data that keeps changing and 

requires continual updating. Mining frequent patterns from such type of changing/growing 

databases is costly, as most of the approaches need repetitive scanning of the databases as 

well as generating huge number of candidate sets (Han et al., 2007). 

Frequent pattern mining is an important data mining technique that can be utilized to 

discover the frequent patterns from changing/growing database (Cameron & Leung, 2011). 

It is important to take into account the functionality (what kind of patterns) and 
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performance (how to mine frequent patterns) (Cheung & Zaïane, 2003). On the basis of 

this concept, the research works are divided into the following three categories 

chronologically: 

 Apriori based Incremental Mining 

 Partition based Incremental Mining and 

 Pattern Growth based Incremental Mining 

2.4.1.1 Apriori based Incremental Mining  

This subsection describes a candidate set generation process based on Apriori based 

Incremental Mining approach. We have considered those approaches that are widely used 

by the research community. e.g.: Fast UPdate (FUP) (Cheung et al., 1996), Fast UPdate2 

(FUP2) (Cheung, Lee & Kao, 1997), Update With Early Pruning (UWEP) (Ayan, Tansal, 

& Arkun, 1999), and PELICAN (Veloso et al., 2001) algorithms. 

FUP is the first Apriori based Incremental Mining algorithm is proposed for the 

efficient maintenance of discovering association rules in large databases when new 

transaction data are added to a transaction database. It generates less number of candidate 

keys as compared to Apriori, but deletion operation is not incorporated in this algorithm. 

FUP2 is an extended version of FUP, which handles the association rules in both 

Insertion and Deletion operation. This algorithm assumes that the large itemsets and their 

Support Count in the database came from the results of previously stored mining activities. 

It is more desirable to store counts rather than the association rules as the association rules 

can be calculated from these counts efficiently. The focus of this algorithm is that, the 

transaction to be deleted is a small part of the database activity. 

UWEP is another Apriori based algorithm that updates association rules with early 

pruning. It uses a dynamic look ahead strategy in updating the existing large itemsets. This 
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algorithm detects and removes those items that will no longer remain large after the 

contribution of the new set of transactions. The limitation is that it does not allow changes 

in minimum support value. 

PELICAN algorithm is similar to FUP2 algorithm which is based on a lattice 

decomposition strategy to find out the maximum frequent/ large itemset when the database 

is updated. Apart from that it allows changes in minimum support value and the generation 

of candidate sets is less, compared to FUP algorithm. Limitation of the algorithm is that, it 

considers only maximum frequent itemset in mining process. 

2.4.1.2 Partition based Incremental Mining Algorithms 

The limitation of the Apriori based Incremental Mining Algorithms are that they require 

multiple numbers of scans as well as generate large candidate sets. To cope up with this 

problem, Lee, Lin, & Chen (2001) developed a partition-based algorithm known as Sliding 

Window Filtering (SWF) algorithm. In this algorithm, a transaction database, „D‟ is 

divided into „n‟ number of partitions i.e. {P1, P2---Pn} and it employs filtering threshold in 

each partition to deal with the candidate itemset generation. The Cumulative Filter (CF) 

produced in processing each partition constitutes the key component to realize the 

incremental mining. If „L‟ is a frequent itemset in „D‟, then „L‟ must be frequent at least in 

one of the „n‟ number of partitions. 

An extended version of SWF is proposed by Chang & Yang (2003). Two algorithms 

has been proposed by reusing  previous mining task for generating frequent patterns, 

namely SWF with Frequent Itemset (FI SWF) and SWF with Candidate Itemset (CI SWF).  
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This approach is faster and generates fewer candidates as compared to SWF and Apriori 

based algorithms. The limitation of this algorithm is that it does not take into consideration 

the situation that the dataset to be Inserted or Deleted is either too large or too small. 

2.4.1.3. Tree/Pattern Growth based Incremental Mining  

The limitations of the Apriori based Incremental Mining Algorithms and Partition based 

Incremental Mining Algorithms are: 

 Multiple no. of  scans required  

 Do not allow changes in minimum support value  

 Large candidate sets  

 Assumption that data resides only on primary memory is not possible in most of 

the real world applications  

Taking into account of the above mentioned four limitations, Tree/Pattern Growth 

based Incremental Mining Algorithms has been introduced by the researchers. 

An extension of Frequent Pattern Tree (FP Tree) (Han et al., 2004) data structure is 

Compressed and Arranged Transaction Sequences Tree (CATS Tree), proposed by Cheung 

& Zaïane (2003). This is a prefix tree, which improves and compresses the structure of the 

tree by locally optimizing the sub-trees. The major advantage of this tree is that, it enables 

frequent pattern mining by supporting “build once, mine many” strategy. However, the 

limitation of this data structure is, without prior knowledge of transactions and itemsets, 

building the tree is not possible. 
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Another drawback is adding new transactions, since this process involves: 

 First, checking the common items and 

 Second, new items are merged into the existing path of the tree which is 

computationally expensive. 

In 2007, canonical tree based data structure was proposed by Leung et al. (2007), 

which is known as Canonical-order Tree (CanTree). In CanTree, the nodes of the tree are 

arranged according to Canonical/Lexicographical order. During maintenance, no 

adjustment of nodes is required. However, the limitation of this structure is that the tree 

might be larger for a long transaction with multiple branches, which takes longer 

traversing time. 

Hong, Lin, & Wu (2008) proposed a Fast Updated FP tree (FUFP) data structure, 

basically an extension of the FP-tree. The difference between FP-tree and FUFP is that the 

links between parent and child nodes are Bi-directional, which helps faster maintenance of 

frequent patterns in case of deletion operation. The new frequency counts are kept in the 

header table for making the tree update process easier. 

A modified version of the FUFP tree is proposed by Lin, Hong, & Lu (2009), based on 

the concept of Pre-large itemset. The Pre-large itemset can be defined as an itemset that is 

not actually a large item but possess a high probability of getting large in future. This 

property can be identified with the help of a lower and an upper support threshold. This 

structure is suitable for handling itemsets in case of insertion (small in original and big in 

updating the database) only. The limitation of this approach is that it does not allow the 

changes in the threshold after the database is updated. 
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For changing of threshold during the lifetime of the database, a data structure called 

“IMBT - A Binary Tree for Efficient Support Counting of Incremental Data Mining” was 

proposed by Yang & Yang (2009). This concept is based on binary trees for mining 

incremental data and requires only a single scan of the database. The limitation of this 

work is the creation of repeated node to construct the sub-tree. The maximum duplicities 

may rise up to 2
N
 if the tree levels ranges from 0 to N. Further, leaf nodes may not be 

placed in the same level. Since researchers only consider limited itemsets and a few 

transactions for a large dataset, the tree will be larger which is undesirable. 

2.4.2 A Review on Incremental High Utility Frequent Pattern Mining 

In traditional frequent pattern mining, the frequency of an itemsets is defined over the 

binary domain to denote the presence and absence of an item in a transaction. The 

common assumption is that each item in a database is equal in weight (Chuang, Huang, & 

Chen, 2008). As a matter of fact, in real life applications, it is not always possible to treat 

all patterns in an equal or binary way. It may not be a sufficient indicator to measure 

interestingness (Yao, Hamilton, & Butz, 2004) of items. 

To measure interestingness of items, Researchers integrated a term “weight”. The 

weight of an item can be described as Unit cost, Profit, Priority, Distance, Credit e.g. Cost 

of items in a transactional database, importance of the traversing different web pages as 

per the priority basis etc. Similarly, the share measure was proposed to reflect the impact 

of the quantity sold in terms of Cost or Profit of an itemset in weighted frequent pattern 

mining (Barber & Hamilton, 2003; Li, Yeh, & Chang, 2005a; Li, Yeh, & Chang, 2005b).   

 Several algorithms have been proposed by researchers to reflect the relative importance 

of items (Wang, Yang, & Yu, 2000; Wang  et al, 2004; Yao, Hamilton, & Butz, 2004; Yun 

& Leggett, 2005; Yun & Leggett, 2006; Yun, 2007; McGlohon, Akoglu, & Faloutsos, 
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2008; Sun & Bai, 2008; Yun, 2008; Yun & Ryu, 2011; Park et al., 2012; Ahmed et al., 

2012; Yun, Lee, & Ryu, 2014). 

Weighted Frequent Itemset Mining (WFIM) (Yun & Leggett., 2005) is the first FP tree 

based algorithm that reflects the relative importance (weight) of an item. Items are 

assigned with fixed weight in ascending order in the tree. Weighted Interesting Patterns 

(WIP) (Yun & Leggett, 2006) is a remarkable algorithm which introduces a new measure, 

weight-confidence to mine correlated patterns with weight affinity. Researcher have 

pointed out that weighted frequency of an item does not have the downward closure 

property. The limitations of both the algorithms are: 

 They are well established in static database 

 Quantities of items are not considered which is important to discover itemsets 

with high profit. 

In this framework, Vo, Coenen, & Le (2013) proposed a tree based data structure, 

Weighted Itemsets (WIT) which is useful for fast mining of Frequent Weighted Itemsets 

(FWI) from transaction databases. In such framework, two tree structures i.e. Incremental 

Weighted Frequent Pattern Tree based on Weight Ascending order (IWFPTWA) & 

Incremental Weighted Frequent Pattern Tree based on Frequency Descending order 

(IWFPTFD) and two algorithms IWFPWA & IWFPFD are proposed by Ahmed et al. (2012). 

Though this approach is suitable for both incremental and interactive mining, multiple 

branches occur during construction of the tree, hence time increases for computation 

(Insert, Delete etc.). 

To represent high utility itemset compactly, recent high utility mining algorithms (Chan 

Yang, & Shen, 2003; Hu & Mojsilovic, 2007; Lin, Lan, & Hong., 2012; Liu & Qu, 2012; 

Lee, Park, & Moon, 2013; Tseng et al., 2013; Song, Liu, & Li, 2014; Yun, Lee, & Ryu, 

http://link.springer.com/search?facet-author=%22Eunkyoung+Park%22
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2014) have emerged. In high utility mining, since the downward closure property cannot 

be directly applied, a two-phase algorithm is proposed by Liu, Lia, & Choudhary (2005). 

This algorithm can efficiently prune the number of candidates and can precisely obtain the 

complete set of high utility itemsets. Li, Yeh, & Chang (2008) proposed an isolated item 

discarding strategy to reduce the number of candidate itemsets in the first phase of level 

wise utility mining approach. 

A special indexing structure and projection based method was developed by Lan, Hong, 

& Tseng (2014) which is much more computationally efficient compared to Two-phase 

algorithm. High utility mining in frequent closed patterns are described in Chan, Yang, & 

Shen (2003) and Maximal high utility itemset is described by Shie, Yu, & Tseng (2012). 

Incremental High Utility Pattern (IHUP) trees (Ahmed et al., 2009), High Utility 

Candidates Prune (HUC-Prune) (Ahmed et al., 2011), Utility Pattern Growth (UP-Growth) 

(Tseng et al., 2010), Utility Pattern Growth
+
 (UP-Growth

+
) and Utility Pattern Tree(UP 

tree) (Tseng et al., 2013), Fast High-Utility Miner (FHM) (Fournier-Viger et al., 2014), 

Maximum Utility Growth (MU-Growth, MU-Strategy1, MU-Strategy2) and Maximum 

Item Quantity Tree (MIQ-Tree) (Yun, Ryang, & Ryu, 2014) are tree based approaches to 

discover high utility itemsets without generating candidate keys. 

The problem of the above mentioned algorithms are that, most of the candidates are 

found out to be of not high utility after their exact utilities are computed. To cope up with 

this problem, a novel approach was proposed by (Liu & Qu, 2012) which is known as 

High Utility Itemset Miner (HUI-Miner). It uses utility-lists which are similar to the tidlists 

used in Eclat algorithm for mining frequent itemsets (Zaki, 2000). It is based on depth-first 

strategy which is better than the IHUP (Ahmed et al., 2009; Tseng et al., 2010) and UP-
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Growth
+
 (Tseng et al., 2013). The d2HUP algorithm is another approach that uses 

irrelevant item filtering and look-ahead pruning for efficient mining. 

2.4.3 A Review on Incremental Constraint based Frequent Pattern Mining 

The research community has been interested in constraint based mining to address the 

trade-offs of Data Mining tasks such as support vs. confidence, model expressiveness vs. 

compute time, etc. (Bayardo, Agrawal, & Gunopulos, 2000; Bayardo, 2006). A 

considerable number of research work has been done in the field of constraint based 

pattern mining by using algorithmic approaches (Han, Lakshmanan, Ng., 1999; Brailsford, 

Potts, & Smith, 1999; Bucila et al., 2003; Bonchi & Goethals, 2004; Uno, Kiyomi &  

Arimura, 2005; Pei et al., 2007; Raedt & Zimmermann, 2007; Ruggieri, 2010; Guns, 

Nijssen, & Raedt, 2011). Most of the existing algorithms require several passes to scan the 

dataset even though the user is interested in only few patterns. 

To reduce the number of repetitive database scans, Gap with Index Apriori (GwI-

Apriori), an enhancement of Gap with Apriori (G-Apriori) algorithm was introduced by 

Chiu, Chiu, & Huang (2009). To keep the record of the occurrences of repeating patterns, 

GwI-Apriori uses an Index structure, which makes the mining process faster than the G-

Apriori. 

However, this approach not only takes large computing time, but also does not filter out 

the initial undesired transactions. 

A tree based monotone constraint mining defined in Knijf & Feelders (2005), is an 

extended work of FREQT algorithm. FREQT is a tree based incremental label ordered 

pattern mining algorithm (Asai et al., 2002). In FREQT the tree grows by adding new 

nodes in the rightmost branch of the tree. If the number of nodes are very large, then there 

are possibilities of growing a skewed tree, which is undesirable. RegularMine (Ruggieri, 
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2010) is an approach to produce concise frequent pattern which performs well in post-

processing of mining frequent itemsets. 

A recent approach for tree based constraint mining is MCRP-Tree (Maximum 

Constraint based method for generating Rare association rule Pattern mining tree) (Bhatt & 

Patel, 2015). MCRP-Tree takes less time to build the pattern tree as compared to Apriori-

based algorithms, but multiple tree branches results more pattern mining time. 

2.4.4 A Review on Incremental Educational Data Mining 

Educational Data Mining (EDM) has attracted a significant attention of the researchers due 

to its ability to suggest the most suitable future planning by mining incremental 

educational data in the context of quality education (Romero & Ventura, 2013) (Jindal & 

Dutta Borah, 2014). 

In EDM, students‟ modelling and Intelligent Tutoring System have attracted a 

considerable attention (Baker & Yacef, 2009) (Romero & Ventura, 2010). To enhance the 

quality of learning in higher learning institutions, the concept of predictive and descriptive 

models are discussed by Delavari & Phon-Amnuaisuk (2008). The predictive model 

predicts the success rate for individual students; individual lecturer and descriptive model 

describe the pattern modeling of student course enrollment, course assignment policy and 

behavior analysis (Lee & Chen, 2012; Nelson, Nugent, & Rupp, 2012) etc. 

Antunes (2008) define constraint relaxation, a methodology to acquire background 

knowledge for student modelling. Similarly, Constraint-based tutoring for database related 

language in (Mitrovic & Ohlsson, 1999) are some of the remarkable researches in 

constraint based EDM. 
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2.4.5 Identification of Research Gaps  

 

The above discussion brings forth the following Research gaps: 

 Creation of duplicate node (e.g. IMBT) 

 Greater computation time required for searching common itemsets, merging and 

finding a suitable path (e.g. CATs) etc. 

 Consumption of large amounts of memory to construct the tree (e.g. CanTree) 

 An unbalanced tree structure in which leaf nodes are not at the same level (e.g. 

CATS, CanTree, FUFP, Pre-FUFP etc.), requiring more times to traverse the 

tree. 

 Performance based on static dataset where incremental mining is not possible 

 Generates huge candidate sets 

 Requiring multiple scans degrades the mining performance 

 Not fulfilling the “Build Once Mine Many” property  

 Multiple branches in tree based data structure, hence increasing branch 

computational time (e.g. IHUP, HUC-Prune, UP-Growth, MU-Growth, MU-

Strategy1, MU-Strategy2 etc.) 

 Generates large number of potentially high utility itemsets 

 Applying global maximum weight to maintain downward closure property 

leading to defining unnecessary items for a longer period in pruning stage 

 Most of the existing algorithms require several passes to scan the dataset even 

though user is interested in only few patterns (e.g. GwI-Apriori, FREQT, 

MCRP-Tree etc.), resulting in large computing time (since they do not filter out 

the initial undesired transactions). 
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2.5 Concluding the Review 

From the literature review it has been established that there are problems in terms of 

computational and algorithmic development. Hence there is a scope for develop efficient 

approaches to enhance the performance of Incremental Frequent Pattern Mining.   
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CHAPTER-3: INCREMENTAL MINING OF FREQUENT PATTERNS 
 

 

It has been observed from chapter 2 that there are problems in terms of 

computational and algorithmic development on traditional approaches of 

Incremental Frequent Pattern Mining. This chapter deals with an algorithmic 

approach i.e. tree based algorithm for mining frequent patterns of incremental 

data.  

The proposed tree, “Tree for Incremental Mining of Frequent Pattern 

(TIMFP)” captures the contents of the database and arranges tree nodes according 

to the property of binary search tree that is unaffected by changes in item 

frequency. It satisfies the property “Build Once and Mine Many” which is suitable 

for Incremental as well as Interactive Mining. We compared the proposed tree 

with CanTree, CATS tree and IMBT data structure. From the experimental 

results, it is found that the time required by the proposed tree (TIMFP) for 

building and mining the tree is lesser compared to related data structure. 

 

3.1 Introduction 

In real world applications, underlying database consists of incremental data which keeps 

changing and require continual updating. Mining frequent patterns from growing databases 

is costly as most of the approaches need repetitive scanning of the database as well as 

generating huge number of candidate sets (Han  et al., 2007). 

Frequent pattern mining is an important data mining technique that can be utilized to 

discover the frequent patterns from such data (Cameron & Leung, 2011). A pattern/item is 
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said to be frequent if it appears frequently in a dataset with a frequency which is greater 

than a user-specified threshold (Agrawal, Imielinski, & Swami, 1993) (Agrawal, & 

Srikant, 1994). 

Finding frequent itemsets is costly during changes of the underlying database. One 

approach to find frequent itemsets from frequently changing databases is to construct 

efficient data structures. Researchers have found that tree based data structures such as 

CATS Tree, CanTree, FUFP, Pre-FUFP; IMBT etc. are most suitable for mining frequent 

patterns from incremental data. 

The significant problems with the above stated data structures are as follows: 

 Creation of duplicate node (e.g. IMBT) 

 Greater computation time required for searching common itemsets, merging and 

finding a suitable path (e.g. CATs) etc. 

 Consumption of large amounts of memory to construct the tree (e.g. CanTree) 

 An unbalanced tree structure in which leaf nodes are not at the same level (CATS, 

CanTree, FUFP, Pre-FUFP etc.), requiring more time to traverse the tree. 

It has been observed that problems occur in terms of computational and algorithmic 

development. It is important to develop efficient approaches to enhance the performance of 

mining. 

3.2 Proposed Work 

Our proposed work is designed for frequent pattern mining from incremental data. To 

avoid repetitive scanning and generation of test candidate sets, the proposed work 

constructs a binary tree based data structure and mining algorithm which is suitable for 

both incremental and interactive mining. In case of incremental mining, it can deal with 
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changes of the underlying database whereas with respect to interactive mining, the data 

structure will be built only once and mined several times as per requirement. 

The features of the proposed data structure are: 

 No duplicates arise during the construction of the tree. 

 Root node is selected in such a way that, Root‟s left hand itemsets are always less 

than that of the Root node and equal/greater itemsets are on  the right hand side. 

The benefit of selecting Root node in such a manner  is that it takes less searching 

time to perform any operation (insert/delete/update) 

3.2.1 Tree Construction Process 

Let I be a set of N items I= {I_1, I_2…I_N} and a database DB= {T_1, T_2… T_M} be a 

set of M transactions. For each transaction T_i (1≤ i ≤ M),  T_i ∈ I.  

Other two parameters associated with the tree construction process are Support Count 

(frequency of items in the database) and INFO [Node]. We have used the terminology 

INFO [Node] to describe the information (item name and respective support count) of a 

tree node, i.e. INFO [Node] = INFO [Item: Support count]. 

Definition 3.1: Representation of Root node 

Let R be the root of a binary tree TB. Initially INFO [R] is empty. The Root node, R 

can be obtained from the item at position X of the first transaction i.e. T_1 in the original 

database DB. Note that T_1 should be arranged in ascending order.  

Where, X = ceiling of [{least significant index position + most significant index 

position} / 2] and INFO [R] = [Item at X: Support count].  
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The “least significant index position” indicates the position of the zero
th
 item in T_1 

and the “most significant index position” indicates the position of the N-1
th
 item (last item) 

in T_1. 

To illustrate the construction of the Root node, let us consider the Figure 3.1(a). 

In the database DB, first transaction, T_1 consists of seven items which are unsorted 

i.e. T_1= {I_1, I_2, I_6, I_3, I_7, I_5 and I_4}. Place them in ascending order; T_1 

becomes (I_1, I_2, I_3, I_4, I_5, I_6, I_7). Take the position of least and most significant 

index position (I_1=0 and I_7=6). Now find out the ceiling of [{0+6)}/2] which is 3. Item 

I_4 lies at 3
rd

 index position. Hence, I_4 is the Root node (refer Figure 3.1 (b)). 

Definition 3.2: Representation of Left Child of the tree  

If R is a Root node at position X of the transaction, then TL will be left child node or 

sub tree of the R if it is in (X-1)
th
, (X-2)

th
 ---0

th
 position. From the Figure 3.1(b), I_3 is in 

(3-1) i.e. 2
nd

 position of R, hence I_3 is the left child node of R. Similarly I_2 and I_1 

corresponds the left child nodes/ sub tree of R. 

Definition 3. 3: Representation of Right Child of the tree  

If R is a Root node at position X of the first transaction, then TR will be right child 

node or sub tree of the R if it is in (X+1)
th

, (X+2)
th

 --- (X+ N-1)
th
 position. From the Figure 

3.1(b), I_5 is in (3+1) i.e. 4
th

 position. Similarly I_6 and I_7 are in the 5
th

 & the 6
th

 position 

of R. Hence I_5, I_6 and I_7 are the right child nodes /sub tree of R. 
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DB

T_5 I_2 I_6

T_4 I_4 I_6 I_5

T_3 I_1 I_2 I_3 I_4 I_7

T_2 I_4 I_1 I_3

T_1 I_1 I_2 I_6 I_3 I_7 I_5 I_4

DB :Original Database , T: Transactions, I :Itemset

 
 

(a) 

 

 

Index 0 1 2 3 4 5 6

T_1 ( Unsorted) I_1 I_2 I_6 I_3 I_7 I_5 I_4

T_1 
(Ascending order)

I_1 I_2 I_3 I_4 I_5 I_6 I_7

Root node= Γ(0+6/2) = 3

I_4:1

I_1:1, I_2:1, I_3:1 I_5:1, I_6:1, I_7:1

I_4:1

I_2:1 I_6:1

I_1:1 I_7:1
Child Nodes

INFO [R] =[ I_4:1] 

I_3:1 I_5:1

Transactions

 
 

(b) 

 

Figure 3.1: (a) Original database  (b) Representation of Root node 
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Further, in Figure 3.1 (b), next levels of the tree construction are done as follows: 

i. We have I_1, I_2 and I_3 as left child nodes and I_5, I_6 and I_7 as right child 

nodes. 

ii. We have applied the same procedure as defined in “Definition 3.1: Representation 

of Root node” to find out the parent node for both (left and right child nodes). The 

position of the parent node for the left Child nodes is 1 (ceiling of [0+2]/2. Hence 

I_2 is the parent node for the left sub tree. Similarly we obtained that I_6 is the 

parent node for the right sub tree. 

iii. Further, we have applied the same procedure as stated in “Definition 3.2” and 

“Definition 3.3” to obtain the left hand and right hand tree for both (left and right) 

parent. For the parent I_2, the (X-1)
th 

position is “0” which represents item I_1, 

hence I_1 is the left child node of I_2. Again, (X+1)
th 
position of I_2 is “2” which 

represents the item I_3, hence I_3 is the right child node of I_2. Similarly, we 

obtained I_5 as left child node and I_7 as right child node of parent node I_6. 

Lemma 3.1:  

For any transaction in a database: 

      i) No duplicate nodes arise during construction of the tree and  

      ii) There exists a binary path which is unique w.r.t. the Root node of the tree.  

Proof: 

Let R is the Root node which is empty initially. Hence TL (left sub tree) and TR (right sub 

tree) = NULL and INFO [R] = NULL. 

Let T_1 = {I_1, I_2---- I_M} is the first transaction taking into account to construct the 

tree, and is in ascending order. The Root node is chosen as per Definition 3.1 and INFO 

becomes INFO [I: 1] which means the item, I is the Root node and Support Count of R is 

1. 
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When we want to insert any item in the TL ||TR of the Root node, we need to check 

whether there exists any child node with a similar item. If exists, Support Count value is 

added to INFO, otherwise a new node is created and is placed in TL ||TR as per Definition 

3.2 & 3.3 e.g. if the order of the item is less than the R, then a new node is placed in TL 

otherwise placed in TR. For other transactions, the above mentioned approach is 

recursively applied to form the tree. 

The Support Count of respective items will be added in the INFO of the corresponding 

node only. Similarly, for increment (Δ
+
), corresponding support counts will be 

incremented, whereas for deletion (Δ
-
) corresponding Support Count will be decremented. 

Therefore, no duplicity of nodes arises during construction of the tree. Further, the tree is 

formed in two ways i.e. left or right (TL ||TR), as a consequences, for transaction; there 

exists a unique binary path (at most 2 paths) w.r.t. Root node. 

3.2.2 Algorithm for Tree Construction Process 

This subsection briefly describes the algorithm for constructing the proposed data structure 

(Refer Figure 3.2). The motivation behind this algorithm is to construct a binary tree which 

is almost balanced in the sense that all possible leaf nodes are placed in the same level. 

As an input, we have considered an original database (DB) along with incremented 

(Δ
+
) and deleted (Δ

-
) portion of DB. The output is a pattern tree. 

Line 1-9 of the algorithm, tries to find out the Root node of the tree by processing the 

first transaction, T_1 of the DB. If an item I is a single item in T_1, then I is assigned as a 

Root node (line 2-4). Otherwise, T_1 is sorted according to ascending order (line 5). Root 

node is considered by taking the ceiling of least and the most the significant position of the 

item and dividing by two (line 7). 
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As illustrated above, the benefit of choosing Root node using this process is that all 

the items which is less in some order is placed in the left hand side of the root, whereas all 

items greater than or equal to are placed in the right side of the Root node. The information 

of the Root node is printed by defining the respective item and Support Count (line 9) and 

information on the left and right hand side of the Root node is printed as per Definition 3.2 

& 3.3 (line 10-11). 

Again by scanning the rest of the transactions, Insertion and Deletion operations can 

be performed (line 14-20). The detail of the algorithm is shown in Figure 3.2. 

 

Figure 3.2: Algorithm for constructing the proposed data structure, TIMFP 

 

Procedure Insert:  

Figure 3.3 describes the insertion procedure. As a first step, the scanning of the original 

database / incremental database is required. If there is no transaction found in the database, 

no „Insert‟ operation takes place (line 1-5), Else, if the order of the item in every 

transaction to be inserted is less than the Root node, then it is placed in the left hand side 
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of the root (line 6-8), otherwise, the items are placed in the right hand side of the Root 

node (line 9-11). 

If the item, I appear more than once, than the Support Count of the item increased 

without creating a duplicate node. Hence Support Count of INFO of left, right and the 

Root node increases (line 12-15). 

 

Figure 3.3: Procedure for Insert Operation 

 

Procedure Delete:  

Figure 3.4 explains the delete operation. First, it checks for the transactions. If no 

transactions are available, delete operation is terminated in the first attempt (line 2-4). If 

there are transactions available in the portion to be deleted from the database, then 

deletions take place. If the item to be deleted appears once or more than once, then the 

respective Support Count of Root node or left tree node or right tree node are decreased 
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(line 5-8). If Support Count of an item is zero, the node is logically deleted from the list 

(line 9-10). 

 

Figure 3.4: Procedure for Delete Operation 

 

3.2.3 Example: To construct tree based data structure from incremental data 

 

This section illustrates tree construction and related operation of the proposed algorithm.  

Let us consider the original database as shown in Figure 3.1 (a). The original database, DB 

consists of 5 transactions T_1 to T_5. The corresponding itemsets are I_1, I_2, I_3, I_4, 

I_5, I_6, and I_7. The construction of tree requires one scan of the original database. 

Finding Root node: 

Initially Root node is empty. The Root node is obtained as per the Definition 3.1 

where Figure 3.1(b) illustrates the example of finding Root node which is I_4 and the 

corresponding information is INFO [I_4:1]. 
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Insertion operation: 

Finding Root node and corresponding left/ right node using transaction T_1 is shown 

in Figure 3.1 (b). Let us consider the next transaction T_2 which consists of 3 items, 

namely I_4, I_1 and I_3. Initially the INFO of I_4 was [I_4:1]. After adding the Support 

Count of I_4 in transaction T_2, INFO becomes [I_4:2]. Accordingly, INFO of I_1 and I_3 

changes in the tree structure as shown in Figure 3.5 (a). Final tree after inserting all 

transactions (T_1 to T_5) in original database is shown in Figure 3.5 (b). 

I_4:1

I_2:1 I_6:1

I_1: 1 I_7:1I_3:1 I_5:1

T_2:={I_4,I_1,I_3}

I_4:2

I_2:1 I_6:1

I_1:2 I_7:1I_3:2 I_5:1

 

(a) 

 

I_4:4

I_2:3 I_6:3

I_1:3 I_7:2I_3:3 I_5:2

 

(b) 

 

Figure 3.5:  (a) Tree after inserting transaction T_2     (b) Final Tree in DB 
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Adding incremental data:  

Let us consider Figure 3.6 (a) for adding incremental data. First, an incremental 

portion of the database (Δ1
+
) consists of two transactions T_6 and T_7. It is noted that T_6 

is a short transaction containing a single item (I_9) which is initially not declared in the 

original database, DB. 

In case of addition of transaction, there is no effect in the itemsets of the original tree. 

It is not necessary to rebuild the original tree, but only to update the tree. The order of Item 

I_9 at T_6 is greater than the Root node (I_4). 

As per the Definition 3.3, Item I_9 is placed in the right hand side of the tree. 

Similarly, other transactions in Δ1
+
 and Δ2

+
 are inserted in the tree. The final tree is shown 

in Figure 3.6 (c). 

Δ 2 +

T_9 I_4 I_6 I_9

T_8 I_1 I_2 I_4 I_6 I_7 I_9

Δ 1 +

T_7 I_2 I_4 I_6

T_6 I_9

Δ + = Incremental  portion of the database 
 

(a) 
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(b) 

 

I_4:7

I_2:5 I_6:6

I_1:4 I_7:3I_3:3 I_5:2

I_9:3

 
(c) 

 

Figure 3.6: (a) Incremental database   (b) Updated database  

(c) Final Tree adding incremental data (Δ
+
) 
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Deletion Operation:  

Like addition, in deletion also, there is no effect in the itemsets of the original tree. Only 

Support Count in INFO of the item is decremented by one for every item deletion 

operation. If Support Count of an item becomes zero, then the item is logically deleted 

from the tree. 

Let us delete the transactions Δ1
- 
= {T_5, T_4}, Δ2

- 
= {T_1} and Δ3

- 
= {T_9} from the 

updated database (refer 3.6 (b)).  

After Δ1
-
 operation, it is observed that INFO [I_4:7] becomes INFO [I_4: 6] (Figure 

3.7 (a)). It has been noted in Figure 3.7 (b) that item I_5 is logically deleted from the tree 

structure as its Support Count decreases up to zero. The final tree (after Δ3
-
 operation) with 

updated database is shown in Figure 3.7 (c). 

I_4:6

I_2:4 I_6:4

I_1:4 I_7:3I_3:3 I_5:1

I_9:3∆1
- = { T_5, T_4} 

 
(a) 
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I_4:5

I_2:3 I_6:3

I_1:3 I_7:2I_3:2 I_5:0

I_9:3 ∆2
- = { T_1} 

I_4:5

I_2:3 I_7:2

I_1:3 I_9:3I_3:2 I_6:3

 
(b) 

 

I_4:4

I_2:3 I_7:2

I_1:3 I_9:2I_3:2 I_6:2

Updated 
database

T_8 I_1 I_2 I_4 I_6 I_7 I_9

T_7 I_2 I_4 I_6

T_6 I_9

T_3 I_1 I_2 I_3 I_4 I_7

T_2 I_4 I_1 I_3

 
(c) 

  

Figure 3.7: Deletion operations  (a) Deleting T_5 & T_4  (b) Deleting T_1 and

 (c) Tree (after Δ3
-
 operation) with updated database 
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3.3 Mining frequent patterns from incremental data 

The proposed data structure (TIMFP) fulfils the criteria “Build Once and Mine Many” 

which means that the tree should be constructed once and it can be used for mining in 

future for number of times. Hence our data structure is also suitable for interactive mining. 

The beauty of this structure is that, frequent patterns can be mined with a variable 

minimum support threshold defined by user. 

3.3.1 Algorithm for mining frequent patterns  

The input of the algorithm is the tree data structure described in Section 3.2.2.  The output 

of this algorithm is frequent patterns. The detail algorithm is presented in Figure 3.8. 

For mining the frequent patterns of the tree, first it checks the information of the Root 

node (INFO[R]).  

If INFO [R] is null, no further mining is required (line 2, 3), Else visit (traverse) the 

tree. Keep the INFO [R/ TL/TR] in the header list, if the information is greater/ equal to the 

user defined support threshold (UMinSupp) then update the header table (line 5-9). 

This gives us the size one frequent item (line10). Next is to find out the conditional 

pattern base and the conditional tree of the items listed in the header table (line 14). 

The conditional pattern base consists of path(s) belonging to an item (line 15, 16). It 

signifies the occurrence of an item. Conditional tree is derived from the conditional pattern 

base dataset. The way of finding out the conditional tree is similar to FP tree (Han, J. et al., 

2004). Conditional tree is the tree that contains items which are greater or equal to the 

UMinSupp. Rest of the items are discarded (line 17-20). Frequent patterns are generated 

from the conditional tree (line 21-25). It is the combination of items belonging to the 

conditional tree for the corresponding items present in the header of the table (line 22). 
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Figure 3.8: Mining algorithm 

 

Lemma 3.2: 

With the increase of user defined minimum support threshold, the number of nodes 

participating in mining operation forming a conditional tree decreases. 

Proof: 

Proposed tree is an almost binary tree, hence TL || TR consist of at most 2 child nodes. 

Total nodes in TB= (2
0
 +2

1
+ 2

2
---+ 2

N-1
). 

Let minimum support threshold= UMinSupp and No. of nodes in the tree TB (tree= TL 

&& TR) at level „i‟ is „2
i
‟. 

For mining operation, if assigned UMinSupp= 0 then No. of nodes in TB= (2
0
 +2

1
+ 2

2
-

--+ 2
N-1

). As keeping higher UMinSupp, the nodes with minimum INFO will be discarded 
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first. Hence, the nodes participating in mining operation which forms a conditional tree 

decrease. 

3.3.2 Example: To mine frequent patterns from incremental data 

 

Let us consider the Figure 3.7(c) to illustrate the mining example. The tree is constructed 

once  and mining can be done several times by providing different user defined threshold 

(UMinSupp). 

As per the algorithm, we have found that the INFO of Root node is INFO [I_4: 4], 

which is not NULL. Hence, mining is possible. We have added the INFO of a Root node 

and left/right sub tree node in the header table for construction of conditional tree (refer 

Figure 3.9). 

 

Header Table

INFO[] Item Supp. 
count

R I_4 4

TL

I_2 3

I_1 3

I_3 2

TR

I_7 2

I_6 2

I_9 2

I_4:4

I_2:3 I_7:2

I_1:3 I_9:2I_3:2 I_6:2

 
 

Figure 3.9: Initial header table and the tree used for mining 

 

 

Let UMinSupp=2. The items shown in the header table participated in the mining 

operations as the INFO [R/ TL/ TR] > = UMinSupp. The resultant size one itemset is the 
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items that belong to header table. Next step is to find out the size two or more patterns 

from conditional tree. 

As we have mentioned, the way of constructing conditional tree is similar to FP tree, 

hence as a first step we will find out the conditional pattern base of each item INFO listed 

in the header table. 

Let us consider the INFO [I_6] in TR. Conditional pattern base for I_6 is <I_1, I_2, 

I_4, I_7, I_9> and <I_2, I_4>.  

But the conditional tree for the I_6 is only <I_2, I_4>, rest are ignored/discarded as 

they are less than the given UMinSupp (I_1, I_7, I_9 occurs only once). The resultant 

frequent patterns for I_6  are: <I_2  I_6>, < I_4  I_6> and < I_2  I_4  I_6>.  

Similarly, the frequent patterns are obtained for Root, Left and Right sub tree nodes 

as shown in Table 3.1. 

Table 3.1: Mining frequents patterns from incremental data using proposed mining 

algorithm 

INFO [] 

 

Conditional pattern 

base 

Conditional tree Frequent patterns 

R I_4:4 <I_1, I_3>;  

< I_1, I_2, I_3, I_7>;  

<I2, I6>; 

 < I_1, I_2, I_6, I_7, I_9> 

< I_1, I_3: 2>; 

 <I_2, I_6: 2>; 

 <I_1, I_2, I_7: 2> 

<I_1, I_4>; <I_3, I_4>; <I_2, 

I_4>; <I_4, I_6>; < I_1, I_3, I_4>; 

<I_2, I_4, I_6> ;  

<I_1, I_2, I_4, I_7> 

TL I_2:3 < I_1, I_3, I_4, I_7>; 

 < I_4, I_6>; 

< I_1, I_4, I_6, I_7, I_9> 

< I_4, I_6: 2>; 

 < I_1, I_4, I_7:2>  

<I_2, I_4>; <I_2, I_6>; <I_2, I_4, 

I_6>; <I_1, I_2> ;<I_2, I_7>; < 

I_1, I_2, I_4, I_7> 

I_1:3 < I_3, I_4>;  

< I_2, I_3, I_4, I_7>; 

< I_2, I_4, I_6, I_7, I_9> 

< I_3, I_4: 2>; <I_2, 

I_4, I_7: 2> 

<I_1, I_3>; <I_1, I_4> <I_1, 

I_2>; <I_1, I_7>; <I_1, I_3, I_4>; 

< I_1, I_2, I_4, I_7> 

I_3:2 < I_4, I_1>; 

< I_1, I_2, I_4, I_7> 

< I_4, I_1: 2> < I_1, I_3>; < I_3, I_4>; < I_1, 

I_3> 
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TR I_7:2 < I_1, I_2, I_3, I_4>; 

< I_1, I_2, I_4, I_6, I_9> 

< I_1, I_2, I_4: 2> < I_1, I_7>; < I_2, I_7>; 

 < I_4, I_7>;< I_1, I_2, I_4, I_7> 

I_6:2 < I_1, I_2, I_4, I_6, I_9>; 

<I_2, I_4> 

<I_2, I_4: 2> <I_2, I_6>; 

 <I_4. I_6>; 

 <I_2, I_4, I_6> 

I_9:2   < I_1, I_2, I_4, I_6, I_7> < - > <I_9> 

 

 

3.4 Comparative Study of proposed tree with related work  

This section presents the comparative study of the proposed tree (TIMFP) with CanTree, 

CATS tree, and IMBT. Let us consider the incremental database shown in Figure 3.10(a) 

to construct the tree. We have considered only the Insertion operation for each data 

structure in this comparison which is an identical operation for comparison among the four 

data structure.  

Δ +

T_5 I_6

T_4 I_4 I_6 I_5

DB

T_3 I_1 I_2 I_3 I_4 I_7

T_2 I_4 I_1 I_3

T_1 I_1 I_2 I_6 I_3 I_4 I_5

D’

DB :Original Database , D’ : new Updated Database

Δ + : Newly Added Transaction, T: Transactions, I :Items

 
(a) 
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I_2:2 I_6:3

I_1:3 I_3:3 I_5:2 I_7:1

I_4:4 Level 0

Level 1

Level 3 

Insert (T_1, T_2 , T_3, T_4, T_5)

 
(b) 

 

I_1

I_2

I_3

Level 0

I_4

Insert( T_1 )

I_2

I_3 I_3 I_3

I_4I_4I_4I_4I_4I_4I_4

Level 1

Level 2

Level 3

Level 5I_6 I_6I_6

 
(c) 

 

I_1:1

I_2:1

I_6:1

I_3:1

I_4:1

I_5:1

Insert(T_1)

I_1:2

I_3:2

I_4:2

I_2:1

I_6:1

I_5:1

Insert (T_1, T_2)

I_1:2

I_3:2

I_4:2

I_2:2

I_6:1

I_5:1

I_7:1

Insert (T_1,T_2,T_3

Swapping

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

 
(d) 
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Level 0I_1:1

I_2:1

I_3:1

I_4:1

I_5:1

I_6:1

Insert (T_1)

I_1:2

I_2:1

I_3:1

I_4:1

I_5:1

I_6:1

I_3:1

I_4:1

Insert (T_1 , T_2)

I_1:3

I_2:2

I_3:2

I_4:2

I_5:1

I_3:1

I_4:1

I_6:1

I_7:1

Insert (T_1,T_2,T_3)

Level 1

Level 2

Level 3

Level 4

Level 5

 
(e) 

 

Figure 3.10: (a) Incremental database    (b)   Proposed Tree (TIMFP)        

(c) Partial tree of IMBT  (d) CATS tree    (e) CanTree 

 

Proposed tree is shown is Figure 3.10(b) which is a binary and almost balanced tree. 

Partial construction of IMBT is shown in Figure 3.10(c). IMBT is partial in the sense that 

we have inserted only first transaction, T_1 and the tree grows with huge number of 

duplicate nodes (2
Level

). This is not suitable for any long transactions.  

Figure 3.10(d) shows the insertion process of CATS tree. We observed that the 

swapping is necessary to construct the tree, resulting to greater computing time. 

Construction of CanTree is shown in Figure 3.10(e). It is observed that tree level is 

greater than our proposed tree which takes greater time to traverse as well as to perform 
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other operations. It is also observed that there are possibility of developing skewed tree 

which is undesirable. 

Comparative statement of proposed data structure is shown in the Table 3.2 and Table 

3.3. 

Table 3.2: Comparison of proposed data structure with related data structure 

Parameters IMBT CATS tree CanTree Proposed tree 

(TIMFP) 

Binary Tree 

structure 

Yes No  No  Yes 

Tree branch  At least 2 More than 2 More than 2 At least 2 

Leaf nodes 

are on the 

same level 

No No No Yes (almost) 

Generation 

of duplicate 

nodes 

Yes No No No 

Computation 

required for 

searching 

common 

itemset,  

paths and 

mining 

process  

Short transaction, 

required less 

computation than the 

CATS tree as IMBT 

follows a binary 

path. But for a long 

transaction, required 

computation will be 

Depend on the 

local support of 

the tree 

Less than the 

IMBT and CATS 

tree, since the tree 

follows  

lexicographical 

order 

Less than all 

compared data 

structures, 

since TIMFP 

follows a 

binary path 

without 

creating 
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more as it creates 

duplicate nodes in 

each level of the tree 

duplicate nodes  

Tree size Large as it produces  

duplicate nodes in 

both sides of the 

Root node of the 

binary tree 

Compact as 

compared to 

IMBT and 

CanTree  

Larger than 

CATS tree 

Compact as it 

maintain binary 

order  

Most suited 

for  

Short transaction 

(more duplicate 

nodes for long 

transaction) 

Short transaction  Short and long 

transaction 

Short and long 

transaction 

 

Table 3.3: Observations on the state of art work  

Parameters  IMBT 

[Figure 3.10 

(c)] 

CATS tree 

[Figure 3.10 

(d)] 

CanTree 

[Figure 3.10 (e)] 

Proposed tree 

(TIMFP) 

[Figure 3.10 (b)] 

Number of Nodes 32 07 09 07 

Height of the Tree 05 05 05 02 

Level of the Tree level 0 to level 5 level 0 to level 5 level 0 to level 5 Level 0 to level 2 

Number of 

Transactions 

Inserted 

01  

(T_1) 

03  

(T_1, T_2, T_3) 

03 

 (T_1, T_2, T_3) 

05 

(T_1,T_2,T_3,T_

4, T_5) 
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From the Table 3.3, it has been observed that the proposed tree (TIMFP) has better 

performance than other data structures compared in this work.  

In summary:  

 The proposed tree has fewer nodes since it is based on the property of a binary 

tree.  

 The height of the proposed tree is less because it follows a binary path for 

insertion of items, whereas other data structures compared in this work 

follows multiple paths or a single skewed path for Insertion of items. Again, 

for insertion or deletion operation, only the INFO of a node (INFO [item: 

Support count
++/--

]) is incremented or decremented without affecting the 

binary path, whereas for other data structures, support counts of respective 

nodes are incremented or decremented by effecting either local or global 

paths. 

The only limitation of the proposed tree is that there might be a skewed path if all the 

items to be inserted is less or greater than the Root node which is a rare case for any 

transaction. 

3.5 Experimental Results 

3.5.1 Data and Environment for Experiment 

For effective results, it is important to consider dataset from the widely accepted synthetic 

data source or the data collected from real life environment (Verma & Vyas, 2005) 

(Chang & Lee, 2005) (Hu et al., 2008). Hence we have generated synthetic data set using 

the same technique introduced in (Agrawal & Srikant, 1994), real data set of learning 

domain (Teachable Peer Learner dataset) (Matsuda & Ritter, 2011) and NU-MineBench 
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2.0 chain data-store dataset (Pisharath et al., 2005) to evaluate and compare the 

performance of the proposed data structure (TIMFP) with CanTree, CATS tree and 

IMBT data structure. 

The parameters for each of the datasets are as follows: 

 Dataset1: Synthetic dataset “T10-I4-D100 K” (Agrawal & Srikant, 1994), 

(http://fimi.ua.ac.be/data/).  

The average transaction size (T) = 10, Average size of the maximal 

potentially frequent/large item sets (I) = 4 and the number of transactions (D) = 

100,000. The dataset was generated by setting number of items = 1000, number of 

maximal potentially frequent/large item sets = 2000 and 870 distinct items. This 

database is moderately sparse in the sense that it contains 1.14% ([Avg. 

Transaction/ distinct items] x 100) of distinct items in every transaction (Ahmed et 

al., 2012). 

 Dataset2: Educational data set: Teachable Peer Learner (AlgebraI2010Dec-retry-ss) 

dataset  (Matsuda & Ritter, 2011).  

Number of transactions = 372,519; Students‟ hours = 158.52 with 129 unique 

step knowledge components and minimum 1 step knowledge component. 

 Dataset3: NU-MineBench 2.0 chain store sparse dataset (Pisharath et al., 2005) 

(Ahmed et al., 2009) 

Number of transactions = 1,112,949, distinct items = 46,086 with average 

transaction size 7.2. This database is sparse in the sense that it contains 0.0156% 

([Avg. Transaction/ distinct items] x 100) of distinct items in every transaction. 

The experiments were performed on an Intel 2 Duo CPU@ 2.0GHz with 3GB RAM 

32 bit operating system. We used a similar development framework as used in (Yang & 

http://fimi.ua.ac.be/data/
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Yang, 2009). We have performed several experiments and the results are based on the 

average of multiple iterations. 

3.5.2 Experiment 1: Performance Analysis  

We compared the performance of the proposed data structure TIMFP with the following 

tree using variable minimum support thresholds for mining frequent patterns: 

 CanTree 

 CATS tree and 

 IMBT 

In our experiment we have chosen Dataset1 and Dataset2 as mentioned in section 

3.5.1. For Dataset1 & 2, we have considered a minimum support threshold percentage (%) 

ranging from 0% to 0.5% similar to the experiment performed in (Leung et al., 2005). The 

results obtained from this experiment are shown in Figure 3.11 (a) and 3.11(b). 

 
(a) 

 
(b) 

Figure 3.11: Effectiveness of runtime using (a) Dataset1 and (b) Dataset2 
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It has been found that when a minimum support threshold decreases, respective runtime 

increases. All the related data structure, including proposed tree, kept all items in every 

transaction. 

IMBT took highest time as it produces duplicate nodes for each item. Similarly for both 

CATS and CanTree, variable tree paths (more than 2 branches) exist and require more 

traversing time, computation time and ultimately greater mining time. 

Proposed data structure (TIMFP) took least run time as it is a binary tree without 

duplicate nodes and possible leaf nodes placed in the same level. 

3.5.3 Experiment 2: Effectiveness of Insertion and Deletion operation 

For mining incremental data, it is important to find out performance on the basis of the size 

of insertion (∆
+
) and deletion of transactions (∆

-
). We have considered Dataset1 and 

Dataset2 for this experiment. To perform the effect of ∆
+
/ ∆

-
, we keep the value of ∆

-
 as 

constant and by varying the value of ∆
+ 

and vice versa. The following parameter setting is 

made during this test (refer Table 3.4): 

Table 3.4:  Parameters setting during insertion and deletion operation 

Parameters Dataset1 Dataset2 

Minimum Support Threshold 1.5% 

Initial transaction 100 K 370K  

For Insertion operation  ∆
+
 Variable size (in K) 

(1,5,10, 15, 20, 25, 30, 35, 40, 45) 

∆
-
 Constant Size (12K) Constant Size (12K) 

For Deletion operation ∆
+
 Constant Size (12K) Constant Size (12K) 

∆
-
 Variable size (in K) 

(1,5,10, 15, 20, 25, 30, 35, 40, 45) 
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It is found that for both the datasets, all the tree structures are moderately efficient 

when „Insert‟ operation of the transaction is low (e.g. 1K to 15 K). IMBT has almost 

similar runtime with proposed data structure with the initial construction of the tree with 

the least number of transitions (e.g. 1K to 05 K). When greater number of transactions 

inserted, it takes more time as it produces duplicate nodes. From the Figure 3.12, it is 

observed that proposed tree (TIMFP) is more efficient as compared to related data 

structures. 

 
(a) 

 

 
(b) 

 

Figure 3.12: Effectiveness of ∆
+
 using (a) Dataset1 and (b) Dataset2 
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Similarly, it has been observed that as the number of deleted transactions increases, the 

amount of time taken by the data structure is decreases in the following order: 

“Proposed tree (TIMFP)<CanTree<CATS<IMBT”. Since the size of the updated 

database decreases, proposed tree has taken lesser time. 

3.5.4 Experiment 3: Scalability and Memory use of the Proposed Algorithm 

Research has shown that the main memory requirement for tree data structure is low 

enough to use the current available memory (in GB) (Leung et al., 2007) (Ahmed & 

Tanbeer, 2009). Hence we have used the memory range that can cope up with current 

available memory. 

For this experiment we have used Dataset3 which is larger than Dataset1 and Dataset2 

as stated in section 3.5.1. Dataset3 has been scaled up with ∆
+
x (range 150 to 1550) 

amount of transactions as shown in the Figure 3.13.  

 
Figure 3.13: Effectiveness of ∆

+
x amount of transactions on scalability test 
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From Figure 3.13, it is observed that the run time of all the data structure is linearly 

proportional to the ∆
+ 

x, the proposed tree takes less time as compared to other data 

structure. 

Hence from the theoretical and experimental analysis, it is found that the time required 

by the proposed tree (TIMFP) for building and mining is lesser compared to related tree 

and also suitable for incremental mining.  
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CHAPTER-4: INCREMENTAL HIGH UTILITY FREQUENT   

PATTERN MINING 
 

 

Chapter 3 of the thesis proposed a tree based algorithm for mining frequent 

patterns of incremental data which satisfying the property “Build Once and 

Mine Many”. The proposed work in Chapter 3 is generic in nature and can be 

extended for mining high utility frequent pattern.   

Mining high utility patterns has become prominent since it provides 

semantic significance (utility/weighted patterns) associated with items in a 

transaction.  

This chapter presents our approach for “High Utility Pattern Mining” by 

enhancing the concept of Incremental Mining of Frequent Patterns illustrated 

in chapter 3. We have introduced Average Maximum Utility (AvgMU) instead 

of Global Maximum Weight (GMW), which prunes the items in early stages 

and avoids unnecessary staying of the items in the pruning phases. Proposed 

algorithms for construction and mining of high utility patterns are efficient and 

cost effective in respect to the rest of the algorithms compared in this work. 

4.1 Introduction 

Most of the research on frequent pattern mining (Agrawal & Srikant, 1994; Lee, Yun, & 

Ryu, 2014; Pyun, Yun, & Ryu, 2014) has been applied to different kind of databases such 

as Transactional, Sequential, Streamline (Calders et al., 2014) and Incremental databases. 

The common assumption is, each item in a database is equal in weight (Chuang, Huang, & 

Chen, 2008). Since, some of the specific patterns may have more importance than the other 

patterns (Ahmed et al., 2008; Yun & Ryu, 2011; Bhandane, Shah, & Vispute , 2012; Otey 
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& Parthasarathy, 2004), it does not measure the semantic significances of an item as per 

users‟ perspectives. 

As a matter of fact in real life applications, it is not always possible to treat all patterns 

in an equal or binary way. High Utility Pattern Mining has become popular in Data Mining 

research community as it provides semantic significance (utility/weighted patterns) 

associated with items in a transaction. 

Some of the limitations of the existing pattern mining methods are as follows: 

 Performance is based on static dataset where incremental mining is not 

possible. Incremental mining can be defined as the mining frequent patterns 

from dynamic dataset. This is a big issue for real world applications. 

 Generates huge candidate sets 

 Requires multiple scans hence degrading mining performance 

 Does not fulfil “build once mine many” property.  

 Uncertainty of processing of data due to imprecision inherent in the data (Yun, 

U, and Ryu, K.H., 2011). 

In order to address the above mentioned shortcomings, High Utility Mining (Calders et 

al., 2014; Lin, Lan, & Hong,, 2012; Liu & Qu, 2012; Tseng et al., 2013; Lee, Park, & 

Moon, 2013; Song, Liu, & Li, 2014; Yun, Lee, & Ryu, 2014) has emerged as an important 

research area. High utility can be referred as the relative importance such as 

Interest/Intensity of each item which should be greater than or equal to the user defined 

minimum utility threshold equivalent to weighted frequent pattern mining in dynamic 

environments (Li, Yeh, & Chang, 2008; Ahmed et al., 2009; Tseng et al., 2010). 

Discovering high utility pattern is highly useful in the decision making process in 

different domains. In the context of distance learning domain, subject credit can be 
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assigned as a utility value. Students can choose their high credit subject for a particular 

semester. For instance, the Subject „CS‟ has credit value 5 which is the highest credit 

among the subjects listed for a semester, which can be opted by the student as per their 

conveniences. 

In business context Cost, Profit etc. can be assigned as utility value since quantity of 

items does not affect the profit margin if the cost associated with items is higher. 

Following are some of the examples of application areas of high utility mining: 

 e-Commerce (Shie, Yu, & Tseng, 2013) 

 Web click stream 

 Retail & Cross sales (Barber & Hamilton, 2003), (Lee, Park, & Moon, 2013) 

 Biological gene database analysis (Ahmed et al., 2009) etc. 

Some of the limitations of the existing high utility pattern mining methods are: 

 Multiple branches in tree based data structure, hence increasing computational 

time 

 Generates large number of potentially high utility itemsets 

 Applying Global Maximum Weight (GMW) to maintain downward closure 

property which requires defining unnecessary items for a longer period in 

pruning stage 

To address the issues stated above, this work, proposes a novel binary tree based data 

structure for constructing tree and an algorithm for high utility pattern mining. 
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The focal points of the proposed method are: 

 At the most two branches exist, hence less computational time 

 Introducing Average Maximum Utility (AvgMU) to maintain the downward 

closure property which is better than Global Maximum Weight (GMW) in 

terms of early pruning. 

 Suitable for incremental mining since the proposed method is capable of 

dealing with the changes of the underlying database 

 

4.2 Proposed Work 

This work starts off by discussing the representation and definitions of weight, utility and, 

high utility followed by tree construction process with examples.  

 

Representation of Weight, Utility/Weighted support and High Utility: 

 

Let I be a set of N items I = {I_1, I_2…I_N} and a database DB = {T_1, T_2… T_M} be 

a set of M transactions for each transaction T_i (1≤ i ≤ M),  T_i ϵ I. 

Let W be a set of „n‟ positive numbers called weight W = {w_1, w_2...w_n}. A pair 

consisting of items and corresponding weight is called a weighted item (Tao et al., 2003). 

For instance, (I_1, 0.75) means that item I_1 has weights of 0.75. 

In general, the relative importance of items can be used as weights. When the variation 

of relative importance of items (e.g. Prices) is too high, it cannot be used directly as the 

weight (Yun, 2009). Hence normalized weight values are considered in this work. We 

have considered a normalized weight similar to (Yun, 2007; Ahmed et al., 2009). Figure 

4.1 (a) & (b) depicts the transaction database and corresponding normalised weight table. 
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Δ +

T_5 I_6

T_4 I_4 I_6 I_5

D-

T_3 I_1 I_2 I_3 I_4 I_7

T_2 I_4 I_1 I_3

T_1 I_1 I_2 I_6 I_3 I_4 I_5

DB
D’

DB :Original Database , D- : Set of unchanged  Transaction

Δ + : Newly Added Transaction, T: Transactions

I :Itemset,  D‟ : new Updated Database

 
(a) 

ITEMS RELATIVE
IMPORTANCE 
OF ITEMS 

FREQUENCY NORMALISED
WEIGHT

I_1 750 4,000 0.75

I_2 500 2,500 0.5

I_3 800 1,000 0.80

I_4 250 10,000 0.25

I_5 300 8,000 0.30

I_6 400 20,000 0.40

I_7 600 3,500 0.60
 

(b) 

Figure 4.1.: (a) A transactional incremental data base, (b) Items with relative importance, 

frequency and corresponding normalized weight  

Definition 4.1: Representation of Utility: We have considered the definition of Utility 

(UT) and High Utility (HUT) itemset as defined in (Ahmed et al., 2009; Tseng et al., 2013) 

as shown in Eq. 1 below. 

                                     -- (1) 

Where  

Weight of size one item(I_N)     = Normalized Weight (I_N) 

Weight of two more items(I_N) = 

Support(I_N)       = Frequency of (I_N) in DB/∆
+
/∆

- 
 

)_()_()_( NISupportNIWeightNIUT 

NNIWeight
N

NI


1_

)_(
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Example 1: Let us consider Figure 4.1 to illustrate the Eq. (1). In this example, we will 

calculate UT of 1-item {I_1}, 2-itemset {I_1 I_2} and 3-itemset {I_1 I_2 I_3} 

Solution:  

Step-1: Calculate Weight (I_N) 

(a) Weight (I_1)= 0.75 

(b) Weight (I_1 I_2) = (0.75 + 0.50) / 2 = 0.625 

(c)  Weight (I_1 I_2 I_3) = (0.75 + 0.50+0.80)/3 = 0.6833 

Step-2: Calculate the support of (I_N) in DB  

(a)  Support (I_1) = 3 

(b) Support (I_1 I_2) = 2 

(c)  Support (I_1 I_2 I_3) = 2 

Step-3: Calculate the UT (I_N) 

(a) UT (I_1) = 0.75 x 3= 2.25 

(b) UT (I_1 I_2) = 0.62 x 2 =1.24 

(c) UT (I_1 I_2 I_3) = 0.6833 x 2= 1.3666 

 

Definition 4.2: Representation of High Utility Item set 

An item set is said to be High Utility (HUT) item  if it is greater than or equal to the user 

defined minimum utility threshold (UTmin) as shown in  Eq.(2) below. 

                                                                                                                                          -- (2) 

Definition 4.3: Representation of tree nodes 

  

A tree node is represented by an item, Support Count and respective weight shown in Eq. 

(3) below. 

             -- (3) 

minUTUTHUT 

]::[ WeightntSupportCouItemINFONodeA 
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Let Item I_1 has Support Count 3 in the original database and weight is 0.75  then 

corresponding node is INFO [I_1: 3:0.75]. 

4.2.1 Tree Construction Process 

The related work compared in this work is based on the concept of general tree data 

structure. It is observed that the number of branches grows rapidly for large databases 

resulting in greater computation time. To cope up with this problem, we adopt a weight 

ordered binary search tree i.e. tree with at most 2 branches where items with less weight 

are on the left hand side and greater or equal items are on the right hand side of the Root 

node. 

The reason being used a weighted order tree is that it achieves more compression 

during building and mining the tree data structure. 

As a first step, the process of finding out the Root node is as follows (Jindal & Borah, 

2015 a): 

Case I: If an initial transaction (T_1) in the original database (DB) contains items with 

different weight value 

Solution: 

Let R be the root of a binary tree TB. Initially INFO [R] is empty. The Root node, R can be 

obtained from the item at position X of the first transaction i.e. T_1 in the original database 

DB. Note that T_1 should be arranged in weight ascending order. 

Where, 

X = ceiling of [{least significant index position + most significant index position}/2] 

and INFO [R] = [Item at X: Support Count: Weight]. 
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The “least significant index position” indicates the position of the zero
th
 item in T_1 

and the “most significant index position” indicates the position of the N-1
th
 item (last item) 

in T_1. 

The item in that X will be the Root node. The items at (X-1)
th
, (X-2)

th
 ---- 0

th
 position 

will be the Left branch of the tree (TBL) and the (X+1)
th
, (X+2)

th
 ---- (X+ N-1)

th
 position 

will be the Right branch of the tree (TBR). 

Example 2: To illustrate the Case-II, Let T_1 in DB consists of 6 (six) weighted items 

(Figure 4.2 (a)). Let the position of the items be according to weight ascending order. 

Hence T_1 becomes (I_4, I_5, I_6, I_2, I_1, I_3) as per weight ascending order is 

(0.25<0.30<0.40<0.50<0.75<0.80). 

Now the X= ceiling of [(0+5) /2] which is 3. Item I_2 is at 3
rd

 positions; hence I_2 will 

be the corresponding Root node. Now R= INFO [I_2:1:0.50], I_4, I_5, I_6 are the left 

node and I_1, I_3 are the right node. 

Transaction T_1

Item Weight

I_1 0.75

I_2 0.50

I_6 0.40

I_3 0.80

I_4 0.25

I_5 0.30

Transaction T_1
(Weight ascending order)

Item Weight Index

I_4 0.25 0

I_5 0.30 1

I_6 0.40 2

I_2 0.50 3

I_1 0.75 4

I_3 0.80 5

I_2:1:0.50

I_5:1:.30 I_3:1:.80

I_1:1:.75I_6:1:.40I_4:1:.25

X= Γ(0+5/2) = 3

 
 

(a) 
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X= Γ(0+6/2) = 3 , X-1= 2 

I_1:1:0.40

I_4:1:.35 I_6:1:.70

T_1

Items Weight

I_1 0.40

I_2 0.25

I_3 0.60

I_4 0.35

I_5 0.40

I_6 0.70

I_7 0.75

T_1 (weight ordered)

Items Weight

I_2 0.25

I_4 0.35

I_1 0.40

I_5 0.40

I_3 0.60

I_6 0.70

I_7 0.75

I_2:1:0.25

I_5:1:.40

I_7:1:.75I_3:1:.60

 

(b) 

Figure 4.2.: Root node construction as per (a) Case-I   (b) Case-III 

 

Case II: If T_1 in DB contains single item with smallest / biggest weight value. 

 

Solution: If we consider item with smallest / biggest weight value item as a Root node, the 

tree will be skewed binary tree which is undesirable. Hence, proceed to the next 

transaction T_2 to make sure that it contains items with average or any (average, small, 

big) weight value and treat T_2 as the initial transaction to construct the Root node. 

Further construction will be done as per Case-I. 

Case III: If T_1 in DB contains items with two equal weight values, where one lies in 

the Root node position and next is in left hand side of that item. 

Solution: Tree construction process of this work is based on the property of binary search 

tree; hence the item with equal value should be placed at the right hand side of the root. 

Hence mark the item at (X-1)
th
  position as the Root node (Figure 4.2 (b)).   
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4.2.2 Algorithm for Tree construction Process 

 

This subsection briefly describes the algorithm for weighted tree as shown in the Figure 

4.3. 

 

The required input for this algorithm is original database (DB), incremental (Δ
+
), 

deleted (Δ
-
) data and weight of the items. Output is a Weighted Pattern Tree. 

Line 1-20 of the algorithm tries to find out the Root node of the tree as explained in 

Case I to III. As illustrated above, the benefit of choosing Root node using this process is 

that all the items which is less in some order is placed in  the left hand side of the root, 

whereas all items greater than or equal to are placed in the right hand side of the Root 

node. The information of the Root node is printed by defining the respective item, Support 

Count and weight (line 8). 

 

Figure 4.3: Algorithm to construct weighted tree 
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Again by scanning the rest of the transactions, insertion and deletion operations (on 

incremental data) can be performed (line 21-24) and described as follows: 

Procedure Insert (refer Figure 4.4 (a)): 

Scan the original database/ incremental database to insert the rest of the transactions. If no 

transaction is found in the database, „Insert‟ operation ended (line 1-5). 

Else, if the order of the item in every transaction to be inserted is less than the Root 

node, then it is placed in the left hand side of the root (line 6-8) 

Else placed in the right hand side of the Root node (line 9-11). Print the corresponding 

information of the node by placing the corresponding item, Support Count and weight. 

If an item appears more than once, then the Support Count of the item increases without 

creating a duplicate node. Hence Support Count information contained in left, right and the 

Root node is increased (line 12-15). 

 
(a) 
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(b) 

Figure 4.4: Procedure for (a) Insert Operation (DB, Δ
+
) (b) Delete Operation (DB, Δ

-
) 

 

Procedure Delete (refer Figure 4.4 (b)): 

If no transactions available, delete operations ended with the first attempt line (1-4). If 

there are transactions available in the portion to be deleted from the database (Δ
-
), then 

deletions take place. If item encountered more than once (or may equal), then the 

respective Support Count of node (Root/Left/Right) decreases (line 5-8). If Support Count 

of an item is equal to zero, the node containing that item is logically deleted from the list 

(line 9-10). 

Lemma 4.1: For any weight ascending order transaction in a database, in construction of 

tree data structure, there exists binary path which is unique w.r.t the Root node of 

the tree. 
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Proof: 

Let R = Root node which is empty initially. Hence TBL and TBR = NULL and INFO 

[R] = NULL.  Let T_1 = {I_1, I_2---- I_N} is the first transaction taking into account to 

construct the tree, and is in weight ascending order. The Root node is identified as per 

cases described in Section 4.2.1 and INFO of R becomes INFO [Item: 1: Weight] which 

means an item, I is the Root node with a Support Count 1 with corresponding weight.  

When we want to insert any item in the TBL ||TBR of the Root node, we need to check 

whether there exists any child node with a similar item. If exists, the Support Count value 

added to INFO, otherwise a new node is created and is placed in TBL ||TBR. e.g. if item < R 

as per weighted order, then a new node is placed in TBL otherwise placed in TBR. For other 

transactions, above approach is recursively applied to form the tree. The tree is formed in 

two ways left or right i.e. TBL ||TBR, as a consequence, for any transaction; there exists a 

unique binary path (at most 2 paths) w.r.t. Root node. 

 

Lemma 4.2: For any weight ascending order transaction in a database, in construction of 

tree data structure, no duplicate nodes exist in the tree. 

Proof: 

Let I_1, I_2---- I_N are the weight ascending itemsets in transaction T_1. The Root 

node is chosen as per cases described in Section 4.2.1 and INFO becomes INFO [Item:1: 

W] which means an item, I is the Root node with a Support Count 1 with corresponding 

weight.  Similarly, those weights which are less than the root  lie in the left side of the 

Root node and those which are greater/ equal to, lie in the right hand side of the Root node.  

Let us consider a transaction T_2 consists of two items I_2 and I_7. Now, according to 

the weight I_2 and I_7 are placed in the left/right hand side of the tree and information 

becomes INFO [I_2] = {I_2: 1: W}, INFO [I_7] = {I_7: 1: W}. Let I_2 appears in T_3 
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also. Hence the Support Count of I_2 is increased by 1 and it becomes {I_2: 2: W}. Hence 

the node containing item I_2 will appear as a single node by increasing its Support Count 

without creating a duplicate node of I_2. Hence, there exist no duplicate nodes in the 

construction of the tree. 

4.2.3 Example: To construct utility/weighted pattern tree from incremental data 

 

To illustrate the algorithms of tree construction, let us consider the original database with a 

normalized weight value as shown in Figure 4.5(a) below. 

DB

T_4 I_2 I_4 I_5 I_6

T_3 I_6

T_2 I_1 I_2 I_4

T_1 I_1 I_2 I_3 I_4 I_5 I_7 I_8

DB :Original Database , T: Transactions, 

I:item,  N.W: Normalized weight

Items N .W.

I_1 0.75

I_2 0.5

I_3 0.80

I_4 0.25

I_5 0.30

I_6 0.40

I_7 0.60

I_8 0.20

 
(a) 

  

Root node= Γ(0+6/2) = 3

I_2:1:0.50

I_4:1:.25 I_1:1:.75

I_8:1:.20 I_5:1:.30 I_7:1:.60 I_3:1:.80

 

(b) 
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I Supp. 
count

Weight
(ordered)

I_8 1 0.20

I_4 3 0.25

I_5 2 0.30

I_6 2 0.40

I_2 3 0.50

I_7 1 0.60

I_1 2 0.75

I_3 1 0.80

I_2:3:0.50

I_4:3:.25 I_1:2:.75

I_8:1:.20 I_5:2:.30 I_7:1:60 I_3:1:.80

I_6:2:.40

 
(c)  

Figure 4.5: (a) Original database (DB)  (b) I_2 as Root node  (c) Tree of DB 

 

For this example, I_2 is the Root node (refer Figure 4.5 (b)). The weight of items I_4, 

I_8, I_5 are less than the I_2, hence left child node of I_2. Weight of I_1, I_7 and I_3 are 

greater than the I_2, hence right child node of I_2. Similarly, other transactions in the DB 

are inserted and the resultant tree is shown in the Figure 4.5 (c). 

Adding incremental data:  

Let us insert incremental portion (Δ
+
) to the original database. We have considered two 

possible cases as described below: 

Case- I: Adding similar item sets that exist in the original data base DB 

Let us consider Δ1
+
, which is the first incremental portion to the DB. The items set in Δ1

+
 

are I_1, I_3 and I_7. Now DB becomes DB‟(updated database) (refer Figure 4.6 (a)). 

In addition of transactions, there is no effect in the itemsets of the original tree as the 

tree is constructed according to the weighted order. For an update of INFO of a node, 
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corresponding support counts are increasing in the particular node. The final tree after 

adding Δ1
+
 is shown in Figure 4.6 (b). 

DB

T_4 I_2 I_4 I_5 I_6

T_3 I_6

T_2 I_1 I_2 I_4

T_1 I_1 I_2 I_3 I_4 I_5 I_7 I_8

Δ1
+

T_6 I_1 I_2 I_3

T_5 I_1 I_3 I_7
D’

 
(a) 

I_2:4:0.50

I_4:3:.25 I_1:4:.75

I_8:1:.20 I_5:2:.30 I_7:2:.60 I_3:3:.80

I_6:2:.40

Item Supp
count

W(ord
ered)

I_8 1 0.20

I_4 3 0.25

I_5 2 0.30

I_6 2 0.40

I_2 4 0.50

I_7 2 0.60

I_1 4 0.75

I_3 3 0.80
 

(b) 

Figure 4.6:  (a) Adding incremental data (Δ1
+
) and (b) corresponding tree  
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Case- II: Adding different item with different weight value  

Let us consider Δ2
+
,
 
which is the second incremental portion to the DB. The items set in 

Δ2
+
 are I_1, I_2, I_7 and I_9. I_9 with weight 0.70 is a different item that is not present in 

DB / Δ1
+ 

(Figure 4.7 (a)).  The resultant tree is shown in Figure 4.7 (b). 

DB

T_4 I_2 I_4 I_5 I_6

T_3 I_6

T_2 I_1 I_2 I_4

T_1 I_1 I_2 I_3 I_4 I_5 I_7 I_8

Δ2
+ T_7 I_1 I_2 I_7 I_9

Δ1
+

T_6 I_1 I_2 I_3

T_5 I_1 I_3 I_7
D’

 
(a) 

I_2:5:0.50

I_4:3:.25 I_9:1:.70

I_8:1:.20 I_5:2:.30 I_7:3:.60 I_1:5:.75

I_6:2:.40

Item Support
count

Weight
(ordered)

I_8 1 0.20

I_4 3 0.25

I_5 2 0.30

I_6 2 0.40

I_2 5 0.50

I_7 3 0.60

I_9 1 0.70

I_1 5 0.75

I_3 3 0.80

I_3:3:.80

 

(b) 
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DB

T_4 I_2 I_4 I_5 I_6

T_3 I_6

T_2 I_1 I_2 I_4

T_1 I_1 I_2 I_3 I_4 I_5 I_7 I_8

Δ3
+ T_9 I_9 I_10 I_11

T_8 I_2 I_3 I_4

Δ2
+ T_7 I_1 I_2 I_7 I_9

Δ1
+

T_6 I_1 I_2 I_3

T_5 I_1 I_3 I_7

D’

 
(c) 

I_2:6:0.50

I_4:4:.25 I_9:2:.70

I8:1:.20 I_5:2:.30 I_7:3:.60 I_1:5:.75

I_6:2:.40

Item Support
count

Weight
(ordered)

I_8 1 0.20

I_10 1 0.20

I_11 1 0.20

I_4 3+1=4 0.25

I_5 2 0.30

I_6 2 0.40

I_2 5+1=6 0.50

I_7 3 0.60

I_9 1+1=2 0.70

I_1 5 0.75

I_3 3+1=4 0.80

I_3: 4:.80I_10:1:.20

I_11:1:.20

 
(d) 

I_2:6:.50

I_4:5:.25

I_9:2:.70

I8:1:.20 I_5:2:.30

I_7:3:.60 I_1:5:.75

I_6:2:.40

Item Support
count

Weight
(ordered)

I_8 1 0.20

I_10 1 0.20

I_11 1 0.20

I_4 4+1=5 0.25

I_5 2 0.30

I_6 2 0.40

I_2 5+1=6 0.50

I_2 6 0.58

I_7 3 0.60

I_9 1+1=2 0.70

I_1 5 0.75

I_3 3+1=4 0.80

I_3: 4:.80

I_10:1:.20

I_11:1:.20

I_2:6:0.58

 

(e) 

Figure 4.7: (a) Adding incremental data (Δ2
+
) and (b) corresponding tree (c) Adding 

incremental data (Δ3
+
) and (d) Resultant tree (e) Adding incremental data (Δ4

+
) with 

corresponding tree in case of changes of weight of Root Node 
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Case- III: Adding different item with similar frequency and weight value  

Let us consider Δ3
+
,
 
which is the third incremental portion to the DB. Δ3

+
 consists of 

transaction T_8 and T_9 (Figure 4.7 (c)). In T_8 there are three items I_2, I_3 and I_4 with 

frequency count 1 and respective weight value are assigned already in the updated dataset. 

In the resultant tree, only respective Support Count increases.  

In transaction T_9, there are three items I_9, I_10 and I_11. Among them, two items 

I_10 and I_11 have similar frequency i.e. 1 and weight value, i.e. 0.20. Hence the tree 

grows at the right hand side of the node I_9. The resultant tree is shown in Figure 4.7 (d). 

Note that if the number of nodes increases with similar frequency and weight value, then 

local tree should be rebalanced with respect to higher frequency count.  

Case- IV: Adding similar items when changes of weight take place 

Let us consider Δ4
+
,
 
the fourth incremental portion of the DB. It consists of one transaction 

T_10; where, T_10={ [I_2:6:0.58], [I_4:1:0.25]}. From the previous resultant tree (Figure 

4.7 (d)), it has been observed that, Root Node is I_2 with frequency count 6 and weight 

0.50 i.e., INFO [Root Node] is [I_2:6:0.50]. 

But from the Δ4
+
, it is seen that the weight value of I_2 changes from 0.50 to 0.58. In 

such type of situations, item with greater weight value will be treated Root Node and 

previous node will be shifted towards the left hand side of the Root Node as per the 

property of binary search tree. Hence I_2:6:0.58 will  act as Root Node. The resultant tree 

is shown in Figure 4.7 (e). 
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Delete data from the Updated database: 

Case- I: Delete leaf node 

Let us delete the transaction T_3 that consists of a single item I_6. From the tree (refer 

Figure 4.7 (a) & (b), it has been observed that the item I_6 is a leaf node. But INFO of I_6 

is [I_6:2:.40] which means that item I_6 has 2 Support Count along with weight 0.40.  But, 

I_6 in T_3 appears for one time. Hence we cannot delete the item directly, but Support 

Count of I_6 is decremented by 1 and the INFO of I_6 become [I_6: 1: 0.40]. This means 

that item present in T_3 is deleted, but I_6 is present in some other transaction in the 

database (refer Figure 4.8 (a)). 

I_2:5:0.50

I_4:3:.25 I_9:1:.70

I_8:1:.20 I_5:2:.30 I_7:3:.60 I_1:5:.75

Delete Transaction T_3 ( Δ-): I_6

I_6:1:.40

Item Support
count

Weight
(ordered)

I_8 1 0.20

I_4 3 0.25

I_5 2 0.30

I_6 1 0.40

I_2 5 0.50

I_7 3 0.60

I_9 1 0.70

I_1 5 0.75

I_3 3 0.80

I_3:3:.80

 
(a) 

 

I_2:4:0.50

I_4:2:.25 I_9:1:.70

I_8:1:.20 I_5:1:.30 I_7:3:.60 I_1:5:.75

Delete Transaction T_4 ( Δ-): I_2,I_4,I_5 and I_6

Item Support
count

Weight
(ordered)

I_8 1 0.20

I_4 2 0.25

I_5 1 0.30

I_2 4 0.50

I_7 3 0.60

I_9 1 0.70

I_1 5 0.75

I_3 3 0.80

I_3:3:.80

 
(b) 

Figure 4.8: Tree after deleting (a) transaction T_3 and  (b) transaction T_4 
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Case-II: Delete any node 

Let us delete the transaction apply in T_4 = {I_2, I_4, I_5 and I_6}. From the Figure 4.8 

(a), it has been observed that itemsets are on the left hand side of root including Root node. 

It is found that every itemsets Support Count decreases by one. Hence INFO of I_2 

becomes [I_2:4:.50], I_4 becomes [I_4:2:.25], I_5 becomes [I_5:1:.30] and I_6 becomes 

[I_6:0:.40]. As the INFO [I_6] becomes zero, hence I_6 no longer valid in the tree (Figure 

4.8 (b)). 

Advantage of the proposed tree: 

 No duplicate nodes exits  

 Tree with at most two branches  

 Insertion of incremental data with variable weights is possible  

 Easy to Search, Insert, and Delete as the nodes with less weight lie in the left hand 

side of the root and greater/ equal weights lie in the right hand side of the Root 

node of the tree.  

4.3 Mining High Utility Frequent Patterns from Incremental Data  

 

 Challenges: Downward Closure Property  

The main challenge of utility mining is that it does not fulfil the downward closure 

property. Let us consider size one item {I_1} and {I_4} and size two item set {I_1 I_4} 

from the Figure 4.1 (a) and (b). As per the “Eq. (1)”, UT of {I_1} = 2.25 (i.e. Weight  

(0.75) X Support Count (3)) and UT of {I_4} =1. 00 (i.e. Weight (0.25) X Support Count 

(4)). UT of {I_1 I_4} = 1.5 (i.e ([Weight of I_1 (0.75) + Weight of I_4 (0.25)] /2) X 

Support Count (3)). If minimum given UT threshold (UTmin) is 1.5, then the size one item 

{I_4} is not HUT as UT {I_4} < UTmin (i.e.1.00 <1.50) whereas item {I_1} and item set 
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{I_1 I_4} are HUT  as UT {I_1} > UTmin (i.e 2.25>1.50)  and  UT {I_1 I_4} = UTmin 

(i.e.1.50=1.50). 

 Solution 1: Global Maximum Weight (GMW) 

Researchers cope up with this problem by introducing Global Maximum Weight (GMW) 

(Yun & Leggett, 2006; Yun, 2007; Ahmed et al., 2012; Tseng et al., 2013) that is the 

highest normalized weight as present in the dataset. e.g. GMW from Figure 4.1 (b) is 0.80.  

The downward closure property can be maintained by multiplying the Support Count 

of each item with GMW (Eq. (4).  

 --4 

Hence UTnew of item I_4 will be 3.2 (i.e. GMW (0.80) X Support Count (4)) which is 

HUT and cannot be pruned in early stage. 

Disadvantage: 

The problem of using GMW is that there is a possibility of keeping unnecessary 

patterns/items for a maximum period, which blocks the early pruning. 

 Solution 2: our proposed method, Average Maximum Utility (AvgMU) 

 

                                                                                                                          -- 5(a) 

  

                                                                                                                           -- 5(b) 

Let us consider the same example stated above.  

We have calculated UT of {I_1} = 2.25; UT of {I_4} =1. 00 and UT of {I_1 I_4} = 1.5; 

If UTmin = 1.5 then size one item {I_4} is not HUT i.e.1.00 <1.50. 

To satisfy the downward closure property, we have calculated AvgMu and UTnew from 

Eq. 5(a) and 5(b) as follows: 





N

NI

NNWeightIAvgMU
0_

_

ntSupportCouAvgMUUTnew 

ntSupportCouGMWUTnew 
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AvgMU = ∑ 0.75 + 0.5--- 0.60) /7= 0.514, where as GMW =0.80(i.e. the largest weight 

value). 

UTnew of {I_4} = 0.514 X 4 =2.0; Similarly UTnew of {I_1} = 1.5 and UTnew of {I_1 

I_4} = 1.5. 

It has been observed that all the UTnew values are greater or equal to the user defined 

UTmin. Hence, the downward closure property can be maintained by applying our new 

approach. 

Again, by applying AvgMU, we obtained UTnew of {I_4} is 2.0, whereas applying 

GMW, we get UT of {I_4} is 3.2. 

It is observed that value obtained using AvgMU is much closer to the value of UTmin, 

Hence it is possible that unnecessary items can be pruned at an earlier stage (AvgMU < 

GMW). 

So the proposed method is more applicable than the existing methods. 

 Pruning Strategy 

Proposed algorithm performs mining HUT with only itemsets having UTnew values 

greater or equal to the UTmin as specified by the user or the domain expert. In this 

process, firstly a conditional tree is created from the conditional pattern base by pruning 

the items having UT values less than the UTmin. 

Secondly, UTnew is calculated by the product of “AvgMU and Support Count” to 

prune the candidate items from the tree path. Again the items that have lower UTnew  than 

the UTmin are pruned. 
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4.3.1 Algorithm for mining utility/weighted frequent patterns  

To pursue this mining process, first we have adopted a Weighted Pattern Tree to show the 

tree construction phase efficiently. The output of this algorithm is HUT. This tree data 

structure can be mined many times as per the variable minimum support threshold defined 

by user which it is suitable for interactive mining. The mining algorithm is described in 

Figure 4.9. 

For mining the frequent patterns of the tree, first it checks the INFO [] of the Root node. 

If INFO [] of the Root node is null, no further traversing is required (line 2, 3), otherwise 

the Root node is noted in the header table (line 5). 

Multiply supports of items that are present in INFO [Node] with AvgMU to get new 

weight (line 6,7). Print itemsets presents in new weight as a candidate key whose new 

weight is greater or equal to the minimum utility support threshold (UTmin) (line 9). 

Update header table (line 9-13). 

Derive conditional pattern base by obtaining the tree path belonging to an item. Derive 

the conditional tree and pattern from conditional pattern base (line 15-16). 

If the utility (UT) of conditional patterns is less than the UTmin, prune the tree (line 17-

18), Else update the header table (line 19). Add the combinations of all items for a 

particular path as a HUT (line 20). 

Lemma 4.3:  

With the increase of user defined minimum utility support threshold, the INFO [] of 

nodes i.e. Support Count and nodes participating in mining operation in TBL || TBR 

decrease. 



 

86 

 

Proof.: 

Let minimum utility support threshold= UTmin and number of nodes in T (TBL && 

TBR) at the level i is  2
i
.  Total nodes in Tree= (2

0 
+2

1
+ 2

2
---+ 2

N-1
).  Proposed tree is a 

binary tree; hence TBL || TBR consists of at most 2 child nodes which are arranged in 

weighted order. For mining operation, if assigned UTmin = 0 then no. of nodes in T = 2
0 

+2
1
+ 2

2
---+ 2

N-
1). Else if UTmin is greater than zero, Support Count of particular node 

INFO [] will be decreased. Hence total nodes in T become (2
0 

+2
1
+ 2

2
---+ 2

N-
1) which is 

less than T= (2
0 

+2
1
+2

2
---+ 2

N-1
). Similarly, keeping higher UTmin, number of nodes in tree 

will be decreased.  

 
Figure 4.9: High Utility Pattern Mining algorithm 
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4.3.2 Example: To mine high utility patterns from incremental data 

 

Let us consider the Figure 4.10 (a) and (b) to illustrate the mining of the example. The tree 

is constructed only once and by providing different user defined threshold (UTmin), 

mining can be done for several times. 

I_2:4:0.50

I_4:2:.25 I_9:1:.70

I_8:1:.20 I_5:1:.30 I_7:3:.60 I_1:5:.75

Item Support
count

Weight
(ordered)

I_8 1 0.20

I_4 2 0.25

I_5 1 0.30

I_2 4 0.50

I_7 3 0.60

I_9 1 0.70

I_1 5 0.75

I_3 3 0.80

I_3:3:.80

 
(a) 

 

Item Normalized 
Weight

New
Weight using 
AvgMU=
(Supp Count  
x  AvgMU)

New
Weight using 
GMW =  (Supp
Count  x  
GMW)

I_8 0.20 1 x 0.51=0.51 1 x 0.80 = 0.80

I_4 0.25 2 x 0.51=1.02 2x 0.80 =1.60

I_5 0.30 1 x 0.51=0.51 1x 0.80 = 0.80

I_2 0.50 4 x 0.51=2.04 4x 0.80 =3.20

I_7 0.60 3 x 0.51=1.53 3x 0.80 = 2.40

I_9 0.70 1 x 0.51=0.51 1 x 0.80 = 0.80

I_1 0.75 5 x 0.51=2.55 5 x 0.80 = 4.00

I_3 0.80 3 x 0.51=1.53 3 x 0.80 = 2.40

AvgMU:

(0.20+0.25+0.30+0.50+0.
60+0.70+0.75+0.80)/8
=0.51

GMW:
= 0.80

 
(b) 

Figure 4.10: (a) Tree for mining frequent patterns        (b) New weight using AvgMU and 

GMW 

As per the mining algorithm, first we check the Root node of the original tree. The 

INFO [R] = INFO [I_2:4:0.50] which is not NULL, hence further mining will take place. 
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Add INFO [R] to header table. Now calculate AvgMU which is 0.51. Next step is to 

multiply AvgMU with Support Count of the itemsets. The new generated weights are 

shown in Figure 4.10 (b). For comparison, new weights using GMW have also been 

calculated. 

 Generation of candidate patterns 

Generation of candidate patterns using different UTmin is important in mining operations. 

We have considered three cases as shown Table 4.1, 4.2 and 4.3: 

Case –I:  Let the value of UTmin is small one 

Table 4.1: Generation of candidate patterns with small UTmin 

 UTmin Candidate patterns (Size one) Remarks  

Using AvgMU  

< 0.50 

I_8, I_4, I_5, I_2, I_7, I_9, I_1, 

I_3 

Generates an equal 

number of candidate keys 

for both AvgMU and 

GMW 
Using GMW I_8, I_4, I_5, I_2, I_7, I_9, I_1, 

I_3 

 

 

 

Case –II:  Let the value of UTmin is medium one 

Table 4.2: Generation of candidate patterns with medium UTmin 

 UTmin Candidate patterns (Size one) Remarks  

Using AvgMU  

0.80 

I_4, I_2, I_7, I_1, I_3 Generates  less candidate 

keys by using AvgMU  

Using GMW I_8, I_4, I_5, I_2, I_7, I_9,I_1, I_3 
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Case –III:  Let the value of UTmin is large one  

Table 4.3: Generation of candidate patterns with large UTmin 

 UTmin Candidate patterns (Size one) Remarks  

Using AvgMU  

1.5   

I_2, I_7, I_1,  I_3 Generates  less 

candidate keys by 

using AvgMU  
Using GMW  I_4, I_2, I_7, I_1, I_3 

 

It has been observed that for two cases II and III mentioned above, less candidate 

patterns have been generated using AvgMU. Hence the proposed data structure fulfills the 

criteria of generating less candidate patterns as compared to other data structure stated in 

this work. 

 Generation of high utility patterns 

Our goal is to find HUT. Let us consider the candidate patterns {I_2, I_7, I_1, I_3} as 

obtained from Table 4.3 using AvgMU. These keys are added to the header table for the 

generation of conditional trees and to find HUT (Table 4.4). The process of obtaining 

conditional tree is same as FP tree. We have considered minimum support threshold of 2 to 

illustrate this example. 

Result: It has been observed that item sets {I_2 I_3}, {I_2 I_7}, {I_3 I_7}, {I_1 I_2 I_7} 

and {I_1 I_3 I_7} has been pruned. As a result, high utility pattern/ weighted patterns 

(HUT) are: {I_1}, {I_2}, {I_3}, {I_7}, {I_1 I_2}, {I_1 I_7}, {I_1 I_3}, and {I_1 I_2 I_3}. 
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Table 4.4: Example of mining process of candidate patterns {I_2, I_7, I_1, I_3} 

Candidate 

Keys 

Conditional pattern 

base 

Conditional 

tree  

Candidate 

pattern 

New Utility(UTnew)  Remarks 

I_2 <I_1 I_3 I_4 I_5 I_7 

I_8>, 

<I_1 I_4>, 

<I_1 I_3>, 

 <I_1 I_7 I_9> 

<I_1 I_3>, 

 <I_1 I_7> 

<I_1 I_2>,  

<I_2  I_3>, 

<I_2  I_7> 

UTnew {I_1 I_2} = 2.5 

UTnew {I_2 I_3}=1.3 

UTnew {I_2 I_7}=1.1 

Passed 

Pruned 

Pruned 

I_7 < I_1 I_2 I_3 I_4 I_5 

I_8>, <I_1 I_3>, <I_1 

I_2 I_9> 

<I_1 I_3>, 

 <I_1 I_2> 

<I_1 I_7>, 

<I_3 I_7>,  

<I_2  I_7> 

UTnew {I_1 I_7}=2.02 

UTnew {I_3 I_7}=1.4 

UTnew {I_2 I_7}=1.1 

Passed 

Pruned 

Pruned 

I_1 <I_2 I_3 I_4 I_5 I_7 

I_8>,<I_2 I_3>, <I_3 

I_7>, <I_2 I_4>, <I_2 

I_7 I_9> 

<I_2 I_3>, 

<I_3 I_7>, 

<I_2 I_4>, 

<I_2 I_7> 

<I_1 I_2>, 

 <I_1 I_3>, 

 <I_1 I_7>,  

<I_1 I_2 I_3> , 

<I_1 I_2 I_7>, 

<I_1 I_3 I_7> 

UTnew {I_1 I_2} = 2.5 

UTnew {I_1 I_3}= 2.3  

UTnew {I_1 I_7}=2.02 

UTnew {I_1 I_2 I_3} 

=2.05 

UTnew {I_1 I_2 

I_7}=1.23 

UTnew {I_1 I_3 I_7} 

=1.43 

Passed 

Passed 

Passed 

Passed 

Pruned 

Pruned 

I_3 <I_1 I_2 I_4 I_5 I_7 

I_8>, <I_1 I_7>, <I_1 

I_2> 

<I_1 I_7>, 

<I_1 I_2> 

<I_1 I_3>, 

 <I_3 I_7>, 

<I_2 I_3> 

UTnew {I_1 I_3}= 2.3  

UTnew {I_3 I_7}=1.4 

UTnew {I_2 I_3}=1.3 

Passed 

Pruned 

Pruned 
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4.4 Experimental Results 

 

The purpose of this experiment is to evaluate and compare the performance of the 

proposed algorithm with state of the art algorithms UP-Growth, UP-Growth+, HUI-Miner, 

MU-Growth Strategy1, MU-Growth Strategy2. 

4.4.1 Data and Environment for Experiment 

 

Researchers found that widely-accepted synthetic data source or the data that is collected 

from real environment are most suitable for performance evaluation of the proposed 

algorithm (Verma & Vyas, 2005; Sun & Bai, 2008). To see the effect of variable dataset as 

well as to indicate the strength of our proposed algorithms, we have considered sparse (less 

items per transactions and with large number of distinct items) and dense (many items per 

transactions and with small number of distinct items) dataset (Ahmed  et al., 2012). 

 Synthetic dataset(http://fimi.ua.ac.be/data/): 

o T10-I4-D100 K: Taking into consideration of the above statements, we 

have considered “T10-I4-D100 K” which is moderately sparse,
 
widely 

accepted synthetic dataset for training purpose. 

 Real datasets (http://fimi.ua.ac.be/data/): 

o Pumsb: This dataset contains census data for population and housing, which 

is dense in nature. 

o Connect: This dataset contains online connection data, which is dense in 

nature. 

o Kosarak: It consists of click-stream data collected from Hungarian on-line 

news portal, which is sparse in nature. 

http://fimi.ua.ac.be/data/
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o NU-Mine Bench 2.0 Chain Store dataset: This dataset contains Chain store 

data which are sparse in nature (Pisharath et al., 2005). 

 Educational domain (learning) datasets: 

o AIEEE 2007: It is a student data set seeking admission in a particular 

branch through All India Engineering Entrance Examination (AIEEE). 

Therefore, it helps predict the approximate strength of student in the 

particular branch. This data set is collected from NIC Delhi. In order to 

demonstrate the usefulness of our high utility mining process, we have 

assigned random numbers in student ranks and their preferences. 

o StatWay - Fall 2011 - Austin Community College dataset (Koedinger et al., 

2010): This dataset consist of students and tutor participation data in online 

study courses. 

The dataset parameters are shown in Table 4.5 and related characteristics of different 

datasets are shown in Table 4.6, 4.7 and 4.8. 

Table 4.5: Dataset parameters 

 

Parameter Meaning 

|s| Size of the Dataset 

|T | Number of transactions in transaction set 

|I| No. of Items  

|t|avg Average size of a transaction  

|t|max Maximum Transaction length 

Di (%) The percentage of Distinct item present in 

every Transaction: [(|t|avg / |I|) x 100] 

Type Dense/Sparse:  
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 Depends on the value of Di (%) 

 A dataset becomes dense when it 

contains many items per transactions 

else it is sparse. 

 

Table 4.6: Characteristics of real datasets 

 

Dataset |s| (in MB) |T | |I| |t|avg |t|max Di (%) Type 

Pumsb 14.75 4.9 x 10
4
 2113 74 74 3.50 Dense 

Connect 12.14 6.8 x 10
4
 150 43 43 28.66 Dense 

Kosarak 30.5 9.9 x 10
5
 41270 8.1 2498 0.019 Sparse 

NU-Mine 

Bench 2.0 

Chain 

Store 

37 11.1 x 10
5
 46086 7.2 3520 0.0156 Sparse 

 

Table 4.7: Characteristics of synthetic dataset 

 

Dataset |s| (in MB) |T | |I| |t|avg |t|max Type 

T10-I4-

D100K 

3.83 10 x 10
4
 1000 10 2000 Moderately 

Sparse  
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Table 4.8: Characteristics of educational domain (learning) datasets 

 

Dataset |s| (in MB) 

 

|T | |I| |t|avg |t|max 

AIEEE 2007 3.2 65,533 5 2 600 

StatWay - Fall 2011 - 

Austin Community College' 

dataset 

1.5 12,974 10 8 634 

 

The experiments were performed on an Intel 2 Duo CPU @ 2.0 GHz with 3GB RAM 

and 32 bit operating system. We have performed several experiments and the results are 

based on the average of multiple runs. 

4.4.2 Experiment 1: Performance Analysis  

Major parameters of performance analysis are impact of candidate generation and total 

runtime of high utility mining. We have first presented the performance of comparing 

algorithms in terms of candidate generations. Secondly, we present the result in terms of 

total runtime of the algorithms. 

For this experiment, we have considered dense dataset, moderately sparse dataset and 

educational domain dataset with a normalized weight of 0.93-0.96 used for Pumsb dataset 

and 0.8 -1.0 for Connect dataset (Yun & Ryu, 2011). For the rest of the dataset, we have 

used normalized weights between 0.3 and 0.6. The numbers of candidates generated with 

different UTmin of dense, synthetic and educational domain dataset are shown in the 

Tables 4.9, 4.10 and 4.11. 
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Table 4.9: Number of candidates generated with different UTmin of dense datasets 

Datasets UTmin 

(%) 

UP-

Growth 

UP-

Growth
+
 

HUI-

Miner 

MU-

Strategy 1 

MU-

Strategy 2 

Proposed 

Algorithm 

Pumsb 68 6,01,200 3,56,729 3,04,780 3,00,120 1,45,872 1,00,561 

70 4,50,781 2,70,629 2,39,100 2,35,128 99,831 90,278 

72 2,23,002 1,67,936 1,50,935 1,45,815 78,500 50,423 

74 1,35,342 99,658 80,654 78,345 45,340 31,700 

Connect 62 7,23,905 4,32,500 3,46,700 3,50,245 3,10,900 2,99,654 

64 4,67,842 2,78,391 2,15,278 2,00,594 1,90,728 1,50,913 

66 3,10,326 2,10,482 1,94,639 1,78,362 99,478 80,459 

68 2,00,350 1,10,450 99,730 98,381 78,367 45,532 

 

Table 4.10: Number of candidates generated with different UTmin of synthetic datasets 

Datasets UTmin 

(%) 

UP-

Growth 

UP-

Growth
+
 

HUI-

Miner 

MU-

Strategy 1 

MU-

Strategy 2 

Proposed 

Algorithm 

T10-I4-

D100K 

0.03 78,320 70,786 60,743 59,345 57,641 50,390 

0.04 55,732 50,874 45,876 44,002 42,200 40,345 

0.05 42,874 38,700 35,754 35,000 32,000 28,096 

0.06 35,980 30,674 28,900 27,300 25,900 23,450 

 

Table 4.11: Number of candidates generated with different UTmin of educational domain 

datasets 

Datasets UTmin 

(%) 

UP-

Growth 

UP-

Growth
+
 

HUI-

Miner 

MU-

Strategy 

1 

MU-

Strategy 

2 

Proposed 

Algorithm 

AIEEE 0.5 35,080 21,320 10,200 9,876 7,856 5,301 
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2007 1.0 12,780 6,200 4,152 3,919 2,301 1,129 

1.5 2,099 1,078 534 532 135 56 

2.0 679 200 89 88 34 18 

StatWay - 

Fall 2011 - 

Austin 

Community 

College' 

dataset 

0.5 40,318 23,378 15,782 12,387 8,152 5,823 

1.0 20,043 7,015 6,902 5,870 3,560 1,980 

1.5 5,320 1,321 1,534 1,409 903 329 

2.0 836 356 642 674 328 78 

 

It has been observed that the compared algorithms generate much more candidates on 

the dense dataset as compared to the moderately sparse and educational domain dataset. As 

an overall performance, UP-Growth generates large candidates and proposed method 

generates fewer candidates among other methods. 

Following figure shows the runtime performance of all the methods using different 

datasets. It has been observed that performance on educational domain data set takes less 

running time (Figure 4.13) as compared to dense dataset (Figure 4.11). The reason is that 

educational domain data set is smaller than the other dataset as well as has shorter size of 

average transaction. Overall, Proposed algorithm takes less runtime as compared to the 

other methods. 
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(a) 

 

 
(b) 

Figure 4.11:  Total runtime on (a) Connect dataset (b) Pumsb dataset 

 
Figure 4.12:  Total runtime on T10-I4-D100K dataset 
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(a) 

 

 
(b) 

Figure 4.13: Total runtime on (a) AIEEE 2007 dataset  (b) StatWay - Fall 2011 - Austin 

Community College' dataset 

4.4.3 Experiment 2: Scalability of the Proposed Algorithm 

 

The main factors affecting the scalability factors are: 

 Minimum utility support threshold 

 Number of transactions to be Inserted or Deleted  

For mining incremental data it is important to find out performance on the basis of the 

size of insertion (∆
+
) and deletion (∆

-
) of transactions. We have considered kosarak and 

Nu-Mine Bench 2.0 Chain Store dataset for this experiment. To perform the effect of ∆
+
/ 

∆
-
, we keep the value of ∆

-
 as constant and by varying the value of ∆

+
 and vice versa. The 

following parameters setting are made during this test (Table 4.12): 
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Table 4.12:  Parameters setting during incremental update 

Parameters Kosarak  and Nu-Mine Bench 2.0 

Chain Store data set 

UTmin 6% 

Initial transaction 0.2 Million 

For Insertion operation (∆
+
), No of 

transactions  

0.2 Million 

For Deletion operation (∆
- 
), No of 

transactions 

0.1 Million 

 

 
(a) 

 

 
(b) 
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(c) 

 

 

 
(d) 

Figure 4.14: (a) Effectiveness of ∆
+
 and (b) ∆

- 
using Kosarak data set 

(c) Effectiveness of ∆
+
 and (d) ∆

-
 using Nu-Mine Bench 2.0 Chain Store dataset 

 

From the Figure 4.14 (a) to (d), it is observed that proposed tree construction algorithm is 

more efficient than the other comparison algorithms since the proposed algorithm has 

taken almost less time for constructing the tree in the updated dataset (∆
+ 
and ∆

-
). 

4.4.4 Experiment 3: Memory Consumption 

 

Much research has shown that the main memory requirement for tree based data structure 

is low enough to use the current available memory (in GB). Hence we have used the 

memory range that can cope up with current available memory. 

We have analyzed the memory consumption of comparing method with moderately 

sparse and dense data set. The resultant memory consumption of each method is shown in 

Figures 4.15 and 4.16. 
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Figure 4.15: Memory consumptions under varied UTmin (%) on T10-I4-D100K dataset 

 

 
 

Figure 4.16: Memory consumptions under varied UTmin (%) on Pumsb dataset 
 

 

When UTmin is low, the compared algorithms required more memory. Creation of 

more nodes and branches, require memory space to be increased. 

From the Figure 4.15 and 4.16 above, it has been observed that there is a less memory 

requirement in case of the dense data set compared to the moderately sparse dataset. The 

reason is that many nodes are shared due to transaction having a similar form in the dense 

data set. 

Also, memory consumption by the proposed algorithm is less as compared to the other 

algorithms due to its binary tree construction process where there are only two possible 

branches with less possible nodes. 
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Finally, it has been observed that the proposed work has better performance in terms of 

Running time, Scalability and Memory consumption than the other algorithms (UP-

Growth, UP-Growth
+
, HUI-Miner, MU-Strategy1, MU-Strategy2 ) compared in this work.  
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CHAPTER-5: INCREMENTAL CONSTRAINT BASED 

FREQUENT PATTERN MINING 
 

 

Chapter 3 & 4 of the thesis deals with the Incremental Frequent/ High Utility Pattern 

Mining is to discover all the frequent patterns from the incremental data.  To deal 

with the user specific mining of frequent patterns, idea proposed in the Chapter 3 & 4 

can be extended by applying user-defined constraints.   

The goal of the Incremental Frequent Pattern Mining is to discover all the frequent 

patterns from the incremental/dynamic data sources where not all the generated 

patterns may be suitable for the end user. In such cases, constraints are applicable.  

This chapter discusses how constraints are beneficial for Incremental Frequent 

Patterns Mining. This work proposes Tree based algorithm called CIFMine 

(Constraint based Incremental Frequent Pattern Mining) to mine the incremental data 

by using the dataset filtering technique.  

 

5.1 Introduction 

 

The goal of the Incremental Frequent Pattern Mining is to discover all the frequent patterns 

from the incremental/dynamic data sources where not all generated patterns may be 

suitable for the end user. 

Constraint based mining focuses on the constraints and to specify the desired properties 

of the patterns to be mined that are likely to be of interest to the end user (Boulicant, 2008; 

Guns, Nijssen, & Raedt, 2013; Guzzo et al., 2013; Han, Lakshmanan, & Ng., 1999).  

The ability to express and exploit constraints allows effectiveness and efficiency of the 

mining process (Nijssen & Guns, 2010; Pei, Han, & Wang, 2007; Raedt, Guns, & Nijssen, 
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2010). Some of the constraints to solve real world problems are pattern, the length of the 

pattern and user defined support. 

 There has been a considerable research work done in the field of constraint based 

pattern mining by using algorithmic approaches (Bonchi & Goethals, 2004; Brailsford, 

Potts & Smith, 1999; Bucila et al., 2003; Guns, Nijssen & Raedt, 2011; Raedt & 

Zimmermann, 2007; Ruggieri, 2010; Uno, Kiyomi & Arimura, 2005).  

Han, Lakshmanan, & Ng. (1999) identified the following constraints:  

 Knowledge type constraints: specify the types of knowledge to be mined. 

 Data constraints: specify set of data relevant to the mining task. 

 Dimension/Level constraints:  specify the dimensions or the levels of data to be 

examined in a database or data warehouse. 

 Rule constraints: specify concrete constraints of the rules to be mined. 

 Interestingness constraints:  specify what ranges of a measure associated with 

discovering patterns are interesting from a statistical point of view. 

Wojciechowski & Zakrzewicz, (2002) identified the following classes of constraints:  

 Database constraints: specify the source dataset 

 Statistical constraints: specify thresholds for the support and confidence 

measures 

 Pattern constraints: specify the  interesting frequent patterns that should be 

returned by the query 

 Time constraints: used in sequential pattern mining to influence the process of 

checking whether a given data-sequence contains a given pattern 

Again, constraints can be classified from different points of view, such as application 

points of view and constraint –pushing point of view (Pei, Han, & Wang, 2007).  
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From application points of view: 

 Item constraints: users are often interested in finding association rules 

involving only some specified items 

 Length constraints: specify the requirement on the length of the patterns. 

 Super-pattern constraints: to find patterns that contain a particular set of 

patterns as a sub pattern 

 Aggregate constraints (Leung,  et al., 2012): are the constraints on an aggregate 

of items in a pattern 

 Regular expression constraints: are the constraint specified as a regular 

expression over the set of items using the established set of regular expression 

operators 

 Duration constraints: are defined only in sequence databases where each 

transaction in every sequence database has a timestamp. 

Constraint –pushing point of view: 

 Prefix-monotone constraints 

 

In this work our focus is to improve the efficiency of constraint-based frequent pattern 

mining by the following way: 

 By applying dataset filtering techniques and, 

 By introducing binary search tree based approach in incremental data  
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5.2 Proposed Work 

 

The problem is to find out the frequent pattern using various constraints for incremental 

data using tree based method. The problem may be stated as follows: 

Let „I‟ be a set of „N‟ items I= {I_1, I_2…I_N} and a database „DB‟= {T_1, T_2… 

T_M} be a set of „M‟ transactions with support „∞‟, where each transaction T_i (1≤ i ≤ 

M),  T_i ∈ I.   

Let the user specified length threshold be „Θ‟ and user specified pattern „Ω‟. Let Δ
+
 be 

the newly added, and Δ
-
 be the deleted incremental data in the original database DB. Now 

DB becomes DB‟ by updating incremental data in the original database DB.   

The problem is to discover the complete set of patterns from the database DB‟ using the 

mining results from  DB, which satisfies the support „∞‟, item „I‟ and length constraints 

„Θ‟.  

Properties of the proposed algorithm  

If „T‟ does not satisfy „Θ‟ & „Ω‟ then any sub transaction will also not satisfy the „Θ‟ and 

„Ω‟. Hence, eliminate T_i from DB‟.  

5.2.1 Algorithm for Constraint based Incremental Frequent Pattern Mining 

 

In the proposed algorithm, CIFMine (Constraint based Incremental Frequent Pattern 

Mining), tree based data structure is considered to avoid the repetitive scanning of the 

dataset where different minimum support, item and length constraints are adopted to mine 

the frequent patterns from incremental data.  

Proposed Algorithm for constraints based pattern mining from incremental data is 

shown in Figure 5.1 below: 
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Figure 5.1: Proposed algorithm- CIFMine 

In the first and second steps of the CIFMine algorithm, a reduced dataset is produced by 

filtering the database using user defined constraints (Saxena, De, & Jindal, 2006; 

Wojciechowski & Zakrzewicz, 2002). Then the tree based data structure is built which 

inherits the properties of Binary Search Tree (step 3) (Jindal & Dutta Borah, 2015a). 

Incremental data is added/ deleted (Δ
+
/Δ

-
) without rescanning the whole dataset as well as 

rebuilding the tree (step 4 & 5). The advantage of such tree is easy traversal as it is a 

locally optimized tree.  

Step 6 to 9 of the algorithm as shown in Figure 5.1 above is for mining frequent 

patterns from the tree.  The conditional tree is built by taking a count of the prefix access 

transaction base of a particular item. User defined constraints are applied to the conditional 

tree and finally prints the resultant of the frequent patterns from that tree. 

5.2.2 Example: To mine constraint based frequent patterns from incremental data 

 

To illustrate the algorithm we have considered the dataset as shown in Figure 5.2 (a). 



 

108 

 

DB

T_7 I_3 I_7 I_5

T_6 I_1 I_2 I_5

T_5 I_2 I_1 I_6 I_4 I_5 I_3

T_4 I_2 I_6

T_3 I_1 I_2 I_3 I_4 I_7

T_2 I_1 I_2 I_4 I_5

T_1 I_5 I_3 I_2 I_6 I_7 I_4 I_8

DB : Database , T: Transactions, I :Itemset

 
(a) 

DB’

T_5 I_2 I_1 I_6 I_4 I_5 I_3

T_3 I_1 I_2 I_3 I_4 I_7

T_2 I_1 I_2 I_4 I_5

T_1 I_5 I_3 I_2 I_6 I_7 I_4 I_8

DB’ : Modified Database , T: Transactions, I :Itemset

 
(b) 

 

Figure 5.2:  (a) Original database (b) Reduced database 

 

A. Tree building process using incremental data 
 
 

The dataset is filtered out by taking consideration of the following constraints: 

Pattern lengths >= 3; Support= 0.5 and type pattern constraint = I_1, I_2, I_4. 
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As the transaction „T_4‟ does not satisfy the length constraints (lengths of T_4 are 2), 

filter it from the original dataset. Similarly discard transactions „T_6‟ & „T_7‟ that do not 

satisfy the type pattern constraints. Now the size of the dataset is reduced and shown in the 

Figure 5.2 (b). The tree is built as per definitions stated in chapter 3. The resultant tree is 

shown in Figure 5.3. 

I_5:3

I_3:3 I_7:2

I_2:4 I_8:1I_4:4 I_6:2

I_1:4

 

Figure 5.3: Tree obtained from Figure 5.2 (b) 

 

Let us consider user defined item constraint where support should be greater than or 

equal to 1. From the Figure 5.3, item I_8 is discarded from the tree and the corresponding 

new tree is shown in Figure 5.4. 

For adding incremental data, let us consider new transactions „T_8‟= {I_1, I_2, I_3, I_4, 

I_5}; „T_9‟= {I_4, I_5, I_6} and „T_10‟= {I_6, I_7}. As we have added these transactions 

to the database shown in Figure 5.2 (b), the database grows with seven transactions. 

I_5:3

I_3:3 I_6:2

I_2:4 I_7:2I_4:4

I_1:4

 
Figure 5.4: Tree after deleting item I_8 
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The beauty of this tree based data structure is that to add the new transaction in the tree, 

there is no need to scan the dataset repeatedly, instead, increase the Support Count of the 

existing items in the tree. The resultant tree is shown in Figure 5.5 below.   

I_5:3

I_3:5 I_6:3

I_2:5 I_7:3I_4:6

I_1:5

 
 

Figure 5.5: Adding incremental data 

 

Similarly for deleting any transactions, simply decrement the Support Count of the 

respective item as stated in Jindal & Dutta Borah (2015a). 

B. Constraint based mining from incremental data 

 

Let us consider length constraints >3, pattern constraints= {I_2, I_3, I_4} and the prefix 

access transaction base for item „I_1‟ for mining process.  Table 5.1 below gives the 

resulting constraint based frequent patterns. 

Table 5.1: Constraints and frequent patterns 

Tree INFO [] 

(refer Figure 5.5) 

Item Conditional Tree 

: the prefix access 

transaction base for I_5 

Constraint Resultant 

Frequent 

Patterns 

Root Node {I_5: 3}; 

Left hand side subtree 

 

I_1 

< I_5, I_3, I_2>: 1; Length >3; 

Pattern 

<I_1, I_2, 

I_3, I_4, < I_5, I_3, I_4>: 1;  
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nodes: {I_3: 5, I_2:5, 

I_1:5, I_4: 6};  

Right hand side subtree 

nodes:  

{ I_6:3, I_7:3} 

< I_5, I_3, I_2, I_4> constraints=  

{ I_2, I_3, 

I_4} 

I_5> 

 

 

C. Constraint based high utility mining from incremental data 

 

Let us revisit Chapter 4, Section 4.3.2, Figure 4.10 (a) & (b) and consider the following 

constarints: 

 New Weight Constraint using AvgMU= 1.5 

 Pattern constarint = < I_1 I_2> 

As a first step, we have applied New Weight Constraint to the itemset presents in the 

Figure 4.10(b) and as a result, items I_8, I_4, I_5 and I_9 are filtered out.  The remaing 

items I_2, I_7, I_1 and I_3 added to the header table for mining constraint based high 

utility itemset ( refer Table 4.4 in Chapter 4).  

Secondly we have imposed pattern constraint < I_1 I_2>. The  resultant constraint 

based high utility patterns are listed in Table 5.2 .  

The  constraint based high utility itemset present  in Table 5.2 is comparatively less as 

compared to the Table 4.4.  

Hence,  Constarint based mining is important as per perspective of the user.  
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Table 5.2: Example of Constraint based high utility mining  

Candidate 

Keys 

Conditional pattern 

base 

Conditional 

tree  

Candidate 

pattern 

UTnew after imposing   

Pattern Constraint 

 < I_1 I_2>. 

Remarks 

I_2 <I_1 I_3 I_4 I_5 I_7 

I_8>, 

<I_1 I_4>, 

<I_1 I_3>, 

 <I_1 I_7 I_9> 

<I_1 I_3>, 

 <I_1 I_7> 

<I_1 I_2>,  

<I_2  I_3>, 

<I_2  I_7> 

UTnew {I_1 I_2} = 2.5 

 

Passed 

 

I_7 < I_1 I_2 I_3 I_4 I_5 

I_8>, <I_1 I_3>, <I_1 

I_2 I_9> 

<I_1 I_3>, 

 <I_1 I_2> 

<I_1 I_7>, 

<I_3 I_7>,  

<I_2  I_7> 

 

--------------------------- 

 

----------- 

I_1 <I_2 I_3 I_4 I_5 I_7 

I_8>,<I_2 I_3>, <I_3 

I_7>, <I_2 I_4>, <I_2 

I_7 I_9> 

<I_2 I_3>, 

<I_3 I_7>, 

<I_2 I_4>, 

<I_2 I_7> 

<I_1 I_2>, 

 <I_1 I_3>, 

 <I_1 I_7>,  

<I_1 I_2 I_3> , 

<I_1 I_2 I_7>, 

<I_1 I_3 I_7> 

UTnew {I_1 I_2} = 2.5 

UTnew {I_1 I_2 I_3} 

=2.05 

UTnew {I_1 I_2 I_7 } 

=1.23 

 

Passed 

 

Passed 

 

Pruned 

 

I_3 <I_1 I_2 I_4 I_5 I_7 

I_8>, <I_1 I_7>, <I_1 

I_2> 

<I_1 I_7>, 

<I_1 I_2> 

<I_1 I_3>, 

 <I_3 I_7>, 

<I_2 I_3> 

 

-------------------------- 

 

----------- 
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 5.3 Experimental Results 

 

5.3.1 Data and Environment for Experiment 

  

To compare the performance of the proposed algorithm with state of the art algorithms 

MCRP-Tree (Bhatt & Patel, 2015), RegularMine (Raedt & Zimmermann, 2007), GwI-

Apriori (Chiu, Chiu, & Huang, 2009), we have done experiments on Intel 2 Duo CPU@2. 

0GHz with 3GB RAM and 32 bit operating system. We have performed several 

experiments and the results are based on the average of multiple runs. 

For this experiment, we have considered widely used three datasets namely T10-I4-

D100 K (synthetic dataset), Pumsb (real dataset: census data from Public Use Micro data 

Sample) and Kosarak dataset.  The characteristics of these datasets are listed in table 5.2 

below.   

Table 5.3: Dataset parameters  

Dataset Number of 

transactions in 

transaction set 

 [|T |] 

No. of Items  

[|I|] 

Average size 

of a 

transaction 

[|t|avg] 

Maximum 

Transaction 

length [|t|max] 

Type 

(Dense/ 

Sparse) 

T10-I4-

D100K 

10 x 10
4
 1000 10 2000 Moderately 

Sparse  

Pumsb 4.9 x 10
4
 2113 74 74 Dense 

Kosarak 9.9 x 10
5
 41270 8.1 2498 Sparse 
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5.3.2 Experiment 1: Performance Analysis 

 

To evaluate the performance (efficiency and effectiveness) of the proposed algorithm, first 

we compare state of the art algorithms without constraints.   From the Figure 5.6, it can be 

seen that number of candidate generation of CIFMine is less than the MCRP-Tree, 

RegularMine and GwI-Apriori. The reason is that CIFMine filtered out the initial 

transactions that are not used for future reference.  

Hence, the proposed algorithm, CIFMine is more efficient than other state of the art 

algorithm compared in this work 

 
 

Figure 5.6: Candidates generated with different Minimum Support of Pumsb dataset 

 

Secondly, we have considered user defined constraints such as length, pattern and 

minimum support constraint to measure the performance of the proposed algorithm. For a 

desired pattern, once the constraint is satisfied, the checking of a superset of the pattern is 

not required. Hence, for a higher rate of selectivity of constraints, the required running 

time is less.    

It has been observed that time taken to mine the desired pattern by CIFMine is less as 

compared to the other algorithms (Figure 5.7).   
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Figure 5.7: Runtime with selectivity of constraints using T10-I4_D100K dataset 

 

5.3.3 Experiment 2: Scalability of the Proposed Algorithm 

 

To measure the scalability of the proposed algorithm, effect of incremental data is 

important. As an incremental data we have considered kosarak dataset with ∆
+
 (No of 

transactions For Insertion operation) = 0.2 Million and ∆
-
 (No. of transactions for Deletion 

operation) = 0.1 Million.  From the experiment, it is found that proposed CIFMine is more 

scalable than the others compared in this work (Figure 5.8 (a) & (b)). 

 
(a) 

 
(b) 

Figure 5.8:  Effect of incremental data (a) ∆
+ 

and (b) ∆
-
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From the above results, it has been observed that introducing constraints in frequent 

patterns from incremental data can help users extract exactly what patterns they want 

instead of generating the whole patterns.   

The proposed work reduces the initial dataset by defining dataset filtering technique and 

generates less number of candidate keys in the mining process. It can cope up with 

incremental data, avoiding rebuilding the tree. Hence, it is efficient in terms of memory 

used.  

The proposed algorithm, CIFMine, is an efficient algorithm as compared to the state-of-

art algorithms MCRP-Tree, RegularMine, and GwI-Apriori, in terms of computing time as 

it produces only those patterns which are likely to be of interest to the end user.  
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CHAPTER-6: INCREMENTAL EDUCATIONAL DATA MINING 
 

 

Educational Data Mining (EDM) is an emerging field exploring data in 

educational context by applying different Data Mining Techniques/Tools. 

EDM provides intrinsic knowledge of teaching and learning process for 

effective education planning. It defines goal-directed practices for ensuring 

institutional success at all levels.  

       Frequent pattern mining is one of the prominent research areas of the 

EDM research community to measure interestingness of the end user in terms 

of frequent patterns. This Chapter illustrates a modified tree based algorithm 

for mining frequent patterns of educational data incrementally. The modified 

algorithm is similar to the algorithm present in Chapter 5 but focuses on 

educational data.  

 Also presents an application to find out the strong association of students' 

participation in an online environment. 

 

6.1 Introduction 

Educational Data Mining (EDM) has acquired a significant attention of the research 

community for its ability to suggest the most suitable future planning by mining 

incremental educational data in context of quality education (Jindal & Dutta Borah, 2015b; 

Romero & Ventura, 2007). Incremental educational data is generated from heterogeneous 

resource where the addition and deletion of data take place without reforming, rescanning 

of the original dataset in a repetitive manner.  
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As an interdisciplinary research field, EDM provides goal-directed practices for 

ensuring success at all levels of the stakeholder of the education. There are various 

techniques to obtain the goal of the educational data mining such as  Frequent pattern 

mining, Association Rule Mining, Relationship Mining, Incremental Mining, 

Classification, Prediction, Clustering, Neural Network and Web mining to name a few.  

Frequent pattern mining is one of the prominent research areas of the EDM research 

community to measure interestingness of the end user in terms of frequent patterns, 

sequence of patterns (Sequential pattern mining) (Srikant & Agrawal, 1996) and 

association rules (Agrawal & Srikant, 1994).  In the context of EDM, frequent pattern 

mining is suitable for  behavior modelling of students learning environment to enhance 

quality education of Learning Management System (Jindal, & Dutta Borah, 2014; 

Mercheron, & Yacef, 2008). 

  Though the goal of the frequent pattern mining is to discover all the patterns from the 

source dataset, but not all discovered patterns are interesting to the end user. Constraint 

based frequent pattern mining is the solution to generate patterns which are particularly of 

interest to the end user.   

Constraints such as Duration, Pattern, Length of patterns, Data, Rule, Dimension, 

Knowledge and Interestingness constraints are used to reduce the search space and hence 

to obtain substantial gain in the mining process (Guns, Nijssen, & Raedt, 2013; Guzzo et 

al., 2013; Han, Lakshmanan, & Ng, 1999).  

In this chapter, we have divided our work into two parts. 

i) Firstly, this work is focuses on a modified tree based algorithm for mining frequent 

patterns of educational data incremental. This approach is quite different from other related 

work in the sense that it basically depends on evaluating knowledge (constraints) rather 
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than the generative knowledge (rule set) (Mitrovic & Ohlsson, 1999): Focal points of the 

work are: 

 To improve the efficiency of tree based algorithm in terms of running time  

 To mine the frequent patterns from the educational data using duration (time) and 

access pattern constraint  

 

ii) Secondly, applicability of EDM in learning environment, in the context of the 

stakeholder of education. Focal points of the proposed work are: 

 Assessing the interestingness of patterns and  

 Finding suitable rules using Association Rule Mining technique.  

 

 6.2 Modified TIMFP Algorithm 

 

It is important to introduce constraints for faster response to solve a problem or to find the 

patterns that are frequently accessed by students from a solution space on the online 

environment.   

In the context of EDM, the problem is to find out the students frequent patterns as well 

as to improve the running time by introducing constraints in TIMFP (Tree for Incremental 

Mining of Frequent Pattern) introduced by Jindal & Dutta Borah (2015 a). The problem 

may be stated as follows:  

Let a database DB contains M number of students‟ records (T_1 to T_M: set of 

transactions) with N attributes (I_1 to I_N: set of items) with support „∞‟.  Let the user 

specified length threshold be „Θ‟ and user specified pattern be „Ω‟. Let Δ
+
 be the newly 
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added, and Δ
-
 be the deleted incremental educational data in DB. Now DB becomes DB

‟ 
by 

updating incremental data.   

The problem is to discover the complete set of patterns from the database DB‟using the 

mining results from DB, which satisfies the support „∞‟, item /pattern „I‟ and duration 

constraints „Θ‟.  

The modified algorithm is shown in Figure 6.1 below. User defined constraints (data set 

filtering) (Saxena, De, & Jindal, 2006) are applied to obtain a reduced dataset (refer Step 1 

&2) similar to the technique stated in CIFMine algorithm (Dutta Borah & Jindal, 2016). 

The TIMFP is used to build the tree based data structure and to mine the patterns from the 

educational original data as well as from incremental data (Δ
+
/Δ

-
) with constraints defined 

by the end user (step 3 to 5).  The modified TIMFP algorithm is hybrid algorithm that 

takes property of TIMFP (refer Chapter 3) and CIFMine (refer Chapter 5) algorithms and 

we have applied in educational data.   

 

Figure 6.1: Modified TIMFP Algorithm for mining educational data 
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6.2.1 Experimental Results 

6.2.1.1 Dataset Used 

To evaluate the effectiveness of the proposed modified algorithm we have considered 

synthetic dataset- T10-I4-D100 K and educational dataset - Teachable Peer Learner dataset 

(AlgebraI2010Dec-retry-ss) as used in Chapter 3.  

I. Statics of synthetic dataset  

 Number of transactions  =10 x 10
4
  

 No. of Items     =1000  

 Average size of a transaction  =10 

 Maximum Transaction length  = 2000 

II. Statics of educational dataset  

 Total Number of Transactions  = 372,519 

 Number of Students                  =145 

 Number of Unique Steps           =8210 

 Total Number of Steps             =17718 

 Total Student Hours                 =158.52 

6.2.1.2 Experiment 1: Performance Analysis 

 

To measure the effectiveness of the proposed modified algorithm, we have run the 

algorithm both in synthetic and educational dataset.   We have considered two constraints: 

 Duration : time for which online session is maintained per students  and 

 Patterns :  access pattern of the students  
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After applying Modified TIMFP it has been observed that the production of candidate 

keys as well as the running time is reduced as compared to TIMFP.  The result is shown in 

Figure 6.2 (a) & (b).  

 
(a) 

 

 
(b) 

Figure 6.2: Runtime comparison (a) using synthetic dataset (b) using educational 

dataset 
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6.2.1.3 Experiment 2: Scalability of the Proposed Algorithm 

To measure the scalability in terms of incremental data, we have taken similar data 

parameter as listed in Chapter 3.  From the Figure 6.3 (a) & (b) it has been observed that 

proposed modified TIMFP is more scalable than the TIMFP in terms of addition or 

deletion of incremental data.  

 
(a) 

 

 
(b) 

 

Figure 6.3:  Scalability of ∆
+
 using (a) synthetic dataset (b) educational dataset 

 

From the experiment it has been observed that Modified TIMFP is more effective and 

scalable than TIMFP in terms of running time. 

As mentioned in previous Ssections & Chapters of our thesis, we dealt with the Mining 

Frequent Patterns (incremental). It can be extended to generate rules by generating high 
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confidence rules from each frequent itemset.  Hence, our focus is to mine strong 

association in context of EDM.  

6.3 Applicability of EDM in Learning Environment 

It is quite challenging to find out interestingness, an association of students‟ participation 

and obtain their response to a particular event on online teaching and learning environment 

(Gowda et al., 2013; Wang et al., 2012). Association Rule Mining (ARM) is one of the 

prominent technique that helps to find out the items frequently appearing in the dataset, 

relationships among different attributes in a learning environment.  

In this part of the thesis, we are exploring the applicability of ARM in learning 

environment, measuring learner‟s beliefs, and interests in a particular lesson and finally 

generating students‟ response to online learning environment.  

6.3.1 Approach used to generate Students’ Response 

 

To enhance the quality and cost effectiveness of the education, it is necessary to measure 

the expectations of students in the learning environment. Learning is a process that is 

governed by many factors such as (Romero & Ventura, 2007; Romero & Ventura, 2013): 

 Skills 

 Attitudes  

 Knowledge  

 Participation and  

 Better understanding of the learning process by students 

Though all the above mentioned factors are important, students’ participation and a 

better understanding of the learning process should be considered as an integral part in 

an online environment.  
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The approach used for generating Students' response in a particular subject is shown in 

Figure 6.4.. The steps involved are as follows: 

 Input data from learning lab 

 Pre-processing 

 Capture the knowledge component and build the model 

  Pattern Evaluation and Generate Students Response   

 

Student _1 Student _N

Learning Lab

Preprocessing

Capture Knowledge Component and 
build the model  => Rule Generation

Pattern Evaluation  
and 

Generate Students Response

 

Figure 6.4: Workflow for Generating Students Response 

 

6.3.2 Input data from learning lab 

 

We used the “Motivation and Metacognition in Chinese Vocabulary Learning, Experiment 

3 (27,421 transactions) & 5 (72,249 transactions) dataset” accessed via DataShop 

(Koedinger et al., 2010). Some of the attributes in the dataset are shown in Table 6.1: 
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Table 6.1: Attributes in learning dataset 

Sl. No Attributes Descriptions  

1.  Row 1 to N 

2.  Sample name All data  (Vocabulary Learning) in 

learning lab 

3.  Anon, Student Id Student Identity  

4.  Session Id Session and lesson for a specific 

user 

5.  Problem starting/ session 

Time 

HH: MM: SS 

6.  Time Zone US/Eastern 

7.  Duration Seconds 

8.  Student Response Type Attempt a problem  

9.  Student Response  sub Type Event/ Drill 

10.  Tutor Response Suggestions/ Feedback  

11.  Problem name Specific lesson  

12.  Problem view No of times viewing the problem 

13.  Condition Random difficulty 

14.  Total Num Hints No of hits achieved 

15.  Knowledge component Default (lesson), 

ChineseMM10Fall etc. 

 

The datasets were trained and tested in SPSS Clementine 11.1 environment. A partial 

view of this environment is shown in Figure 6.5.  
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Figure 6.5: A partial view of SPSS environment 

 

6.3.3 Preprocessing 

To provide the suitable data for effective training and testing purpose, there is a necessity to 

cleanse, integrate and transform the original data. A major step performed during this 

process is as follows: 

 Identify missing values, special characters, question marks, blanks etc. using  “Null 

Rule” 

 Filter out the attributes those are not so important in the model building process 

(ARM). E.g.: Row, Sample name etc.  

The resultant snapshot is shown in Figure 6.6. 

 

Figure 6.6: Resultant list after pre-processing step 
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6.3.4 Capture the knowledge component and build the model 

In an online learning environment, it is important for the educators to understand students‟ 

behaviour and related view in a particular subject matter. This will help for future 

enhancements of the teaching program. To understand their participation, following 

parameters are important: 

 Capture: Capture students' interaction/ knowledge component (input data collected 

from learning lab)   

 Build the Model: Apply DM technique (e.g. ARM) and  

 Provide learning outcome (Generate students' response)   

After capturing the components that is useful to provide knowledge to the user  (refer 

Figure 6.6) from learning lab, the next step is to build the model using the ARM technique 

(Apriori algorithm). “Building the model” is an important step as it fully explains the 

relationships among important parameters.  It is a two way approach:  

 Generate all itemsets whose support is greater than or equal to the user defined 

minimum support and  

 Generate Association Rules from each frequent itemset  

The appropriate values for the support and confidence thresholds of association rules 

depend on the application and the data.  

6.3.5 Pattern Evaluation and Generate Students Response   
 

An ARM technique has a capacity to generate high number of patterns. A Research 

question based on this matter is that “are all of the patterns interesting?” Han et al. (2007) 

defines that a pattern is interesting if it is easily understood, valid on test data, potentially 

useful, novel in nature and ultimately provide knowledge to the user.   
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“Although frequent patterns are interesting in their own right, the end goal of association 

analysis is often the efficient generation of association rules (Agrawal, Imielinski, & 

Swami, 1993)”. 

In (Steinbach  et al., 2000) stated that the rules generated from high confidence from each 

frequent pattern are efficient. Hence we have considered 100% confidence to efficiently 

derive the association among learning parameters (refer Figure 6.7)  

 
 

Figure 6.7: Outcome after applying ARM technique 

 

Mapping of associations between different parameters is shown in Figure 6.8. It shows 

that students‟ response for a particular lesson is tightly associated with outcome “Event” 



 

130 

 

 

Figure 6.8: Association between Consequent and Antecedent 

 

Finally resultant rules to generate appropriate students' response are shown in Figure 6.9. 

“Duration, outcome, problem view and event” are identified as main parameter to generate 

desired result i.e. student response.  

 
 

Figure 6.9: Important resultant Rules 
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6.3.6 Results   

 

As an outcome of this approach, twenty numbers of association rules were generated. We 

have found that “problem view” and “duration” of attempting a lesson are most interesting 

parameters during rule generation (refer rule 3, 4 and 5 from Figure 6.9). Summarizing the 

resultant association rules, we get that student response for a particular lesson is mainly 

based on the following categories: 

 Students with “outcome=event” is directly associated with  “student response to 

event”  

 Those students were exercising lesson 8 (assigned lesson) and “outcome = event” is 

associated with  “student response to an event” and  

 Duration to hit a particular lesson is 1.0 sec and viewing a problem is less than 10 then 

“student response is associated with event” 

Educators‟ can use the discovered knowledge of the rules for decision making process. 

 

This work discusses about the generation of students‟ response for a particular lesson by: 

 Assessing the interestingness of patterns and  

 Finding suitable rules using Association Rule Mining technique.  

The finding of the work was that ARM generates lots of rules where all are not so 

important to derive proper knowledge. Hence this work considers rules having 100% 

confidence.  

The knowledge discovered from this rule is beneficial for students as well as educators/ 

education planners such that   

 Students should improve their learning by exercising the target lesson within the less 

amount of time  
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 Educators can monitor students‟ participation. E.g.: identifying learners patterns that 

actively participating, finding frequent mistake level and  risk level of students  and 

 Providing the guidance/feedback to the students for their future participation and 

knowledge improvement.  
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CHAPTER-7: CONCLUSION AND FUTURE WORK 
 

 

This chapter presents the Goal-related issues addressed, main contributions 

and future work of this research. 

7.1 Goal-related Issues Addressed 

This thesis presents a systematic way to address the frequent pattern mining problem using 

incremental frequent pattern mining. The following goal-related issues have been 

addressed:   

 Cost of Frequent Pattern Mining: Mining frequent patterns are costly during 

changes of the underlying database. Most of the traditional approaches need 

repetitive scanning of the database as well as generating huge number of candidate 

sets. In such type of situation, the important issue is how to utilize the mining 

result efficiently to reflect these changes. Thus, mining of growing databases is 

an interesting area of research in Data Mining. 

 Problems in terms of Computational and Algorithmic Development: This 

causes Creation of duplicate node, Greater computation time required for Searching 

common itemsets, Merging and finding a suitable path, Consumption of large 

amounts of memory to construct the tree and greater mining time etc. It is 

important to develop efficient approaches to enhance the performance of mining. 

 Importance of Semantic Significance: In Frequent pattern Mining, the common 

assumption is that each item in a database is equal in weight. As a matter of fact, in 

real life applications, it is not always possible to treat all patterns in an equal or 

binary way. Utility/weight associated with items is important in real life 

applications and it provides Semantic Significance of items presents in a database. 
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 Importance of Constraints: It is not always suitable for end users that all 

generated patterns are equally important.  Constrains are important in cases where 

end user wishes to mine patterns that are interesting and specific to their 

application point of view.  

7.2 Contribution of the Research 

This research work has offered a solution for addressing incremental frequent pattern 

mining method. We have considered mainly four approaches to fulfil our research 

objective, namely: 

 Incremental Mining of Frequent Patterns  

 Incremental High Utility Frequent Pattern Mining 

 Incremental Constraint based Frequent Pattern Mining and  

 Incremental Educational Data Mining. 

First, this work proposes a novel tree based data structure for mining frequent pattern 

of incremental data called TIMFP which is compact and suitable for incremental and 

interactive mining (Chapter 3). 

Secondly, another data structure with Average Maximum Utility (AvgMU) and mining 

algorithm to mine high utility patterns from incremental data that reduces tree 

constructions and computation time is presented (Chapter 4). 

Thirdly, a tree based algorithm called CIFMine to mine the incremental data by using a 

dataset filtering constraints like specific pattern, the length of the pattern and user defined 

minimum support threshold which reduces the size of the dataset before constructing the 

tree is stated (Chapter 5). 
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Lastly, a modified algorithm “Modified TIMFP” to construct and mine incremental 

educational data is presented. Also an application has been exhibited to find out the strong 

association of students' participation in an online environment (Chapter 6).  

The approaches presented in this research have been successfully validated on a 

number of benchmark synthetic and real-world datasets that are mostly used by the Data 

Mining research community. 

The research work has successfully established the fact that, Incremental Mining of 

Frequent Patterns approaches used in this work is cost effective and efficient  as compared 

to traditional frequent pattern mining approaches. The application area of the work 

includes Business data as well as Educational data of high impact and real world 

importance. 

7.3 Application of the Research 

Our research is applicable in diverse areas such as: 

 Business: Pattern and trend analysis of customers. e.g.: Shopping patterns of 

customers which can help the retailer to know the need of customers and as a future 

action stores layout may change accordingly.  The customer data keeps growing 

with time. This growing data can be mined incrementally using our research; Stock 

analysis by investors. e.g.: Investors can find out stocks with good performance etc.  

 Education:  Behavior analysis of students both in offline and online environment; 

Identification of the risk level of students; Enrollment Management (branch of 

study, courses, and programs in which they can enrol) and Curriculum 

Development which can help planners design a curriculum focused on the demands 

of the future workforce etc. so that successful, goal-oriented and quality education 

can be obtained. 
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 Banking and Finance: Patterns and association analysis specially loan payment and 

credit analysis of customers; unusual pattern analysis etc. 

7.4 Future Work 

This thesis throws light on a number of future research directions. 

Firstly, this thesis provides a direction on incremental frequent pattern mining by 

analysis of performance in terms of running time and space. Last chapter also provides 

mining association with educational data, hence there is a future direction of focus 

particularly on Association Rule Mining in different kind of data. 

Secondly, the concept of Incremental Mining can be enhanced to Distributed Data 

Mining. 

Thirdly, we have considered database perspective by considering different kinds of 

data and analysis of performance of proposed algorithms. As a future work, the complexity 

of each algorithm can be derived.  

Lastly, as a future work, we will integrate Incremental mining with the concept of 

Bigdata Analytics for mining frequent patterns. Further, a model of skill development for 

formal and Non-formal education will be constructed applying EDM. 
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