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ABSTRACT 

In the present work, haze removal of images based on dark channel prior approach 
has been proposed. Based on the observation that haze impacts low frequency 
component of the image, only approximate part of the hazy image extracted using 
lifting DB4 wavelet is processed by proposed dark channel prior algorithm. Haze 
imaging model along with dark channel prior has been used to estimate atmospheric 
light and transmission. Patch size used for determining dark channel has been made 
adaptive on the basis of image size. Besides, airlight is obtained from larger patch to 
ensure more accurate estimation in the presence of localized light sources. Further, 
transmission has been estimated separately for each of the three color channels 
considering the phenomena that different color channels undergo different scattering 
in the atmosphere depending upon their wavelengths. In addition to this, transmission 
of near white objects has been selectively increased to prevent them from getting over 
saturated. Further, fast guided filter has been employed to refine transmission map in 
place of soft matting. Results show that the proposed method gives better 
performance as image contrast, entropy and SSIM have increased and runtime cost 
has been significantly decreased. Problem of bluishness observed in classical method 
also has been reduced. 
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CHAPTER 1  

INTRODUCTION 

Haze is an environmental occurrence that does not only adversely affect the visual quality 

of an image for human perception but also many machine vision applications whose 

performance greatly depends on the quality of the underlying image. Thereby, the 

requirement for removal of haze becomes obligatory. But doing this very much needed 

task is not an easy job as haze thickness depends on an unknown parameter ‗depth‘. 

Trying to retrieve depth information from a single input image is highly under 

constrained problem. So, initially haze removal from multiple images or with any other 

supplementary information became popular. However, in most of the real scenarios, it is 

practically impossible to obtain multiple images of a scene and this allowed single image 

haze removal to become widespread. Single image dehazing being under constrained, 

works on some estimations or priori knowledge to perform the task. More the correctness 

of estimations better will be the quality and fidelity of the haze free image. 

In recent times, single image haze removal based on Dark Channel Prior, proposed by He 

et al. [1] has become quite prevalent being realistic, less complicated and efficient in haze 

removal. Many researches have been proposed based on this prior to further improve and 

optimize the algorithm for different imaging conditions.  
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Dark Channel Prior is centered on the thought that in most of the outdoor clear images, 

there exists at least one color in RGB color space that will be nearly zero in a window. 

That means, one can find many clear colored objects. As it suggests, it won‘t hold true for 

sky regions or whitish objects e.g. white structures or cars. In addition, He‘s [1] method 

becomes time consuming due to refinement based on soft matting.    

In this thesis, we put forward a methodology, partially inspired from some of the 

previously developed techniques in order to optimize the DCP based method to be more 

suitable for practical real time applications without compromising on image fidelity. We 

apply lifting Daubechies (db4) wavelet decomposition merged with Fast Guided filtering 

[2] to ensure faster operation. To deal with the issue of blue horizon and to preserve the 

natural colors of the image, we calculate transmission of the medium for each color 

channel separately. We also apply adaptive transmission correction factor to solve the 

near white scene problem and hybrid adaptive patch size to solve the problem of 

localized light sources.  

The thesis report is structured as follows. In chapter 2, haze imaging equation is 

discussed, around which revolves our complete study. In the later part of this chapter, our 

broad revision on various single image based dehazing methods related to Dark Channel 

Prior has also been carried out. In chapter 3, various steps of conventional DCP technique 

developed by He et al. [1] are explained in detail. In chapter 4, we document our study 

and research work so as to overcome the drawbacks of DCP algorithm and produce high 

quality haze free image. Our results on images depicting various scenarios are presented 

in chapter 5. Based on the comparison between our and He‘s haze free images, we outline 

both qualitative and quantitative analysis. Chapter 6 summarizes the results and 

concludes the thesis work. Finally, in chapter 7, we discuss the shortcomings of the 

algorithm and future scope of the work.    

1.1 Thesis Summary 
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CHAPTER 2  

BASICS AND BACKGROUND 

This chapter discusses Haze Imaging equation. The equation forms the ground for our 

thesis and has been used widely in the onward content.     

Later in this chapter, former works in context of single image dehazing based on Dark 

Channel Prior has been asserted. In the course of our discussion, our understanding on the 

mentioned works based on our evaluation has also been shared. 

In 1975, McCartney suggested airlight scattering model [3] which was later elaborated by 

Narasimhan and Nayar [4]. The haze imaging equation generally utilized as a part of 

dehazing procedure is: 

 𝐼(𝑥) = 𝑡(𝑥)𝐽(𝑥) + 𝐴(1 − 𝑡(𝑥)) (2.1) 

2.1 Haze Imaging Equation 
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Figure 2.1:Haze Imaging Equation based depiction [5] 

where, 𝑥 is location of the pixel, 𝐼 is input hazy image, 𝐽 is haze free image, 𝐴 is airlight 

and 𝑡 is transmission of the medium through which light travels, i.e., air in present case.  

The first term ‗J(x) t(x)‘ in equation (2.1) is named as ‘direct attenuation’ that denotes 

the amount of light that reaches the camera straight from the object with the 

multiplication of attenuation factor caused by medium. 

The second term ‗A (1 - t(x))‘ is called ‘airlight’ that adds in the radiance as the indirect 

scattered light coming to the camera. Of course, the reason for scattering is the 

haze/particles present in the atmosphere that is the target of our exercise.  

A large number of researches have been done based upon Dark Channel Prior 

assumption. In the duration of our study, we have evaluated some of those techniques and 

our conclusions are underneath: 

C.H. Hsieh et al. [6] proposed pixel based dark channel, i.e., with patch of size 1x1. This 

eliminates the need of soft matting. This method works faster however it suffers from 

halo artifacts. 

C.H. Yeh1 et al. [7] introduced an additional bright channel prior to detect regions with 

minimal haze density. The criterion appears to be false for black objects and shadow 

regions. 

2.2 Literature Survey 
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Yogesh et al. [8] simply deployed erosion and dilation for refinement process. The 

method is confined to a smaller patch size (3x3) beyond which it appears incapable to 

eliminate halos. Moreover, the moment it achieves halo removal, oversaturation of image 

emerges as a new problem. 

H.Yu Yang et al. [9] used median filter to refine the transmission inherently in the 

algorithm and adds no extra computation cost.  

Y. Yang et al. [10] used discrete Haar wavelet transform and guided filtering [11] to 

speed up the dehazing algorithm. 

Y. Song et al. [12] used pixel wise dark channel or local maximum saturation as guidance 

image for the guided filtering refinement. This enhanced further the speed of the 

algorithm since here the guidance images are grey scale in contrast to RGB. 

Jiajie Liu et al. [13] optimized transmission by utilizing the difference of image intensity 

and airlight for every pixel. It performs satisfactorily in sky region however performance 

is degraded for non-sky images. 

Yi-Jui Cheng et al. [14] resolved the localized light sources impact by computing the 

airlight from dark channel of 45x45 patch. 

Dark channel assumption of He [1] fails in sky regions. This leads to inaccurate 

transmission estimation and oversaturation of sky as the outcome. C. Chengtao et al. [15] 

performed image segmentation to two regions: sky and non-sky and determine their 

parameters independent of each other to deal with oversaturation. The method is not very 

friendly, as it needs user intervention to tune the image dependent threshold value for 

segmentation. 

T. Han and Y. Wan [16] worked on to make transmission estimation more accurate. The 

value of estimated transmission is varied according to the distance of pixel intensity from 

airlight. It‘s true that this method works well for the sky parts but at the same time leads 
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to oversaturation of the rest of image. It is quite tedious to tune the above method so as to 

find parameters that fits in and works well for both sky and non-sky image parts. 

Xipan Lu et al. [17] worked on this problem by proposing a compensation term in 

transmission computation that considered sky region.  

C. Yang and F. Liu [18] resolved the near white object problem in initial DCP [1] 

inspired by underwater dehazing [19]. They increased the transmission with an additive 

term which is based on the logic of deviation of difference of max. and min. pixel color 

channel intensity to the average of this quantity.  

Many techniques based on pixel wise dark channel prior calculation avoid time-

consuming refinement process to eliminate halo and blocky artifacts; however this leads 

to wrong estimation of atmospheric light when some white objects or structures are 

present in the image. Secondly, since dark channel of such objects is not dark, it leads to 

underestimated transmission. In both such scenarios, oversaturation of haze free images 

occurs.  

Another case of over saturation occurs when white objects are present in near scenes of 

the image. In this case also, dark channel is also dark leading to underestimation of 

transmission. He et al. [1] stated this as ‗white marble problem‘ in his paper. 

In our present work, we put forward a methodology somewhat obtained from the above 

stated works, to develop an optimized algorithm based on DCP which ensures fast and 

accurate dehazing results. A very efficient wavelet decomposition, Lifting scheme with 

Daubechies (Db4) has been deployed. Transmission estimation has been optimized to 

solve the ‗white marble problem‘. Adaptive patch size has been used to deal with 

localized light sources in the images. Refinement process has been performed with fast 

guided filtering [2] technique. Further, problem of bluishness in conventional DCP [1] 

has been dealt with by processing the three color channels separately.  
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CHAPTER 3  

CONVENTIONAL DARK CHANNEL PRIOR BASED 

APPROACH 

With due reference to haze imaging equation (2.1) familiarized in former chapter, our 

aim is to determine scene radiance 𝐽 from input hazy image I. Intuitively, for this, we 

need to estimate airlight 𝐴 and transmission 𝑡.  

In this chapter, we discuss in detail the Dark Channel Prior based dehazing technique [1].  

Image dehazing is an under constrained problem with impracticability of multiple images 

of same scene under different conditions. To solve this with single image, some prior or 

assumptions are needed. 

Tan [20] assumed that the contrast of the hazy image is lesser than the haze free image. 

His method provide high contrast results however at times, it becomes incapable of 

faithfully recovering images due to oversaturation. 

Fattal [21] considered the statistical independent nature of luminance and transmission. 

His method works well but is limited to low haze density. 

3.1 Dark Channel Prior 
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Dark Channel Prior assumption of He et al. [1] is based on the observation that for most 

of the outdoor haze-free images (except sky), there exists at least one color channel out of 

RGB color space which has intensity value tending to zero in a patch. We may simply 

validate this assumption from images underneath: 

 

Figure 3.1: (a, c) Outdoor clear images; (b, d) respective dark channel with 15x15 patch  

As the logic suggests, it is the presence of colorful objects, shadow areas, irregular 

structures etc. in many real world images leading to validity of this prior in most of the 

cases. Exception to this is sky regions and near white structures. 

In contrast to the above observation for clear images, dark channel for haze free images is 

not too dark. An intuitive reason for this is the presence of haze that brightens the pixels.  
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Figure 3.2: (a, c) Hazy images; (b, d) respective dark channel with 15x15 patch  

He‘s[1] Dark Channel Prior algorithm is depicted in the following flow diagram: 

 

Figure 3.3: Flow Diagram for DCP Algorithm 

3.1.1     Dark Channel Computation  

Dark channel is calculated with two minimum operations as follows: 

 𝐼𝑑𝑎𝑟𝑘(𝑥) = min
𝑦∈Ω(𝑥)

( min
𝑐∈*𝑅,𝐺,𝐵+

 𝐼𝑐(𝑦)) (3.1) 

where, 𝑐 refers to the color channel in the RGB color space and Ω refers to the patch or 

window considered for dark channel computation. 
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3.1.2   Airlight Estimation  

To estimate airlight, average intensity of pixels in hazy image corresponding to 0.1% of 

the pixels in the dark channel having highest intensity values is calculated. This airlight is 

assumed to be constant for the whole image but different for three color channels – Red, 

Green and Blue. Defining in this manner takes care that white objects present in the 

image like white cars, buildings etc. may not be mistakenly chosen to estimate airlight.   

3.1.3  Transmission Estimation 

To calculate transmission, rewriting equation (2.1) as: 

  𝐼𝑐(𝑥)

𝐴𝑐
= 𝑡(𝑥)

𝐽𝑐(𝑥)

𝐴𝑐
+ 1 − 𝑡(𝑥) (3.2) 

Calculating dark channel on both sides of the above equation, we get, 

 

min
𝑦∈Ω(𝑥)

(min
𝑐

𝐼𝑐(𝑥)

𝐴𝑐
) = 𝑡̃(𝑥) min

𝑦∈Ω(𝑥)
(min

𝑐
(
𝐽𝑐(𝑥)

𝐴𝑐
+ (1 − 𝑡(𝑥))) (3.3) 

Here, 𝑡̃(𝑥) is transmission which is assumed to be constant in a patch. Now, since dark 

channel corresponding to a haze free image tends to zero: 

 𝐽𝑑𝑎𝑟𝑘(𝑥) = min
𝑦∈Ω(𝑥)

(min
𝑐

𝐽𝑐(𝑦)) = 0 (3.4) 

That is, 

 min
𝑦∈Ω(𝑥)

(min
𝑐

𝐽𝑐(𝑥)

𝐴𝑐
) = 0 (3.5) 
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From equation (3.5) and (3.3), we get, 

 𝑡̃(𝑥) = 1 − min
𝑦∈Ω(𝑥)

(min
𝑐

𝐼𝑐(𝑥)

𝐴𝑐
) (3.6) 

3.1.4  Transmission Refinement Using Guided Filter [11] 

In earlier research work, He et al. [1] proposed the use of soft matting technique 

developed by A. Levin [22] to refine transmission so as to deal with halo artifacts. 

Though effective, this technique is the major contributor to the increase in running time 

of the dehazing algorithm. To overcome this shortcoming and enable the algorithm for 

real time applications, He et al. [1] developed an edge aware filtering technique - ‗Guided 

Filter‘ to replace soft matting.   

Replacing soft matting by guided filtering dramatically increased the speed of the 

algorithm without compromising the quality of the output image.  

3.1.4.1  Introduction to Guided Filter  

Guided filter constitutes filtering of an input image ‗𝑝‘ on the basis of a guidance image 

‗𝐼‘. It assumes that there exists a linear relationship between the guidance and the output 

image ‗𝑞‘ as depicted by the equation below: 

 𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘, ∀𝑖∈ 𝜔𝑘 (3.7) 

where (𝑎𝑘, 𝑏𝑘) are linear coefficients calculated from the input and guidance image. 

These linear coefficients are assumed to be constant in a window ‗𝜔𝑘‘ of radius ‗𝑟‘. This 

nearby direct model guarantees that q has an edge just in the event that I has an edge, in 

light of the fact that: 

 𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘, ∀𝑖∈ 𝜔𝑘 (3.8) 

To find the value of (𝑎𝑘, 𝑏𝑘), following cost function is minimized in window 𝜔𝑘: 
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 𝐸(𝑎𝑘, 𝑏𝑘) = ∑ ((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖)
2 + 𝜀

𝑖∈𝜔𝑘

𝑎𝑘
2) (3.9) 

where ‗𝜀‘ is regularization parameter. Solution of equation (3.9) is given by: 

 

𝑎𝑘 =

1
|𝜔|

∑ 𝐼𝑖𝑝𝑖 − 𝜇𝑘𝑝𝑘̅̅ ̅𝑖∈𝜔𝑘

𝜎𝑘
2 + 𝜀

 (3.10) 

and 

 𝑏𝑘 = 𝑝𝑘̅̅ ̅ − 𝑎𝑘𝜇𝑘 (3.11) 

where, 𝜇𝑘 is the mean and 𝜎𝑘
2 is the variance of guidance image ‗𝐼‘ and;  |𝜔| are the 

number of pixels in window ‗𝜔𝑘‘. For example, the mean of ‗𝑝‘ in window 𝜔𝑘 is given 

by: 

 
𝑝𝑘̅̅ ̅ =

1

|𝜔|
∑ 𝑝𝑖

𝑖∈𝜔𝑘

 (3.12) 

Filtering output 𝑞𝑖 can be computed from equation (3.8). 

In any case, a pixel 𝑖 is included in all the covering windows 𝜔𝑘 that spreads over 𝑖. So 

the estimation of 𝑞𝑖 in (3.8) is not unique when it is processed in various windows. A 

straightforward method is to average out all the conceivable estimations of 𝑞𝑖. So 

subsequent to figuring (𝑎𝑘, 𝑏𝑘) for all windows 𝜔𝑘 in the image, filtering output is 

computed by: 

 
𝑞𝑖 =

1

|𝜔|
∑ (

𝑘|𝑖∈𝑤𝑘

𝑎𝑘𝐼𝑖 + 𝑏𝑘) (3.13) 

Equation (3.13) can be rewritten as: 

 𝑞𝑖 = 𝑎𝑖̅𝐼𝑖 + 𝑏𝑖̅ (3.14) 

Where 𝑎𝑖̅ and 𝑏𝑖̅ are the average coefficients of all windows covering 𝑖. 
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Yet, as (𝑎𝑖̅, 𝑏𝑖̅) are the output of a mean filter, their slopes can be relied upon to be much 

smaller than that of I close solid edges. In this circumstance, we can in any case have 

∇𝑞 ≈ 𝑎̅∇𝐼, implying that abrupt intensity changes in I can be protected in q. 

3.1.4.2  Guided Filter Working Principle  

Referring back to equation (3.8), (3.10) and (3.11) and assuming that 𝐼 ≡ 𝑝, we get, 

 𝑎𝑘 = 𝜎𝑘
2 (𝜎𝑘

2 + 𝜀)⁄  (3.15) 

And 

 𝑏𝑘 = (1 − 𝑎𝑘)𝜇𝑘 (3.16) 

Following two cases can be observed: 

Case 1: Edge region – Region of high variance 

Here, we have 𝜎𝑘
2 >>𝜀, so  𝑎𝑘 ≈ 1 and 𝑏𝑘 ≈ 0. Therefore, output image 𝑞 = 𝐼 (guidance 

image). Thus, patches having high variance will be preserved, i.e. edges present in the 

guidance image will remain unaltered.    

Case 2: Flat region – Region of low variance 

Here, we have 𝜎𝑘
2 << 𝜀, so  𝑎𝑘 ≈ 0 and 𝑏𝑘 ≈ 𝜇𝑘. Therefore, output image 𝑞 = 𝜇𝑘 (mean 

of pixels in window 𝜔𝑘). Thus, flat patches i.e. regions with low variance will be 

smoothed out. 
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3.1.4.3  Guided Filter Algorithm 

“Input: radius 𝑟, regularization 𝜀, input image 𝑝, guidance image 𝐼 

Output: filtering output 𝑞 

1. 𝑚𝑒𝑎𝑛𝐼 = 𝑓𝑚𝑒𝑎𝑛(𝐼)  

  𝑚𝑒𝑎𝑛𝑝 = 𝑓𝑚𝑒𝑎𝑛(𝑝) 

𝑐𝑜𝑟𝑟𝐼 = 𝑓𝑚𝑒𝑎𝑛(𝐼.∗ 𝐼) 

𝑐𝑜𝑟𝑟𝐼𝑝 = 𝑓𝑚𝑒𝑎𝑛(𝐼.∗ 𝑝) 

2. 𝑣𝑎𝑟𝐼 = 𝑐𝑜𝑟𝑟𝐼 − 𝑚𝑒𝑎𝑛𝐼 .∗ 𝑚𝑒𝑎𝑛𝐼 

𝑐𝑜𝑣𝐼𝑝=𝑐𝑜𝑟𝑟𝐼𝑝 − 𝑚𝑒𝑎𝑛𝐼 .∗ 𝑚𝑒𝑎𝑛𝐼 

3. 𝑎 = 𝑐𝑜𝑣𝐼𝑝./(𝑣𝑎𝑟𝐼 + 𝜀)  

𝑏 = 𝑚𝑒𝑎𝑛𝑝 − 𝑎.∗ 𝑚𝑒𝑎𝑛𝐼 

4. 𝑚𝑒𝑎𝑛𝑎 = 𝑓𝑚𝑒𝑎𝑛(𝑎) 

𝑚𝑒𝑎𝑛𝑏 = 𝑓𝑚𝑒𝑎𝑛(𝑏) 

5. 𝑞 = 𝑚𝑒𝑎𝑛𝑎 .∗ 𝐼 + 𝑚𝑒𝑎𝑛𝑏‖ 

3.1.4.4  Guided Filter Applications  

Though guided filter was developed as edge preserving smoothing filter, it can be used in 

diverse applications depending on the value of ‗𝑟‘, ‗𝜀‘ and guidance image ‗𝐼‘. In this 

subsection, we discuss some of the applications of guided filter. 

1) Smoothing Filter:  To employ guided filter as smoothing filter, we may take 

guidance image ≡ filtering input image. Smaller value of ε and higher value of 

radius r gives more smoothing effect. For illustration, consider the figure below: 
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                       Figure 3.4: Guided filter as smoothing filter 

2) Flash / No Flash Denoising :  In [27], a no-flash image is denoised under the 

guidance of its flashed image. Figure below demonstrates this: 

 

                Figure 3.5: Guided filter used for flash / no-flash denoising 

3) Structure Transfer Filtering :  Due to linear model, 𝑞 = 𝑎𝐼 + 𝑏, guided filter 

can be used to transfer structure from guidance image to input image. For 

illustration, consider the figure below: 



 

- 16 - 

 

 

         Figure 3.6: Guided filter used for structure transferring 

This is a very important application of guided filter in view of haze removal 

applications. This feature of guided filter can be exploited for transferring the 

original structure of the scene to blocky coarse transmission. This is illustrated in 

figure 3.7.                  

 

Figure 3.7: Guided filter used for transmission refinement 

3.1.5  Scene Radiance Restoration 

Having evaluated transmission and air light, scene brilliance can be ascertained using 

haze imaging equation. If for some pixel transmission value goes too low, 

correspondingly scene radiance will go very high in each color channel. To stay away 
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from this circumstance, He et al. [1] limits transmission at 0.1 as lower bound. 

Numerically, 

 𝐽(𝑥) = ( 
𝐼(𝑥) − 𝐴

𝑚𝑎𝑥(𝑡(𝑥), 𝑡0)
) + 𝐴 (3.17) 



 

- 18 - 

 

CHAPTER 4  

PROPOSED SCHEME 

In our proposed algorithm, we have attempted to overcome the following shortcomings 

of He‘s method: 

1. High computation time 

2. Incorrect estimation of atmospheric light in the presence of localized light sources 

3. Saturation of near white objects 

4. Bluishness of scenes near horizon 

Since haze is a low frequency phenomenon, we simply process the low frequency part of 

the picture as opposed to the entire picture. This lessens the run time of dehazing 

calculation. 

Y.Yang et al. [10] decomposed image into four components – image approximation, 

vertical details, horizontal details and diagonal details using Haar discrete wavelet 

transform. The approximation image containing low frequency component is then further 

processed for image dehazing. This gives the classical DCP algorithm ample speed boost.

4.1 Step Up Using Wavelet Decomposition 
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4.1.1  Proposed Method 

We employ Db4 wavelet (Db2 in matlab), implemented using lifting scheme, to obtain 

approximation image containing low frequency information for further processing via 

haze removal algorithm. Due to involvement of less complex operations as compared to 

discrete wavelet transform (convolution, up-sampling and down-sampling), our algorithm 

is faster than He‘s method [1] and computationally more efficient than Yang‘s method. 

Also, since lifting is an in-place algorithm, less memory space is required. 

4.1.1.1  The Lift ing Scheme 

Lifting is a scheme developed by Wim Sweldens [23]-[26] for constructing second-

generation wavelets that need not be essentially dilation and translation of any function. 

To implement any discrete wavelet transform only finite number of lifting steps is 

needed. Discrete wavelet transform are traditionally implemented using filter banks. 

Lifting scheme takes advantage of the similarities between high pass and low pass filters 

to speed up the computation. Lifting starts with a very simple wavelet called Lazy 

wavelet from which a new wavelet having improved properties is gradually build.  

Lifting is prediction and error decomposition of discrete wavelet transform. 

Approximation or scaling coefficients are predictors for the next stage whereas details or 

wavelet coefficients are the prediction errors in the current stage. 

Lifting scheme can be illustrated by diagram below: 

 

Figure 4.1: Lifting scheme implementation [27] 

As shown in the figure, it involves three steps – Split, Predict and Update: 
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1. Split — Divides input signal ‗𝑓 ‘ into even and odd polyphase components 

 Even component: 𝑓(2𝑛); odd component: 𝑓(2𝑛 + 1) 

 

(4.1) 

2. Predict (also dual lifting) — Predicts odd components from neighboring even 

components with predictor operation ‗P‘ and with details (high pass) as prediction 

error. 

 𝑑(𝑛)  =  𝑓(2𝑛 + 1) –  𝑃(𝑓(2𝑛)) (4.2) 

Odd components are then retrieved as 

 𝑓(2𝑛 + 1)  =  𝑃(𝑥(2𝑛))  +  𝑑(𝑛) (4.3) 

3. Update (also primal lifting): Updates the even samples with an update operator 

‘U‘ applied to detail sequence, This produces approximation (low pass) wavelet 

components ‗s‘.   

 𝑠(𝑛)  =  𝑓(2𝑛)  +  𝑈(𝑑(𝑛))  =  (𝑓(2𝑛) + 𝑓(2𝑛 + 1))/2 (4.4) 

4.1.1.2  Decomposit ion of DB4 into Lif t ing 

Daubechies DB4 transform has 4 filter coefficients: 

Low pass 

 𝑕0 =
1 + √3

4√2
      𝑕1 =

3 + √3

4√2
    𝑕2 =

3 − √3

4√2
     𝑕3 =

1 − √3

4√2
 (4.5) 

High pass 
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𝑔0 = 𝑕3 =
1 − √3

4√2
      𝑔1 = −𝑕2 = −

3 − √3

4√2
    

 𝑔2 = 𝑕1 =
3 + √3

4√2
     𝑔3 = −𝑕0 =

1 + √3

4√2
 

(4.6) 

Using filter coefficients in equations A.25 to A.30 in appendix, 

 

𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

]

= [1 √3
0 1

] [

1 0

√3

4
+

√3 − 2

4
𝑧−1 1

] [
1 𝑧
0 1

]

[
 
 
 
 √3 + 1

√2
0

0
√3 − 1

√2 ]
 
 
 
 

 
(4.7) 

 Approximate and detail coefficients can be obtained from the relation: 

 [
𝜆(𝑧)
𝛾(𝑧)

] = 𝑃(𝑧)−1 [
𝑓𝑒(𝑧)

𝑧−1𝑓𝑜(𝑧)
] (A.17) 

where 

 𝑃(𝑧)−1 =

[
 
 
 
 √3 − 1

√2
0

0
√3 + 1

√2 ]
 
 
 
 

[
1 −𝑧
0 1

] [

1 0

√3

4
+

√3 − 2

4
𝑧−1 1

] [1 −√3
0 1

] (4.8) 

Above decomposition can be summarized as: 
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Forward wavelet transform:    

1) Split 
𝜆−1,𝑘 ← 𝑓(2𝑘) 𝑎𝑛𝑑  𝛾−1,𝑘 ← 𝑓(2𝑘 + 1) (4.9) 

2) Update1 𝜆−1,𝑘 ← 𝜆−1,𝑘 + √3 𝛾−1,𝑘 (4.10) 

3) Predict 
𝛾−1,𝑘 ← 𝛾−1,𝑘 −

√3

4
𝜆−1,𝑘 −

√3 − 2

4
𝜆−1,𝑘−1 (4.11) 

4) Update2 
𝜆−1,𝑘 ← 𝜆−1,𝑘 − 𝛾−1,𝑘+1 

(4.12) 

5) Normalize 
𝜆−1,𝑘 ←

√3 − 1

√2
𝜆−1,𝑘 𝑎𝑛𝑑 𝛾−1,𝑘 ← 

√3 + 1

√2
𝛾−1,𝑘 (4.13) 

Inverse wavelet transform: 

1) Undo Normalize 
𝜆−1,𝑘 ←

√3 + 1

√2
𝜆−1,𝑘 𝑎𝑛𝑑 𝛾−1,𝑘 ← 

√3 − 1

√2
𝛾−1,𝑘 (4.14) 

2) Undo Update2 
𝜆−1,𝑘 ← 𝜆−1,𝑘 + 𝛾−1,𝑘+1 

(4.15) 

3) Undo Predict 
𝛾−1,𝑘 ← 𝛾−1,𝑘 +

√3

4
𝜆−1,𝑘 +

√3 − 2

4
𝜆−1,𝑘−1 (4.16) 

4) Undo Update1 
𝜆−1,𝑘 ← 𝜆−1,𝑘 − √3 𝛾−1,𝑘 (4.17) 

Lifting has numerous advantages as listed below: 

 It is faster with number of flops reduced by a factor of two. 

 It is an in place algorithm, therefore it requires less memory 

 Using lifting it is easy to build integer to integer transform. 
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 Constructing wavelets using lifting does not require prior knowledge of Fourier 

transform 

 Any lifting transform is immediately reversible, simply by changing + with – and 

vice versa 

Figure 4.2 and 4.3 shows the hazy image and its corresponding wavelet decomposition 

components. 

 

The formula for computing dark channel, as discussed in Chapter 3 is: 

 𝐼𝑑𝑎𝑟𝑘(𝑥) = min
𝑦∈Ω(𝑥)

( min
𝑐∈*𝑅,𝐺,𝐵+

 𝐼𝑐(𝑦)) (3.1) 

Dark channel of hazy image is shown in figure 4.4. 

 

Figure 4.2 (a): Input hazy image 

4.2 Dark Channel Prior 
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Figure 4.3 (b): Wavelet components (a) CA: Approximation (b) CH: Horizontal  

(c) CV: Vertical (d) CD: Diagonal          

 

Figure 4.4: (a) Input hazy image (b) Dark channel using 15x15 patch 

4.2.1  Impact of Patch Size 

When using smaller patch size with respect to size of image, the possibility of obtaining a 

pixel out of RGB color space with intensity tending to zero decreases. In such case, 

transmission computation (equation 3.5) becomes less accurate. Vice versa for large 

patch sizes, transmission computation is more accurate. However, opting for larger patch 
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size leads to stronger halo and blocky artifact. It is still possible to deal with these 

artifacts with the help of various refinement techniques. Figure below illustrates the 

impact of various patch sizes. Note that when patch size is bigger than required, some 

haze is left in the image. 

 

Figure 4.5: Recovering images using different patch sizes (a) Input hazy images (b) Using 3 × 3 patches (c) 

Using 15 × 15 patches (d) Using 30 × 30 patches [1] 

In our work, we have ascertained dynamic patch size to guarantee that it is sufficiently 

big, consequently encouraging accurate measurement of transmission. 

While estimating airlight, He considered a patch size of 15x15. This size can take care of 

small white objects but is not big enough to take care of localized light sources. So, in the 

presence of such localized light sources, atmospheric light is calculated using pixels from 

wrong position, i.e., pixels near the center of the light source. To deal with this problem, 

Yi-Jui Cheng et al. [14] proposed estimating atmospheric light using dark channel 

computed for patch of size 45 x 45. Method works well as 45 x 45 patch is big enough to 

hide light sources as big as street lights, car headlights etc., in the dark channel of the 

image. The result published in their research work is shown in figure 4.6. 

In our work, we have used hybrid patch size, i.e. different patch size for estimating 

atmosphere and different patch size for estimating transmission. We have kept the patch 

size for calculating atmosphere larger than the patch size for estimating transmission. The 

patch size chosen for estimating atmospheric light is not fixed to 45x45, rather it is 

decided dynamically from the size of the image. We have proposed this change so as to 

ensure that localized light sources are never mistakenly chosen for estimating airlight 

irrespective of their sizes. 

4.3 Estimating Atmospheric Light  
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Firstly, He‘s method suffered from the problem of saturation for near white scenes. This 

happens because when dark channel of near white large objects is computed, it does not 

comes out dark because of high intensity in all the three color channels. Due to this, the 

near white object is considered as a far object by the algorithm, underestimating the 

transmission which in turn leads to over estimation of scene radiance i.e. saturation. 

Feng Liu et al. [18] effectively dealt with the above mentioned issue by increasing 

transmission of those pixels for which difference between the highest and lowest intensity 

levels is nearly the same as the average of difference in the image.  

 

Figure 4.6: (a) Input hazy Image (b) 3x3 Dark channel (c) Recovered image using 3x3 patch (d) 15x15 

Dark Channel (e) Recovered image using 15x15 patch (f) 45x45 Dark Channel (g) Recovered image using 

45x45 patch [14] 

4.4 Estimating Transmission  
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Figure 4.7: (a) Input image (b) Result of He's method [1] (c) Result of Feng's method [18] 

Note that the temple behind in the figure above has been lost by the proposed technique.  

With tunable parameters set as proposed in their research work: 𝛾=2 and uplim=0.14, 

Feng‘s method yielded impressive results for images having majorly near white scenes 

but in other case it seems as if the haze is not completely removed. In our project, we 

have used Feng‘s method but with a little change so as to avoid saturation while 

removing maximum amount of haze at the same time. 

Secondly, He‘s conventional DCP method undergoes blue horizon problem, i.e., objects 

near the horizon appears blue. This happens so because transmission is kept constant 

among color channel, but in actual it depends on color. So, to overcome this issue, in our 

work, we have proposed to compute transmission separately for each channel [8]. The 

equation for transmission estimation in our case gets modified as follows: 

 𝑡𝑐̃(𝑥) = 1 − min
𝑦∈Ω(𝑥)

(
𝐼𝑐(𝑥)

𝐴𝑐
) (4.18) 

Only one minimum operator is required as calculated for each color separately. 
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Replacement of soft matting by guided filter made conventional DCP algorithm very fast. 

To further increase the speed of guided filter, He [2] proposed to subsample the input and 

guidance image, perform filtering process using these subsampled images and at last up 

sample the final output. This increases the speed drastically when compared to soft 

matting technique. The numerical values found after experimentation are listed in the 

Result section. 

In our work, we apply fast guided filter to speed up the dehazing algorithm.  

In the next subsection, we discuss in detail the cause of halo artifacts for which we need 

to go for refinement techniques. 

4.5.1  Dealing with Halo Artifacts  

Halos appear in the areas of depth discontinuities occurring in a patch. Since, 

transmission estimation is patch based, these different depth areas are wrongly 

determined. In this process, over estimation of transmission for far located regions lead to 

halos.  

We apply fast guided filtering to remove these halo artifacts in our haze removal process. 

Figure (4.8) depicts the coarse and refined transmission using proposed method. 

Once atmospheric light and refined transmission are obtained, we can simply use these 

parameters in haze imaging equation to retrieve scene radiance.  

 𝐽(𝑥) = ( 
𝐼(𝑥) − 𝐴

𝑚𝑎𝑥(𝑡(𝑥), 𝑡0)
) + 𝐴 (3.17) 

4.5 Refinement Using Fast Guided Filter 

4.6 Calculating Scene Radiance 
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Figure 4.8: (a) Hazy image (b) Coarse transmission (c) Refined transmission 
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The algorithm of our end to end work is depicted by the block diagram below. In another 

block diagram that follows, the dehazing algorithm has been presented.. 

 

Figure 4.9(a): Block diagram of our approach 

4.7 Proposed Algorithm 
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Figure 4.6(b): Block diagram (II) of our dehazing algorith
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CHAPTER 5  

SIMULATION AND RESULTS 

Based on our proposed algorithm  in chapter 4, here we discuss and compare the results 

so obtained with outputs from conventional method. We have done quantitative and 

qualitative examination on the results based on the entropy, structural similarity to the 

input hazy image and contrast.  

Simulation platform used for experimentation is Matlab-R2012a, Windows 10 Home 64-

bit, Intel core-i3 1.90 GHz (Quad core), and 4096 MB RAM. 
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Figure 5.1: Blue Horizon Problem (a) Input hazy image (b) He's output. Mountains near horizon turn blue 

(c) Our output. Original color of mountains remains intact. 

 

Figure 5.2: Blue Horizon Problem (a) Input hazy Image (b) He's output. Canyons near horizon turn blue (c) 

Our output. Original color of canyons remains intact.  

 

Figure 5.3: Blue Horizon Problem (a) Input hazy image (b) He's output. Mountains near horizon are not 

clear (c) Our output. Mountains near horizon are clear and don't turn blue. 

5.1 Qualitative Investigation 
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Figure 5.4: Blue Horizon Problem (a) Input hazy image (b) He's output (c) Our output 

 

Figure 5.5: Blue Horizon Problem (a) Input hazy image (b) He's output (c) Our output 

 

Figure 5.6: Near white scene saturation (a) Input hazy image (b) He's output. Marble is saturated (c) Our 

output. Color of marble remains intact. 
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Figure 5.7: Saturation (a) Input hazy image (b) He's output. Cones are saturated (c) Our output. Color of 

cones remains intact. 

In figure 5.1, the mountains turn bluish near horizon when conventional DCP [1] is used 

for dehazing. As discussed before, this happens due to keeping transmission uniform over 

the three color channel – Red, Green and Blue, when in actual transmission is color 

dependent. Our method solves this problem as we calculate transmission separately for 

each color channel. Same can be observed for the next three figures - (5.2), (5.3), (5.4) 

and (5.5).  

In figure 5.6, transmission of marble is under estimated in He‘s algorithm [1]. Due to 

which it appears saturated or say yellowish in the final haze free image. To deal with 

problem, we introduce a correction factor to increase transmission in such regions. Our 

result shows that the problem of saturation of near white scenes has been successfully 

dealt with. 

In figure 5.7, He‘s method results in over saturation i.e. the natural color of cones is lost. 

On the other hand, our method successfully dehaze the image without compromising at 

color fidelity. 

We use entropy, SSIM and RMS contrast to compare image quality results as described 

underneath: 

 Entropy: It is a measure of randomness. It can characterize image texture. Images 

having lot of sky region, very low contrast or large number of pixels with similar 

5.2 Quantitative Investigation 
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value have low entropy. Low entropy value characterizes homogeneous regions. 

Thus hazy images, which have haze spread throughout, have low values of 

entropy as compared to haze free images. Mathematically, 

 𝐸𝑛𝑡𝑟𝑜𝑝𝑦 𝐻 = −∑𝑝𝑖(𝑙𝑜𝑔2𝑝𝑖)

𝑖

 (5.1) 

where, 𝑝 is the histogram count. 

Entropy comparison shown below in table 5.1 proves that our algorithm performs better 

compared to classical DCP method. 

 Structural Similarity Index (SSIM): It measures image degradation due to 

processing like image dehazing in present case. This metric requires reference 

image. Mathematically, 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝑐1)(2𝜎𝑥𝑦 + 𝑐2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝑐1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑐2)
 (5.2) 

where, 𝜇𝑥 is the mean of 𝑥, 𝜇𝑦 is the mean of 𝑦, 𝜎𝑥
2 is the variance of 𝑥, 𝜎𝑦

2 is the 

variance of 𝑦, 𝜎𝑥𝑦 is the variance of 𝑦, 𝑐1 and 𝑐2 are variables to stabilize division. 

In present work, we use input hazy image as the reference image. Higher value of SSIM 

indicates that structure information is well maintained in the haze free image 

 Root Mean Square Contrast: It is same as the standard deviation of pixel 

intensities from the average intensity in a grey scale image. More contrast means 

better distinguishability among different objects in an image. Mathematically, 
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 𝑅𝑀𝑆 𝐶𝑜𝑛𝑡𝑟𝑎𝑠𝑡 = √
1

𝑀𝑁
∑ ∑(𝐼𝑖𝑗 − 𝐼)̅

2
𝑀−1

𝑗=0

𝑁−1

𝑖=0

 (5.3) 

For grayscale image of size 𝑀𝑥𝑁, having average intensity 𝐼 ̅and intensities normalized 

to a range of [0,1]. 

Analysis in the table 5.1 below shows that results produced from our method has better 

contrast than He‘s method. 

Table 1: Entropy, SSIM and Contrast comparison 
Parameter Entropy SSIM Contrast 

Image 
Hazy 
input 

He's 
Method 

Proposed 
method 

He's 
Method 

Proposed 
Method 

Hazy 
input 

He's 
Method 

Proposed 
method 

Figure 5.1 7.58 7.62 7.19 0.69 0.63 8.06 7.16 8.31 

Figure 5.2 6.73 6.63 6.43 0.63 0.64 7.19 6.21 6.48 

Figure 5.3 7.56 7.64 7.74 0.79 0.78 7.54 9.25 9.92 

Figure 5.4 7.06 7.39 7.51 0.74 0.70 5.10 6.49 7.15 

Figure 5.5 7.56 6.88 7.05 0.65 0.63 8.37 8.07 8.90 

Figure 5.6 7.35 7.66 7.72 0.81 0.81 6.59 6.75 7.53 

Figure 5.7 7.22 7.06 7.17 0.68 0.69 5.54 4.40 5.75 

Next, Execution Time Comparison of our algorithm compared to conventional DCP 

with fast guided filtering is shown in the table below 

Table 2: Algorithm execution time 

Figure Image Size DCP with FGF Proposed Scheme 

Figure 5.1 588x742 6.865s 4.910s 

Figure 5.2 450x600 4.401s 3.095s 

Figure 5.3 800x457 5.940s 4.050s 

Figure 5.4 800x431 5.495s 3.784s 

Figure 5.5 1152x864 14.460s 9.161s 

Figure 5.6 400x600 3.981s 2.771s 

Figure 5.7 465x384 3.030s 2.173s 
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CHAPTER 6  

DISCUSSION AND CONCLUSION 

In this thesis, we studied in detail the prevalent dehazing algorithm – Dark Channel Prior 

proposed by He et al. [1]. We analyzed thoroughly the limitations and cases where the 

algorithm fails. Based on our extensive study of various recent research works in this 

context, we propose a novel optimum method to address some of the problematic areas 

like speed, blue horizon problem, localized light sources and saturation of near white 

scenes. Our result shows the effectiveness of our method in above stated parameters.  

Speed is taken care of by employing lifting wavelet scheme for Daubechies 4 wavelet and 

subsampling technique in guided filter. We solve the problem of blue horizon by 

computing transmission for each color channel separately. We do not allow localized 

light sources to put an impact on our computation of airlight by ensuring big enough 

patch size. Also, to remove haze to the fullest, while of course retaining the natural 

feeling of scene depth, we use smaller patch size to estimate transmission than used for 

estimating atmospheric light. Thus, in one line we employ adaptive hybrid patch size 

scheme. Lastly, we effectively solve the problem of near white scene saturation is tackled 

using adaptive correction factor for transmission. 
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CHAPTER 7  

FUTURE WORK 

The proposed algorithm assumes constant value of atmospheric light, which is non-

uniform over image in reality. Due to this, we still face over exposure issue in sky region. 

For example, consider the image below: 

 

Figure 7.1: (a) input hazy image, (b) saturated dehazed image 

To develop a dehazing algorithm that works well even for sky region will be our goal in 

future. 
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APPENDIX A 

For a discrete data sequence 𝑓(𝑘), 𝑧 transform is: 

 𝑓(𝑧) = ∑ 𝑓(𝑘)𝑧−𝑘

𝑘

 (A.1) 

Above equation can be expanded as: 

  𝑓(𝑧) = 𝑓(0)𝑧0 + 𝑓(1)𝑧−1 + 𝑓(2)𝑧−2 + 𝑓(3)𝑧−3 + ⋯ (A.2) 

And 

 𝑓(−𝑧) = 𝑓(0)𝑧0 − 𝑓(1)𝑧−1 + 𝑓(2)𝑧−2 − 𝑓(3)𝑧−3 + ⋯ (A.3) 

Upon adding above two equations, 

 
𝑓(𝑧) + 𝑓(−𝑧)

2
= 𝑓(0)𝑧0 + 𝑓(2)𝑧−2 + 𝑓(4)𝑧−4 + ⋯ = ∑𝑓(2𝑘)𝑧−2𝑘

𝑘

 (A.4) 

 

Now, on down sampling the signal 𝑓(𝑧) and keeping only the even values, we get: 

Lifting Scheme Decomposition Steps 



 

- 44 - 

 

 𝑓𝑒(𝑧) = ∑𝑓(2𝑘)𝑧−𝑘

𝑘

 (A.5) 

Comparing equation (1.4) and (1.5), we get, 

 𝑓𝑒(𝑧
2) =

𝑓(𝑧) + 𝑓(−𝑧)

2
 (A.6) 

Similarly, 

 𝑓𝑜(𝑧
2) = *

𝑓(𝑧) − 𝑓(−𝑧)

2
+ 𝑧 (A.7) 

Thus, from equation (1.6) and (1.7), 

 𝑓(𝑧) =  𝑓𝑒(𝑧
2) + 𝑧−1𝑓𝑜(𝑧

2) (A.8) 

Decomposing 𝑓(𝑧) using LPF say 𝑕(𝑧) and HPF say 𝑔(𝑧), i.e., 

 𝑙𝑝(𝑧) =  𝑓(𝑧)𝑕(𝑧) (A.9) 

And 

 𝑕𝑝(𝑧) =  𝑓(𝑧)𝑔(𝑧) (A.10) 

Above two equations can be written in matrix form as: 
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 [
𝑙𝑝(𝑧)
𝑕𝑝(𝑧)

] = [
𝑕(𝑧)

𝑔(𝑧)
] 𝑓(𝑧) (A.11) 

Down sampling step corresponds to 

 𝐿𝑃(𝑧2) = 𝑙𝑝𝑒(𝑧
2) =

𝑙𝑝(𝑧) + 𝑙𝑝(−𝑧)

2
=

𝑕(𝑧)𝑓(𝑧) + 𝑕(−𝑧)𝑓(−𝑧)

2
 (A.12) 

And 

 𝐻𝑃(𝑧2) = 𝑕𝑝𝑒(𝑧
2) =

𝑕𝑝(𝑧) + 𝑕𝑝(−𝑧)

2
=

𝑔(𝑧)𝑓(𝑧) + 𝑔(−𝑧)𝑓(−𝑧)

2
 (A.13) 

Equation (1.12) and (1.13) can be written in matrix form as: 

 [
𝐿𝑃(𝑧2)

𝐻𝑃(𝑧2)
] = [

𝑙𝑝𝑒(𝑧
2)

𝑕𝑝𝑒(𝑧
2)

] =
1

2
[
𝑕(−𝑧) 𝑕(𝑧)

𝑔(−𝑧) 𝑔(𝑧)
] [

𝑓(−𝑧)

𝑓(𝑧)
] (A.14) 

In this case, since subsampling is done after calculating all coefficients, it is inefficient. 

Thus, to increase efficiency down sampling is performed before filtering (considering 

their even part only), yielding: 

 𝑙𝑝𝑒(𝑧) = ,𝑕(𝑧)𝑓(𝑧)-𝑒 = 𝑕𝑒(𝑧)𝑓𝑒(𝑧) + 𝑧−1𝑕𝑜(𝑧)𝑓𝑜(𝑧) (A.15) 

In the same way, 

 𝑕𝑝𝑒(𝑧) = ,𝑔(𝑧)𝑓(𝑧)-𝑒 = 𝑔𝑒(𝑧)𝑓𝑒(𝑧) + 𝑧−1𝑔𝑜(𝑧)𝑓𝑜(𝑧) (A.16) 
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Suppose output of down sampler followed by LPF be 𝜆(𝑧), and output of down sampler 

followed by HPF be 𝛾(𝑧). Then, equation (1.15) and (1.16) in matrix form can be written 

as: 

 [
𝜆(𝑧)

𝛾(𝑧)
] = 𝑃(𝑧) [

𝑓𝑒(𝑧)

𝑧−1𝑓𝑜(𝑧)
] (A.17) 

𝑃(𝑧) is poly-phase matrix given by: 

 𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] (A.18) 

For perfect reconstruction, the LPF 𝑕(𝑧) and HPF 𝑔(𝑧) need to be complimentary 

yielding unity determinant of poly-phase matrix. This implies that,  

 𝑃(𝑧) = [
1 0
0 1

] (A.19) 

𝑕𝑛𝑒𝑤 is derived from 𝑔 using primal lifting or update as: 

  𝑕𝑛𝑒𝑤 = 𝑕(𝑧) + 𝑠(𝑧2)𝑔(𝑧) (A.20) 

Similarly, 𝑔𝑛𝑒𝑤is derived from 𝑕 using dual lifting or predict as: 

 𝑔𝑛𝑒𝑤 = 𝑔(𝑧) + 𝑡(𝑧2)𝑕(𝑧) (A.21) 

In polyphase representation equation (1.20) and (1.21) can be written as: 
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 𝑃𝑛𝑒𝑤(𝑧) = [
𝑕𝑒

𝑛𝑒𝑤(𝑧) 𝑕𝑜
𝑛𝑒𝑤(𝑧)

𝑔𝑒(𝑧) 𝑔𝑜(𝑧)
] = [

1 𝑠(𝑧)
0 1

] [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] (A.22) 

And 

 𝑃𝑛𝑒𝑤(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)

𝑔𝑒
𝑛𝑒𝑤(𝑧) 𝑔𝑜

𝑛𝑒𝑤(𝑧)
] = [

1 0
𝑡(𝑧) 1

] [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] (A.23) 

Poly-phase matrix can be factorized into finite product upper and lower triangular 

matrices as: 

 𝑃(𝑧) = [
𝐾1 0
0 𝐾2

]∏[
1 𝑠𝑖(𝑧)
0 1

] [
1 0

𝑡𝑖(𝑧) 1
]

1

𝑖=𝑚

 (A.24) 

 Now, 𝑠𝑖  𝑎𝑛𝑑 𝑡𝑖 can be obtained by writing poly-phase matrix as: 

 𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] = [
𝑕𝑒(𝑧) 𝑕𝑜

𝑛𝑒𝑤(𝑧)

𝑔𝑒(𝑧) 𝑔𝑜
𝑛𝑒𝑤(𝑧)

] [
1 𝑠(𝑧)
0 1

] (A.25) 

This implies that, 

 𝑕𝑜(𝑧) = 𝑠(𝑧)𝑕𝑒(𝑧) + 𝑕𝑜
𝑛𝑒𝑤(𝑧) (A.26) 

And 

 𝑔𝑜(𝑧) = 𝑠(𝑧)𝑔𝑒(𝑧) + 𝑔𝑜
𝑛𝑒𝑤(𝑧) (A.27) 

Similarly, 
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 𝑃(𝑧) = [
𝑕𝑒(𝑧) 𝑕𝑜(𝑧)
𝑔𝑒(𝑧) 𝑔𝑜(𝑧)

] = [
𝑕𝑒

𝑛𝑒𝑤(𝑧) 𝑕𝑜(𝑧)

𝑔𝑒
𝑛𝑒𝑤(𝑧) 𝑔𝑜(𝑧)

] [
1 0

𝑡(𝑧) 1
] (A.28) 

That is, 

 𝑕𝑒(𝑧) = 𝑕𝑒
𝑛𝑒𝑤(𝑧) + 𝑡(𝑧)𝑕𝑜(𝑧) (A.29) 

And 

 𝑔𝑒(𝑧) = 𝑔𝑒
𝑛𝑒𝑤(𝑧) + 𝑠(𝑧)𝑔𝑜(𝑧) (A.30) 
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