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ABSTRACT 

 

Evolutionary algorithms (EAs) are well-known optimization approaches to deal with nonlinear 

and complex problems. Evolutionary algorithms often perform well approximating solutions to all 

types of problems because they ideally do not make any assumption about the underlying fitness 

landscape. Firefly algorithm is one of the new metaheuristic algorithms for optimization 

problems. It was originally proposed by X. S. Yang [1].  It is one of the latest additions to the 

family of swarm intelligence metaheuristics for hard optimization problems. The algorithm is 

inspired by the flashing behavior of fireflies. In the algorithm, randomly generated solutions will 

be considered as fireflies, and brightness is assigned depending on their performance on the 

objective function. One of the rules used to construct the algorithm is, a firefly will be attracted to 

a brighter firefly, and if there is no brighter firefly, it will move randomly. This thesis presents the 

modified Firefly Algorithm (FA). The proposed approach gives more efficient solution with 

reduced time complexity in comparison to original FA. Two modifications made are; 1) 

Opposition-based methodology is deployed where initialization of candidate solutions is done 

using opposition based learning to improve convergence rate of original FA. In this opposite 

numbers are used which helps in generating the initial solutions from both ends hence explores 

the search space more efficiently. 2) The dimensional-based approach is employed in which 

optimization of each dimension of the solution is done separately. The dimensional method is 

specifically employed to conquer the “curse of dimensionality,” by splitting a firefly with 

composite high dimensionality into several 1-D subparts. Then, the firefly makes contribution to 

the population not only as a whole item but also in each dimension. This ensures searching the 

optimal value of each dimension efficiently and hence gives more optimal solution. Several 

complex multidimensional standard functions are employed for experimental verification. 

Experimental results show that the ODFA (Opposition and Dimensional based FA) gives more 

accurate optimal solution with high convergence speed than the original FA. 

http://en.wikipedia.org/wiki/Fitness_landscape
http://en.wikipedia.org/wiki/Fitness_landscape
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1. Introduction 

Optimization is the process of selecting the optimum solution from the set of alternative ones. 

We have to either maximize or minimize the objective function by calculating the value of 

function using several input values from the given range of values. More generally, 

optimization includes finding "best available" values of some objective function given a 

defined domain (or a set of constraints), including a variety of different types of objective 

functions and different types of domains. Evolutionary algorithms are being widely used in 

optimization problems. Reproduction, mutation, crossover, recombination, etc., mechanisms 

are used in such algorithms. Population is formed by the candidate solutions of the given 

problem and in every generation evolution of the population takes place by applying above 

mentioned mechanisms.  

Swarm intelligence (SI) and bio-inspired computing in general have attracted great interest in 

almost every area of science, engineering, and industry over the last two decades. Biology-

inspired algorithms have many advantages over traditional optimization methods such as steep 

descent and hill climbing and calculus based techniques due to the parallelism and the ability 

of locating the very good approximate solutions in extremely very large search spaces. 

Furthermore, more powerful new generation algorithm can be formulated by combining 

existing and new evolutionary algorithms with classical optimization methods. 

 

1.1 Problem statement 

The motivation is to develop an algorithm which increase the efficiency of original FA. 

Firstly, the position of the fireflies in D-dimensional space represents the candidate solution 

of the optimization problem. The initialization of these fireflies in original FA is purely 

random so it can be possible that all fireflies initially take their random positions in the same 

direction whereas the global solution lies in the other direction due to which the time taken to 

reach the global solution increases and there can exist a chance that fireflies stuck in the local 

optima. Secondly, In the FA, Each update step is performed on a full D-dimensional particle. 

This leads to the possibility of some components in the particle having been moved closer to 

the solution, while others have actually been moved away from the solution. Although the 

effect of the improvement outperforms the effect of the components that deteriorated, the FA 

will consider the updated particle as overall improvement but neglect the deteriorated 

http://en.wikipedia.org/wiki/Domain_of_a_function
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components in the firefly. Therefore, it is clear that it is typically significantly harder to find 

the global optimum of a high-dimensional problem. These two limitations of FA has been 

overcome in the proposed work. 

 

1.2 Proposed solution 

To remove the limitations of the original FA, two modifications have been employed in it. 

Firstly, opposition based learning is employed.  The approach of opposition-based learning, 

OBL was given by Tizhoosh [16]. Here, whole search space is searched efficiently by 

considering the corresponding opposite estimate simultaneously along with the estimate. So, 

the current estimate is searched in two directions and the search space is searched more 

efficiently. The opposition based optimization helps the solution to converge faster hence 

reduces the time complexity. The comparison between randomness and opposition based 

approach has been done in [16] which proves that opposition based learning gives better 

results in less time. OBL has been applied in image segmentation [13], management of water 

resources [14], learning in neural network [15] etc. In this work, OBL has been used at the 

time of population initialization. This gives the better approximation of the initial values of 

the particles and hence the solution converges faster. Secondly, dimensional based approach 

has been employed. Since the original FA uses a population of D-dimensional fireflies, we 

present a new approach in which each firefly attempts to also optimize a single dimension of 

the solution vector instead of just as a whole item. It means that we test not only the particle 

as a whole item, but also the particle in each dimension. The accuracy of the algorithm 

increases by  giving importance  to  each  dimension  to  independently  participate  in  global 

solution.  

 

1.3 Justification and need of the algorithm 

 

1. It improves the efficiency of the original FA 

2. It increases the accuracy of the original FA 

3. It provides global solution with less time complexity. 
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1.4 Thesis Organization 

 

The structure of thesis is as follows: 

Chapter 2 provides literature review which includes brief explanation of optimization and how 

evolutionary algorithms helps in optimization. Basic evolutionary process, biology involved 

in it and advantages of evolutionary computation is also explained in it. It also gives the 

explanation of some evolutionary algorithms which include Bacterial Foraging, Particle 

Swarm Optimization and Differential Evolution algorithm. Brief introduction of Firefly 

Algorithm and Opposition based Learning is also given in this chapter. 

Chapter 3 gives the explanation of proposed methodology. It explains the proposed modified 

Firefly Algorithm which include two modifications: one is dimensional based approach and 

other is opposition based learning. 

Chapter 4 shows the Experimental results which includes the comparison of original Firefly 

Algorithm and proposed approach. It also includes the graphs showing the global optima 

obtained by proposed approach. 

Finally, chapter 5 concludes the thesis. 
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2.1 Optimization problem 

 

An optimization problem is a problem of finding values for the variables of a function to 

optimize the function. These kinds of problems exist in many disciplines. Whenever a decision 

needs to be made and the problem is formulated using mathematical terms, optimization 

solution methods will be used to solve the formulated problem. The solution methods exist 

depending on the behavior of the problem. For example, if both the objective function and the 

functions which construct the feasible region are linear, it is called a linear programming 

problem, and methods like simplex algorithm will be used to solve it. Some of the solution 

methods depend on the derivatives of the objective function. Even though there are many 

solution methods, there are many problems which need special attention and are hard to solve 

using the deterministic solution methods. Metaheuristic algorithms are optimization 

algorithms which try to improve the quality of solution members iteratively with some 

randomness properties. Most of these algorithms are inspired by biological aspects. Unlike 

deterministic solution methods metaheuristic algorithms are not affected by the behavior of 

the optimization problem. This makes the algorithm to be used widely in different fields. Since 

the introduction of genetic algorithm in 1975, many metaheuristic algorithms are introduced. 

An optimization problem has basically three components: a function to optimize, possible 

solution set to choose a value for the variable from, and the optimization rule, which will be 

either maximized or minimized. Since one can switch between minimization and 

maximization problems by multiplying the objective function by negative one, analyzing 

either minimization or maximization problem is enough. 

 

2.2 Evolutionary algorithm 

2.2.1 What are evolutionary algorithms? 

In computer science, evolutionary computation is a subfield of artificial intelligence(more 

particularly computational intelligence) that involves combinatorial optimization problems. 

Evolutionary computation uses iterative progress, such as growth or development in a 

population. This population is then selected in a guided random search using parallel 
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processing to achieve the desired end. Such processes are often inspired by biological 

mechanisms of evolution. As evolution can produce highly optimized processes and networks, 

it has many applications in computer science. The use of Darwinian principles for automated 

problem solving originated in the 1950s. It was not until the 1960s that three distinct 

interpretations of this idea started to be developed in three different places. 

Evolutionary programming was introduced by Lawrence J. Fogel in the US, while John Henry 

Holland called his method a genetic algorithm. In Germany Ingo Rechenberg and Hans-Paul 

Schwefel introduced evolution strategies. These areas developed separately for about 15 

years. From the early nineties on they are unified as different representatives (“dialects”) of 

one technology, called evolutionary computing. Also in the early nineties, a fourth stream 

following the general ideas had emerged genetic programming. Since the 1990s, evolutionary 

computation has largely become swarm-based computation, and nature-inspired algorithms 

are becoming an increasingly significant part. 

2.2.2 Basic Evolutionary Processes 

A good place to start the discussion is to ask what the basic components of an evolutionary 

system are. The first thing to note is that there are at least two possible interpretations of the 

term evolutionary system. It is frequently used in a very general sense to describe a system 

that changes incrementally over time, such as the software requirements for a payroll 

accounting system. The second sense, and the one used throughout this book, is the narrower 

use of the term in biology, namely, to mean a Darwinian evolutionary system. In order to 

proceed, then, we need to be more precise about what constitutes such a system. One way of 

answering this question is to identify a set of core components such that, if any one of these 

components were missing, we would be reluctant to describe it as a Darwinian evolutionary 

system. Although there is by no means a consensus on this issue, there is fairly general 

agreement that Darwinian evolutionary systems embody: 

• One or more populations of individuals competing for limited resources, 

• The notion of dynamically changing populations due to the birth and death of individuals, 

http://en.wikipedia.org/wiki/Evolution
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• A concept of fitness which reflects the ability of an individual to survive and reproduce, and 

•Concept of variational inheritance: offspring closely resemble their parents, but are not 

identical. 

Such a characterization leads naturally to the view of an evolutionary system as a process that, 

given particular initial conditions, follows a trajectory over time through a complex 

evolutionary state space. One can then study various aspects of these processes such as their 

convergence properties, their sensitivity to initial conditions, their transient behavior, and so 

on. Depending on one’s goals and interests, various components of such a system may be 

fixed or themselves subject to evolutionary pressures.  

2.2.3 A Little Biology 

Evolution is a change in the gene pool of a population over time. A gene is a hereditary unit 

that can be passed on unaltered for many generations. The gene pool is the set of all genes in 

a species or population. 

Natural selection is the gradual, non-random process by which biological traits become 

either more or less common in a population as a function of differential reproduction of their 

bearers. It is a key mechanism of evolution. The term "natural selection" was popularized 

by Charles Darwin who intended it to be compared with artificial selection, what we now 

call selective breeding. 

Variation exists within all populations of organisms. This occurs partly because random 

mutations cause changes in the genome of an individual organism, and these mutations can 

be passed to offspring. Throughout the individuals’ lives, their genomes interact with their 

environments to cause variations in traits. (The environment of a genome includes the 

molecular biology in the cell, other cells, other individuals, populations, species, as well as 

the abiotic environment.) Individuals with certain variants of the trait may survive and 

reproduce more than individuals with other variants. 

Major Agents of Genetic Change in Individuals: 
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Mutation 

A Mutation occurs when a DNA gene is damaged or changed in such a way as to alter the 

genetic message carried by that gene. A Mutagen is an agent of substance that can bring about 

a permanent alteration to the physical composition of a DNA gene such that the genetic 

message is changed. 

It may be due to various sources (e.g. UV rays, chemicals, etc.)                                               

Start: 

1001001001001001001001 

After Mutation: 

1001000001001001001001 

Recombination: 

Sections of genetic material exchanged between two chromosomes. 

 

 

 

Issues to Consider 

 The representation used in a given example of evolutionary computation is the data 

structure used together with the choice of variation operators. 

 The fitness function is the method of assigning a heuristic numerical estimate of 

quality to members of the evolving population. It may only be necessary to decide 

which of two structures is better rather than to assign an actual numerical quality 
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We already know that evolutionary computation uses algorithms that operate on populations 

of data structures by selection and variation.  

2.2.4 Basic evolutionary algorithm 

In an evolutionary algorithm (EA), we search the solution space (the set of all possible inputs) 

of a difficult problem for the best solutions, but not naïvely like in a random or brute-force 

search. We use some biological principles to help guide the search: 

Reproduction 

New solutions don't just appear out of thin air (or our random number generator) -- we 

combine existing good solutions to come up with new (hopefully even better) solutions. 

Mutation 

Just like in real life, mutations can help or hurt. But they keep the gene pool from becoming 

stagnant and homogenous -- preventing EA "inbreeding". 

Survival of the fittest 

The "good" solutions in the population are the ones we pick to pass down their genes. We 

eliminate the poor solutions from consideration. 

Fitness: 

The fitness measure need not be a true function in the mathematical sense. It might be 

probabilistic, or it might depend also on other members of the population. It also often 

involves a model or simulation of the problem, executed with the individuals of the 

population. 

The Process: 

 Create an initial population (usually at random) 

 Until "done": (exit criteria) 

 Select some pairs to be parents (selection) 

 Combine pairs of parents to create offspring (recombination) 

 Perform some mutation(s) on the offspring (mutation) 

 Select some population members to be replaced by the new offspring (replacement) 

 Repeat 
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The exit criteria sets the target for the fitness measure, but also usually includes an upper 

limit on the number of iterations, in case the evolution gets "stuck." A typical exit criteria 

might be: "stop when some individual achieves a fitness of 100, or when we have iterated 

10,000 times." We'll talk more about evolution getting "stuck" later. Sticking with the biology 

jargon, each iteration of the loop is called a generation. 

Selection and replacement grant breeding rights and cause extinction within the population, 

respectively. They are independent of the representation scheme, and should only rely on your 

choice of fitness measure. Usually a small fraction of the population are chosen for breeding 

or replacement each generation. For simplicity, often the same number of individuals are 

chosen for breeding and replacement, although this is not required (causing the population to 

change in size). Here are a few of the most common selection and replacement methods: 

 Random: Choose completely at random, with uniform probability given to each 

individual (regardless of fitness). 

 Absolute: Always breed the n best-fit individuals, and replace the n least-fit 

individuals. (No randomness, always a deterministic choice) 

 Roulette: Pick randomly, but with relative weights proportional to fitness. Higher-fit 

individuals have a better chance of getting chosen for breeding, and less-fit individuals 

have a better chance of getting chosen for replacement 

 Rank: Same as roulette, but make the relative weights proportional to an individual's 

rank within the population, not fitness. The least-fit individual has rank 1, while the 

most-fit has rank N (the size of the population). 

Recombination (or breeding) is the process of using existing pairs of "parent" genes to 

produce new "offspring" genes. The details of this operation depend on your representation 

scheme, but by far the most common recombination operation is calledcrossover. Crossover 

can be used with string and array representations. It involves making copies of the parents and 

then swapping a chunk between the copies. 
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Fig 1. Flowchart of Basic Evolutionary Process 

2.2.5 Advantages of evolutionary computing 

 Conceptual simplicity: A primary advantage of evolutionary computation is that it is 

conceptually simple. The algorithm consists of initialization, which may be a purely 

random sampling of possible solutions, followed by iterative variation and selection 

in light of a performance index. This figure of merit must assign a numeric value to 

any possible solution such that two competing solutions can be rank ordered. Finer 

granularity is not required. Thus the criterion need not be specified with the precision 

that is required of some other methods. In particular, no gradient information needs to 
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be presented to the algorithm. Over iterations of random variation and selection, the 

population can be made to converge to optimal solutions. 

 Broad Applicability: Evolutionary algorithms can be applied to virtually any problem 

that can be formulated as a function optimization task. It requires a data structure to 

represent solutions, a performance index to evaluate solutions, and variation operators 

to generate new solutions from old solutions (selection is also required but is less 

dependent on human preferences). The state space of possible solutions can be disjoint 

and can encompass infeasible regions, and the performance index can be time varying, 

or even a function of competing solutions extant in the population. 

 Outperform Classic Methods on Real Problems: Real-world function optimization 

problems often (1) impose nonlinear constraints, require payoff functions that are not 

concerned with least squared error, (3) involve nonstationary conditions, (4) 

incorporate noisy observations or random processing, or include other vagaries that do 

not conform well to the prerequisites of classic optimization techniques. The response 

surfaces posed in real-world problems are often multimodal, and gradient-based 

methods rapidly converge to local optima (or perhaps saddle points) which may yield 

insufficient performance. 

2.2.6 Examples of evolutionary algorithms 

2.2.6.1 Bacterial Foraging Algorithm 

Bacterial foraging optimization algorithm (BFOA), proposed by Passino [19], has been 

broadly acknowledged as a global optimization algorithm. The key idea of this algorithm is 

inspired by the social foraging behavior of Escherichia coli bacteria in multi-optimal function 

optimization.  

In BFOA, [20] the bacteria like to move towards a nutrient gradient and avoid unfavorable 

environment, this process is known as Chemotaxis. The bacteria move for a longer duration 

in the favorable environment. They are enlarged if they get sufficient food whereas in the 
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presence of suitable temperature they replicate themselves.  This phenomenon motivated 

Passino to introduce a step of reproduction in BFOA. The chemotactic progress may be 

terminated due to occurrence of abrupt environmental conditions and a group of bacteria may 

be traversed to a new location. This comprises the event of elimination-dispersal BFOA. 

 

Parameter definition:- 

p: the dimension of the search space 

S: the number of bacteria in the population iterated by counter i 

Nc: the number of chemotactic steps iterated by counter j 

Ns: the number of swims after tumble iterated by the counter m 

Nre: the number of reproductive steps iterated by counter k 

Ned: the number of elimination dispersal events iterated by the counter l 

ped: elimination dispersal probability 

C(i,k): the size of step taken in a random direction specified by tumble 

The Algorithm: 

[Step 1] Initialize all the parameters defined above  

[Step 2] Elimination dispersal loop: l=l+1 

[Step 3] Reproduction loop: k=k+1 

[Step 4] Chemotaxis loop: j=j+1 

1. For i=1,2...,S perform a chemotactic step for bacterium i as follows 

2. Calculate fitness function J (i,j,k,l). 

3. Assign Jlast = J(i,j,k,l) to update the value of the fitness function in case of better 

solution 



  

OPPOSITION AND DIMENSIONAL BASED MODIFIED FIREFLY ALGORITHM 15 

 

4. Tumble: generate a random vector Δ(i) with each element Δ m(i),  m=1,2,...,p. The 

value of Δ m(i) is a random number in the range [-1,1]. 

5. Move:Let  

                 𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖(𝑗, 𝑘, 𝑙) +  𝐶(𝑖)
∆(𝑖)

√∆𝑇(𝑖)∆(𝑖)
   (1) 

Where θi is the chemotactic step size C(i) in the direction of the tumble for 

bacterium i 

6. Calculate J(i,j+1,k,l) 

7. Swim  

i) Let m=0 (counter for swim length) 

ii)  while m<Ns (if have not climber down too long) 

 Let m=m+1 

 If J(i,j+1,k,l)<Jlast let Jlast = J(i,j+1,k,l) and let 

  𝜃𝑖(𝑗 + 1, 𝑘, 𝑙) = 𝜃𝑖 (𝑗, 𝑘, 𝑙) +  𝐶(𝑖)
∆(𝑖)

√∆𝑇(𝑖)∆(𝑖)
 (2) 

And use this θi(j+1,k,l) to calculate new J(i,j+1,k,l) 

 Else, let m=Ns.  

This is the end of the while statement. 

8. Go to the next bacterium (i+1), if i is not equal to S (i.e., go to 2. to process the next 

bacterium) 

[Step 5] if j<Nc, go to step 4 and continue chemotaxis process since the life of the bacteria 

has not ended. 

[Step 6] Reproduction 

1. For the given k and l, and for each i = 1,2,..., S , let 
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                                      𝐽ℎ𝑒𝑎𝑙𝑡ℎ 
𝑖 =  ∑ 𝐽(𝑖, 𝑗, 𝑘, 𝑙)

𝑁𝑐+1
𝑖=1    

be the health of the bacterium i. Sort bacteria and chemotactic parameters C(i) in order 

of   increasing cost Jhealth. 

2. The Sr bacteria with the maximum Jhealth values die and the remaining Sr bacteria with 

the lowest values split by replicating themselves. 

[Step 7] if k<Nre, go to step 3. The number of specified reproduction steps has not been 

reached, so we start the next generation of the chemotactic loop. 

[Step 8] Elimination-dispersal: For i=1, 2... S with probability Ped, eliminate and disperse each 

bacterium with insufficient nutrient. To perform this task if bacterium is eliminated simply 

disperses another bacterium to a random location in the optimization domain. If l<Ned, then 

go to step 2; otherwise end. 

2.2.6.2 Particle Swarm Optimization 

In computer science, Particle Swarm Optimization (PSO) [18] is a computational method 

that optimizes a problem by iteratively trying to improve a candidate solution with regard to 

a given measure of quality. PSO optimizes a problem by having a population of candidate 

solutions, here dubbed particles, and moving these particles around in the search-

space according to simple mathematical formulae over the particle's position and velocity. 

Each particle's movement is influenced by its local best known position and is also guided 

toward the best known positions in the search-space, which are updated as better positions are 

found by other particles. This is expected to move the swarm toward the best solutions. PSO 

is originally attributed to Kennedy, Eberhart and was first intended for simulating social 

behavior, as a stylized representation of the movement of organisms in a bird flock or fish 

school. The algorithm was simplified and it was observed to be performing optimization. The 
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basic concept of PSO lies in accelerating each particle toward its pbest and the gbest locations, 

with a random weighted acceleration at each time step. 

A particle (individual) is composed of: 

Three vectors: 

 The x-vector records the current position (location) of the particle in the search space, 

 The p-vector records the location of the best solution found so far by the particle, and  

 The v-vector contains a gradient (direction) for which particle will travel in if 

undisturbed. 

Two fitness values: 

 The x-fitness records the fitness of the x-vector, and 

 The p-fitness records the fitness of the p-vector. 

2.2 Basic algorithm 

For each particle  

    Initialize particle 

END 

Do 

    For each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

    End 

    Choose the particle with the best fitness value of all the particles as the gBest 

    For each particle  

        Calculate particle velocity according equation (a) 

        Update particle position according equation (b) 
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    End  

While maximum iterations or minimum error criteria is not attained. 

Each particle tries to modify its current position and velocity according to the distance 

between its current position and pbest, and the distance between its current position and 

gbest. 

v(t+1) = (w * v(t)) + (c1 * r1 * (p(t) – x(t)) + (c2 * r2 * (g(t) – x(t))  (3) 

x(t+1)=v(t+1)+x(t)         (4) 

where,  v(t) : velocity of  agent at iteration t,                                                                                                  

  w : weighting function,                                                                                                                                                                                             

   c1  : weighting factor,                                                                                                                        

   r1  : uniformly distributed random number between 0 and 1,                                                                             

  x(t) : current position of agent at iteration t,                                                                                                   

  p(t) : pbest of agent i,                                                                                                                           

  g(t) : gbest of the group. 

 

   sk :  current searching point.                                                                               

   sk+1 : modified searching point.                                                                         

   vk : current velocity.                                                                                                   

   vk+1 : modified velocity.                                                                                      

sk

vk

vpbest

vgbest

sk+1

vk+1

sk

vk

vpbest

vgbest

sk+1

vk+1
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   vpbest  : velocity based on pbest.                                                                       

   vgbest : velocity based on gbest         

2.2.6.3 Differential Evolution Algorithm 

DE was designed to be a stochastic direct search method [17]. The initial vector population is 

chosen randomly and should cover the entire parameter space. DE generates new parameter 

vectors by adding the weighted difference between two population vectors to a third vector. 

Let this operation be called mutation. The mutated vector’s parameters are then mixed with 

the parameters of another predetermined vector, the target vector, to yield the so-called trial 

vector.  Parameter mixing is often referred to as “crossover” vector, to yield the so-called trial 

vector. If the trial vector yields a lower cost function value than the target vector, the trial 

vector replaces the target vector in the following generation. This last operation is called 

selection. Each population vector has to serve once as the target vector so that NP competitions 

take place in one generation. 

Basic strategy is as follows: 

1. Mutation 

For each target vector , , 1,2,3,...NPi Gx i  , a mutant vector is generated according to 

1 2 3, 1 , , ,.( )i G r G r G r Gv x F x x     

 with random indexes 1 2 3, , {1,2,....NP}r r r  , integer, mutually different. The randomly chosen 

integers 1 2 3, ,r r r  are also chosen to be different from the running index i , so that NP must be 

greater or equal to four to allow for this condition. 

2. Crossover 
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In order to increase the diversity of the perturbed parameter vectors, crossover is introduced. 

To this end, the trial vector: 

, 1 1 , 1 2 , 1 , 1(u ,u ,...,u )i G i G i G Di Gu      

is formed, where, 

  (5) 

3. Selection 

To decide whether or not it should become a member of generation G+1, the trial vector 
, 1i Gu 

 

is compared to the target vector 
,i Gx  using the greedy criterion. If vector 

, 1i Gu 
 yields a smaller 

cost function value than
,i Gx , then 

, 1i Gx 
is set to 

, 1i Gu 
; otherwise, the 

,i Gx  old value  is 

retained. 

 

2.3 Firefly algorithm 

Nature-inspired algorithms such as Particle Swarm Optimization and Firefly Algorithm are 

among the most powerful algorithms for optimization. The Firefly algorithm may also be 

considered as a typical swarm-based approach for optimization, in which the search algorithm 

is inspired by social behavior of Fireflies. There are two important issues in the Firefly 

algorithm that are the  

 Variation of light intensity, and  

 Formulation of attractiveness.  

2.3.1 What are fireflies?  

Lampyridae is a family of insects in the beetle order Coleoptera. They are winged beetles, and 

commonly called fireflies or lightning bugs for their ability to emit light. Light production in 
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fireflies is due to a type of chemical reaction called bioluminescence. This process occurs in 

specialized light-emitting organs, usually on a firefly’s lower abdomen. Light in adult beetles 

was originally thought to be used for warning purposes, but its primary purpose is now thought 

to be used in mate selection. Fireflies are a classic example of an organism that uses 

bioluminescence for sexual selection. They have evolved a variety of ways to communicate 

with mates in courtships: steady glows, flashing, and the use of chemical signals unrelated to 

photonic systems. The unique patterns of male flashes attract females of the same species, but 

there are examples where females mimic these patterns to lure other species in order to eat 

them. The large groups of fireflies are also known to synchronize their flashes. This 

phenomenon is explained as phase synchronization. 

The intensity of light drops exponentially as the distance increases between the emitter and 

the receiver. That is, the light intensity I decreases with the increase in distance r in terms I. 

Also, the environment can absorb part of the light and thus further decrease the intensity of 

the emitted light. These properties influence on communicating abilities of fireflies and are 

used to simulate behavior of fireflies in our algorithm. 

2.3.2 Rules of Firefly Algorithm 

In order to simulate light communication of fireflies with an algorithm we must simplify this 

phenomenon and disregard parts which are too complicated or which are part of some broader 

feature. There are three guiding rules for construction of such algorithm which is known as 

Firefly Algorithm or abbreviated FA. 

 First, we must think of all fireflies as if they have only one sex and are attracted to 

each other. 

 Second, attractiveness is associated with the intensity of the light being emitted by 

fireflies which also means that the brighter bug will attract the less capable bug to emit 

light which will move her toward the first bug. We should also consider the physical 

property of intensity and distance, in other words if the flies are far apart there will be 

low attraction. The brightest firefly will move randomly since it has no other bug to 

attract her. 
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 Third, the brightness of a firefly is affected or determined by the distribution of the 

objective function. 

Let Fitness function be ( )f x  where 
1 2( , ,..., )Dx x x x  

Generate an initial population of fireflies 
ix ( 1,2,.....n)i   

Light intensity Ii at
ix  is determined by ( )if x  

Define the light absorption coefficient    

While (t <MaxGeneration) 

For 1i   to n  all n fireflies 

For 1j   to n  all n fireflies 

If (
j iI I ) 

Move firefly i  towards j  in d-dimension 

End if 

Attractiveness varies with distance r via 
2

0

re    

Evaluate new solutions and update light intensity 

End for j 

End for i 

Rank the fireflies and find the current best 

End while 

Post process results and visualization 

End 

Fig. 2 Pseudocode of Firefly Algorithm 
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The flowchart of complete algorithm is as follows:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Flowchart of Firefly Algorithm 
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2.3.3 Attractiveness 

 

Intuitive step would be to use an objective function f(x) which would encode the brightness 

of a given firefly. Then we can think of it as the intensity at the location x as I(x) = f(x). But 

there are issues with the distance and the point of view. The brightness is differently perceived 

from the source of the flashes where it is the brightest and from some distant point watching 

those flashes. Then there is also capability of a medium to absorb part of that emitted light 

and thus decreased intensity of the watched firefly. We concluded that the attractiveness of a 

firefly which depends on intensity is relative. We know that the light intensity I(r) varies 

according to inverse square law, 0

2
(r)

I
I

r
 , where 0I  is the intensity at the source of the 

emittance. Next step is to add light absorption coefficient  

 to equation. 

0

2
(r)

1

I
I

r



    (6) 

Note that we added 1 to denominator just to avoid singularity of the term at the source (r = 0). 

As written earlier attractiveness is proportional to intensity so we can use the equation: 

0

2
(r)

1 r








    (7) 

We could approximate given attractiveness function with Gaussian form: 

 
2

0

rr e       (8) 
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2.3.4 Movement of fireflies 

The distance between any two Fireflies i and j whose positions are xi and xj is given by the 

Cartesian distance as follows: 

 
2

,m ,m

1

D

ij i j

m

r x x


     (9) 

The movement of a Firefly i, is attracted to another more attractive Firefly j is determined by: 

2

0

1
(x ) ( )

2

ijr

i i i jx x e x rand


 


      (10) 

Where, 

 the second term is due to the attraction 

 The third term is a randomization with use of randomization parameter (α), where  

α∈ [0, 1] rand is random number generator of Uniform distribution between 0 and 1. 

2.3.5 Asymptotic cases 

There are two important limiting cases  

 when , 00, ( )r      

This is equivalent to say that the light intensity does not decrease in an idealized sky. 

Thus, a flashing firefly can be seen anywhere in the domain. Thus, a single (usually 

global) optimum can easily be reached. This corresponds to a special case of particle 

swarm optimization (PSO). Subsequently, the efficiency of this special case is the 

same as that of PSO. 

 On the other hand, the limiting case, , ( ) (r)r        

(The Dirac delta function), which means that the attractiveness is almost zero in the 

sight of other fireflies or the fireflies are short-sighted. This is equivalent to the case 

where the fireflies fly in a very foggy region randomly. No other fireflies can be seen, 

and each firefly roams in a completely random way. Therefore, this corresponds to the 

completely random search method. 
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2.4 Opposition based learning 

 

This section reviews OBL introduced by Tizhoosh [10]. The reinforcement learning based 

upon opposition based approach has been explained in [11], [12]. Many machine intelligence 

algorithms are inspired by different natural systems. Genetic algorithms, neural nets, 

reinforcement agents, and ant colonies are, to mention some examples, well established 

methodologies motivated by evolution, human nervous system, psychology and animal 

intelligence, respectively. The learning in natural contexts such as these is generally sluggish. 

Genetic changes, for instance, take generations to introduce a new direction in the biological 

development. Behavior adjustment based on evaluative feedback, such as reward and 

punishment, needs prolonged learning time as well. Learning, optimization and search are 

fundamental tasks in the machine intelligence research. Algorithms learn from past data or 

instructions, optimize estimated solutions and search in large spaces for an existing solution. 

The problems are from different nature, and algorithms are inspired by diverse biological, 

behavioral and natural phenomena. 

To get the optimum solution of a given problem we have to make some initial estimates. This 

estimate can be made by having some prior information about the solution or it can be 

completely random. In absence of prior information, convergence of solution depends upon 

the distance of the optimal solution from the random estimate. In worst case, if random guess 

is very much far away from the initial random guess than sometimes the solution could not be 

reached. The solution to this problem could be to look for solution in all directions or at least 

in the opposite direction. In the initialization step, along with the random guess of the solution

x , the opposite of the x , x  should be considered simultaneously. This leads to searching of 

search space more thoroughly and increase in rate of convergence. 

2.4.1 Opposite number —Suppose x  is a real number which lies in the interval: [m,n]x . 

The opposite number of x is given by x as follows: 

x m n x       (11) 
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In multidimensional space, the opposite number can be given as. 

Let 
1 2( , ,......, )Dx x x x  be a point in D-dimensional space, where 

1 2, ,......, Dx x x R  and

[m ,n ] {1,2,...., }i i ix i D    . The opposite point x is defined by
1,......, Dx x in D-dimensional 

space where 

i i i ix m n x     1,...., .i D   (12) 

 2.4.2 Opposition-Based Optimization—let ( )f  be the fitness function, x  be a candidate 

solution in D-dimensional space and x  be the opposite point of x . Replace point x with x  if 

( ) (x)f x f else continue with x . Hence, the point and its corresponding opposite point are 

assessed simultaneously to determine the more appropriate point for the given problem. 

2.4.3 Extending Genetic Algorithms with OBL 

For every selected chromosome a corresponding anti-chromosome can be generated. The 

initial chromosomes are generally generated randomly meaning that they can possess high or 

low fitness. However, in a complex problem it is usually very likely that the initial populations 

are not the optimal ones. In lack of any knowledge about the optimal solution, hence, it is 

reasonable to look at anti-chromosomes simultaneously. Considering the search direction and 

its opposite at the same time will bears more likelihood to reach the best population in a shorter 

time. Especially at the beginning of the optimization, either the chromosome or the anti-

chromosome may be fitter (in some cases both may be fit solutions!). Considering a 

population member and its genetic opponent should accelerate finding the fittest member. 

 

 

 

 

 

 

 

 

 

 



  

OPPOSITION AND DIMENSIONAL BASED MODIFIED FIREFLY ALGORITHM 28 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 3 

 

PROPOSED METHODOLOGY 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

OPPOSITION AND DIMENSIONAL BASED MODIFIED FIREFLY ALGORITHM 29 

 

3. Proposed Methodology 

The original FA stuck in the local optima for high-dimensional problems as it doesn’t consider 

every dimension of each firefly separately for finding the best solution due to which some 

dimensions move towards the better solution but some dimensions are moves away from the 

global solution therefore global optima is not reached. The proposed dimensional FA helps 

FA to not to stuck in the local optima as in this, in every generation global best solution is 

formed whose each dimension represents the best value of that dimension among all the 

fireflies and then position of all fireflies are updated according to the global best firefly. This 

leads to optimization of each dimension and hence we got the global optima. The opposition 

based FA helps in initialization of the fireflies more efficiently so that fireflies converge faster 

and hence the time complexity is reduced. The proposed approach is explained as follows. 

Let there are N-number of fireflies represented by 1 2( , ,..., )Nx x x x in D-dimensional space 

such that, thi firefly, 1 2( , ,..., )i i i iDx x x x . 

A. In the proposed approach, at the time of initialization phase, OBL is employed in which 

the opposite number of the positions of each firefly is calculated. Let the population 

generated after calculating the opposite number is x . From x  and x , the best N fireflies 

are selected. Steps are as follows: 

1) Initialize the position of fireflies x  randomly. 

2) Generate N more fireflies by calculating the opposite population, x . This is done 

 using the multi-dimensional opposite number of each firefly in the set x  

ij j j ijx a b x   , where 1,2,.....i N and 1,2,.....j D  

Where, ijx and ijx  represents thj   dimension of the thi  firefly of the population and the 

opposite-population, respectively. 

3) Select the best N fireflies from x x . These fireflies constitutes the initial 

 population. 
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B. Each firefly in FA represents a candidate solution of the optimization problem. In original 

FA, the updation of the D-dimensional firefly takes place together which leads to some 

dimensions move towards the optimal solution and other dimensions move away from it. 

The deteriorated dimensions are neglected hence it becomes difficult to find the global 

optimum in high-dimensional problem. The time taken to reach every dimension at their 

optimum value is high so Dimensional FA is introduced in which every dimension is 

updated separately. This is made possible by introducing the concept of Gbest in FA. 

Gbest represents the best firefly in the current generation. This Gbest is further improved 

by changing the value of one dimension at a time with the corresponding dimension value 

of other fireflies one by one and then if the fitness value improves, the Gbest is updated. 

Gbestpos is the position of the Gbest. The context vector is used to represent the vector 

formed by putting the each dimension of each firefly one by one in the Gbestpos. Context 

vestor is first initialized with the Gbestpos. The fitness of the firefly in dimension j is 

calculated by replacing the thj  component of context vector by thj  of this firefly. Then, if 

(Contextvector)f is better than Gbest, Gbestpos is replaced with that vector. Therefore, 

this method helps the firefly to contribute its merits in each dimension. This process is 

repeated for every dimension of every firefly in each generation. At the end of each 

generation, all the fireflies move towards the Gbest whereas in original firefly, the fitness 

value of each firefly is compared with all other fireflies and if the fitness value of that 

firefly is less than any other firefly, the firefly moves towards that better firefly. This 

concept of original firefly consumes time whereas in modified algorithm all fireflies move 

towards Gbest and no comparison is required. This helps in saving time.   

Steps of Dimensional FA are as follows: 
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1. Initialize context vector with the global best firefly. 

2. For each dimension j in D-dimensional space, repeat steps 3 and 4.  

3. The fitness of the firefly in dimension j is calculated by replacing the 
thj  component 

of context vector by 
thj  of this firefly. 

4. Repeat step 3 for each firefly 

5. Move all fireflies towards Gbest. 

6. Repeat all above steps for each generation. 

C. The modified Firefly Algorithm constitutes above two modifications.  

Steps are as follows: 

1. Generate initial population of fireflies, x . 

2. Generate opposite population by applying Opposition based learning, x . 

3. Select N fitted fireflies from the set { x ,
ijx }. This constitutes the initial position of fireflies. 

4. for each generation 

5. Repeat the steps of Dimensional approach stated above 

6. Move the fireflies towards the Global best firefly by the following position update equation: 

2

0

1
(x ) ( )

2

ij

i

rnew old old

i ix x e Gbestpos rand


 


       (13) 

7. After the last generation, Gbest constitutes the Global optimal solution of the function and 

Gbestpos constitutes the coordinates at which optimal solution is found. 
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Fig. 4 Flowchart of Modified Firefly Algorithm 
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4.1 The experiments are performed on MATLAB, 2.50GHz Intel i5 processor. 

A set of standard functions has been used for performance analysis of the proposed approach 

against original FA. In Appendix A, the definition of those functions with their global 

minimum values are enlisted. The measure used in this paper for comparing the speed of FA 

and ODFA is execution time. Smaller execution time means higher convergence speed. In 

order to compare convergence speeds, a parameter speed rate is used given by 

FA

ODFA

t
K

t
    (14) 

Where FAt the execution is time for FA and ODFAt is the execution time for ODFA. K>1 

signifies ODFA is faster. 

Table1 shows the value of fitness function ( )f   obtained by modified algorithm as well as by 

the original FA for several standard functions with 2, 3 and 4 dimensions. Results show that 

the solutions obtained by the proposed approach are more accurate. The fitness value of 

Ackley function obtained through modified algorithm is approximately 1000 times better than 

the value obtained through the original FA. In the same manner, the fitness value of other 

functions obtained by proposed algorithm are also better than the original FA. The value of 

K is also mentioned in the table. The value of K is almost greater than 1 for every optimization 

function which proves that the convergence speed of the proposed algorithm is higher than 

the original FA. 

4.2 Parameters Initialization: For all the experiments the parameters are initialized as 

follows: N=50, MaxGeneration=200,  =0.2,  =0.001 but in Schwefel’s function and 

Griewank’s function, the search space is very large which lies in the range [-500,500]  and [-

600 600] respectively so number of fireflies required is more to explore the whole search 

space therefore, N=200 and MaxGeneration= 500 is taken for Schwefel’s function. The fitness 

value of different functions with respect to the population size is plotted in Fig. 4 which shows 

that at N=50 the functions attain their global optima.       
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Table 1: Experimental Results 

Functions Dimensions 

2-Dimension 3-Dimension 4-Dimension 

Original  

( )f   

Proposed 

( )f   

K  Original  

( )f   

Proposed 

( )f   

K  Original  

( )f   

Proposed 

( )f   

K  

Ackley 2.08*10-2 5.7119*10-5 1.1144 2.125*10-2 2.506*10-5 1.1428 1.844*10-1 6.421*10-5 0.9416 

Rosenbrock 0 0 1.7189 0 0 2.67 0.1774 4.156*10-3 3.175 

De Jong 2.79*10-6 4.63*10-11 2.317 3.307*10-5 4.57*10-10 3.056 1.198*10-4 1.038*10-10 2.59 

Griewank 0.1051 4.124*10-11 1.509 0.1482 7.7*10-11 1.125 0.1601 1.065*10-10 1.273 

Easom -0.811 -1 3.335 NA NA NA NA NA NA 

Shubert -186.73 -186.7309 2.928 NA NA NA NA NA NA 

Schwefel 1.4*10-3 2.58*10-5 1.564 0.04318 3.818*10-5 2.86 0.056 8.08*10-5 2.14 

Rastrigin 7.816*10-3 6.928*10-9 1.32 8.097*10-2 7.414*10-7 1.51 5.304*10-2 4.316*10-6 1.86 

Michalewicz -1.37 -1.8013 0.946 -1.959 -2.7604 0.9029 -2.2667 -3.6571 0.7713 
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Table 2: Experimental results of Ackley Function 

Dimensions  Original Modified 

2-D Position  (0.31,0.62)*10-3 (0.1514,0.0511)*10-4 

Gbest 

Value 

2.08*10-2 5.7119*10-5 

Time 0.20059 0.18 

3-D Position  0.93,0.015,0.0047 (0.2215,0.4851,0.9)*10-2 

Gbest 

Value 

2.125*10-2 2.506*10-5 

Time 0.2388 0.209 

4-D Position  0.0004,0.014,-0.932,0.0228 (0.041,-0.053,3.77,1.81)*10-

3 

Gbest 

Value 

0.1844 6.421*10-5 

Time 0.2665 0.283 

 

Table 3: Experimental results of Rosenbrock function 

Dimensions  Original Modified 

2-D Position  1,1 1,1 

Gbest 

Value 

0 0 

Time 0.1375 0.080 

3-D Position  1,1,1 1,1,1 

Gbest 

Value 

0 0 

Time 0.2269 0.085 

4-D Position  0.9013,0.8236,0.6679,0.4408 0.9499,0.9019,0.8132,0.6692 

Gbest 

Value 

0.1744 4.156*10-3 
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Time 0.3683 0.116 

 

 

Table 4: Experimental results of De Jong function 

Dimensions  Original Modified 

2-D Position  0.0015,-0.0008 (0.1514,0.0511)*10-4 

Gbest 

Value 

2.79*10-6 4.63*10-11 

Time 0.38466 0.18 

3-D Position  -0.0055,0.0008,0.0013 (0.2215,0.4851,0.9)*10-2 

Gbest 

Value 

3.3077*10-5 4.57*10-10 

Time 0.638 0.209 

4-D Position  0.0068,-0.0018,0.0026,-

0.0080 

(0.041,-0.053,3.77,1.81)*10-

3 

Gbest 

Value 

1.1984*10-4 1.038*10-10 

Time 0.73 0.283 

 

 

Table 5: Experimental results of Griewank function 

Dimensions  Original Modified 

2-D Position  0.4621,-0.0229 (-0.72,-0.7798)*10-5 

Gbest 

Value 

0.1051 4.124*10-11 

Time 0.323 0.214 

3-D Position  0.3408,0.4216,0.5737 (-0.0022,-0.0433,-

0.209)*10-4 

Gbest 

Value 

0.1482 7.7012*10-11 
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Time 0.35775 0.318 

4-D Position  -0.536,0.0195,-0.0902,-0.4153 (0.13,-0.053,0.05,0.03)*10-

4 

Gbest 

Value 

0.1601 1.0655*10-10 

Time 0.4506 0.354 

 

 

Table 6: Experimental results of Easom function 

Dimensions  Original Modified 

2-D Position  3.0525,3.211 3.416,3.1416 

Gbest 

Value 

-0.811 -1 

Time 0.1334 0.04 

 

 

Table 7: Experimental results of Shubert function 

Dimensions  Original Modified 

2-D Position  -0.8001,-1.4251 -0.8003,-1.4251 

Gbest 

Value 

-186.7308 -186.7309 

Time 0.3279 0.112 

 

 

Table 8: Experimental results of Schwefel function 

Dimensions  Original Modified 

2-D Position  421.0356,420.978 420.9702,420.9696 

Gbest 

Value 

1.4*10-3 2.58*10-5 

Time 0.3722 0.238 
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3-D Position  422.075,0.420.6,419.5737 420.9685,420.9688,420.9687 

Gbest 

Value 

0.04318 3.818*10-5 

Time 6.915 2.418 

4-D Position  418.536,420.0195,419.090

2,420.4153 

420.9674,421.3157,420.9673,420.2072 

Gbest 

Value 

0.056 8.08*10-5 

Time 7.804 3.647 

 

 

Table 9: Experimental results of Rastringin function 

Dimensions  Original Modified 

2-D Position  (1.261,7.896)* 10-2 (0.057,-0.588)*10-5 

Gbest 

Value 

7.816*10-3 6.9228*10-9 

Time 0.146 0.111 

3-D Position  0.124,0.045 (1.068,2.6788)*10-3 

Gbest 

Value 

8.097*10-2 7.414*10-7 

Time 3.243 2.418 

4-D Position  0.098,0.087 (8.757,4.56)*10-3 

Gbest 

Value 

5.304*10-2 4.316*10-6 

Time 6.783 3.647 

 

 

Table 10: Experimental results of Michalewicz function 

Dimensions  Original Modified 

2-D Position  -0.3183, 1.5706 2.2029,1.5 
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Gbest 

Value 

-1.37 -1.8013 

Time 0.457 0.48401 

3-D Position  0.1514,1.5707 2.2030,1.5708,1.2850 

Gbest 

Value 

-1.959 -2.7604 

Time 0.0498 0.055148 

4-D Position  1.16,-0.7196 2.2030,1.5707,1.2850 

Gbest 

Value 

-2.2667 -3.6571 

Time 0.057 0.0739 

 

 

4.3 Graphs showing the global minima of functions 

4.3.1 Ackley function 

Fig. 5 shows the Global optimal solution of the Ackley function. (a) shows the distributed 

fireflies in the whole search space and their movement towards the optimal solution which is 

the global minimum of Ackley function. (b) shows the convergence of all fireflies to the 

optimal solution of the Ackley function after the last generation thus giving the optimal 

solution. 
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(a) 

 

(b) 

Fig. 5 Graphs showing convergence of fireflies towards optimal solution of Ackley 

function 
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4.3.2 Easom function 

Fig. 6 shows the Global optimal solution of the Easom function. (a) Shows the distributed 

fireflies in the whole search space and their movement towards the optimal solution which is 

the global minimum of Easom function. (b) Shows the convergence of all fireflies to the 

optimal solution of the Easom function after the last generation thus giving the optimal 

solution. 

 

 

 

(a) 
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(b) 

Fig. 6 Graphs showing convergence of fireflies towards optimal solution of Easom 

function 

4.3.3 Rastringin function 

Fig. 7 shows the Global optimal solution of the Rastringin function. (a) Shows the distributed 

fireflies in the whole search space and their movement towards the optimal solution which is 

the global minimum of Rastringin function. (b) Shows the convergence of all fireflies to the 

optimal solution of the Rastringin function after the last generation thus giving the optimal 

solution. 
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(a) 

 

 

 

 

(b) 

Fig. 7 Graphs showing convergence of fireflies towards optimal solution of Rastringin 

function 
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4.3.4 De Jong function 

Fig. 8 shows the Global optimal solution of the De Jong function. (a) Shows the distributed 

fireflies in the whole search space and their movement towards the optimal solution which is 

the global minimum of De Jong function. (b) Shows the convergence of all fireflies to the 

optimal solution of the De Jong function after the last generation thus giving the optimal 

solution. 

 

 

(a) 
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(b) 

Fig. 8 Graphs showing convergence of fireflies towards optimal solution of De Jong 

function 

 

4.3.5 Rosenbrock function 

Fig. 9 shows the Global optimal solution of the Rosenbrock function. (a) Shows the distributed 

fireflies in the whole search space and their movement towards the optimal solution which is 

the global minimum of Rosenbrock function. (b) Shows the convergence of all fireflies to the 

optimal solution of the Rosenbrock function after the last generation thus giving the optimal 

solution. 
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(a) 

 

 

(b) 

Fig. 9 Graphs showing convergence of fireflies towards optimal solution of Rosenbrock 

function 
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4.3.6 Schwefel function 

Fig. 10 shows the Global optimal solution of the Schwefel function. (a) Shows the distributed 

fireflies in the whole search space and their movement towards the optimal solution which is 

the global minimum of Schwefel function. (b) Shows the convergence of all fireflies to the 

optimal solution of the Schwefel function after the last generation thus giving the optimal 

solution. 

 

 

(a) 
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(b) 

Fig. 9 Graphs showing convergence of fireflies towards optimal solution of Rosenbrock 

function 
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Conclusions 

ODFA performs better than the original FA. In original FA, the position of the fireflies in D-

dimensional space represents the candidate solution of the optimization problem. The 

initialization of these fireflies in original FA is purely random so it can be possible that all 

fireflies initially take their random positions in the same direction whereas the global solution 

lies in the other direction due to which the time taken to reach the global solution increases 

and there can exist a chance that fireflies stuck in the local optima. The opposition based FA 

helps in initialization of the fireflies more efficiently so that fireflies converge faster. It 

initializes the fireflies in both directions to explore the search space. Secondly, In the FA, 

Each update step is performed on a full D-dimensional particle. This leads to the possibility 

of some components in the particle having been moved closer to the solution, while others 

have actually been moved away from the solution. The dimensional FA helps FA to not to 

stuck in the local optima and hence gives the accurate global optima. Each firefly attempts to 

also optimize a single dimension of the solution vector instead of just as a whole item. It means 

that we test not only the particle as a whole item, but also the particle in each dimension. The 

results are more efficient and the time complexity of the modified FA is also less as compared 

to FA. The dimensional and the opposition based Firefly algorithm is applied on several 

standard optimization test functions, and it is observed that the results are more accurate as 

well as the time taken to get the optimal solution is much less as compared to FA.  
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Appendix A 

List of Functions used for verification of proposed algorithm 

 Ackley function 

2

1 1

1 1
( ) aexp( b ) exp( cos(c )) a exp(1)

d d

i i

i i

f x x x
d d 

        

Where, a = 20, b = 0.2 and c  = 2π, 
ix [-32.768 32.768] for all i =1,……, d  

Global minimum: ( )f x =0, at x =(0,…..,0) 

 Rosenbrock function 

1
2 2 2

1

1

( ) [100(x ) ( 1) ]
d

i i i

i

f x x x






     

Where, 
ix [-2.048, 2.048] for all i =1,……, d  

Global minimum: ( )f x =0, at x =(1,…..,1) 

 De Jong function 1 

2

1

( )
d

i

i

f x x


  

Where, 
ix [-5.12, 5.12] for all i =1,……, d  

Global minimum: ( )f x =0, at x =(0,…..,0) 

 Griewank function 

2

1 1

( ) cos( ) 1
4000

dd
i i

i i

x x
f x

i 

     

Where, 
ix [-600, 600] for all i =1,……, d  

Global minimum: ( )f x =0, at x =(0,…..,0) 

 Easom function 

2 2

1 2 1 2( ) cos( )cos( )exp( ( ) ( ) )f x x x x x        

Where, 1x [-100, 100], 2x [-100, 100]  

Global minimum: ( )f x =-1, at x =( , ) 

 Shubert function 
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5 5

1 2

1 1

( ) ( cos(( 1) ))( cos(( 1) ))
i i

f x i i x i i i x i
 

       

Where, 
1x [-10, 10], 

2x [-10, 10]  

Global minimum: ( )f x =-186.7309 

 Schwefel function 

1

( ) 418.9829d sin( )
d

i i

i

f x x x


   

Where, 
ix [-500,500] for all i =1,……, d  

Global minimum: ( )f x =0, at x =(1,…..,1) 

 Rastrigin function 

2

1

( ) 10 [ 10cos(2 )]
d

i i

i

f x d x x


    

Where, 
ix [-5.12, 5.12] for all i =1,……, d  

Global minimum: ( )f x =0, at x =(0,…..,0) 

 Michalewicz function 

2
2

1

( ) sin( )sin ( )
d

m i
i

i

ix
f x x



   

Where, m=10, 
ix [0, ] 

Global minimum: At d=2, ( )f x =-1.8013, at x =(2.20,1.57) 
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