
 
 

 

Analyzing the Performance of Hybrid 

Model Reconstruction Approach for 

balanced and unbalanced Dataset 

THESIS SUBMITTED IN PARTIAL FULFILLMENT OF REQUIREMENTS 

FOR THE AWARD OF THE DEGREE OF  

Master of Technology 

in 

Computer Science and Engineering 

 

Under the esteemed guidance of 

Dr. Ruchika Malhotra 

(Associate Head and Assistant Professor  

– Computer Science and Engineering) 

Delhi Technological University 

 

Submitted By- 

Aakansha Yadav 

(Roll No. - 2K15/CSE/01) 

 

 

 

DEPARTMENT OF COMPUTER SCIENCE &ENGINEERING 

DELHI TECHNOLOGICAL UNIVERSITY 

SESSION: 2015-2017 



 
 

 

CERTIFICATE 

 

 

This is to certify that report entitled Aakansha Yadav  (2K15/CSE/01) has completed the 

thesis titled “Analyzing the Performance of Hybrid Model Reconstruction Approach for 

balanced and unbalanced Dataset” under my supervision in partial fulfilment of the 

MASTER OF TECHNOLOGY degree in Computer Science Engineering at DELHI 

TECHNOLOGICAL UNIVERSITY. 

 

 

 

 

 

 

Supervisor 

 

 

 

  

Dr.Ruchika Malhotra  

Associate Head and Assistant Professor 

Department of Computer Science and Engineering 

Delhi Technological University  

Delhi -110042 

 

 

 

 

 

 



 
 

 

DECLARATION 

 

 

We hereby declare that the thesis work entitled “Analyzing the Performance of Hybrid 

Model Reconstruction Approach for balanced and unbalanced Dataset” which is being 

submitted to Delhi Technological University, in partial fulfilment of requirements for the 

award of degree of Master of Technology (Computer Science Engineering) is a 

bonafidereport of thesis carried out by me. The material contained in the report has not been 

submitted to any university or institution for the award of any degree. 

 

 

 

 

 

 

Aakansha Yadav 

 2K15/CSE/01 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

ACKNOWLEDGEMENT 

 

 

I am very thankful to Dr.Ruchika Malhotra (Assistant Professor, Computer Science Eng. 

Dept.) and all the faculty members of the Computer Science Engineering Dept. of DTU. They 

all provided immense support and guidance for the completion of the project undertaken by 

me. 

I would also like to express my gratitude to the university for providing the laboratories, 

infrastructure, testing facilities and environment which allowed me to work without any 

obstructions. 

I would also like to appreciate the support provided by our lab assistants, seniors and peer 

group who aided me with all the knowledge they had regarding various topics. 

 

 

 

 

 

 

 

Aakansha Yadav 

M. Tech. in Computer Science Engineering 

Roll No.  2K15/CSE/01 

 

 

 

 

  



 
 

ABSTRACT 

 

Software defect prediction helps in identifying fault prone classes of a software in the early 

phases of software development life cycle. This helps in efficient resource allocation, since 

more resources should be allocated to such fault prone classes. Defect prediction(DP) models 

are developed from different machine learning methodologies in which the models are trained 

using data from previous releases of a software. However, while developing DP models, 

researchers have to deal with certain issues. Two such critical issues are addressed in this 

study a) unavailability of historical data of a software project, and b) imbalanced nature of 

training data set, where the distribution of classes is highly skewed. In order to deal with 

scarcity of historical data of a project, literature studies use cross project defect 

prediction(CPDP). Though, a number of literature studies have suggested methods for 

improving the accuracy of DP models with imbalanced datasets, but the imbalanced issue has 

not been properly addressed in the scenario of CPDP.Thus, this study analyzes the 

performance of a CPDP model HYDRA(Hybridized moDel Reconstruction Approach), 

developed by Xia et al. using imbalanced data. The results of the study are empirically 

validated using twenty open source software projects, where ten software projects are of 

imbalanced nature. Furthermore, we also suggest variation in the fitness function of HYDRA 

for improving its performance. The results of the study are statistically assessed using 

Wilcoxon test. 
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  CHAPTER 1 

Introduction 
 

Software quality today has become one of the most crucial aspects of software development. 

A defective software product leads to unsatisfied customers. Thus, it is essential to develop 

efficient DP models to anticipate flaws in the initial stages of software development life 

cycle.Over the years, DP has proven to be a useful aid in organizing a project’s testing 

facilities and resources [ 6, 63, 64]. For instance, effective DP models can guide the testing 

personnel to cater to classes which are more likely to be defective than the others. Recently, a 

large number of studies pertaining to DP have been conducted so as to provide accurate and 

effective DP models [2, 9, 10, 12, 20, 45]. However, most of the past studies have focused on 

constructing DP models by employing the training set designed from the historical data of the 

project itself.The defects have been predicted in the later releases of the same project, or have 

provided the results of k-fold cross-validation on that data set itself [34, 48]. A major 

shortcoming of this approach is that in order to construct such a DP model, our primary 

requirement is an appropriate amount of historical data of the project under consideration. 

However,in reality, historical data that fully satisfies our requirements is not always 

available, because either such kind of historical data has not been populated at all, or was not 

collected effectively [33, 59]. This implies that it is not always feasible to conduct DP studies 

based on the historical data of a project. The scarcity of within project historical data can be 

overcome by using CPDP. 

CPDP is asignificant research area in software engineering, wherein we thrive to predict 

faultsin a given project using DP models constructed by employing appropriate training data 

obtained from history of other projects [54, 68].In case of unavailability of historical data of a 

project, a wide range of public data sets are available, which may be potentially employed as 

training datasets for developing DP models.  

Apart from having lack of historical data, another critical issue faced by researchers while 

developing DP models is the imbalanced nature of training data. In an imbalanced dataset, 

instances of one type of class are present in large numbers as compared to that of other type. 

In such a scenario, the model will not be able to train properly which may lead to inaccurate 

results. Though, past studies have proposed various measures for proper model learning using 

an imbalanced within project data, the same has not been explored for CPDP. Therefore, 

there is an urgent need to analyze the performance of the established CPDP models using 

imbalanced training data. 

HYDRA is a model for CPDP [65].It uses training data which has previously labeled classes 

as clean or buggy from multiple projects to predict the clean/buggy nature of unlabeled 

classes in the target project. The model aggregates the result of multiple classifiers which are 
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trained on different projects to predict buggy instances in the target project. This study 

empirically evaluates 20 widely used open source datasets out of which 10 are imbalanced, 

using the HYDRA model. We are dealing with highly to moderately imbalanced datasets 

where the buggy classes are less in comparison with non-buggy classes. Since the number of 

buggy classes is few,the model will not be able to learn much about these classes. As a 

result,the predictions made by the model may be inaccurate.The results provided by HYDRA 

on both types ofdatasets(balanced and imbalanced) are assessed by using two stable 

performance metrics which are F1 score and AUC(Area Under the receiver operating 

characteristic Curve) measure. 

Furthermore, in the past there have been studies that have proved that there is variation in the 

performance of the prediction models with change in fitness function [1, 5, 16]. Therefore, 

with an intend of improving the performance of HYDRA, the study evaluates its performance 

using a different fitness function, i.e. using AUC measure for fitness evaluation. The 

previously proposed model of HYDRA used F1 score as the fitness function. 

In order to conduct the various experiments, we are using 10 datasets each of balanced and 

imbalanced nature from PROMISE repository. The results are statistically analyzed using 

Wilcoxon test. The results establish the effectiveness of HYDRA with the use of imbalanced 

dataset for CPDP. Furthermore, the study supports the use of AUC measure as the fitness 

function for an improved performance of HYDRA. 

1.1 Research Questions 

In this study the following research questions are explored: 

 RQ1: What is the performance of HYDRA using balanced and imbalanced datasets? 

The performance of HYDRA on both balanced and imbalanced datasets is evaluated. Ten 

balanced and ten unbalanced data sets each are used for doing so. The obtained results 

are evaluated using F1 score and AUC measure.  

 RQ2: Does the results of HYDRA vary with change in fitness function? 

HYDRA uses GA in its process to build the classifier. Fitness function should be carefully 

chosen for better performance of an evolutionary algorithm such as GA. We are using F1 

score and AUC measure as the fitness functions and analyze the change in the 

performance of the model. The aim is to suggest improvement in the performance of 

HYDRA model with variation in fitness function. 

 

1.2Motivation of study 

Defect prediction has proved to be very useful as it helps in predicting software components 

that are defect prone. Thus, it helps in reducing the resources that are required and ultimately 

the cost. Defect prediction has been further improved to cross project defect prediction in 

cases where a software has less historical data. Most of the prediction models that are build 

uses balanced dataset but in most practical cases the data is generally imbalanced. So, we 
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need to find out that whether these models perform equally well using imbalanced dataset  

also. So, our work focuses on imbalanced dataset and comparing the accuracy of prediction 

model with balanced dataset. For this purpose we are using the model build by Xin Xia. We 

have implemented the model hydra and then experiment is done using both balanced and 

imbalanced dataset.  

Further, we are also trying to improve the performance of HYDRA. Hydra uses genetic 

algorithm. We are experimenting using different performance metrics as the fitness function 

and analyzing the performance of hydra. The aim is to improve the accuracy of the model and 

also its accuracy on imbalanced dataset. We are also analyzing the time taken by the model 

using the different datasets. A balanced dataset has equal number of instances for both of its 

classes in case of binary classification. In our case the classes are clean and buggy. It is a 

binary classification. So, if the instances of a software has uniform distribution for both the 

classes than it is a balanced dataset. Whereas in case of imbalanced dataset, more instances 

belong to one class itself.  In most of the practical cases, the dataset is imbalanced. In case of 

binary classification having two classes as clean and buggy. In practical cases, there are few 

instances that are buggy and most of the instances are clean. This leads to imbalanced dataset 

as most of the instances belong to one class only. So, it is necessary that a prediction model 

gives good accuracy in case of imbalanced dataset also. The accuracy of hydra has been 

formulated using balanced dataset[1].  In this research we are analyzing the performance of 

hydra using imbalanced dataset and comparing its accuracy with that of balanced dataset. We 

will observe that if a model for cross project defect prediction has good accuracy on balanced 

dataset then how will it perform on imbalanced dataset. Performance measures should be 

selected carefully while working with imbalanced dataset. Accuracy is not a correct measure 

for imbalanced dataset as it gives biased result and misguides the performance of the model. 

F1-score is considered to be one of the performance measure that provide correct results on 

imbalanced dataset as well. So, we are using F1-score for comparing the performance of the 

model using both the datasets(balanced and imbalanced). 

Fitness function in genetic algorithm is used as a measure to select chromosome from the 

initial population. It is used such that it chooses the best solution from the initial population. 

In our model we need to select the solution that provides good accuracy of the model , so 

such a factor should be used as fitness function so that it chooses the solution that provides 

the best accuracy. In the model that we are using uses F1-score as the fitness function. In this 

research question we are analyzing whether the use of different performance measures as 

fitness function affects the performance of hydra. We are comparing the performance using 
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two performance measures. One is the F1-score and other is Area under the ROC-

Curve(AUC-Curve). AUC curve is defined as the plot of sensitivity versus specificity, by 

taking sensitivity on the y-axis and specificity on the x-axis. It is an effective method for 

analyzing the quality or performance of the described prediction model. 

 

1.4 Organization of thesis 

This thesis is organized in various sections as follows: Section 2 gives summary of the related 

literature, Section 3 summarizes the research methodologies used in this paper including 

overview of the framework and the description of HYDRA. Section 4 describes empirical 

study design i.e. dataset description, variable selection, validation method and performance 

evaluation metrics. Section 5 states the results of the study which has been discussed with 

correspondence to each RQ. Section 6 states the various validity threats and at last the section 

7 summarizes the research work’s conclusion and suggests some future work 
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CHAPTER 2   

Literature Review 
 

This section gives an overview of the research work done with relation to our study. It 

includes the past studies related to CPDP models and the DP models developed using 

imbalanced datasets  

 

2.1 Cross Project Defect Prediction Models 

 

Various DP models have been designed and proposed in the past. There have been studies 

which establish the relationship between Object Oriented (OO) metrics and fault proneness 

[2, 3, 9, 13, 20, 29, 31, 57]. Moreover, the importance of machine learning to develop DP 

models has been increasing ever since [18, 40, 41, 42]. Various researchers have also 

performed a comparison of multiple machine learning techniques on the basis of their ability 

to design effective models for software DP[14, 40].  

These DP models are trained using historical data of a project. However, sometimes less 

historical data is available due to which the models are not trained properly. Due to lack of 

historical data, CPDP models have been found advantageous. A lot of work has been done by 

researchers in this field [24, 25, 30, 49, 50, 52, 53]. Work on the feasibility of CPDP models 

and the effect of mixed project data on learning algorithmhas been done[22]. Models based 

on transfer learning have also been built [38, 50]. Herbold [24] and Hosseini et al. [25] 

worked on different strategies for selecting the training data for CPDP models. Ryu et al.[54] 

showed the efficiency of support vector machine while developing CPDP models. A study by 

Ryu and Baik[52] used an approach of multi-objective naive bayes algorithm for training the 

CPDP model.By the use of multi objective the probability of detection of buggy instances 

was maximized. Also, semi-supervised and unsupervised learning for CPDP models has been 

proposed [67].  

Zimmerman et al.[68] carried out a large scale experiment on finding out the factor that 

affects the most while selecting any project as training project for CPDP. It was an 

experiment comparing the importance of data, domain and process while selecting the 

training project. Turhanet al.[59]studied data for training from the same company itself as 

well as from other companiesfor DP model. In his study, data from within-company gave 

better results as compared to cross-company data. Jureczko and Madeyski[28] formed 
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clusters of the projects having similar features. They confirmed that in case of absence of 

historical data, predictors from within the same cluster can be used. 

Cruz and Ochimizu [6] used software metrics as features for building a model with logistic 

regression as the underlying machine learning classifier and worked on the correctness of the 

model using various projects. Turhan at el.[58, 59] studied another related issue of cross-

company DP i.e. predicting defects of local projects by using the projects of other companies 

as training data. It was concluded that data from cross-company projects enhances the defect 

detection probability, but it also increases the false positive rate.In such a scenario, they 

recommended filtering of cross company data through nearest neighbor. Watanabe et al. [62] 

introduced a method known as “metrics compensation” so as to try to adapt the predictor 

built from a java based project and apply it to a C++ based project. It was claimed that it may 

be possible that we can reuse a predictor among projects created using varied programming 

languages but only foranalogous domain and analogous size. It stated that the characteristics 

of data are possibly a major factor in CPDP models. However, this conclusion has weak 

generalization ability because the experiment was carried out using only two applications. 

Many more experiments on generalization ability of CPDP models have been carried out [25, 

30]. 

2.2 Defect Prediction Models using Imbalanced Dataset 

Studies have been conducted whichanalyze the stability of DP models by using datasets with 

class imbalanceissue [32, 35, 36, 37, 66]. The experiment was done with six different 

prediction models and the performance of each model on imbalanced dataset was 

investigated[39]. It showed that the models developed using Random forest and Naïve Bayes 

were more stable as compared to other models and C4.5 showed to be the most unstable 

model on imbalanced dataset. Another study using imbalanced data for the stability of feature 

selection was conducted [56]. Different software metrics as features were used in most of the 

models. They worked on 18 such software metrics and analyzed their stability on imbalanced 

dataset. Much workis done on resampling, instance weighting and ensemble methods for 

dealing with imbalanced dataset in DP models [51, 55]. Also,a study on hybrid sampling 

strategy to improve the learning in case of imbalanced training data was conducted [47]. 

Other studies on software DP using imbalanced dataset were also conducted [4, 15, 17, 21, 

26, 36, 60, 61]. Various robust performance measures have also been studied, which provide 

stability for classification using imbalanced dataset [19, 21, 36]. 
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However, there have been very few studies on CPDP models with imbalanced datasets[27]. 

So, in this study we are investigating the performance of a CPDP model on imbalanced 

dataset. Our work is inspired by the work of Xia et al. [65].  They developed a model for 

CPDP using Genetic Algorithm (GA) and logistic regression as the machine learning 

classifier.The model has better accuracy results as compared to other recently proposed 

approaches [65]. They usedbalanced datasets from promise repository for DP. However, in 

this paper we are also evaluating the performance of HYDRA on imbalanced datasets. 

Practically, in most of the software datasets, there are fewer buggy classes than clean classes. 

So, this leads to imbalanced nature of the dataset which misguides the accuracy of any model. 

Thus, this study performs experiments using imbalanced datasets and compares the results 

with that of balanced datasets. Furthermore, we are trying to improve the existing model of 

HYDRA by changing the fitness function of GA. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3: Research Methodology   

8 
 

 

CHAPTER 3 

Research Methodology 
 

This chapter presents the experimental framework used in this work for CPDP. 

Fig.3.1 shows the framework of the model HYDRA as Proposed by Xia et al. [66]. 

 

 

 
 

Fig. 3.1 Framework of model HYDRA 

 

Training datasets are the source projects with labeledinstances(clean or buggy) that are used 

to train a model. Testing dataset is the project of whom we have to predict the label of the 

instances.Suppose there are ‘N’ projects, known as source projects {S1, S2….SN} and a target 

project ‘T’. We consider ‘N’ source projects along with 5% labeled instances from the target 

project(known as training target data, Tt) as the training dataset of our model, where an 
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instance is an OO class of the project. The unlabeled instances of the target project ‘T’ is the 

testing dataset.OO metrics of instances of a project are used as the features to train our CPDP 

model. So, in our training dataset each instance is represented by 20 OO metrics (refer 

Section 4.1) along with their label (1 if buggy and 0 if clean). Each instance of testing dataset 

is also represented using these 20 OO metrics which is provided as input to our model and the 

model predicts the label of the instance as1 or 0.  

Further, the model involves many steps. For each of the source project and the training target 

data(Tt), a machine learning classification model(M) is developed which uses logistic 

regression as the underlying classifier. Hence, we have (N+1) classification models. Each 

model outputs a likelihood score which shows the probability of an instance of being 

defective. These models are assigned weights according to the performance of each model i.e. 

the model with high F1 score will have higher weight. Initially random weights are assigned 

to the classifiers. These weights are optimized with the help of Genetic Algorithm(GA). 

 Genetic Algorithm 

Fig. 3.2 shows the steps involved in a genetic algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 Genetic Algorithm 

Genetic Algorithm 

1. pop_size ← number of chromosomes 

2. max_gen ← maximum number of generations 

3. P ← initial population with pop-size members 

4. Evaluate P and record the best solution(having maximum F1 score); 

5. Let cur_gen =0 and P’ = P 

6. Whilecur_gen ≤ max_gen 

a. Selection: Roulette wheel selection procedure is used for selection(Goldberg 

and Holland 1998). It select parents with highest fitness score which is F1 

score on Tt in our study. 

b. Crossover: Single point crossover operator is used. 

c. Mutation: Random mutation is used. It randomly swaps the value of gene with 

a certain probability to another value in its range. 

7. Evaluate P’ and record best solution. 

8. Cur_gen = cur_gen + 1 

9. End while 

10. Output: ∑ 𝛼𝑖𝑀𝑖
𝑁+1
𝑖=1  ,threshold which achieves the highest F1 score. 
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The initial population(P) of GA is made up of pop_size chromosomes(i.e. solutions). Each 

chromosome consists of (N+2) genes, where genes are the weights assigned to the classifiers. 

The first (N+1) values lies between 0 to 1 whereas the (N+2)th value represents the threshold 

which is a user-defined level that is used to decide whether an instance is buggy or clean and 

its value lies between 1 to (N+1). ‘P’ is evaluated and the best solution is recorded i.e. having 

the highest F1 score(fitness function). After that selection,crossover and mutation operations 

are applied on the initial population max_gen times. Every time we evaluate ‘P’ and record 

the best solution. So, the final output of GA gives a solution with the maximum F1 score i.e. 

we have the weights of all the classifiers along with the threshold that provides us with 

highest F1 score. This combination of all the classifiers along with their weights is known as 

GA classifier.  

 GA Classifier 

GA classifier provides us with the final label of the instances of target project. 

Label(i) = { 1  (i.e. buggy)                      if comp(j) ≥ threshold 

                    0(i.e. clean)                             otherwise                       } 

 

Where, 

Comp(j) =  
∑ 𝛼𝑖
𝑁+1
𝑖=1 ×𝑆𝑐𝑜𝑟𝑒𝑖(𝑗)

𝐿
 

 

In the above equation, 

αi(i=1 to N+1) are the weights of the classifiers. 

Scorei(j) is the likelihood score given by ithclassifier for instance j. 

LOC is the no. of lines of code. 

.
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CHAPTER 4 

Empirical Study Design 
 

This chapter discuss different design consideration of our thesis. 

1.1 Variable Selection 

This section describes the dependent and independent variables of the study. 

In our study, fault proneness is the dependent variable.It is the probability of detecting a bug 

in an instance i.e. an OO class [7]. We have taken it as a binary variable because our focus is 

to predict whether a class is faulty or not. A software component is known as faulty if it 

contains some error or bug which can lead to incorrect or unexpected results. On the contrary, 

a component free of any such error or bug is known to be clean. We have taken various OO 

metrics as the independent variables. The incorporated metrics are listed below: 

S. R. Chidamber and C. F. Kemerer [8]: 

 WMC(Weighted Methods for Class): Represents the total number of methods of an 

instance. 

 DIT(Depth of Inheritance tree): It measures the longest distance from a given class to 

the root of an inheritance tree. 

 NOC(Number of Children): Given an inheritance tree of a class it returns the 

totalnumber of children. 

 CBO(Coupling between Objects): Enumerates the instances coupled to a particular 

instance. 

 RFC(Response for Class): It is the number of distinct methods invoked by code in a 

given class. 

 LCOM(Lack of Cohesion of Methods): The number of method pairs in a class that do 

not share access to any class attributes. 

 

J. Bansiya and C. G. Davis metrics [2]: 

 NPM(Number of Public Methods): Determines the public methods in a given 

instance. 

 LOC(Lines of Code): Counts the total lines of code in a given class. 
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 DAM(Data Access Metric): Measures the fraction of private/protected attributes and 

the total attributes in a given instance. 

 MOA(Measure of Aggregation): Determines the total attributes in a given class which 

are of user-defined types. 

 MFA(Measure of Functional Abstraction): Defines the total methods inherited by a 

given class divided by the methods that can be accessed by the member methods of 

the given class. 

 CAM(Cohesion among Methods of Class): Defines the ratio of the sum of the number 

of different parameter types of every method to the product of total methods and the 

different method parameter types in the whole class. 

M. Tang, M. Kao, and M. Chen metrices [58]: 

 IC(Inheritance Coupling): Given a class, it returns total parent classes that it is 

coupled to. 

 CBM(Coupling between Methods): Defines the new or overwritten methods that all 

inherited methods in a given class are coupled to. 

 AMC(Average Method Complexity): Defines the average size of methods in a given 

instance. 

R. Martin metrics [44]: 

 Ca(Afferent Coupling): Given a class, it returns the total classes that are dependent 

on it. 

  Ce(Efferent Coupling): It returns the total classes that a given class depends upon. 

T. McCabe metrics(1976): 

 max_cc(maximum cyclomatic complexity): counts the maximum McCabe’s 

cyclomatic complexity score of methods in a given class. 

 avg_cc(average cyclomatic complexity): counts the arithmetic mean of the McCabe’s 

cyclomatic complexity scores of methods in a given class. 

B. Henderson-Sellers metrics [23]: 

 LCOM3(Lack of Cohesion of Methods Version 3): Another type of LCOM metric 

proposed by Henderson-sellers. 

 

1.2 Data Selection 

We are using 20 datasets from promise repository, 10 of balanced dataset and 10 of 

imbalanced dataset. 
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Table 4.1 summarizes the balanced dataset and imbalanced dataset that we have considered. 

We have considered moderately to highly imbalanced datasets. 

In a dataset each instance is represented by two constituents: a set of 20 OO metrics and a 

labelled attribute. It is a binary value, 1 if that instance is buggy and  0 if it is clean. Our goal 

is to predict the instances correctly. 

 

Table 4.1: Summary of the datasets 

Dataset    Version #Classes #Defective Defective % 

Accumulo 1.3.5 679 381 56.11 

 1.4.3 1087 111 10.21 

Bcel 5.0 563 58 10.3 

 5.1 247 144 58.3 

Collections 3.1 455 80 17.58 

 3.3 340 203 59.7 

Jxpath 1.0 125 42 33.6 

 1.1 613 499 81.4 

Math 1.0 195 34 17.44 

 2.1 685 390 56.93 

 3.0 619 329 53.15 

Pdfbox 1.4.0 596 59 9.9 

 1.6.0 645 167 25.89 

 1.7.1 195 91 46.7 

Poi 1.10 529 88 16.64 

 3.0 1515 1185 78.22 

 3.7 2472 2088 84.47 

 3.9 2786 2377 85.32 

Zookeeper 0.01 90 24 26.67 

 2.1 107 11 10.28 

 

 

4.3  Training and Testing Datasets 

This section states the training data sets used for a specific testing data set in the study. 
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We have 10 balanced dataset and 10 imbalanced dataset taken from PROMISE repository. 

For a balanced testing data, we use all other balanced data except the versions of its own as 

the training dataset. Similarly, for an imbalanced testing data, we use all other imbalanced 

data except the versions of its own as the training datasetbecause for CPDP, we use data from 

other projects for training the model, assuming there is insufficient historical data.Also, data 

with similar characteristics should be used for training purpose [24][25]. That is why, we are 

using balanced data as training dataset for testing a balanced data and imbalanced data as 

training dataset for testing an imbalanced data. 

 

Table 4.2: Training and Testing datasets 

Testing Dataset Training Dataset 

Accumulo 1.3.5 

 

 

Bcel 5.1                Collections 3.3              Jxpath 1.1        Math 2.1        

Math 3.0               Pdfbox 1.7.1 Poi 3.0     Poi 3.7      

Poi 3.9             

 

Accumulo 1.4.3 Bcel 5.0                 Collections 3.1            Jxpath 1.0         Math 1.0    

Pdfbox 1.4.0         Pdfbox 1.6.0               Poi 1.10             Zookeeper 0.0.1   

Zookeeper 2.1                        

Bcel 5.0 

 

Accumulo 1.4.3    Collections 3.1             Jxpath 1.0         Math 1.0    

Pdfbox 1.4.0         Pdfbox 1.6.0                Poi 1.10            Zookeeper 0.0.1   

Zookeeper 2.1    

 

Bcel 5.1 

Accumulo 1.3.5    Collections 3.3            Jxpath 1.1          Math 2.1         

Math 3.0               Pdfbox 1.7.1               Poi 3.0                Poi 3.7      

Poi 3.9             

 

Collections 3.1 

 

Accumulo 1.4.3     Bcel 5.0                      Jxpath 1.0          Math 1.0    

Pdfbox 1.4.0          Pdfbox 1.6.0              Poi 1.10              Zookeeper 0.0.1   

Zookeeper 2.1    

 

Collections 3.3 

Accumulo 1.3.5     Bcel 5.1                      Jxpath 1.1          Math 2.1         

Math 3.0                Pdfbox 1.7.1               Poi 3.0               Poi 3.7      

Poi 3.9             

 

Jxpath 1.0 Accumulo 1.4.3    Bcel 5.0                     Collections 3.1     Math 1.0    
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 Pdfbox 1.4.0         Pdfbox 1.6.0              Poi 1.10               Zookeeper 0.0.1   

Zookeeper 2.1    

 

Jxpath 1.1 

Accumulo 1.3.5     Bcel 5.1                  Collections 3.3       Math 2.1         

Math 3.0                Pdfbox 1.7.1           Poi 3.0                   Poi 3.7      

Poi 3.9             

 

Math 1.0 Accumulo 1.4.3     Bcel 5.0                 Collections 3.1        Jxpath 1.0 

Pdfbox 1.4.0          Pdfbox 1.6.0         Poi 1.10                  Zookeeper 0.0.1   

Zookeeper 2.1     

Math 2.1 

 

Accumulo 1.3.5     Bcel 5.1                 Collections 3.3        Jxpath 1.11         

Pdfbox 1.7.1          Poi 3.0                   Poi 3.7                    Poi 3.9             

 

Math 3.0 

Accumulo 1.3.5     Bcel 5.1                 Collections 3.3        Jxpath 1.11         

Pdfbox 1.7.1          Poi 3.0                   Poi 3.7                     Poi 3.9             

Pdfbox 1.4.0 

 

Accumulo 1.4.3     Bcel 5.0                 Collections 3.1        Jxpath 1.0 

Math 1.0                Poi 1.10                 Zookeeper 0.0.1      Zookeeper 2.1    

Pdfbox 1.6.0 

 

Accumulo 1.4.3     Bcel 5.0                 Collections 3.1         Jxpath 1.0 

Math 1.0                Poi 1.10                 Zookeeper 0.0.1      Zookeeper 2.1    

Pdfbox 1.7.1 Accumulo 1.3.5     Bcel 5.1                 Collections 3.3        Jxpath 1.11         

Math 2.1                Math 3.0                Poi 3.0                     Poi 3.7  

Poi 3.9           

Poi 1.10 

 

Accumulo 1.4.3    Bcel 5.0                 Collections 3.1         Jxpath 1.0 

Math 1.0               Pdfbox 1.4.0         Pdfbox 1.6.0             Zookeeper 0.0.1   

Zookeeper 2.1    

Poi 3.0 

 

Accumulo 1.3.5     Bcel 5.1               Collections 3.3          Jxpath 1.11         

Math 2.1                Math 3.0              Pdfbox 1.7.1             

Poi 3.7 

 

Accumulo 1.3.5     Bcel 5.1               Collections 3.3          Jxpath 1.11         

Math 2.1                Math 3.0              Pdfbox 1.7.1             

Poi 3.9 Accumulo 1.3.5    Bcel 5.1               Collections 3.3           Jxpath 1.11         

Math 2.1                Math 3.0              Pdfbox 1.7.1              

Zookeeper 0.0.1 

 

Accumulo 1.4.3    Bcel 5.0                Collections 3.1          Jxpath 1.0 

Math 1.0               Pdfbox 1.4.0        Pdfbox 1.6.0              Poi 1.10  

Zookeeper 2.1 Accumulo 1.4.3    Bcel 5.0                Collections 3.1          Jxpath 1.0 

Math 1.0               Pdfbox 1.4.0         Pdfbox 1.6.0             Poi 1.10 
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4.4 Performance Measure Selection 

Performance of a prediction model is measured by using various performance measures [14, 

19, 46]. In this study we are dealing with imbalanced dataset so, performance measures 

should be chosen carefully. Previous researches show that the traditional performance 

measures such as accuracy and precision do not provide reliable results in case of imbalanced 

dataset [55]. A number of studies emphasize the use of robust performance measures for DP 

using imbalanced dataset. F1-Score and AUC measure are effective measures for estimating 

the models built with imbalanced dataset. The unequal cost of misclassification errors and 

skewness in class distributions can be handled by AUC measure robustly. Confusion matrix 

shows the different performance measures as in Table 4.3.  

.  

Table 4.3: Confusion Matrix 

 Predicted positive Predicted negative 

Actual positive(buggy) True positive(TP) True negative(TN) 

Actual negative(clean) False positive(FP) False negative(FN) 

 

 Sensitivity or True Positive Rate (TPR) is the ratio of TP to the total number of defect 

prone instances. 

 Specificity or True Negative Rate (TNR) is the ratio of TN to the total number of 

defect free instances. 

 Precision is used to indicate the number of instances predicted as defect prone and 

actually contain defects i.e. true positive results. 

 F1 score is the harmonic mean of sensitivity and precision. Its value decreases if any 

one of the factor decreases. 

 Are under the ROC curve (AUC) is the plot of sensitivity versus specificity, by taking 

sensitivity on y-axis and specificity on x-axis. 

 

4.5 Statistical test selection 

In this study,the predictive capability of HYDRA using different fitness function on both 

balanced and imbalanced dataset is evaluated using Wilcoxon test. This test is used to 

compare two samples and rank the samples according to the absolute values. The various 

underlying data assumptions, which are necessary for use of parametric tests are not violated 

as the nature of test is non-parametric [11]. With each performance measure independently, 
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the predictive performance of the model is compared with the help of Wilcoxon test for 

evaluating significant differences using different fitness functions.  
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CHAPTER 5   

Result and Analysis 
 

5.1 Answers to research questions: 

This chapter elaborates the result of our research work and answer different RQs mentioned 

in chapter one of this thesis. 

5.1 RQ1: What is the performance of HYDRA using balanced and imbalanced dataset ? 

In order to analyze the performance of HYDRA we are using 20 datasets from promise 

repository, 10 each of balanced and imbalanced nature. We are analyzing different 

performance metrics i.e. F1 score and AUC measure, to compare the performance of 

balanced and imbalanced data on the model. The values in figure 5.1-5.2 represent the 

median value of performance measures for all the 30 runs executed for HYDRA model. 

Each bar in the figure represent median value of F1 score and AUC measure for the 20 

open source projects. The values corresponding to balanced dataset are depicted using 

dark grey bars whereas for imbalanced dataset light grey bars are used. 
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Fig 5.1 Validation Results using Median values of F1 Score for 30 runs 

In Fig 5.1, the median value of F1 score ranges from 0.88 to 0.56 for balanced data and from 

0.88 to 0.71 for imbalanced data. The best F1 value is for Collections 3.3(balanced) and 

accumulo 1.4.3(imbalanced) dataset whereas the lowest value is for Poi 3.0(balanced). In 

case of balanced datasets, 7 out of 10 datasets have F1 score above 0.65. On the other hand, 

all of the 10 imbalanced datasets show more than 0.65 F1 score. So, in terms of F1 score, it 

can be seen that HYDRA attains high accuracies on imbalanced datasets. 
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Fig 5.2 Validation Results using Median values of AUC measure for 30 runs 

In Fig 5.2, the median value of AUC measure ranges from 0.92 to 0.52 for balanced datasets 

and from 0.96 to 0.50 for imbalanced datasets. The best value of AUC measure is for 

Zookeeper 2.1(Imbalanced) and the lowest value is for Pdfbox 1.6.0(imbalanced). In case of 

balanced data, only 4 out of 10 datasets have more than 0.65 value of AUC measure whereas 

for imbalanced data, 9 out of 10 datasets have value above than 0.65.Furthermore, it can be 

seen that in terms of AUC measure, imbalanced dataset has above average performance on 

HYDRA. The results of Xia et al. [66] on balanced dataset has a range of 0.34 to 0.99 using 

F1 score. It shows that our result is in accordance with that of Xia et al. [66]. Moreover, our 

experiment using imbalanced dataset shows that HYDRA has a great accuracy on imbalanced 

datasets as well. 
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The performance of HYDRA is acceptable with respect to both balanced as well as 

imbalanced datasets. The mean AUC measure that is achieved on imbalanced datasets is 0.76 

and that of balanced datasets is 0.67. While the mean F1 score is 0.79 on imbalanced datasets 

and 0.69 on balanced datasets. The result shows the efficiency of HYDRA on both nature of 

datasets. 
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RQ2: Does the results of HYDRA vary with change in fitness function?If yes, which fitness 

function gives better results on the investigated datasets? 

We validate whether HYDRA is able to perform better with change in fitness function. The 

main aim of this research question is to determine, which of the two fitness functions 

amongst F1 score and AUC measure achieves a better performance of HYDRA model. For 

this, we analyzed the 20 investigated datasets with two performance metrics i.e. F1 score and 

AUC measure. The median value of 30 runs is taken for each of the performance metric. 

Fig 5.3 shows the comparison of the HYDRA model with two investigated fitness functions 

using F1 score as performance metric on all the 20 datasets being evaluated. Using F1 score 

as fitness function, 12 out 20 datasets obtain an F1 score of more than 0.60, while using AUC 

measure as a fitness function, we have 18 cases out of 20 with more than 0.60 F1 score. 

Overall, in 13 out of 20 cases, the F1 score value of AUC measure as fitness function 

outperforms to that of F1 score as fitness function.  

 

 Fig 5.3: Median F1 score results using F1 score and AUC as fitness function for 30 runs  

Further, Fig 5.4 depicts the AUC results and compares the results of HYDRA model with the 

two fitness functions (F1 score and AUC measure). In 13 out of 20 cases, the obtained AUC 

values were above 0.60 using F1 score as fitness function. While using AUC measure as 

fitness function, we have 16 out of 20 cases with AUC values more than 0.60. Overall, in 16 
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out of 20 cases AUC measure as fitness function performs better as compared to F1 score, 

when evaluated using AUC values.   

 

Fig 5.4: Median AUC results using F1 score and AUC as fitness function for 30 runs 

In both the experiments of using different performance measures, AUC measure as fitness 

function provides better results as compared to that of F1 score as fitness function for the 

HYDRA model. To validate the obtained results statistically, we have used Wilcoxon test. 

The comparison test is performed at significance level of 0.05 using the performance metrics 

used in the study i.e. F1 score and AUC measure for all the 20 investigated data sets. The 

Wilcoxon test results are shown in Table 5.1. 

Table 5.1: Wilcoxon Test Result 

AUC measure as fitness of 

HYDRA vs F1 score as fitness 

of HYDRA  

Using F1 score as performance 

measure 

Using AUC measure as 

performance measure 

 S+ S+ 

 

S+ -> AUC measure as fitness of HYDRA outperforms F1 score as fitness of HYDRA 

significantly. 
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According to table 5.1, the AUC measure as fitness function significantly outperforms F1 

score as fitness function, when the results were evaluated using both F1 score and AUC 

measure. Thus, the results of Wilcoxon test advocate that AUC measure as fitness function is 

a better fitness function that improves the accuracy of model HYDRA for DP. 

 

  

 

 

 

The results of HYDRA do vary with change in fitness function. The F1 score of the 

investigated datasets using AUC measure as fitness function lies in the range of 0.91 to 0.41 

while using F1 score as fitness function the range is 0.88 to 0.42. The AUC measure using 

AUC measure as fitness function has the range 0.97 to 0.535 while using F1 score as fitness 

function the range is 0.92 to 0.50. From the results,it can be seen that AUC measure as fitness 

function outperforms F1 score as fitness function. Wilcoxon test is used to statistically verify 

the results. 
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CHAPTER 6  

Conclusion and Future Work 
 

6.1 Conclusion 

The study evaluates the use of imbalanced datasets for CPDP models. The main objective is 

to analyze the performance of HYDRA, a CPDP model, on balanced as well as imbalanced 

datasets. Furthermore, the study analyzes the variation in the performance of HYDRA by 

using different fitness functions i.e. F1 score and AUC measure. The experiments are 

performed using 30 independent runs on twenty open source datasets. The results are 

assessed using AUC values and F1 score. Wilcoxon test is used to compare the performance 

of HYDRA using F1 score and AUC measure as fitness functions. 

The results of the study are summarized as follows.  

 In our study, we validated the use of imbalanced datasets on HYDRA. The results 

verified that HYDRA can successfully predict defective classes on imbalanced 

datasets with good accuracies. The F1 score obtained by using imbalanced datasets on 

HYDRA is in the range of 0.88 to 0.71 whereas, the AUC results are in the range of 

0.96 to 0.50. In case of balanced dataset, F1 score provides the results in the range of 

0.88 to 0.56,whilethe AUC measure varies from 0.92 to 0.52. Thus, HYDRA is 

effective for both balanced as well as imbalanced data sets. 

 

 We verified variation in the performance of HYDRA with change in its fitness 

function. In majority of the datasets, AUC measure performs better than F1 score as 

fitness function. The mean value of F1 score increased by 8.1% and the mean value of 

AUC measure is increased by 7.7% by using AUC measure as fitness function over 

F1 score as fitness function. Wilcoxon test verifies that the improvement in 

performance of HYDRA using AUC measure as fitness function is significant over F1 

score as fitness function. 

Thus, the performance of model HYDRA used in our study shows that imbalanced dataset 

can also provide promising results on CPDP models and a model can be effectively used to 

predict defective classes in such datasets. Also, the study improves the performance of model 

HYDRA by changing its fitness function to AUC measure. The outcomes of this study can be 

efficiently used by researchers and software developers while handling cases where the 

training data for a CPDP model is of imbalanced nature. Moreover, the HYDRA model has 

also been improved by changing its fitness function so, it can be efficiently used to detect the 

defect prone classes with high accuracy. With this study, we provide a very efficient model 

for CPDP that performs equally well on both balanced and imbalanced dataset.    
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6.2 Future Work 

As a part of the future work, the datasets with programming language other than java can be 

used for empirical validation of the HYDRA model, so that the results can be evaluated and 

generalized for other programming languages. Moreover, we can analyze the use of multi-

objective genetic algorithm instead of basic genetic algorithm in HYDRA model. Also, the 

use of ensemble learning along with genetic algorithm can be evaluated to develop CPDP 

models. 
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