
1

“To develop an In silico method for the detection of pluripotency on

the basis of comparative analysis of various Pluripotency determining

tools”

A Major Project dissertation submitted in partial fulfilment of the requirement for

the degree of

Master of Technology
In

Bioinformatics

Submitted by

RAZI KHAN

(2K15/BIO/11)

Delhi Technological University, Delhi, India

Under the supervision of

Dr. Vimal Kishor Singh

Department of Biotechnology

Delhi Technological University

Shahbad Daulatpur, Main Bawana Road,

Delhi – 110042, INDIA

2

CERTIFICATE

This is to certify that the M.Tech. Dissertation entitled “To develop an In silico method for the

detection of pluripotency on the basis of comparative analysis of various Pluripotency

determining tools”, submitted by RAZI KHAN (2K15/BIO/11) in partial fulfilment of the

requirement for the award of the degree of Master of Technology, Delhi Technological

University (Formerly Delhi College of Engineering, University of Delhi), is an authentic record

of the candidate’s own work carried out by him under my guidance.

The information and data enclosed in this dissertation is original and has not been submitted

elsewhere for honoring of any other degree.

Date:

Dr. Vimal Kishor Singh

(Project Mentor)

Department of Biotechnology

Delhi Technological University

Shahbad Bawana Road, Delhi-110042

3

DECLARATION

I, Razi Khan, hereby declare that the report entitled “To develop an In silico

method for the detection of pluripotency on the basis of comparative analysis of

various Pluripotency determining tools” submitted in partial fulfillment of the

requirement for the award of the degree of Master of Technology, Delhi

Technological University, is a record of original and independent research work

done by me under the supervision and guidance of Dr. Vimal Kishor Singh, (O/I*

Stem Cell Research Laboratory) Department of Biotechnology at Delhi

Technological University, Delhi and the thesis has not formed the basis of the

award of any Degree/Diploma/Associateship/Fellowship or other similar title to

any candidate of any University/institution.

Date: Signature of Candidate

4

ACKNOWLEDGEMENT

I would first like to thank my thesis advisor Dr.Vimal Kishor Singh, (O/I* Stem Cell Research

Laboratory) Department of Biotechnology at Delhi Technological University. The door to Prof.

Singh office was always open whenever I ran into a trouble spot or had a question about my

research or writing. He consistently allowed this thesis to be my own work, but steered me in the

right direction whenever he thought I needed it.

I would also like to express my sincere thanks to Prof. D. Kumar, H.O.D., Department of

Biotechnology, D.T.U., Delhi for giving me this opportunity to undertake this project.

I also wish to express my gratitude to my teachers and other non-teaching staff members for

providing us their valuable teachings with constant support and guidance.

I would also like to acknowledge Mr. Abhishek Saini (Ph.D. scholar) of the Stem cell research

lab at DTU as the second reader of this thesis, who supported at every instance of my hurdles

during the project and I am gratefully indebted for his very valuable comments on this thesis.

Also, my special thanks goes to my beloved friend Aniruddha (PG Student, Deptt. of Biotech.,

DTU) who helps me in understanding and seeking the programming part of my project and to all

my buddies who are there with me for any kind of assistance.

Finally, I must express my very profound gratitude to my parents for providing me with unfailing

support and continuous encouragement throughout my years of study and through the process of

researching and writing this thesis. This accomplishment would not have been possible without

them. Thank you.

Place : Delhi RAZI KHAN

Date : M.Tech. (Bioinformatics)

 (2K15/BIO/11)

5

CONTENTS

TOPIC Page No.

List of Figures

List of Tables

List of Abbreviations

1. ABSTRACT 9

2. INTRODUCTION 10

3. REVIEW OF LITERATURE 12

4. TOOLS AND DATABASES USED 23

5. METHODOLOGY AND APPROACH 35

6. RESULTS 39

7. DISCUSSION 75

8. CONCLUSION 76

9. FUTURE PERSPECTIVES 76

10. REFERENCES 77

11. APPENDIX 79

6

LIST OF FIGURES

S.No. Title Page

No.

1. Embryonic Stem Cell Markers 18

2. Methodology 35

3. Graph of TeratoScore 39

4. CellNet figures showing Heatmap, GRN and NIS Graphs 40-42

5. PluriTest figures showing Pluriscore, Novelty Score graph 43-44

6. Interaction network of all marker genes using STRING 56

7. Final Interaction Network built using STRING 59

8. Excel sheet of Non-Normalized Microarray Data of GSE72078 60

9. Excel sheet of Normalized Microarray Data 61

10. Calculated Threshold 62

11. Excel Sheet showing matched marker genes present in cell

samples

63

12. Boxplots Showing differences in Normalized and N.N. Data 64

13. Graphs showing Heatmap of expressed genes in cell sample 67

15. PluriTest graphs for the validation of our results 73

7

LIST OF TABLES

S.No. Title of Table Page No.

1. PluriTest Table Showing Pluri raw values 43

2. Table Showing total 175 marker genes present in

stem cells

55

3. Table acquired from STRING showing various nodes

(involved in the interaction network of pluripotency

marker genes) and their scores

57-60

4. Showing Gene list after running java program for

finding no. of matched genes in control cell sample.

61

5. Excel Table showing matched marker genes with

their respective expression values and log FC score.

62

6. Showing Gene list after running java program for

finding no. of matched genes in Test cell sample.

63

7. Table showing range of pluripotent cells, set for the

determination of level of pluripotency in any cell

type.

69

8

LIST OF ABBREVIATIONS

ESC - Embryonic Stem Cells

IPSC - Induced Pluripotent Stem Cells

Oct-4 - Octamer Binding Transcription Factor 4

KLF4 - Kruppel like Factor 4

SOX 2 - Sex determining region Y, Box-2

STRING - Search Tool for the Retrieval of Interacting genes

NCBI - National Centre for Biotechnology Information

GEO - Gene Expression Omnibus

POU5F1 - Pit Oct Unc domain, class 5 transcription factor 1

Log FC - Logarithm of Fold Change value

NN - Non- Normalized data

9

OBJECTIVE:

To Develop an In silico approach/method which can easily determine

Pluripotency of any cell especially iPSC’s by using microarray data gene

expression profiling in a TEXT file format.

 Comparative analysis of existing tools available for determination of pluripotency.

 Comparative analysis of tools to identify their functional differences.

 Development of a method to find pluripotency of any cell using TEXT file format.

ABSTRACT:

Bioinformatics is proving itself as a boon to modern biological researches; it is serving as a

cross-disciplinary field for computational biology solutions to the various problems arising in

this domain. Stem cell derived regeneration process is very complex and dynamic concept.

Therefore, various statistical and probabilistic aspects are being considered to tackle the

situation. Pluripotency, which is itself a big game-changer in the world of Stem cells studies; to

get a clear cut idea of how to determine it in any particular cell (either IPSC or ESC) is now a

handy deal with the help of various Bioinformatics tools, databases and algorithms. Many

researchers have developed several ways to determine Pluripotency but all those tools and

methods have their own limitations at their individual level. In this Project we have developed a

novel way to determine pluripotency, this method does not rely on any cell type or any special

file format acceptance criteria as other available tools do, rather it is providing a simple and

reliable way to get access to any cell’s pluripotency level. This approach initially gathers the

knowledge of working methods by using various other available tools and then developed its

own method, which gathers information on genes expression values (present in particular cell)

and then several programming languages viz. R, JAVA were used to determine the level of

pluripotency. Through this approach we will be able to get a deep knowledge about the level of

each gene expression present in any pluripotent cell. In other words, we are able to easily

determine which genes are playing more crucial role in making any cell pluripotent. This

approach will definitely prove as the most reliable way of determining pluripotency.

Keywords: IPSC, ESC, POU5F1, Nanog, Pluripotency.

10

INTRODUCTION:

Stem Cells study is a vast topic to discuss about. Several researches are going on to tackle with

the major obstacles of this field. Current researches on IPSCs reprogramming methods are on its

peak and proving as a future tool for revolutionizing the medical field. The main aspect of stem

cell study is pluripotency, as we all know that stem cells could be Unipotent, totipotent,

multipotent or pluripotent. Cell differentiation capacity to any of three cell lineages i.e.

Ectoderm, endoderm, Mesoderm is dependent upon the potency of that particular cell (Solter,

2006). Embryonic stem cells pluripotency is depend upon the regulation of transcription factors

and the epigenetic modifications (Niwa et al., 2000; Mitsui et al., 2003; Chambers et al., 2003;

Boyer et al., 2005; Niwa et al.,2005; Boyer et al., 2006). Moreover, further studies also implies

that pluripotency of any cell is also a balance nature of some other factors known as Markers.

Other than transcription factors these markers also include cell surface markers, pathway related

markers and lectins, peptides markers (Wenxiu Zhao et.al. 2012). Today, In vitro approaches are

providing a far more reliable path to come over many biological problems; especially

bioinformatics tools and softwares are in high demand. Here, in our study we are dealing with

such types of tools and databases to cope up with the situation of determining the pluripotency of

any cell specially IPSCs.

Many tools have been developed and most of them are available online free of cost. In our study

we initially made a comparative analysis of such tools which are working on determination of

pluripotency of cells. So, in this race we found 3 main online tools viz. PLURITEST, CellNet,

TERATOSCORE, many others are also available there but these three gave the best results and

are in high demand. We found that each of them is accepting microarray file data but in different

formats e.g. PluriTest accepts only illumina generated .idat* (Raw intensity file) file format,

while rest two are using affymetrix generated .cel* file format. But outputs they are providing

are far distinct with each other, which we have discussed later in detail. So, by taking this idea

we have developed our own approach or method to determine pluripotency by taking TEXT file

as input data. Why we use TEXT file? The answer is the vast availability of this file. Text file

formats are available for any kind of microarray analysis with their respective default formats.

Say for any cell line if .idat format is there but we want to do potency analysis for a particular

cell line using PluriTest tool but we don’t have the data in .idat format, then we are unable to do

so. Also their study is limited to file sizes and quantity (no. of files to be detect) too. But by

using our text based approach one can identify pluripotency of any kind of cell line by using its

text file format.

For this approach we initially after gone through several literatures, we came to a conclusion that

there are total 175 genes known as marker genes present in any pluripotent cell (Wenxiu Zhao

et.al. 2012). To validate this conclusion we create an interaction network of our genes using

STRING and after filtering our results on the basis of score provided by string, we fetch out top

scorer genes.

11

Our next step was to create a method which can identify pluripotency level of any cell. So, for

this we collet microarray data files (Control sample) from NCBI’s GEO (Gene Expression

Omnibus) and analyze our result with GEO2R (a GEO tool). Then, we download gene

expression data file for that particular dataset. After preprocessing step which includes Gene

matching (Using JAVA) and data arrangement, we adopt quantile function to calculate

Threshold for any cell to be pluripotent. This threshold is based upon the Log FC value (Fold

Change value) of the particular gene. After getting threshold we now took another data for test

sample and again repeating the same process (as done for control sample), we check for whether

the log FC value of test sample passing the threshold or not and we saw that it is passed, as data

we have collected for test sample is IPSC data.

Now, our main concern is to check that at what level the cell contains pluripotency? Because the

cells which are passing the threshold could either be multipotent or totipotent too. So, to come

out of this problem we have developed a JAVA program. This JAVA program is trained by

giving it a particular range for particular key regulator gene in either of ESC and IPSC condition.

The result of the program is divided into three categories viz. Highly Pluripotent, Partial

pluripotent, Low Pluripotent.

Also, to validate our findings and our program, we took data for such cell which is having both

.idat* file format as well as .txt file format. So, that we can compare our results with the results

of PLURITEST; and we succeed. As the results provided by PLURITEST are much similar to

the results provided by our text based approach.

Soon, in near future an online tool could also be developed by which any one can easily access

his/ her findings for the determination of their related cell lines on the move of a single click.

This approach is a novel work for pluripotency determination as it is providing our own way for

creating a method to develop new things using Bioinformatics as a tool.

12

REVIEW OF LITERATURE:

Stem cells: Cells which have the capability to differentiate into the specialized cell form are

termed as Stem cells. These kinds of cells are mostly found in multicellular organisms.

In mammals, basically, two different types of stem cells are present: ESCs (Embryonic stem

cells), which are extracted from the ICM of blastocysts, and adult SCs, found in various body

tissues. During embryonic developmental stage the stem cells are able to differentiate into all the

specialized cells lineages i.e. endoderm, mesoderm and ectoderm.

The classical definition states that a cell is said to be stem cell when it possess these two major

properties:

 Self-renewal: This is the ability of a cell in which it undergoes through several cell division

cycle by maintaining its undifferentiating state.

 Potency: The potential of any cell to differentiate into any kind of cell lineage is termed as

potency. For this the cell must be either totipotent or pluripotent (able to give rise to any

mature cell type), although multipotent or unipotent progenitor cells are also referred to as

stem cells.

Potency definition

Potency defines the potential of any stem cell for differentiation into any kind of cell lineage.

 Totipotent or omnipotent stem cells can be differentiated into any of embryonic and

extraembryonic cell types. Such type of cells is able to develop a complete viable organism.

 Pluripotent SCs are the descendants of omnipotent cells and have the ability to differentiate

into almost all the cell lines.

 Multipotent SCs have the potential to differentiate into number of cell types, but only to

those which belongs to closely related family.

 Oligopotent stem cells have the ability to differentiate into a few kinds of cell types, such as

lymphoid SCs or myeloid stem cells.

 Unipotent stem cells can only differentiate into single cell type, i.e. to their own type but

have the potential of self-renewal, which varies them from non SCs.

https://en.wikipedia.org/wiki/Cellular_differentiation
https://en.wikipedia.org/wiki/Mammal
https://en.wikipedia.org/wiki/Embryonic_stem_cell
https://en.wikipedia.org/wiki/Embryonic_stem_cell
https://en.wikipedia.org/wiki/Blastocyst
https://en.wikipedia.org/wiki/Embryo
https://en.wikipedia.org/wiki/Multipotent
https://en.wikipedia.org/wiki/Unipotent_cell
https://en.wikipedia.org/wiki/Progenitor_cell
https://en.wikipedia.org/wiki/Totipotency
https://en.wikipedia.org/wiki/Pluripotency
https://en.wikipedia.org/wiki/Multipotency
https://en.wikipedia.org/wiki/Oligopotency
https://en.wikipedia.org/wiki/Unipotency

13

14

of the cloned animal’s possess pungent to severe abnormalities associated with phenotypic and

gene expression, suggesting that SCNT results in faulty epigenetic reprogramming (Wakayama

and Yanagimachi 1999; Hochedlinger and Jaenisch 2002b; Humpherys et al. 2002; Ogonuki et

al. 2002; Tamashiro et al. 2002; Gurdon et al. 2003). To determine transcriptional key regulators

that can reprogram adult somatic cells into pluripotent cells, Yamanaka and Takahashi

(Tokuzawa et al. 2003) devised a unique scenario for regulatory factors within a pool of 24

pluripotency-associated genes that could activate a drug resistance allele integrated into the

ESC-specific Fbxo15 locus. The combination of 24 factors, when co expressed from retroviral

vectors in mouse fibroblasts, indeed activated Fbxo15 and induced the formation of drug-

resistant colonies with characteristic ESC morphology (Takahashi and Yamanaka 2006).

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956203/#B214
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2956203/#B208

15

1.2) Transcription Factors:

There are mainly 4 types of transcription factors which are involved in cellular reprogramming

viz. OCT-4, SOX2, NANOG, KLF4, some other are also there which are showing great

importance but these are most vital.

1.2.1) Oct-4:

 Oct-4 (Octamer-binding transcription factor number 4) also called POU5F1 (Pit Oct

Unc domain class 5 trans. factor 1) is a protein found in human body and is encoded

by POU5F1 gene. It is a homeodomain T.F. of the POU family. It is involved in the

reprogramming of undifferentiated ESCs, due to which it is also frequently in use as

a marker for identification of undifferentiated cells. The octamer (made of eight units) is the

nucleotide sequence of DNA "ATTTGCAT" present in the transcription family. The

expression of OCT-4 is linked with the expression of undifferentiated phenotype and

tumors. Differentiation is promoted by Gene knockdown of Oct-4. Sox2 can form a

heterodimer with OCT-4, so that they can bind DNA together. In Mouse embryos it is found

that the low expression level of oct-4 leads to failure in formation of inner cell mass, lose in

pluripotency and differentiation into trophectoderm.

https://en.wikipedia.org/wiki/Octamer_transcription_factor
https://en.wikipedia.org/wiki/Transcription_factor
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Gene
https://en.wikipedia.org/wiki/Homeobox
https://en.wikipedia.org/wiki/POU_family
https://en.wikipedia.org/wiki/Biomarker_(cell)
https://en.wikipedia.org/wiki/Oligomer
https://en.wikipedia.org/wiki/Nucleotide

16

 In 2000, Niwa et al. used conditional repression and expression in murine ESCs to

determine the basic requirements of Oct-4 for the maintenance of developmental potency. It

is found that optimum level of Oct-4 responsible for three different fates of ESCs. The

increase in the expression level of oct-4 up to two fold or less could cause differentiation into

either of endoderm or mesoderm. In contrast, Oct-4 repression could leads to loss of

pluripotency and trophectoderm dedifferentiation. Thus, an optimum amount of Oct-

4expression is crucial to maintain self-renewal of stem cell as well as the up and down

regulation helpful in inducing divergent developments.

The transcription factors such as Oct-4, NANOG and Sox2 are found to be capable of

inducing the expression of each other, and are crucial for the maintenance of self-renewing

undifferentiated state of the inner cell mass, as well as in ESCs.

1.2.2) SOX-2:

SRY (sex determining region Y)-box 2, a.k.a. SOX2, is another T.F. that is found to be

essential for the maintenance of self-renewal state or pluripotency state of undifferentiated

ESCs. It also has a crucial role in the maintenance of embryonic as well as neuronal stem

cells. Sox2 is the member of the Sox family of transcription factors, which is found to be

playing crucial role in various stages of mammalian development. This family of

protein shares highly conserved domains for DNA binding which is known as HMG (High-

mobility group) domains, which contains approx. 80 a.a. It holds a great place in research

works, which include IPSCs, which is proving as a promising and emerging sector of

regenerative medicines.

1.2.3) Klf4:

Kruppel-like factor 4 (KLF4) is a member of the KLF family of transcription factors which

helps in the regulation, proliferation,differentiation, apoptosis and differentiated somatic

cell reprogramming. Researches also suggest that klf4 in certain types of cancer act as a

tumor suppressor, including colorectal cancer.

https://en.wikipedia.org/wiki/Inner_cell_mass
https://en.wikipedia.org/wiki/Neural
https://en.wikipedia.org/wiki/Family_(biology)
https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/High-mobility_group
https://en.wikipedia.org/wiki/High-mobility_group
https://en.wikipedia.org/wiki/Family_(biology)
https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/Apoptosis
https://en.wikipedia.org/wiki/Somatic_cell
https://en.wikipedia.org/wiki/Somatic_cell

17

MARKER GENES:

Analysis of arrested embryos demonstrated that embryos express some pluripotency marker

genes such as POU5F1, NANOG, Rex1 and many others. Some other specific pluripotency

marker genes expression analysis also being captured from human ESC lines:

 TRA-1-60

 TRA-1-81

 SSEA4

 alkaline phosphatase

 TERT

 Rex1

https://en.wikipedia.org/wiki/Oct-4
https://en.wikipedia.org/wiki/Rex1
https://en.wikipedia.org/wiki/Rex1

18

Source : Wenxiu Zhao et.al. – 2012

Identity

Characteristic features of Pluripotent Stem Cells

• On the basis of :

1. Markers

2. Telomerase Activity

3. Differentiation

4. Methylation

5. Histone Demethylation

Markers:

1. Cell surface markers:

 Stage specific Embryonic Antigens.

 CD Markers.

 Other Markers.

19

3. Transcription Factors

4. Signal Pathway related intracellular Markers

5. Enzymatic Markers

6. Markers Overlapping with Tumor Stem Cells

 Cellular biological properties:

 Morphology: IPSCs and ESCs are structurally similar to each other. In the way that both

have round shape, large nucleolus and scant cytoplasm. Colonies of both of them are also

similar. Similar to ESCs, Human iPSCs also forms flat, tightly packed and sharp-edged

colonies.

 Growth properties: Some cornerstones of ESCs as stem cells must be self-renewed as a

part of their standard and these are doubling time and mitotic activity. Some other

properties of IPSCs that are prevailing at an equal rate as of ESCs were are that they are

mitotically active, self-renewing, proliferating, and dividing at the same rate.

 Neural differentiation: IPSCs are also found to be differentiated into neurons, apart

from that they are also expresses β-III-tubulin, AADC, DAT, tyrosine hydroxylase,

ChAT, LMX1B, and MAP2. The presence of enzymes associated with catecholamine

https://en.wikipedia.org/wiki/Nucleolus
https://en.wikipedia.org/wiki/Cytoplasm
https://en.wikipedia.org/wiki/Mitosis
https://en.wikipedia.org/wiki/Neuron
https://en.wikipedia.org/wiki/Catecholamine

20

Traditional Methods of Assessing Pluripotency:

The traditional method includes several techniques as first of them includes the established

method for testing cell lines for pluripotency involves injecting stem cells into an animal

specimen, usually mice, to observe whether development of Teratomas found or not. Actually

Teratomas are tumors that consist of tissues from usually all the three lineages. The mice taken

for experiment are usually immunosuppressed, using some genetic mutation process. The

21

formation of Teratomas in the mice confirms that the considered cell lines are pluripotent type.

This method is known as Teratoma technique (Solter et al., 1970; Skreb et al., 1971; Stevens and

Little, 1954; Evans and Kaufman, 1981; Stevens, 1958, 1970). Other wet lab based techniques

are also there which includes: Chimeras of blastocyst(Tarkowski, 1961; Mintz, 1962), In vitro

differentiation assays (Wobus et al., 1984), Transmission of germline (Esteban et al., 2009),

Tetraploid complementation assays (Nagy et al., 1993; Kang et al., 2009).

Bioinformatics and computer-based methods for pluripotency

determination:

There are many efforts taken by various researchers where they provide reports regarding the

development and revolution in the strategy used for the bulk production of human SCs so that

they could also be used as regenerative medicine and as well as for the characterization of

various pluripotency based assays by providing a number of techniques that promise to improve

the unbiased prediction of the uses of both hIPSCs and ESCs by using different bioinformatics

and gene expression profiling tools. Several online tools, which are doing great in this regard, are

discussed below:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B147
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B142
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B152
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B38
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B150
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B151
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B161
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B108
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B181
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B37
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B115
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5118841/#B67

22

23

TOOLS AND DATABASES USED:

Here, we have a list of various bioinformatics tools and databases, which are being used during

this work. This includes several pre available online tools for pluripotency calculation and it also

includes the tools, databases and programming languages used for the development of

pluripotency finding approach.

1.) PLURITEST:

 Home page of PluriTest Tool

PluriTest is an open access online tool for the determination of

pluripotency of cell line using microarray data obtained from illumina

analysis i.e. (.idat* file format only).

Before Login

After login

24

Fig.1 .idat* files are uploaded (max. intake is 12 files per analysis)

Fig.2 Result table after analysis

25

2.) CellNet:

Fig.3 Showing homepage of CellNet. Click on Run CellNet to continue.

Fig. 4 Showing file upload tab with maximum size upto 128MB.

26

3.) TERATOSCORE:

Fig.5 Showing Home page of TERATOSCORE having tab for file upload in .CEL format only.

STRING is a biological database of known and predicated protein interactions. The database is freely

accessible and updated regularly. The interactions which were derived from four main sources (i.e.

Genomic context, High-throughput experiments, (conserved) co-expression and previous knowledge)

include physical (direct) and functional (indirect) associations. Therefore, STRING extracts interaction

data from these above-mentioned sources and quantitatively distribute for a large number of

organisms, and exchanges information among these organisms wherever required.

27

Fig.6 Showing STRING Homepage with various attributes and Search tab options.

28

Fig.7 Showing Analysis report of selected/ searched genes or proteins including their interaction network.

At present, GEO stores more than a billion individual gene expression measurements that are derived

from over hundred organisms, submitted by more than 1500 laboratories all over the globe addressing a

wide range of biological phenomena. Several user-friendly web-based interfaces and apps have been

developed that enable effective exploration, query, and visualization of these data, at the level of

individual genes or entire studies. Link for GEO database: . http://www.ncbi.nlm.nih.gov/geo

http://www.ncbi.nlm.nih.gov/geo

29

Fig.8 Showing Home page of NCBI with search tab.

Fig. 9 Showing selection of GEO datasets to get microarray analysis query.

30

Fig. 10 For GEO2R Analysis click on the link of Analyze with GEO2R (present below the desired

dataset).

31

Fig.11 For GEO2R analysis define groups of the available cell lines at least 2 groups must be defined.

Fig.12 Cell lines were distributed among groups

Fig. 13 Save all the results using the below tab and copy the results to spreadsheet.

32

Fig.14 Showing Results after analysis.

Fig.15 for downloading Expression values for each gene present in cell lines dataset, download Series matrix

file by clicking on download data tab as shown in figure.

Fig.16 Showing link for downloading series matrix TEXT file.

33

the main advantage of using R is the ease with which well-designed publication-quality graphs can be

obtained , that includes mathematical symbols and different types of formulae where required and user

have full control.

Fig.17 Figure showing R Studio IDE environment for R Language consisting of 4 main divisions: 1.

Source Panel 2. Console Panel 3. History panel 4. Export or info panel.

34

Fig.18 Showing Homepage of NETBEANS IDE for the development of JAVA programs.

35

METHODOLOGY:

Fig.1 Defining various stages used in this method for finding pluripotency of any

cell. The detailed approach is as under.

36

APPROACH:

1) Comparative analysis of existing tools available for determination of

pluripotency.

Step 1: Searching of the tools responsible for the detection of pluripotency in Stem cells.

Step 2: Checkout the working and analysis plan of Each and every tool we have found.

Step 3: Came out with various results provided by the tools.

Step 4: Analyze each and every Result by comparing them at various key points.

2) Development of a method to find pluripotency of any cell using TEXT file

format.

Step 1: Gone through several research papers to identify the genes responsible for the

pluripotency of the cell (Total 175 Marker genes were found).

Step 2: To validate our findings STRING tool was used to create interaction network between

all 175 genes, from here we got probability scores which were satisfactory and ensure us their

presence.

Step 3: Filtration was done to get most prominent sets of genes or the key regulators, which

later on helpful in determining level of pluripotency.

37

Step 4: After validation our next step is to set up Threshold value for the cells to pass the

pluripotency limit. For this we have taken microarray data of human‘s whole genome IPSC’s

(GSE72078) from GEO datasets of NCBI.

Step 5: Next step is preprocessing of the data by arranging them on the basis of matched

marker genes with their respective ref IDs and expression values according to the given cell

lines(to get matched marker genes JAVA program was developed).

Step 6: After comparison sort the data and normalize it by using any of global Median

normalization or Simple Normalization to convert our raw data to appropriate linearly arranged

data.

Step 7: R script was used to set threshold by using Quantile function.

Step 8: Now to test our set threshold, a predetermined IPSC test sample (GSE93228) was

downloaded and after preprocessing steps, its pluripotency score was calculated to check

whether it is passing the threshold or not (Sample pass).

Step 9: Different graphs were plotted viz. boxplots (to compare normalized and non-

normalized data), Clustering graphs, Heatmaps etc. using R script.

Step 10: Now, for calculating the level of pluripotency we set a range by collecting expression

data of various ESCs and IPSCs and further dividing them into different parameters to get

promising results.

38

Step 11: Range was set for key regulators for ESC as well as for IPSCs independently.

Step 12: Three levels were generated and the ranges were distributed into each level in

particular order.

Step 13: Again a JAVA program was developed to determine the level of pluripotency by

considering all ranges at different levels.

Step 14: Control and Test sample were analyzed to determine their pluripotency level.

Step 15: To validate our method several other Datasets were checked and the results were

compared with the results of PluriTest (Both results are validating each other).

39

RESULTS AND DISCUSSION:

1) Comparative analysis of existing tools available for determination of

pluripotency:

1) Results from different available online tools are shown which determines us the feature based
aspects of these tools. Also in these results we can see the variations of different tools in
accepting and importing data, their individual way of calculations and presenting results for
pluripotency. These tools helped us in adapting an idea relies upon the access of pluripotency of
any cell line present in Gene expression Omnibus (GEO) with Text file format. So, the results of
online tools are as under:

1. TERATOSCORE :

Fig.2 Graph Showing TERATOSCORE outcome of 27.15 for fibroblast cells and comparison with other

lineages.

40

2. CELLNET :

Fig.3 Showing CellNet Heatmap results for fibroblast cells, where genes are highly expressed as

compared to other cell lines.

41

Fig.4 Showing is a data table in which each row represents one GRN associated with a particular cell

or tissue type, and each column represents one of your samples. The values represent the extent to
which the GRN is established to a level equivalent to that seen in the associated cell or tissue type.
The file is named grnScores.csv in your results. We represent this as a bar plot, were replicates are
combined into one bar (colored light blue), and the training data of the starting and target cell types
are also shown as points of reference (dark blue).

42

Fig.5 Showing the Network influence score which is computed for each transcriptional regulator in the

target cell type GRN according to the extent that it is either too highly or too lowly expressed in your

terminal sample. The NIS also integrates other information into scoring transcriptional regulators,

including the extent to which predicted target genes are dysregulated, the number of transcriptional

targets, and the expression level of the regulator in the target cell type. Positive values indicate that

the regulator is too highly expressed, and negative values indicate that the regulator is too lowly

expressed.

43

3. PLURITEST :

Fig.6 Table Showing RAW data and Calculated Pluripotency and Novelty score for 3 different *idat

format Cell lines of Fibroblast microarray data using Variance Stabilizing Transformation and Loess

Normalization by Using PLURITEST Tool.

Fig.7 PLURITEST Graph showing pluripotency level of 3 cell lines, which depicts that all three cells are

coming under pluripotency threshold set value. Hence, are said to be pluripotent.

44

Fig.8 PLURITEST result showing Novelty score, which represents the number of novel genes

present in that particular cell line which making it less pluripotent as compared to the training

data of PLURITEST. The green color represents the pluripotent state, whereas orange color

represents the non-pluripotent or novel state of cell line.

45

2. Comparative Analysis of tools to identify their functional differences:

In TeratoScore In order to quantitatively estimate the pluripotency of the tumor initiating

cells, we calculated the mean gene expression of each lineage and extraembryonic tissue,

multiplied them, and divided by 1,000, producing a single score. This analysis, termed

TeratoScore, essentially estimates the differentiation potency of the tumor initiating

cells—the very goal of Teratoma formation.

3.) On the basis of Consideration on type of Microarray expression data:

The microarray data, which is available on NCBIs GEO Dataset, is present in different

forms or we can say that the platforms that were used for cell lines are different for

different cells depending upon the requirement of researcher. Different tools accept the

files in their default platforms e.g., PluriTest accepts only ILLUMINA microarray data

whereas CellNet and TeratoScore accept Affymetrix data.

46

4.) Statistical parameters :

These tools use different Statistical parameters viz. In CellNet several statistical

parameters used for calculation of Gene regulatory network, it uses Z-score analysis and

MEAN. Whereas PluriTest involves the use of Quantile Normalization, Loess

Normalization (both for normalizing the variance stabilizing transformation values for the

reduction in the spurious variations came during fluorescent dyes color combination

analysis.

5.) Results Visualization:

The results we got from these analyses are in different forms for individual tool e.g. In

CellNet the result window shows Heatmap and histograms based on the gene regulatory

network analysis. In PluriTest the results consists of pluripotency graph, novelty graph,

boxplots, hierarchical clustering and in TeratoScore the results include only the bargraph

depicting the TeratoScore outcome. The Bars shows cells score (Teratomas forming

score) with respect to that outcome.

6.) All the tools are performing using R script at Backend.

7.) Parameters Consideration:

PluriTest and CellNet use several parameters on which their working relies i.e. by

considering these parameters they actually define the state of cell. These parameters

include Telomerase activity, Differentiation, Methylation, Histone Demethylation etc. (as

discussed earlier).Whereas TeratoScore paradigm based upon finding of level of Teratomas

formation after the IPSCs reprogramming.

8. Rate of Analysis:

The most important thing in any online analysis is the time taken by that particular

software. Here, we notice that the Rate of analysis is much faster and frequent in

PluriTest as compared to others. In case of CellNet and TeratoScore, the results were sent

through mail to the user’s given account, but this process at least took 15mins to 2hrs

depending upon the net connectivity.

9. Based on no. and size of the Microarray file to be uploaded:

47

File size of cell line and number of files included in the particular dataset chosen from

NCBI is also a great concern in these tools. As for PluriTest, we can choose maximum of

12 files only of the cell lines present in the dataset. In CellNet, it is not mentioned for

number of files but the total size of the cell lines to adopt is not more than 128MB.

TeratoScore has no such obligations but the chosen file must be of Affymetrix Human

Genome U133 plus 2.0 array platform.

10. Based on Portability, Accessibility and Reliability:

If we consider all the three tools we found that PluriTest found to be more Accessible and

reliable with more accuracy in results, also it provides us space where our previous work

could be saved for later view but in other two cases we don’t have this facility online but

we can review our results anytime by accessing through our mail IDs. If we talk about

Security then CellNet and TeratoScore found to be more secured because our results are

not saved online in tools provided database but we got them in our mail Ids which makes

it more protective.

48

3) Development of a method to find pluripotency of any cell using TEXT file

format:

3.1) First, we got the list of marker genes available in any stem cell whose presence decides the

pluripotency level of any undifferentiated cell. These genes got isolated by using different

techniques viz. MACS (Magnetic Cell Sorting Technique) and FCM (flow cytometry)

technique which are one of the most effective cell isolating methods (Source : Data collected

from Embryonic Stem Cell Markers; Wenxiu Zhao, Xiang Ji, Fangfang Zhang, Liang Li

and Lan Ma 2012)

49

50

51

52

53

54

55

Table 1: Showing 175 Marker genes which are present in Stem cells.

SUV39H1 SMAD1 LECTINS KLF4 CD57 CD86

SUV39H2 SMAD5 CD133 NANOG CD58 CD87

EHMT2 SMAD8 CD96 REX1 CD59 CD88

EHMT1 SMAD4 CD34 UTF1 CD60 CD89

SETDB1 SMAD2 CD38 ZFX CD61 CD90

RING1B SMAD3 CD45 TBN CD62 CD326

EZH2 BETA CATENIN CD46 FOXD3 CD63 CD9

EED SSEA1 CD47 HMGA2 CD64 CD55

SUZ12 CD15 CD48 NAC1 CD65 CD59

DICER1 SSEA3 CD49 GCNF CD66 CD24

DNMT1 SSEA4 CD50 NR6A1 CD67 CD44

DNMT3a CD324 CD51 STAT3 CD68 SATA3

DNMT3b CD90 DRAP27 LEF1 CD69 NCA1

DNMT3L CD117 P24 TCF3 CD70 ALDH1

CXXC1 CD326 CKIT SALL4 CD71 MUSASHI-1

BRG1 CD9 SCFR FBXO15 CD72 LgR5

SMARCA4 CD29 THY-1 ECAT11 CD73 PSCA

SMARCA5 CD24 TRA-1-60 FLJ10884 CD74 DCAMKL-1

SMARCB1 CD59 TRA-1-81 L1TD1 CD75 TIM3

SMARCC1 CD133 FRIZZLED5 ECAT1 CD76 BRCA1

MBD3 CD32 SCF ECAT9 CD77 SDF1

HIR A CD49F C-KIT GDF3 CD78 CXCR4

DPPA5 CD96 TDGF-1 TGF Beta CD79 PSCA

56

ESG1 HAS CRIPTO TCF1 CD80 CD96

DPPA4 PROTECTIN POU5F1 CD52 CD81 CD44

DPPA2 MRP1 OCT3 CD53 CD82

DPPA3 TM4SF OCT4 CD54 CD83

ECSA TRA-2-49 SOX2 CD55 CD84

STELLA TRA-2-54 CD45 CD56 CD85

3.2) To Validate our findings of marker genes we create an interaction network of all these above

genes to check whether they are interaction partners or not. This result assure us that the

given marker genes are interacting partners of key regulatory genes i.e. OCT-4, NANOG,

SOX2, KLF4 and are showing great interaction score with each other, which confirms us the

presence of all these genes in the pluripotent cell.

Fig.1 Showing Interaction network between various Pluripotency Marker Genes using STRING.

57

Here in the previous network each sphere (node) represents particular gene. The STRING database

quantify the uncertainty of interaction process by assigning scores to proposed protein interactions based on

the nature and quality of the supporting evidence. STRING contains functional protein associations derived

from in-house predictions and homology transfers, as well as taken from a number of externally maintained

databases. Each of these interactions is assigned a score between zero and one, which is (meant to be) the

probability that the interaction really exists given the available evidence. By using this entity we take out the

nodes with highest scores and again made an interaction network for these selected nodes. By this we got the

nodes which are commonly interacting with most of the genes and are having highest scores i.e. POU5F1,

NANOG, KLF4, SOX2, SALL4, SMAD2, SMAD4 and DPPA4.

http://string-db.org/

58

Now, we plot another network using the resultant common genes which we got from the parent network and

it includes POU5F1, SOX2, NANOG, KLF4, SMAD2, SMAD4, SALL4 and DPPA4.

59

Fig.2 STRING network showing important genes responsible for pluripotency of any cell.

From this table too, we take out most frequent and highest scorer Nodes. We found POU5F1, SOX2,

NANOG, KLF4. Now, we again make our interaction network using STRING which is consist of these 4 genes.

 Fig.3 Showing final network

60

From this, we finally got our genes which are having the most number of interaction and with highest no. of

scores. By this we inference that the presence of these three genes and their expression values in microarray

data could be the defining factor for the level of pluripotency in any cell.

3.3) Now, our next step is to initially find out the state of any cell i.e. whether it is pluripotent or

not. For this our first step is to determine the Threshold for the genes of the cells. The cell has

to pass this threshold before evaluating further. For this we had taken Microarray data,

because this is the only way to check the expression value of the genes. The data we take is in

TEXT file format, because of its frequent availability.

Method for determining Pluripotency by using TEXT file format:

Firstly, the Microarray data containing Reference ID (Different for different types of analysis viz.
“ILMN_xxxx” for Illumina analyzed data, “xxxx_s_at” for Affymetrix Data, “xxxxx” for Agilent Data),
LogFC (Fold Change value showing Upregulation(+) and downregulation(-) of genes), Gene symbol etc.
was downloaded for whole genome of human IPSC and ESC cell lines (GSE72078) from GEO datasets of
National Centre for Biotechnology Information (NCBI) by analyzing with GEO2R (A GEO Tool available for
visualization of Microarray data along with other relevant calculated statistical parameters). Now
downloaded data was pasted into excel sheet with their respective gene expression values taken from
series matrix file data. The data was then compared and matched with the expression values of available
marker genes.
(Note: The Data to be arranged separately for each cell type i.e. for ESC, IPSC, Somatic etc.)

Fig.4 Showing Non-Normalized Microarray data (GSE72078) in excel sheet collected from GEO datasets.

61

Fig.5 Showing Normalized microarray data (using Simple normalization function).

 Mean = ∑ (xi) / ni

 (Expression value of Gene in particular cell line)
 (Mean of exp. Values of same gene for all cell lines present in a single microarray text file)

After this we take our 175 Marker genes. Now compare and match them with the existing list of NCBI

downloaded expression dataset’s gene list by using JAVA program (specially designed for finding of no. of

marker genes present in the microarray data.

Table 2 : Gene List after Running Java Program:

BRCA1 CD68 CD96 EED NANOG SMARCA4

CD24 CD69 CXCR4 EHMT1 NR6A1 SMARCA5

CD34 CD70 CXXC1 EHMT2 POU5F1 SMARCB1

CD38 CD72 DICER1 EZH2 PSCA SMARCC1

CD44 CD74 DNMT1 FBXO15 SALL4 SUZ12

CD47 CD80 DNMT3L FOXD3 SETDB1 TCF3

CD48 CD81 DPPA2 GDF3 SMAD1 UTF1

CD52 CD82 DPPA3 HMGA2 SMAD2 ZFX

CD53 CD83 DPPA4 KLF4 SMAD3

CD55 CD84 DPPA5 L1TD1 SMAD4

CD58 CD86 SOX2 LEF1 SMAD5

CD59 CD9 STAT3 SUV39H2 SALL4

Total 68 Marker Genes are matched with the Genes of Microarray Data of

GSE72078 cell lines.

Normalization =

62

Fig.6 Table showing marker genes with reference IDs and their respective expression values in each cell line.

Also, Calculated Mean and log FC values are shown.

3.4) After normalization we took the data for prediction of Threshold using Quantile function

through R Studio, this approach gives 5 different quantile calculated values including min.

and max.; after taking the mean for these values we got our Threshold i.e. 0.62, which

implies that if any cell passes this threshold then it could said to be pluripotent.

Quantile function => Q (p) = (1 − f) Q (pi) + f Q (pi+1)

Fig.7 Calculated Threshold value for detection of pluripotency using Quantile Normalization method through R

script (Threshold = 0.6193309).

library(limma)

library (readxl)

n <- read_excel("C:/Users/my/Desktop/rt2.xlsx")

View(n)

k4$ID <- NULL

k4$`Gene Title` <- NULL

View(k4)

n2 <- n$`logFC`

quantile(n2,probs = c(0,0.25,0.5,0.75,1))

R SCRIPT

63

3.5) Now, the next step is to check the pluripotency status for a sample dataset (Test Sample). For this we

had taken a colon IPSC Cell line.

For TEST Samples:

The microarray data was downloaded for Colon IPSC’s (GSE93228- Cell lines iPSC CRL1831 (induced

pluripotent stem cells) derived from normal colon CRL1831 cells in 3D cell culture conditions and

subjected to ionizing radiation doses) and then after arranging and preprocessing the data we check
whether the cell lines are Stem cell lines or not. If they all are stem cell lines then we simply check their
pluripotency score by taking the quantile normalization of their Log FC value but if the data consist of
both differentiated and undifferentiated cell lines then we have to take mean of each cell line’s
expression values and then match with the Threshold limit to check whether they are passing the set
Threshold value or not. If the resultant score is less than the threshold then that cell could be either
Unipotent, totipotent, multipotent or differentiated somatic cell line.

Fig.8 Table Showing Test Sample consisting of GENE symbol with their expression values in respective cell lines

of Colon IPSC (total 6 IPSC cell lines are taken after neglecting somatic cell lines data).

Table 3: Gene List after Running Java Program:

BRCA1 CD59 CD86 EED NANOG SMARCA4

CD24 CD63 CD9 EHMT1 NR6A1 SMARCA5

CD34 CD68 CD96 EHMT2 POU5F1 SMARCB1

CD38 CD69 CXCR4 EZH2 PSCA SMARCC1

CD44 CD70 CXXC1 FBXO15 PSCA SOX2

CD46 CD72 DICER1 FOXD3 SALL4 STAT3

CD47 CD74 DNMT1 GDF3 SETDB1 SUV39H2

CD48 CD80 DNMT3L HMGA2 SMAD1 SUZ12

CD52 CD81 DPPA2 KLF4 SMAD2 TCF3

CD53 CD82 DPPA3 L1TD1 SMAD3 UTF1

CD55 CD83 DPPA4 LEF1 SMAD4 ZFX

CD58 CD84 DPPA5 MBD3 SMAD5

Total 71 Marker Genes Are Matched with the Genes of Microarray Data of

GSE93228 cell lines

64

 Test Sample Data:

Fig.9 Table after Matching our Marker genes within the data of test sample we got 71 matched entries

by using JAVA developed program.

Fig.10 Boxplot showing non-normalized gene expression data of GSE93228, depicting discreteness of

the values.

 Fig.11 Boxplot showing Normalized gene expression values in a linear manner.

65

library(limma)

library(readxl)

n <- read_excel("C:/Users/my/Desktop/rt2.xlsx")

View(n)

names(n)

k4$ID <- NULL

k4$`Gene Title` <- NULL

View(k4)

n2 <- n$`logFC`

boxplot(n2)

quantile(n2,probs = c(0,0.25,0.5,0.75,1))

boxplot(n2, main = "Boxplot", ylab = "Nor.MEAN", las = 1)

boxplot(n2 ~ n3, main = 'Colon ipsc Boxplot by Genes')

Fig.12 The Pluripotency score is calculated again using R Script as earlier and it is passing the Threshold

value. Hence we can say that the Cell line for Microarray data of GSE 93228 sample is pluripotent.

R Script for

Boxplot

66

After this, we had randomly taken mast cell data just to check the accuracy of

our pluripotency status detecting method. We repeat all the above steps as we

done for our pass sample and the results are as under :

Fig.13 After the calculation of pluripotency score using Quantile function we found that the sample

failed to pass the Threshold and hence we termed it as NON-Pluripotent cell sample.

 Fig.14 Boxplot showing gene expression values for Mast cells in a discrete manner after normalization.

67

Fig.15 Graph showing clustered cell line from test sample on the basis of Gene expression data by using

K-Means clustering through R Script for the development of Hierarchial clustering in Heatmap.

Fig.16 Figure showing K-Means clustered data of all 6 cell lines of test data sets created using R Script.

Fig.17 Heatmap Generated for all test sample’s cell lines gene expression data using R program.

68

R Script for creating Heatmap using R Studio.

library(ComplexHeatmap)

library(grid)

library(stats)

filename1 <- "c:/Users/my/Desktop/new.txt"

k <- read.table(filename1, sep = "\t",quote = "",stringsAsFactors = FALSE, header = TRUE)

View(k)

#k$ID_REF__1 <- NULL

k3.features <- k

k3.features$MATCHED.GENES<-NULL

View(k3.features)

k$MEAN <- NULL

k$S.D. <- NULL

k$`MATCHED GENES` <- NULL

k3.features <- k

results <- kmeans(k3.features,3)

results

results$size

results$cluster

results$totss

results$centers

results$withinss

results$tot.withinss

results$betweenss

results$iter

69

results$ifault

table(k$MATCHED.GENES, results$cluster)

plot(k[c("GSM2448894","GSM2448895")],col = results$cluster)

plot(k[c("GSM2448895","GSM2448896","GSM2448897","GSM2448898","GSM2448899","GSM2448894"

)],col = 3:2)

my_matrix1 <- as.matrix(k3.features[1:6],c[]

class(results$cluster)

class(my_matrix1)

head(my_matrix1)

gene_info1 <- data.frame(gene = k3.features$MATCHED.GENES[200:400])

gene_info1

Heatmap(my_matrix1)

6) After this, we analyze the level of Pluripotency using JAVA Program. For this, we initially set up

a range parameter for all key regulator genes in three different ways viz.

 1) Highly Pluripotent cells.

 2) Partially Pluripotent cells.

 3) Less Pluripotent cells.

 IPSC Range ESC Range

 Is Data Manually Normalized or Not

 YES NO YES NO

A)

5.0 to 9.0

-1.5 to 5.0

2.0 to 3.0

-0.25 to 2.0

B)

2.0 to 4.9

-2.0 to -1.51

1.5 to 1.9

-3.0 to -0.249

C)

-3.0 to 1.9

-3.0 to -2.1

1.2 to 1.49

-15.0 to -2.9

This Range is based upon the manually compared and calculated expression values of key

regulators from Different samples (Microarray Samples) viz. (GSE72078, GSE76282 ,

GSE42445 etc.) present in GEO datasets and depend upon the condition that either the data is

pre-normalized or manually normalized. For both the conditions the range is individually

provided in each case of ESC as well as IPSC.

70

Result for Pluripotency level identification through JAVA developed program

 Control sample (GSE72078) Pluripotency level determination:

Range: >=-3.0 to <=1.9
Range: GSM1854259
NANOG= 0.88792694
POU5F1= 0.94814897
SOX2= 1.6156561
Less Pluripotent Cell= GSM1854259

Range: >=-3.0 to <=1.9
Range: GSM1854260
NANOG= 0.87607163
POU5F1= 0.9470426
SOX2= 1.1104767
Less Pluripotent Cell= GSM1854260

Range: >=-3.0 to <=1.9
Range: GSM1854261
NANOG= 0.45721972
POU5F1= 0.79864424
SOX2= 0.9874374
Less Pluripotent Cell= GSM1854261

Range: >=-3.0 to <=1.9
Range: GSM1854262
NANOG= 0.70601815
POU5F1= 1.1790252
SOX2= 0.38984066
Less Pluripotent Cell= GSM1854262

Range: >=-3.0 to <=1.9
Range: GSM1854263
NANOG= 0.472952348
POU5F1= 1.056011706
SOX2= 1.505724634
Less Pluripotent Cell= GSM1854263

Range: >=-3.0 to <=1.9
Range: GSM1854264
NANOG= 1.0276734
POU5F1= 0.79453945
SOX2= 1.4517218
Less Pluripotent Cell= GSM1854264

Range: >=-3.0 to <=1.9
Range: GSM1854265
NANOG= 1.022949722
POU5F1= 1.046684461
SOX2= 1.192202724
Less Pluripotent Cell= GSM1854265

Range: >=-3.0 to <=1.9
Range: GSM1854266
NANOG= 1.0564212
POU5F1= 0.88678443
SOX2= 0.42901477
Less Pluripotent Cell= GSM1854266

Range: >=-3.0 to <=1.9
Range: GSM1854267
NANOG= 0.668517
POU5F1= 0.81713855
SOX2= 1.1758825
Less Pluripotent Cell= GSM1854267

Range: >=-3.0 to <=1.9
Range: GSM1854268
NANOG= 0.73580366
POU5F1= 0.9113936
SOX2= 0.42615175
Less Pluripotent Cell= GSM1854268

Range: >=-3.0 to <=1.9
Range: GSM1854269
NANOG= 1.5778602
POU5F1= 1.2110461
SOX2= 0.12783645
Less Pluripotent Cell= GSM1854269

Range: >=-3.0 to <=1.9
Range: GSM1854270
NANOG= 1.45287005
POU5F1= 1.2110461
SOX2= 1.522041676
Less Pluripotent Cell= GSM1854270

71

 Test Sample (GSE93228) Pluripotency level determination:

Range: >=-1.5 to <=5.0

Range: GSM2448894

NANOG= 0.053198583

POU5F1= 0.4979063

SOX2= -1.2365668

Highly Pluripotent Cell= GSM2448894

Range: >=-1.5 to <=5.0

Range: GSM2448895

NANOG= -0.661888992

POU5F1= 0.231759788

SOX2= -1.089963819

Highly Pluripotent Cell= GSM2448895

Range: >=-1.5 to <=5.0

Range: GSM2448896

NANOG= -0.089637

POU5F1= -0.07959507

SOX2= -0.59168214

Highly Pluripotent Cell= GSM2448896

Range: >=-1.5 to <=5.0

Range: GSM2448897

NANOG= -0.03093701

POU5F1= 0.239970536

SOX2= -1.397995012

Highly Pluripotent Cell= GSM2448897

Range: >=-1.5 to <=5.0

Range: GSM2448898

NANOG= 0.001854803

POU5F1= 0.20897053

SOX2= -0.087790065

Highly Pluripotent Cell= GSM2448898

Range: >=-1.5 to <=5.0

Range: GSM2448899

NANOG= -1.496865928

POU5F1= -0.03865551

 SOX2= -1.2365668

Highly Pluripotent Cell= GSM2448899

For Pluripotency level determination we first took the control sample. Our program first check whether
the cell lines are IPSC or ESC, then after confirming that the cell lines are for IPSC, It asked for whether
the microarray data was manually normalized or not and then according to our entries for IPSC cell line
with manually normalized data, the program took consider the range for this condition and gave us the
results that in which category or level the given sample is lying. As, we can see that our control sample
results are least pluripotent in normalized IPSC range.

Same for the case of test sample our program initially took the same step as done for control and then
decides the level of pluripotency. Here, in our test sample the condition came out for Non manually
normalized IPSC data and hence, we got the results for that condition range.

72

We, also took test sample datasets from different other arrays too like GSE92706 and GSE73330 which
were found to be passed and failed respectively. For confirming our results we cross check our results
with PLURITEST by taking the above IDs data in (.idat*) raw intensity file format and after analyzing with
PLURITEST, the result we got are surprisingly as same as ours. By, this we conclude that the method
which we develop to test pluripotency using (.txt) text file format is worth to work with and giving
favorable as well as satisfactory results. Here we have shown only results for GSE92706. The comparable
results of tested sample with different approaches (i.e. using text format and .idat format) are shown in
figures.

RESULT VALIDATION:

1) Text file based method:

GSE92706 (Differentiation of Human IPSC to mammary like organoids)

Range: >=0.3 to <=3.0
Range: GSM2435593
NANOG= 1.2516
POU5F1= 1.0151
SOX2= 1.1078

Highly Pluripotent Cell= GSM2435593

Range: >=0.3 to <=3.0
Range: GSM2435594
NANOG= 1.3013
POU5F1= 0.95
SOX2= 1.1776

Highly Pluripotent Cell= GSM2435594

Range: >=0.3 to <=3.0
Range: GSM2435595
NANOG= 0.8062
POU5F1= 0.9371
SOX2= 0.9506

Highly Pluripotent Cell= GSM2435595

Range: >=0.3 to <=3.0
Range: GSM2435596
NANOG= 0.7761
POU5F1= 1.0205
SOX2= 1.0584

Highly Pluripotent Cell= GSM2435596

Range: >=0.3 to <=3.0
Range: GSM2435597
NANOG= 0.9877
POU5F1= 0.997
SOX2= 0.8913

Highly Pluripotent Cell= GSM2435597

Range: >=0.3 to <=3.0
Range: GSM2435598
NANOG= 0.8768
POU5F1= 1.08
SOX2= 0.814

Highly Pluripotent Cell= GSM2435598

All, the cell lines are showing high pluripotency under the range set for manually Normalized data
of IPSC category.

73

2) PLURITEST results for GSE92706

74

These results are indicating us that both the approaches are providing favorable results, both

the results are showing that the given cell line is Highly Pluripotent. Hence, we can now say

that our text based method is also providing genuine results.

75

DISCUSSION:

From our study we found that the potency determination is a key factor of gene expression

analysis and by considering only the gene effect we could determine various activities of cells

including pluripotency. This in vitro approach is competing with other pre available online tools.

As those tools is still dealing with some bugs as by considering only limited number of files and

with limited file format reliability. Also, their dependency on online servers are making them not

100% fit for potency determination, but in our case the approach is working on text file based

logic of creating and arranging raw text file into matched and arranged file format with respect to

the gene expression values and Log FC.

The level of pluripotency which we are calculating through JAVA determines us three levels,

where each level gives us an idea about the potency of that particular cell to be differentiated into

the basic three lineages. Highest level determines the potency of differentiating into all three

lineages, whereas partial and low level determines us the differentiation into either two or one of

the three lineages respectively.

This approach gave us the way for determining the potency using computer programming

language JAVA and statistical method based R Script, which were used in arranging data

according to the matched marker genes and finally in the determination of Level of pluripotency

using various ranges. Several graphs and plots viz. boxplots, clustering graphs and heatmap were

also developed using R script. This approach will surely provide an open access for identifying

pluripotency and understanding the working and expression nature of various genes involved in

reprogramming strategies.

76

CONCLUSION:

Microarray data proves beneficial in many regards. To get detailed info about any process

Related to protein or gene expression or their interaction we do need to take help from it. As in

above study we found that to get pluripotency test of any cell sample first we have to access gene

expression data of that particular cell and then after grabbing and arranging that data in a proper

format, we will be able to fetch pluripotency data after checking whether the log FC value for

that test sample either passing the threshold or not. Using this approach we are now in a state to

tackle with various problems associated with pre-existing online tools. We can make our own

tool based on this approach which will be free from various bugs that are present in existing

tools; also we can identify which gene is devoting more in making any cell pluripotent. Through

this approach we are able to get Pluripotency state of any type of cell regardless of any particular

platform or any file format.

FUTURE PERSPECTIVES:

1. Researches which are based on pluripotency state of cells have to gather info about the

pluripotent state of that cell. This approach could be helpful for them.

2. By collecting data from various other databases, a tool can be created which could be more

helpful in making process more reliable and frequent.

3. We can estimate easily which gene is playing a key role in determining the potency of that

particular cell and is responsible for maintaining pluripotency in a cell.

4. By this approach researchers will be able to produce more number of IPSC’s with enhanced

efficiencies.

5. For deep and thorough study we have to consider various other ranges from different other

genes.

77

REFERENCES

Carolina Perez-Iratxeta, Miguel A. Andrade-Navarro and Jonathan D.Wren. Evolving research

trends in bioinformatics. Briefings in Bioinformatics. Oct 31, 2006. Vol 8. NO 2. 88.

Franz-Josef Müller1,11, Bernhard M Schuldt2,11,Roy Williams3, Dylan Mason4, Gulsah

Altun5,Eirini P Papapetrou6, Sandra Danner7,Johanna E Goldmann5,8, Arne Herbst1, Nils O

Schmidt9, Josef B Aldenhoff1, Louise C Laurent5,10 & Jeanne F Loring5 A bioinformatic assay

for pluripotency in human cells.

Gokhale PJ, Andrews PW: The development of pluripotent stem cells. Curr Opin Genet Dev

2012, 22:403–408.

Hitoshi Niwa, How is pluripotency determined and maintained? Development 134, 635-646

(2007) doi:10.1242/dev.02787.

Jing Hua Zhao and Qihua Tan “Integrated Analysis of Genetic Data with R” 2006 Human

Genomics, vol 2, pp.258-265.

Jing Hua Zhao1*and Qihua Tan2 Integrated analysis of genetic data with R.

Loh, Y. H., Wu, Q., Chew, J. L., Vega, V. B., Zhang, W., Chen, X., Bourque, G., George, J.,

Leong, B., Liu, J. et al. (2006). The Oct4 and Nanog transcription network regulates pluripotency

in mouse embryonic stem cells. Nat. Genet. 38, 431-440.

Michael W Nestor and Scott A Noggle* Standardization of human stem cell pluripotency using

bioinformatics Nestor and Noggle Stem Cell Research & Therapy 2013, 4:37.

Patrick Cahan1,#, Hu Li2,#, Samantha A. Morris1,#, Edroaldo Lummertz da Rocha3,4, George

Q. Daley1,*, and James J. Collins3,* CellNet: Network Biology Applied to Stem Cell

Engineering Cell. 2014 August 14; 158(4): 903–915. doi:10.1016/j.cell.2014.07.020.

Polani B.Ramesh Babu and P.Krishnamoorthy Applications of Bioinformatics Tools in Stem

Cell Research: An Update Journal of Pharmacy Research 2012,5(9), 4863-4866.

Sandrine Dudoit ,Yee Hwa Yang, Bioconductor R packages for exploratory analysis and

normalization of cDNA microarray data.

Som A, Harder C, Greber B, Siatkowski M, Paudel Y, et al. (2010) The PluriNetWork: An

Electronic Representation of the Network Underlying Pluripotency in Mouse, and Its

Applications. PLoS ONE 5(12): e15165. doi:10.1371/journal.pone.0015165.

Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of

pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 131:861–872.

78

Ulf Tiemann,1 Adele Gabriele Marthaler,1 Kenjiro Adachi,1 GuangmingWu,1 Gerrit Ulf

Lennart Fischedick,1 Marcos Jesu´ s Arau´zo-Bravo,1 Hans Robert Scho¨ler,1,* and Natalia

Tapia1,* Counteracting Activities of OCT4 and KLF4 during Reprogramming to Pluripotency.

http://dx.doi.org/10.1016/j.stemcr.2014.01.005

Vimal K.Singh1*, Manisha Kalsan2, Neeraj Kumar2, Abhishek Saini2 and Ramesh Chandra3

Induced pluripotent stem cells :applications in regenerative medicine, disease modeling, and

drug discovery doi: 10.3389/fcell.2015.00002

Wenxiu Zhao 1, Xiang Ji 1,2, Fangfang Zhang 1,2, Liang Li 1,2 and Lan Ma 1,* Embryonic

Stem Cell Markers Molecules 2012, 17, 6196-6236; doi:10.3390/molecules17066196

Wolfgang Huber, Anja von Heydebreck, Martin Vingron Analysis of microarray gene expression

data April 2, 2003.

Yajun Liu, De Cheng, Zhenzhen Li, Xing Gao and Huayan Wang The gene expression profiles

of induced pluripotent stem cells (iPSCs) generated by a non-integrating method are more

similar to embryonic stem cells than those of iPSCs generated by an integrating method Genetics

and Molecular Biology, 35, 3, 693-700 (2012).

Yishai Avior,1 Juan Carlos Biancotti,2,3 and Nissim Benvenisty1,* TeratoScore: Assessing the

Differentiation Potential of Human Pluripotent Stem Cells by Quantitative Expression Analysis

of Teratomas.

http://dx.doi.org/10.1016/j.stemcr.2014.01.005

79

APPENDIX

Program:

Java Program for Matching Marker Genes with the Genes of

MicroArray Data:

package javaapplication77;

import java.io.FileInputStream;

import java.io.FileNotFoundException;

import java.io.IOException;

import javax.swing.JFileChooser;

import org.apache.poi.xwpf.extractor.XWPFWordExtractor;

import org.apache.poi.xwpf.usermodel.XWPFDocument;

public class GenesComparison {

 String Store;

 String Store1;

 public void GeneList1() throws IOException { int i;

 String str1; String str2; int count5=0; int count6=0;

 try { JFileChooser Chooser = new JFileChooser();

 int returnvalue = Chooser.showOpenDialog(null);

 if(returnvalue==JFileChooser.APPROVE_OPTION){

 XWPFDocument document = new XWPFDocument (new FileInputStream(Chooser.getSelectedFile()));

 XWPFWordExtractor extract = new XWPFWordExtractor(document);

 Store = extract.getText(); for(i =0; i<=170;i++) { str1=Store.split("\n")[i];

 str2= str1; count5++; count6=count5;

 } } } catch(FileNotFoundException jk) {

 } catch(Exception ml) {

 } } public void GeneList2() throws IOException{

 int j; int count1=0; String str3; String str4;

80

 try { JFileChooser Chooser = new JFileChooser();

 int returnvalue = Chooser.showOpenDialog(null);

 if(returnvalue==JFileChooser.APPROVE_OPTION){

 XWPFDocument document = new XWPFDocument (new FileInputStream(Chooser.getSelectedFile()));

 XWPFWordExtractor extract = new XWPFWordExtractor(document);

 Store1=extract.getText (); } } catch (FileNotFoundException jk) {

 } catch(Exception fg) {

 } }

 String Str1; String Str2; String Str3; String Str4; String Str5;

 int i; int j; int Count=0; int Count1=0;

 int Count2=0; int y=0;

 String CommonGene="A";

 int count=0; int count1=0; int k;

 public void CompareGenes() { try{ new Thread() { public void run(){

 for(;;) { for(i=0;i<=170;i++) { Str1=Store.split("\n")[i]; Str2=Str1;

 for(j=0;j<=34107;j++) { Str3=Store1.split("\n")[j]; Str4=Str3;

 if(Str2.equals(Str4)) { Count++; System.out.println(Str2+" MATCHED "+Str4);

 for(k=j+1;k<=34107;k++) { Str5=Store1.split("\n")[k];

 if(Str4.equals(Str5)) { count++; } else {

 } } } else {

 } Count1++; } Count2++;

 System.out.println(Count+" = Number Of Total matched Gene");

 System.out.println(count+" = Number Of Duplicate matched Gene");

 } System.out.println(Count+" = Number Of Total Matched Genes");

 System.out.println(count+" = Number Of Duplicate Matched Genes"); } } }. start();

 } catch (Exception hj) {

 } } public static void main(String []args) throws IOException { GenesComparison m = new GenesComparison();

 m.GeneList1(); m.GeneList2(); m.CompareGenes(); } }

81

Program:

Java Program for Checking Pluripotency Level in a particular cell line.

Java Program
/*
 * To change this license header, choose License Headers in Project Properties.
 * To change this template file, choose Tools | Templates
 * and open the template in the editor.
 */
package javaapplication77;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import javax.swing.JFileChooser;
import javax.swing.JOptionPane;
import org.apache.poi.xssf.usermodel.XSSFCell;
import org.apache.poi.xssf.usermodel.XSSFRow;
import org.apache.poi.xssf.usermodel.XSSFSheet;
import org.apache.poi.xssf.usermodel.XSSFWorkbook;
public class Pluritest {
 String value=null; String value1=null; String value2=null; String value3=null; String value4=null;
 String value5=null; String value6=null; String value7=null; String value8=null;
 String value9=null; String value10=null; String value11=null; String value12=null;
 String Svalue1=null; String Svalue2=null; String Svalue3=null; String Svalue4=null;
 String Svalue5=null; String Svalue6=null; String Svalue7=null; String Svalue8=null;
 String Svalue9=null; String Svalue10=null; String Svalue11=null; String Svalue12=null;
 String Nvalue1=null; String Nvalue2=null; String Nvalue3=null; String Nvalue4=null;
 String Nvalue5=null; String Nvalue6=null; String Nvalue7=null; String Nvalue8=null;
 String Nvalue9=null; String Nvalue10=null; String Nvalue11=null; String Nvalue12=null;
 String Value1=null; String Value2=null; String Value3=null; String Value4=null;
 String Value5=null; String Value6=null; String Value7=null; String Value8=null;
 String Value9=null; String Value10=null; String Value11=null; String Value12=null;
 public void getFile()throws IOException {
 int Count=0;
 try {
 JFileChooser Chooser = new JFileChooser();
 int returnvalue = Chooser.showOpenDialog(null);
 if(returnvalue==JFileChooser.APPROVE_OPTION)
{ int reply= JOptionPane.showConfirmDialog(null,"Is Data Normalized or Not?","Question Message",JOptionPane.YES_NO_OPTION);
 if(reply==JOptionPane.YES_OPTION){
 XSSFWorkbook workbook = new XSSFWorkbook (new FileInputStream(Chooser.getSelectedFile()));
 XSSFSheet sheet = workbook.getSheet("Sheet1");
 XSSFRow row = sheet.getRow(0);
 int colnum= row.getLastCellNum();
 int rownum = sheet.getLastRowNum()+1;
 System.out.println(String.valueOf(colnum));
 System.out.println(String.valueOf(rownum));
 for(int i=1; i<=rownum;i++) { XSSFRow Row = sheet.getRow(i); for(int j=1;j<2;j++) {
 XSSFCell cell = Row.getCell(j); value= cell.toString(); if(value.equalsIgnoreCase("POU5F1")){
 System.out.println(value); int number = cell.getRowIndex()+1;
 XSSFRow Row1 = sheet.getRow(number-1); XSSFRow Row2 = sheet.getRow(0);
 for(int z=2;z<3;z++) { XSSFCell cell1=Row1.getCell(z); value1 = cell1.toString();
 XSSFCell cell2=Row2.getCell(z); Value1 = cell2.toString();
 }
 for(int a=3;a<4;a++) { XSSFCell cell1=Row1.getCell(a); value2 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value2 = cell2.toString();

82

 }
 for(int a=4;a<5;a++) { XSSFCell cell1=Row1.getCell(a); value3 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value3 = cell2.toString();
 }
 for(int a=5;a<6;a++) { XSSFCell cell1=Row1.getCell(a); value4 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value4 = cell2.toString();
 }
 for(int a=6;a<7;a++) { XSSFCell cell1=Row1.getCell(a); value5 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value5 = cell2.toString();
 }
 for(int a=7;a<8;a++) { XSSFCell cell1=Row1.getCell(a); value6 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value6 = cell2.toString();
 }
 for(int a=8;a<9;a++) { XSSFCell cell1=Row1.getCell(a); value7 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value7 = cell2.toString();
 }
 for(int a=9;a<10;a++) { XSSFCell cell1=Row1.getCell(a); value8 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value8 = cell2.toString();
 }
 for(int a=10;a<11;a++) { XSSFCell cell1=Row1.getCell(a); value9 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value9 = cell2.toString();
 }
 for(int a=11;a<12;a++) { XSSFCell cell1=Row1.getCell(a); value10 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value10 = cell2.toString();
 }
 for(int a=12;a<13;a++) { XSSFCell cell1=Row1.getCell(a); value11 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value11 = cell2.toString();
 }
 for(int a=13;a<14;a++) { XSSFCell cell1=Row1.getCell(a); value12 = cell1.toString();
 XSSFCell cell2=Row2.getCell(a); Value12 = cell2.toString();

 System.out.println(Value12); } System.out.println(number); }
 if(value.equalsIgnoreCase("SOX2")) { System.out.println(value);
 int number = cell.getRowIndex()+1; XSSFRow Row1 = sheet.getRow(number-1);

 for(int z=2;z<3;z++) { XSSFCell cell1=Row1.getCell(z); Svalue1 = cell1.toString();
 }
 for(int a=3;a<4;a++) { XSSFCell cell1=Row1.getCell(a); Svalue2 = cell1.toString();
 }
 for(int a=4;a<5;a++) { XSSFCell cell1=Row1.getCell(a); Svalue3 = cell1.toString();
 }
 for(int a=5;a<6;a++) { XSSFCell cell1=Row1.getCell(a); Svalue4 = cell1.toString();
 }
 for(int a=6;a<7;a++) { XSSFCell cell1=Row1.getCell(a); Svalue5 = cell1.toString();
 }
 for(int a=7;a<8;a++) { XSSFCell cell1=Row1.getCell(a); Svalue6 = cell1.toString();
 }
 for(int a=8;a<9;a++) { XSSFCell cell1=Row1.getCell(a); Svalue7 = cell1.toString();
 }
 for(int a=9;a<10;a++) { XSSFCell cell1=Row1.getCell(a); Svalue8 = cell1.toString();
 }
 for(int a=10;a<11;a++) { XSSFCell cell1=Row1.getCell(a); Svalue9 = cell1.toString();
 }
 for(int a=11;a<12;a++) { XSSFCell cell1=Row1.getCell(a); Svalue10 = cell1.toString();
 }
 for(int a=12;a<13;a++) { XSSFCell cell1=Row1.getCell(a); Svalue11 = cell1.toString();

 } for(int a=13;a<14;a++) { XSSFCell cell1=Row1.getCell(a); Svalue12 = cell1.toString();
 }
 System.out.println(number); }
 if(value.equalsIgnoreCase("NANOG")) { System.out.println(value);
 int number = cell.getRowIndex()+1; XSSFRow Row1 = sheet.getRow(number-1);

for(int z=2;z<3;z++) { XSSFCell cell1=Row1.getCell(z); Nvalue1 = cell1.toString();
} for(int a=3;a<4;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue2 = cell1.toString();
} for(int a=4;a<5;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue3 = cell1.toString();

83

} for(int a=5;a<6;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue4 = cell1.toString();
} for(int a=6;a<7;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue5 = cell1.toString();
} for(int a=7;a<8;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue6 = cell1.toString();
} for(int a=8;a<9;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue7 = cell1.toString();
} for(int a=9;a<10;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue8 = cell1.toString();
} for(int a=10;a<11;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue9 = cell1.toString();
} for(int a=11;a<12;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue10 = cell1.toString();
} for(int a=12;a<13;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue11 = cell1.toString();
} for(int a=13;a<14;a++) { XSSFCell cell1=Row1.getCell(a); Nvalue12 = cell1.toString();
} System.out.println(number); } }
 } } else if(reply==JOptionPane.NO_OPTION) {
 } } } catch(FileNotFoundException jk) { } catch(Exception lk) { }
 }
 float NanogGSM1854259; float NanogGSM1854260; float NanogGSM1854261; float NanogGSM1854262;

 float NanogGSM1854263; float NanogGSM1854264; float NanogGSM1854265; float NanogGSM1854267;
 float NanogGSM1854268; float NanogGSM1854269; float NanogGSM1854270; float NanogGSM1854266;
 float Pou5f1GSM1854259; float Pou5f1GSM1854260; float Pou5f1GSM1854261; float Pou5f1GSM1854262;
 float Pou5f1GSM1854263; float Pou5f1GSM1854264; float Pou5f1GSM1854265; float Pou5f1GSM1854266;

 float Pou5f1GSM1854267; float Pou5f1GSM1854268; float Pou5f1GSM1854269; float Pou5f1GSM1854270;
 float Sox2GSM1854259; float Sox2GSM1854260; float Sox2GSM1854261; float Sox2GSM1854262;

 float Sox2GSM1854263; float Sox2GSM1854264; float Sox2GSM1854265; float Sox2GSM1854266;
 float Sox2GSM1854267; float Sox2GSM1854268; float Sox2GSM1854269; float Sox2GSM1854270;
 public void Fetchdata()
 { Pou5f1GSM1854259 = Float.valueOf(value1);
Pou5f1GSM1854260= Float.valueOf(value2); Pou5f1GSM1854261= Float.valueOf(value3);
Pou5f1GSM1854262= Float.valueOf(value4); Pou5f1GSM1854263= Float.valueOf(value5);
Pou5f1GSM1854264= Float.valueOf(value6); Pou5f1GSM1854265= Float.valueOf(value7);
Pou5f1GSM1854266= Float.valueOf(value8); Pou5f1GSM1854267= Float.valueOf(value9);
Pou5f1GSM1854268= Float.valueOf(value10); Pou5f1GSM1854269= Float.valueOf(value11);
Pou5f1GSM1854270= Float.valueOf(value12); NanogGSM1854259 =Float.valueOf(Nvalue1);
NanogGSM1854260 =Float.valueOf(Nvalue2); NanogGSM1854261 =Float.valueOf(Nvalue3);
NanogGSM1854262 =Float.valueOf(Nvalue4); NanogGSM1854263 =Float.valueOf(Nvalue5);
NanogGSM1854264 =Float.valueOf(Nvalue6); NanogGSM1854265 =Float.valueOf(Nvalue7);
NanogGSM1854266 =Float.valueOf(Nvalue8); NanogGSM1854267 =Float.valueOf(Nvalue9);
NanogGSM1854268 =Float.valueOf(Nvalue10); NanogGSM1854269 =Float.valueOf(Nvalue11);
NanogGSM1854270 =Float.valueOf(Nvalue12); Sox2GSM1854259= Float.valueOf(Svalue1);
Sox2GSM1854260= Float.valueOf(Svalue2); Sox2GSM1854261= Float.valueOf(Svalue3);
Sox2GSM1854262= Float.valueOf(Svalue4); Sox2GSM1854263= Float.valueOf(Svalue5);
Sox2GSM1854264= Float.valueOf(Svalue6); Sox2GSM1854265= Float.valueOf(Svalue7);
Sox2GSM1854266= Float.valueOf(Svalue8); Sox2GSM1854267= Float.valueOf(Svalue9);
Sox2GSM1854268= Float.valueOf(Svalue10); Sox2GSM1854269= Float.valueOf(Svalue11);
Sox2GSM1854270= Float.valueOf(Svalue12);
 } public void CompareExpression()
{
if(Value1.contains("GSM")&&Value2.contains("GSM")&&Value3.contains("GSM")&&Value4.contains("GSM")&&Value5.contains("GSM")&&Val
ue6.contains("GSM")&&Value7.contains("GSM")&&Value8.contains("GSM")&&Value9.contains("GSM")&&Value10.contains("GSM")&&Value1
1.contains("GSM")){
 if(NanogGSM1854259>=5.0&&NanogGSM1854259<=9.0){
 if(Pou5f1GSM1854259>=5.0&&Pou5f1GSM1854259<=9.0){
 if(Sox2GSM1854259>=5.0&&Sox2GSM1854259<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854259\nNANOG= "+NanogGSM1854259);
 System.out.println("POU5F1= "+Pou5f1GSM1854259);
 System.out.println("SOX2= "+Sox2GSM1854259);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854259");
 }
 }
 }else if(NanogGSM1854259>=2.0&&NanogGSM1854259<=4.9){
 if(Pou5f1GSM1854259>=2.0&&Pou5f1GSM1854259<=4.9){
 if(Sox2GSM1854259>=2.0&&Sox2GSM1854259<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854259");
 }
 }
 }else if(NanogGSM1854259>=-3.0&&NanogGSM1854259<=1.9){
 if(Pou5f1GSM1854259>=-3.0&&Pou5f1GSM1854259<=1.9){
 if(Sox2GSM1854259>=-3.0&&Sox2GSM1854259<=1.9){

84

 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854259\nNANOG= "+NanogGSM1854259);
 System.out.println("POU5F1= "+Pou5f1GSM1854259);
 System.out.println("SOX2= "+Sox2GSM1854259);
 System.out.println("Less Pluripotent Cell= "+"GSM1854259");
 }
 }
 }
 if(NanogGSM1854260>=5.0&&NanogGSM1854260<=9.0){
 if(Pou5f1GSM1854260>=5.0&&Pou5f1GSM1854260<=9.0){
 if(Sox2GSM1854260>=5.0&&Sox2GSM1854260<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854260\nNANOG= "+NanogGSM1854260);
 System.out.println("POU5F1= "+Pou5f1GSM1854260);
 System.out.println("SOX2= "+Sox2GSM1854260);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854260");
 }
 }
 }else if(NanogGSM1854260>=2.0&&NanogGSM1854260<=4.9){
 if(Pou5f1GSM1854260>=2.0&&Pou5f1GSM1854260<=4.9){
 if(Sox2GSM1854260>=2.0&&Sox2GSM1854260<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854260");
 } }
 } else if(NanogGSM1854260>=-3.0&&NanogGSM1854260<=1.9) {
 if(Pou5f1GSM1854260>=-3.0&&Pou5f1GSM1854260<=1.9) {
 if(Sox2GSM1854260>=-3.0&&Sox2GSM1854260<=1.9) {
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854260\nNANOG= "+NanogGSM1854260);
 System.out.println("POU5F1= "+Pou5f1GSM1854260);
 System.out.println("SOX2= "+Sox2GSM1854260);
 System.out.println("Less Pluripotent Cell= "+"GSM1854260");
 }
 }
 }
 if(NanogGSM1854261>=5.0&&NanogGSM1854261<=9.0){
 if(Pou5f1GSM1854261>=5.0&&Pou5f1GSM1854261<=9.0){
 if(Sox2GSM1854261>=5.0&&Sox2GSM1854261<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854261\nNANOG= "+NanogGSM1854261);
 System.out.println("POU5F1= "+Pou5f1GSM1854261);
 System.out.println("SOX2= "+Sox2GSM1854261);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854261");
 }
 }
 }else if(NanogGSM1854261>=2.0&&NanogGSM1854261<=4.9){
 if(Pou5f1GSM1854261>=2.0&&Pou5f1GSM1854261<=4.9){
 if(Sox2GSM1854261>=2.0&&Sox2GSM1854261<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854261");
 }
 }
 }else if(NanogGSM1854261>=-3.0&&NanogGSM1854261<=1.9){
 if(Pou5f1GSM1854261>=-3.0&&Pou5f1GSM1854261<=1.9){
 if(Sox2GSM1854261>=-3.0&&Sox2GSM1854261<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854261\nNANOG= "+NanogGSM1854261);
 System.out.println("POU5F1= "+Pou5f1GSM1854261);
 System.out.println("SOX2= "+Sox2GSM1854261);
 System.out.println("Less Pluripotent Cell= "+"GSM1854261");
 }
 }
 }
 if(NanogGSM1854262>=5.0&&NanogGSM1854262<=9.0){
 if(Pou5f1GSM1854262>=5.0&&Pou5f1GSM1854262<=9.0){
 if(Sox2GSM1854262>=5.0&&Sox2GSM1854262<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854262\nNANOG= "+NanogGSM1854262);

85

 System.out.println("POU5F1= "+Pou5f1GSM1854262);
 System.out.println("SOX2= "+Sox2GSM1854262);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854262");
 }
 }
 }else if(NanogGSM1854262>=2.0&&NanogGSM1854262<=4.9){
 if(Pou5f1GSM1854262>=2.0&&Pou5f1GSM1854262<=4.9){
 if(Sox2GSM1854262>=2.0&&Sox2GSM1854262<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854262");
 }
 }
 }else if(NanogGSM1854262>=-3.0&&NanogGSM1854262<=1.9){
 if(Pou5f1GSM1854262>=-3.0&&Pou5f1GSM1854262<=1.9){
 if(Sox2GSM1854262>=-3.0&&Sox2GSM1854262<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854262\nNANOG= "+NanogGSM1854262);
 System.out.println("POU5F1= "+Pou5f1GSM1854262);
 System.out.println("SOX2= "+Sox2GSM1854262);
 System.out.println("Less Pluripotent Cell= "+"GSM1854262");
 }
 }
 }
 if(NanogGSM1854263>=5.0&&NanogGSM1854263<=9.0){
 if(Pou5f1GSM1854263>=5.0&&Pou5f1GSM1854263<=9.0){
 if(Sox2GSM1854263>=5.0&&Sox2GSM1854263<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854263\nNANOG= "+NanogGSM1854263);
 System.out.println("POU5F1= "+Pou5f1GSM1854263);
 System.out.println("SOX2= "+Sox2GSM1854263);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854263");
 }
 }
 }else if(NanogGSM1854263>=2.0&&NanogGSM1854263<=4.9){
 if(Pou5f1GSM1854263>=2.0&&Pou5f1GSM1854263<=4.9){
 if(Sox2GSM1854263>=2.0&&Sox2GSM1854263<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854263");
 }
 }
 }else if(NanogGSM1854263>=-3.0&&NanogGSM1854263<=1.9){
 if(Pou5f1GSM1854263>=-3.0&&Pou5f1GSM1854263<=1.9){
 if(Sox2GSM1854263>=-3.0&&Sox2GSM1854263<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854263\nNANOG= "+NanogGSM1854263);
 System.out.println("POU5F1= "+Pou5f1GSM1854263);
 System.out.println("SOX2= "+Sox2GSM1854263);
 System.out.println("Less Pluripotent Cell= "+"GSM1854263");
 }
 }
 }
 if(NanogGSM1854264>=5.0&&NanogGSM1854264<=9.0){
 if(Pou5f1GSM1854264>=5.0&&Pou5f1GSM1854264<=9.0){
 if(Sox2GSM1854264>=5.0&&Sox2GSM1854264<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854264\nNANOG= "+NanogGSM1854264);
 System.out.println("POU5F1= "+Pou5f1GSM1854264);
 System.out.println("SOX2= "+Sox2GSM1854264);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854264");
 }
 }
 }else if(NanogGSM1854264>=2.0&&NanogGSM1854264<=4.9){
 if(Pou5f1GSM1854264>=2.0&&Pou5f1GSM1854264<=4.9){
 if(Sox2GSM1854264>=2.0&&Sox2GSM1854264<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854264");
 }
 }
 }else if(NanogGSM1854264>=-3.0&&NanogGSM1854264<=1.9){

86

 if(Pou5f1GSM1854264>=-3.0&&Pou5f1GSM1854264<=1.9){
 if(Sox2GSM1854264>=-3.0&&Sox2GSM1854264<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854264\nNANOG= "+NanogGSM1854264);
 System.out.println("POU5F1= "+Pou5f1GSM1854264);
 System.out.println("SOX2= "+Sox2GSM1854264);
 System.out.println("Less Pluripotent Cell= "+"GSM1854264");
 }
 }
 }
 if(NanogGSM1854265>=5.0&&NanogGSM1854265<=9.0){
 if(Pou5f1GSM1854265>=5.0&&Pou5f1GSM1854265<=9.0){
 if(Sox2GSM1854265>=5.0&&Sox2GSM1854265<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854265\nNANOG= "+NanogGSM1854265);
 System.out.println("POU5F1= "+Pou5f1GSM1854265);
 System.out.println("SOX2= "+Sox2GSM1854265);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854265");
 }
 }
 }else if(NanogGSM1854265>=2.0&&NanogGSM1854265<=4.9){
 if(Pou5f1GSM1854265>=2.0&&Pou5f1GSM1854265<=4.9){
 if(Sox2GSM1854265>=2.0&&Sox2GSM1854265<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854265");
 }
 }
 }else if(NanogGSM1854265>=-3.0&&NanogGSM1854265<=1.9){
 if(Pou5f1GSM1854265>=-3.0&&Pou5f1GSM1854265<=1.9){
 if(Sox2GSM1854265>=-3.0&&Sox2GSM1854265<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854265\nNANOG= "+NanogGSM1854265);
 System.out.println("POU5F1= "+Pou5f1GSM1854265);
 System.out.println("SOX2= "+Sox2GSM1854265);
 System.out.println("Less Pluripotent Cell= "+"GSM1854265");
 }
 }
 }
 if(NanogGSM1854266>=5.0&&NanogGSM1854266<=9.0){
 if(Pou5f1GSM1854266>=5.0&&Pou5f1GSM1854266<=9.0){
 if(Sox2GSM1854266>=5.0&&Sox2GSM1854266<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854266\nNANOG= "+NanogGSM1854266);
 System.out.println("POU5F1= "+Pou5f1GSM1854266);
 System.out.println("SOX2= "+Sox2GSM1854266);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854266");
 }
 }
 }else if(NanogGSM1854266>=2.0&&NanogGSM1854266<=4.9){
 if(Pou5f1GSM1854266>=2.0&&Pou5f1GSM1854266<=4.9){
 if(Sox2GSM1854266>=2.0&&Sox2GSM1854266<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854266");
 }
 }
 }else if(NanogGSM1854266>=-3.0&&NanogGSM1854266<=1.9){
 if(Pou5f1GSM1854266>=-3.0&&Pou5f1GSM1854266<=1.9){
 if(Sox2GSM1854266>=-3.0&&Sox2GSM1854266<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854266\nNANOG= "+NanogGSM1854266);
 System.out.println("POU5F1= "+Pou5f1GSM1854266);
 System.out.println("SOX2= "+Sox2GSM1854266);
 System.out.println("Less Pluripotent Cell= "+"GSM1854266");
 }
 }
 }
 if(NanogGSM1854267>=5.0&&NanogGSM1854267<=9.0){
 if(Pou5f1GSM1854267>=5.0&&Pou5f1GSM1854267<=9.0){

87

 if(Sox2GSM1854267>=5.0&&Sox2GSM1854267<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854267\nNANOG= "+NanogGSM1854267);
 System.out.println("POU5F1= "+Pou5f1GSM1854267);
 System.out.println("SOX2= "+Sox2GSM1854267);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854267");
 }
 }
 }else if(NanogGSM1854267>=2.0&&NanogGSM1854267<=4.9){
 if(Pou5f1GSM1854267>=2.0&&Pou5f1GSM1854267<=4.9){
 if(Sox2GSM1854267>=2.0&&Sox2GSM1854267<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854267");
 }
 }
 }else if(NanogGSM1854267>=-3.0&&NanogGSM1854267<=1.9){
 if(Pou5f1GSM1854267>=-3.0&&Pou5f1GSM1854267<=1.9){
 if(Sox2GSM1854267>=-3.0&&Sox2GSM1854267<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854267\nNANOG= "+NanogGSM1854267);
 System.out.println("POU5F1= "+Pou5f1GSM1854267);
 System.out.println("SOX2= "+Sox2GSM1854267);
 System.out.println("Less Pluripotent Cell= "+"GSM1854267");
 }
 }
 }
 if(NanogGSM1854268>=5.0&&NanogGSM1854268<=9.0){
 if(Pou5f1GSM1854268>=5.0&&Pou5f1GSM1854268<=9.0){
 if(Sox2GSM1854268>=5.0&&Sox2GSM1854268<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854268\nNANOG= "+NanogGSM1854268);
 System.out.println("POU5F1= "+Pou5f1GSM1854268);
 System.out.println("SOX2= "+Sox2GSM1854268);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854268");
 }
 }
 }else if(NanogGSM1854268>=2.0&&NanogGSM1854268<=4.9){
 if(Pou5f1GSM1854268>=2.0&&Pou5f1GSM1854268<=4.9){
 if(Sox2GSM1854268>=2.0&&Sox2GSM1854268<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854268");
 }
 }
 }else if(NanogGSM1854268>=-3.0&&NanogGSM1854268<=1.9){
 if(Pou5f1GSM1854268>=-3.0&&Pou5f1GSM1854268<=1.9){
 if(Sox2GSM1854268>=-3.0&&Sox2GSM1854268<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854268\nNANOG= "+NanogGSM1854268);
 System.out.println("POU5F1= "+Pou5f1GSM1854268);
 System.out.println("SOX2= "+Sox2GSM1854268);
 System.out.println("Less Pluripotent Cell= "+"GSM1854268");
 }
 }
 }
 if(NanogGSM1854269>=5.0&&NanogGSM1854269<=9.0){
 if(Pou5f1GSM1854269>=5.0&&Pou5f1GSM1854269<=9.0){
 if(Sox2GSM1854269>=5.0&&Sox2GSM1854269<=9.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854269\nNANOG= "+NanogGSM1854269);
 System.out.println("POU5F1= "+Pou5f1GSM1854269);
 System.out.println("SOX2= "+Sox2GSM1854269);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854269");
 }
 }
 }else if(NanogGSM1854269>=2.0&&NanogGSM1854269<=4.9){
 if(Pou5f1GSM1854269>=2.0&&Pou5f1GSM1854269<=4.9){
 if(Sox2GSM1854269>=2.0&&Sox2GSM1854269<=4.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854269");

88

 }
 }
 }else if(NanogGSM1854269>=-3.0&&NanogGSM1854269<=1.9){
 if(Pou5f1GSM1854269>=-3.0&&Pou5f1GSM1854269<=1.9){
 if(Sox2GSM1854269>=-3.0&&Sox2GSM1854269<=1.9){
 System.out.println("Range: >=-3.0 to <=1.9");
 System.out.println("Range: GSM1854269\nNANOG= "+NanogGSM1854269);
 System.out.println("POU5F1= "+Pou5f1GSM1854269);
 System.out.println("SOX2= "+Sox2GSM1854269);
 System.out.println("Less Pluripotent Cell= "+"GSM1854269");
 }
 }
 }

 }
 if(Value12.contains("EGSM")){
 //System.out.println("Ani");
 if(NanogGSM1854270>=2.0&&NanogGSM1854270<=3.0){
 if(Pou5f1GSM1854270>=2.0&&Pou5f1GSM1854270<=3.0){
 if(Sox2GSM1854270>=2.0&&Sox2GSM1854270<=3.0){
 System.out.println("Range: >=0.3 to <=3.0");
 System.out.println("Range: GSM1854270\nNANOG= "+NanogGSM1854270);
 System.out.println("POU5F1= "+Pou5f1GSM1854270);
 System.out.println("SOX2= "+Sox2GSM1854270);
 System.out.println("Highly Pluripotent Cell= "+"GSM1854270");
 } }
 }else if(NanogGSM1854270>=1.5&&NanogGSM1854270<=1.9){
 if(Pou5f1GSM1854270>=1.5&&Pou5f1GSM1854270<=1.9){
 if(Sox2GSM1854270>=1.5&&Sox2GSM1854270<=1.9){
 System.out.println("Partial Pluripotent Cell= "+"GSM1854270");
 } }
 }else if(NanogGSM1854270>=1.2&&NanogGSM1854270<=1.49){
 if(Pou5f1GSM1854270>=1.2&&Pou5f1GSM1854270<=1.49){
 if(Sox2GSM1854270>=1.2&&Sox2GSM1854270<=1.49){
 System.out.println("Less Pluripotent Cell= "+"GSM1854270");
 } } } } }
 public static void main(String[]args) throws IOException{
 Pluritest test= new Pluritest();
 test.getFile();
 test.Fetchdata();
 test.CompareExpression();
 }
}

89

90

91

92

93

