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1. ABSTRACT 

Proteins are the structural and functional workhouse in the cell that takes part in virtually every 

event within and between cells. Proteins in association with other molecules determine the 

ultimate behavior of biological system. Recently, network-centered approaches have been 

increasingly used to comprehend the fundamentals of biology. There are different databases 

documenting the interactions of proteins as PPI networks but they do not reveal the molecular 

mechanism behind the binding process occurring between molecules. This problem can only be 

solved by including the structural details of the complexes which includes the 3 dimensional 

structures of proteins, interface as well as topological properties. Interface is the region where 

two protein chains interact leading to formation of protein complex. The main concern of the 

present study is to present interface analysis of cardiovascular-disorder (CVD) related proteins to 

shed lights on details of interactions and to emphasize the importance of using structures in 

network studies. We have used interface properties as parameters to classify the CVD associated 

proteins and non CVD proteins. Machine learning algorithm was used to generate a classifier 

based on the training set which was used to predict potential CVD related proteins from a set of 

polymorphic proteins which are not known to be involved in any disease. The predicted CVD 

related proteins may not be the causing factor of particular disease but can be involved in 

pathways and reactions yet unknown to us thus permitting a more rational analysis of disease 

mechanism. Study of their interactions with other proteins can significantly improve our 

understanding in the molecular mechanism of diseases. The wider scope of this study is the 

characterization of all the hereditary disorders based on their structural properties to gain better 

understanding of the molecular machinery within the cells of living organism.   
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2. INTRODUCTION 

The association between genes and diseases has been well studied in the past and been 

documented in various databases such as Online Mendelian Inheritance in Man, Genetic 

Association Database, Disease ontology and many. These databases not only provide genes 

associated with the disorders but also, insight about the common genes or essential genes which 

are involved in pathways and process of multiple disorders. The human disease gene network has 

already established link between the genetic disorders with the genes. An important conclusion 

inferred from this network is that genes associated with similar disorders show higher likelihood 

of physical interaction between their products, thus forming a hub of essential genes and their 

products (Goh et al., 2007).  

 

Documentation of genes with the associated disease is not enough to understand the biological 

details of pathogenesis and disease progression. It is important to identify various molecules and 

mechanism triggering, participating and controlling the biological process. This understanding of 

molecular mechanism is a complex process and not much is known about the mechanism 

(Gonzalez et al., 2012). Now with the tremendous increase in human interaction data, it is 

important to understand how any biological function is exerted over the body and this can only 

be made possible by the inclusion of structural details in the networks.  

 

Undoubtedly, sequence based annotation is important in unraveling the encoded information but 

the finer details of the molecular mechanism within the cell is possible only with the structural 

information (Marini et al., 2010). Protein structures provide a higher resolution of information 

and a more sensitive approach for detecting similarities among proteins by including details 

about structures of the interacting proteins in the network, protein hubs and protein interfaces. 

Structural profile of the proteins provides the opportunities in understanding the cellular 

functioning in terms of structural scaffolds which facilitate the underlying molecular recognition 

events. Moreover, a protein‟s structure is better conserved than its amino acid structure (Choura 

et al., 2011). 

 

Protein-protein interactions (PPI) network is a way of representing how two or more proteins 

interact with each other in a cell and biological processes are essentially interactions between 

multiple proteins (Zhang et al., 2011) with PPI networks controlling the flow of information both 

within and between the cells. Protein interactions are mediated by specific recognition of distinct 

binding regions on the surface of interacting protein. Such recognition should be of sufficient 

affinity to effectively bind fragments of proteins, which is decided by specificities such as 

interfaces, thus interface properties and the topology of the proteins involved is very important in 

deciphering their function in the network. 

Various studies have been carried to integrate protein-protein interaction network with the 

structural properties. Major work in this area has been done in the field of cancer biology. 
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 Kar et al., 2009; mapped the cancer genes onto human PPI network and studied the network 

with respect to structural features such as interface properties and they were successful in 

classifying cancer and non-cancer proteins. Zhang et al., 2011; proposed a novel integrated 

approach named CAERUS, for identification of gene signatures to predict cancer outcomes 

based on domain interaction network in human proteome. Taylor et al., 2009; proposed a new 

methodology to predict breast cancer outcome based on the correlation of gene expression 

profile between hub proteins and their interacting partners in PPI network. Chuang et al., 2007; 

developed a method to find sub network – based signatures by incorporating PPI networks and 

gene expression profiles to classify metastatic and non-metastatic tumors. 

Studies have shown that a molecular mechanism leading to diseases is dependent on interlinked 

proteins and networks, but we are far from unraveling the difference in molecular interactions in 

healthy and diseased organism. Mechanism of genetic malfunctioning, that leads to one or 

several diseases can be understood when the molecular level of the protein interactions are 

known.  Understanding the interactions and hence binding between proteins is critical for the 

rational design of new therapeutic agents targeted to disrupt the interactions that cause disorders 

(Gonzalez et al., 2012). 

PPIs not only identify disease-associated interacting proteins but also the potentially interesting 

disease-associated gene candidates (genes coding for interacting proteins are putative disease 

causing genes). This theory has been used in the present work where all the protein associated 

with cardiovascular disease have been retrieved and a classifier using machine learning 

algorithms is used to identify potential proteins which are associated with cardiovascular 

diseases. This classifier is based on the interfacial properties of the interacting complexes, to 

differentiate cardiovascular disease related proteins from non-cardiovascular disease associated 

proteins. The wider scope of this study is the characterization of all the hereditary disorders 

based on their structural properties to gain better understanding in the molecular mechanism 

(such as effect of mutation on protein structure, which residue is being affected, affect of all the 

residues including charged, polar, uncharged, how hydrogen bonding between complexes are 

important and so on) behind these diseases.  
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3. REVIEW OF LITERATURE 

The central dogma of molecular biology states that DNA is transcribed into RNA, and RNA is 

translated into protein. Protein, thus formed is in the form of polypeptide chain which folds into a 

three dimensional structure that requires minimum energy (Figure 1). The amino acid residue 

composition of protein uniquely determines its 3D structure. Proteins are the functional and 

structural workhouses in the cells of living organisms as they are involved in transport, storage, 

catalysis, signaling and many more functions inside the body. The function of protein can be 

determined by analysis of either amino acid sequence or the 3D structure. Previous studies have 

shown that sequence based analysis is less accurate and less sensitive than structure based 

because, the later is better conserved during the evolution, for example there are large number of 

proteins whose structure (hence function) are same but sequences are quite different. Thus the 

function of protein is more closely associated to its three dimensional structure that to amino acid 

compositions (Aung, Z. 2006). 

Figure 1: Central dogma of gene expression 

Mutations in genes can change the sequence and structure of the encoded protein, affecting its 

binding sites and ultimately impairing the original function of protein and can possibly lead to 

disease (Steward et al., 2003).  Most of the mutation in diseased genes map to non coding 

regions but the mutations that occur in the coding region of genes, severely affect protein 

function by affecting its structure due to deletions, insertion, inversions and other abnormalities. 

Further, mutations at highly conserved residues are more likely to cause disruption in the protein 

structure as these conserved residues are buried deep inside the protein structures. However 

majority of the mutations occur at solvent accessible sites where they generally affect solubility 
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and interaction patterns of protein with other proteins, ligands and nucleic acids (Venselaar et al., 

2010). 

For example in Porphyria cutanea tarda (PCT), caused by an accumulation of uroporphyrins in 

the liver and plasma is controlled by gene the uroporphyrinogen decarboxylase (URO-D). URO-

D is a α/β barrel – a series of alternating α-helical and β-strand.  Mutation of Leu195Phe 

substitutes a hydrophobic leucine residue buried deep within the protein, for a larger aromatic 

phenylalanine residue, causing the surrounding side-chains to rearrange which results in only 

30% of the mean activity of the normal allele, leading to an accumulation of substrate and, 

hence, the disease. Similarly mutations leads to variety of changes in protein structure such as 

disruption of protein-protein interaction, disruption of hydrogen bonding network, interference 

with DNA binding, breaking of disulfide bonds, mutation in catalytic site and many more leading 

to severe disease (Steward et al., 2003). By analyzing the 3D structure of the protein, more 

detailed information on the role of mutated residue can be inferred (Figure 2); moreover 

structural analysis can often explain why different phenotypes originate from mutations in the 

same gene. Thus, the major aim is to study the interaction sites which can be hampered due to 

these mutations thus affecting the normal function of proteins. 

Figure 2: Image of mutated protein where protein is colored gray and the side chains of both wild type and 

new mutant residues are shown and colored green and red respectively. 

It is well known that proteins are the main agents of biological function based on their 

interactions with other proteins and to other biomolecules such as DNA and RNA, mediating 
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metabolic and signaling pathways and cellular processes. Protein interaction do not necessarily 

mean the physical association of proteins but can be metabolic interactions where proteins are 

involved in the same pathway or genetic interactions displaying co-expressed and co-regulated 

proteins (Gonzalex et al., 2012). Any protein rarely acts alone but as mentioned above interacts 

with other protein to carry out a specific function. This pair of interacting protein forms a protein 

complex. The protein fragments within the complex that actually comes together and interact 

forms a special region called protein interface (Aung, Z. 2006). Thus, protein interaction 

networks are useful resources to gain knowledge about the evolution of proteins and about the 

different systems in which they are involved.  

 

With the tremendous increase in human interaction data, it is important to understand how any 

biological function is exerted over the body and this can only be made possible by the inclusion 

of structural details in the networks, such details include three dimensional structure of network 

and protein interfaces. Protein interactions are mediated by specific recognition of distinct 

binding regions on the surface of interacting protein. Such recognition should be of sufficient 

affinity to effectively bind fragments of proteins, which is decided by specificities such as 

interfaces. Moreover, in protein-protein network, most of the proteins have few interactions 

whereas other proteins can have multiple interactions, these protein are central to the stability 

and normal functioning of the proteins in the network for example p53, p21, p27, BRCA1, 

ubiquitin, calmodulin are extensively involved in diseases such as different forms of cancer, and 

the product of these genes forms a hub. Deletions of these proteins, popularly known as hubs are 

lethal to the organism, hence it can be inferred that these proteins are encoded by essential genes 

and are important targets for molecular and structural studies (Choura et al., 2011). 

 

Protein-protein interactions (PPI) network is a way of representing how two or more proteins 

interact with each other and this network is the key to understand all the biological processes 

occurring within and between the cells (Figure 3). Protein-protein interaction network provides 

valuable information on the biological process and the cellular function (Chen et al., 2009). 

Biological processes are essentially interactions between multiple proteins (Zhang et al., 2011) 

with PPI networks controlling the flow of information both within and between biological 

processes. Network representation where proteins are nodes and interactions are edges is useful 

indicator of biological process and protein function (Choura et al., 2011). Alteration in this 

network can potentially lead to various disorders because disorders are often caused by alteration 

in the binding sites or allosteric changes in the protein. For example, mutation in the zinc finger 

domain present in the oncoprotein MDM2 can disrupt the interaction of MDM2 with L5 AND 

L1 (ribosomal proteins) that mediates p53 degradation and leads to cancer (Zhang et al., 2011). 
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Figure 3: Image of protein-protein interaction network (Zhang et al., 2011). 

 

Thus, there is an increasing interest in these networks, as their analysis helps in understanding 

the relationship between proteins and how they are positioned in the whole system as proteins 

associated with a particular phenotype or function are not usually positioned randomly in the PPI 

network but exhibit high connectivity or may cluster together in central network locations 

(Nguyen et al., 2011). 

 

PPI networks can also be used to differentiate between a healthy and diseased patient (Steward et 

al., 2003). This can be made possible by building interaction networks under different 

conditions. Thus, PPI network can offer various useful applications with respect to disease such 

as identification of a new disease, studying the network properties of already existing disorders 

and interpret various mechanisms related to disease. Further PPI networks can be used to identify 

disease related sub networks such as hubs and hot spots (essential genes) and can help in 

classifying diseases based on networks (Zhang et al., 2011). 
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Studies have shown 39,000 or more interactions in human cell where disease genes are generally 

non essential and occupy peripheral positions in human network; hence these genes tend to 

cluster together and are highly interconnected (Legrain et al., 2011).  

 

Thus all in all, protein interaction networks helps unraveling the molecular basis of disease based 

on various physical and chemical properties of the proteins.  

 

To characterize the function of these interactions, with respect to their physical and chemical 

properties, structural details play an important role. Structural profile of the proteins provides the 

opportunities in understanding the finer details of cellular functioning in terms of structural 

scaffolds and interfaces which facilitate the underlying molecular recognition events. Proteins 

interact with each other through their binding sites, thus interface properties and the topology of 

the proteins involved is very important in deciphering their function in the network. The strength 

of interaction is mostly determined by various parameters such as amino acid composition, gap 

volume, area in contact, the formation of salt bridges and hydrogen bonds (Gonzalez et al., 

2012). These interface properties can also determine whether the binding will be promiscuous or 

specific, how proteins in hub is different from non-hub proteins, and how a single protein can 

interact with multiple proteins with different binding affinity. In a broad group of disorders such 

as metabolic disorders, there are various diseases under this category. Each disease can be due to 

alterations in many proteins. This interaction is important in characterizing the important 

structural feature such as planarity, gap volume index, ASA, polar residues, non polar residues, 

charged residues in an interface.  

 

3.1 Protein interfaces – The regions where proteins interact 

 

The region where two protein chains come into contact is called as binding site, and for both 

sides involving residues of both proteins, it is known as interface. Protein interfaces tend to be 

planar, well packed and have great residue conservation. Hydrogen bonds, electrostatic 

interactions, van der waals forces, salt bridges and hydrophobic interactions determine the 

stability and specificity of the interacting proteins. Also, different complexes have different 

residue composition such as transient complexes rely more on salt bridges and hydrogen bonds, 

whereas the obligate complexes rely more on hydrophobic interactions (Figure 4). The 

interaction between proteins through interface also determines, whether the binding will be 

promiscuous or specific (Tuncbag et al., 2009). This physical interaction is mainly governed by 

shape, chemical complementarities, flexibility of molecules involved and environmental 

conditions such that if two proteins are interacting with through large interface with high 

complementarity, they will probably interact with high affinity and high specificity (Kar et al., 

2009; Tuncbag et al., 2009).  
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A prominent example of interface is revealed in cancer related proteins, where the analysis 

revealed that the interface for cancer proteins were smaller in size, more planar, less tightly 

packed and more hydrophilic than those of non-cancer proteins. Studies showed that cancer-

related proteins tend to interact through multi-interface hubs and are longer and have larger 

surface areas. Thus to participate in multiple PPI, the proteins interact with distinct interfaces to 

different proteins (Kar et al., 2009). 

It has been determined that interfaces have more hydrophobic residues and fewer hydrophilic 

residues. Interfaces with hydrophobic residues are critical for the stabilization of protein–protein 

complexes. Various studies have shown that the contacts between residues with opposite 

charges, the contacts between hydrophobic residues and Cys–Cys contacts are more frequent 

across protein–protein interfaces. Hydrophobic interactions have been widely accepted to be the 

main stabilizing force for two proteins to interact. Further, interactions between pairs of 

hydrophilic residues are predominantly important; whereas hydrophobic interactions are 

important at longer distances.  Cys-Cys pairs forms disulfide bond which contributes to the 

stability of protein-protein interaction. Apart from above interactions that help in strengthening 

the PPI, the presence of aromatic residues also helps in tighter packaging and better geometric fit 

as they form strong hydrophobic interactions between the bulky hydrophobic side chains (Yan et 

al., 2008). 

Protein–protein associations provide a useful link between structure and function of bimolecular 

systems thus allowing the characterization of the energetic of molecular complexes. Hence, 

detection of specific amino acid residues which add specificity and strength to protein 

interactions is of utmost importance. Therefore, the properties of interfaces are studied in detail: 

 

3.2 Physical and chemical properties of Protein-Protein Interfaces 

The interfaces are characterized by six properties: size and shape, complementarity, residue 

interface propensities, hydrophobicity, segmentation, secondary structure and conformational 

changes.  

 

 Size  

PPIs are very complex and can be characterized based on their structural features such as 

size, shape and surface complementarity. The hydrophobic, electrostatic interactions and 

the flexibility of molecules involved are very important in establishing a good fit between 

the molecules (Moreira et al., 2007). The chemical nature of protein interface is similar to 

the average protein surface (Tuncbag et al., 2009). The standard size of the interface is 

approximately 1200-2000 Å
2
. Interfaces with size around 1150-1200 Å

2 
are low stability 

complexes generally short lived i.e. transient complexes. It is assumed that protein-

protein binding energy is directly related to the buried hydrophobic surface area. Most of 

the protein heterodimer interfaces are larger than 600 Å
2
, this cutoff corresponds to 
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minimum area required to make a water tight seal around energetically favorable 

interactions (Moreira et al., 2007). 

 

 Chemical character 

Hydrophobic interactions in the protein are the leading forces in PPIs and also in stability 

of interface. Interfaces are frequently hydrophobic in nature and bury large extent of non 

polar surface area. These interactions occur through the van der Waals contact between 

the nonpolar regions of their amino acid residues which results in the tight packing of 

residues organized as patches. These patches help in expulsion of water molecules in the 

interface, thus increasing the entropy that favors complex formation. 

 

Electrostatic forces are another important driving force for complex formation, as 

electrostatic complementarity of interacting protein surfaces promotes complex formation 

and defines the lifetime of the complex. In protein interfaces, 76% of the hydrogen bonds 

are formed by side chains of amino acids and other hydrogen bonds are formed between 

protein contact surfaces and the surrounding water molecules (Moreira et al., 2007). 

 

 Conservation of the interfaces 

Interface residues are more conserved than the rest of the protein surface (Tuncbag et al., 

2009). 

 

 Hot spots 

The energetic contribution of amino acid residues are not distributed uniformly and only 

a few key residues contributes to the binding free energy of protein-protein complexes 

called “hot spots”. Hot spot residues are identified via Alanine Scanning Mutagenesis 

method. This method has been widely used to amp epitopes and residues as alanine 

substitution remove the side chain atom without introducing any additional 

conformational freedom. The principle behind alanine substitution is the role of side-

chain functional groups at specific positions and the energetic contributions of individual 

side chains to protein binding can be inferred such that if a residue has significant drop in 

binding affinity when mutated to alanine, then the reissue is considered as hot spot.  

Glycine can also be used instead of alanine to study the function but glycine introduces 

conformational changes and thus not commonly used. There is a relationship between 

conserved residues and hot spots and these regions are buried and tightly packed resulting 

in densely packed clusters of network called “hot regions”. These regions contribute to 

the majority of binding affinity within the protein. 

 

 The high propensity for interaction with diversity of partners is explained as; the same 

hot spot adapts to the same residues, showing high functional and structural adaptivity. 

Thus hot spots are helpful in understanding the binding sites for protein dimer and also 
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protein multimer (Tuncbag et al., 2009; Moreira et al., 2007). Very few hot spots are at 

the edge of an interface rather they are centralized and compact residues essential for 

protein association. 

 

 Amino acid composition 

The fundamental amino acids involved in interface are tryptophan, tyrosine and arginine. 

Tryptophan acts as a hot spot residue owing to its large size and aromatic nature. 

Tryptophan stabilizes the interface by its aromatic-p interactions, large hydrophobic 

surface and as hydrogen bonding donor. Additionally in Alanine Scanning Mutagenesis 

substitution of tryptophan creates a large cavity that causes destabilization of the 

complex. Tyrosine residue is also considered as hot spot due to high conservation 

propensity as well as the ability of participating in hydrogen bonding and aromatic-p 

interactions. 

 

 Finally, arginine is prominent in interface residues due to its ability to form multiple 

types of favorable interactions such as forming five hydrogen bonds simultaneously and 

forming salt bridges within the interface. On the other hand, serine, leucine, threonine 

and valine are not favored and are usually absent as hot spots (Moreira et al., 2007). 

 

 Complementarity – Clusters of hot spots 

Hot spot of one protein against the hot spot of another protein establishes the region 

determining complex binding and tight fitting. These regions are characterized by 

complementary pockets scattered through central region of the interface and rich in 

structurally conserved residues. Complementary is defined by large complementarity 

both in shape and in juxtaposition of hydrophobic and hydrophilic hot spots. This is 

possible by formation of salt bridges by buried charged residues and fitting of 

hydrophobic residues from one surface into the small nooks on the other surface. 

Alignment of polar and non polar residues, number of buried waters, and size of buried 

surface and the packing densities of atoms involved in protein-protein interface are the 

factors affecting complemenatrity.  

 

Complemented pockets enriched in conserved residues are formed by residues across the 

protein-protein interface. Tryptophan is often found on the wall of complemented packet 

and occludes interactions from solvent within the pocket. Glycine is also important in 

some structural motifs as it lacks the side chain thus helps in tight packing and coupling 

with polar, aromatic and hydrophobic residues across the interface (Moreira et al., 2007). 
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The parameters of interfaces for analyzing interactions in the present study are as follows: 

 

 Accessible Surface Area (ASA) – this is the mean ASA buried by each domain of the 

complex.   

 

 Complementarity of interface- Gap volume – provides a measure of complimentarity 

and closeness of packing of the interface between two interacting proteins by measuring 

the volume of empty space between them (Kar et al., 2009). 

 

 Gap volume index – the gap volume index between two protein domains is calculated as 

ratio of gap volume to the interface area. It estimates the volume enclosed between any 

two molecules, delimiting the boundary by defining a maximum allowed distance from 

both interface (Kar et al., 2009). 

 

 Planarity – the planarity of interfaces analyzes the shape of the interface. It is defined as 

the rmsd (root mean square deviation) of the interface atoms from the least-squares plane 

fitted through all interface atoms. The larger the planarity index, the less planar the 

interface. Moreover there is a correlation between the planarity of the interfaces and their 

ASAs. As the ASAs of the interfaces increase, the planarity index also increases, and the 

interfaces become less planar (Kar et al., 2009). 

 

 Hydrogen bonding – Hydrogen bonds play key role in specificity of interactions 

between two proteins. The average number of hydrogen bonds is proportional to the area 

of subunit surfaces i.e. ASA: one bond per each 100–200 Å
2
 (Moreira et al., 2007). 

 

 Sequence segmentation – in interface this is defined as interface residue separated by 

more than five residues are counted in different segment (Jones et al., 2000). 

 

 Residue propensity – an interface residue propensity more than 1 indicates that a residue 

type is more prevalent in interface than rest of the protein surface (Jones et al., 2000). 

 

 Number of salt bridges – the more the number of salt bridges, there will be more 

electrostatic interactions resulting in tighter packing within the residues. 

  

Protein interface has been studied and stored in databases such as PiBASE, InterPare, SCOWLP, 

3DID, SCOPPI, PRINT and 2P2Idb (Tuncbag et al., 2009). In the present study, 2P2Idb is used 

to find the interface parameters. 
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Figure 4: Depicts the interfaces between three chains of the protein glutathione s transferase. The PDB code is 

1gwc. There are two interface between chains AB and BC. Chains A and C are not close enough to form 

interface. In the BC interface, the magenta is the contacting residues and cyan is the nearby residues. In the AB 

interface, red residues are the interacting residues and the yellow residues near the red residues are the 

neighboring (nearby) residues. The side chains of the interacting residues are also displayed in the figure. 

 

3.3 Protein networks and diseases 

 

3.3.1 Genetic diseases/ Genetic Basis of Disease 

 

A disease is an abnormal condition impairing normal homeostasis, affecting a part or the entire 

organism. A genetic disease or disorder is a result of change or mutation in one‟s DNA. A 

mutation is the change in the genetic code that makes up the gene in the form of deletions, 

insertion, translocation and many others changes. Genes code for the proteins, the molecules that 

perform most of the life functions and make majority of cellular structures. Hence when a gene is 

mutated, its protein can longer perform the normal function thus disturbing the balance, resulting 

in the disorder. Genetic disorders can be caused by mutation in one gene, multiple genes, 

combination of genetic changes and environmental factors or by damage to the chromosome. As 

we know more about human genome, we come to know that almost all the diseases have genetic 

component. Some diseases are caused my mutations that are inherited from parents and present 

since birth such as color blindness, while other disease may develop during the life time of the 
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individual where mutations occur randomly or due to environmental factors, such as cancers. 

These diseases are not inherited.  

 

Further, genetic disorders have been categorized in three broad groups in previous studies; 

Monogenic disorders, also caused as mendelian disorders are caused my mutation in a single 

gene and are usually rare for example, sickle cell disease, cystic fibrosis. Multi-factorial 

inheritance disorder, are caused by mutations in multiple genes often acting together with 

environmental factors. Heart disease, diabetes, and cancers are the example of multi-factorial 

diseases. Third category of genetic disorders list chromosomal disorders which are caused by 

excess or deficiency of genes or structural changes within chromosomes for example Down 

syndrome.   

 

The correlation between mutation and symptom is often not clear even in the mendelian 

disorders. Recent studies have shown that influence of other genes or environment and 

pleiotropy amongst genes plays a great role in defining the phenotype of the diseased individual. 

Pleiotropy occurs when a single gene produces multiple phenotypes. Mutation in these genes 

complicates disease elucidation as they can cause multiple syndromes or can affect various 

biological processes the gene mediates (Gonzalez et al., 2012). 

 

Usually, diseases are seen as similar based on their clinical appearance with no emphasis on 

underlying molecular process. Phenotypes of various diseases often overlap, recognition of this 

overlap brought the concept of „syndrome families‟, accounting the common features shared 

between diseases (Sam et al., 2007). It has long been known that mutations at different loci in the 

genome can lead to the same genetic disease and this genetic heterogeneity has its roots at the 

PPI level, suggesting that other genes associated with the phenotype also have some functional 

role. Therefore, it is possible that functional properties of shared molecular networks reflect 

phenotypic overlap of diseases. Thus, PPI networks provide unique opportunities for exploring 

disease pathways (Sam et al., 2007). 

 

3.3.2 Molecular Basis of Disease 

 

Documentation of genes with the associated disease is not enough to understand the biological 

details of pathogenesis and disease progression. It is important to identify various molecules and 

mechanism triggering, participating and controlling the biological process. This understanding of 

molecular mechanism is a complex process and not much is known about the mechanism 

(Gonzalez et al., 2012).  

 

Further, by recent studies we know that a molecular mechanism leading to diseases is dependent 

on interlinked proteins and networks, but we are far from unraveling the difference in molecular 

interactions in healthy and diseased organism. Mechanism of genetic malfunctioning, that leads 



15 
 

to one or several diseases can be understood when the molecular level of the protein interactions 

are known.  Understanding the interactions and hence binding between proteins is critical for the 

rational design of new therapeutic agents targeted to disrupt the interactions that cause disorders 

(Figure 5) (Kann et al., 2007). 

 

 

Figure 5: The above image shows how side chains of protein interact with each other to result in a phenotype. If this 

arrangement gets disturbed then it leads to disease. 

 

3.3.3 Protein structure, protein complexes and disease 

There has been an increasing emphasis on the structure of proteins, where NMR, X-ray 

crystallography have been used to generate high throughput structural resolution. The aim of 

structural genomics is to provide three dimensional structural models of the proteins encoded by 

entire genome. Many structures have been elucidated and have been stored in Protein Data Bank 

(PDB) archive is the single worldwide repository of information about the 3D structures of large 

biological molecules, including proteins and nucleic acids. Understanding the shape of these 

macromolecules helps to understand how it works. This knowledge can be used to help deduce a 

structure's role in human health and disease, and in drug development. The structures in the 

archive range from tiny proteins and bits of DNA to complex molecular machines like the 

ribosome). Although around 40,000 known structures are deposited in PDB, but these structures 

might not be related to any human disease. Hence to deduce protein structures involved in 
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diseases, various computational homology studies have been implemented to deduce function 

from protein sequence and structure information (Kann et al., 2007). 

 

A protein interaction provides a vast source of molecular information as their interactions are 

involved in various metabolic, signaling, immune, and gene-regulatory networks which are 

essential for normal homeostasis of the body. Now, since they are involved in normal 

functioning, they are also the key targets for molecular studies of biological diseased state 

(Gonzalez et al., 2012) 

 

Recent studies have shown that when structural data is combined with the information about 

mutation, the molecular mechanism of the disease can be unveiled, for example, a study by 

Thronton and collaborators showed that disease-related mutations are more likely to be buried in 

the protein structure than what would be expected for the average protein residues. Few 

examples where protein structural analysis have helped to elucidate the molecular basis of 

disease are; Von Hippel-Lindau syndrome (VHL) in which mutation from Tyrosine to Histidine 

at residue 98 (which is part of the binding site) disrupts the binding of the VHL protein to protein 

hypoxia-inducible factor (HIF) which leads to HIF accumulation resulting in angiogenic growth 

factor and local proliferation of blood vessels (Butte et al., 2006). In some cases, during the 

binding process, interactions between two proteins might involve order-disorder transitions in 

partially disordered regions of the interacting proteins. These unstructured or disordered regions 

have been found to be involved in many disease mechanisms. For instance, the cancer suppressor 

BRCA1 has been shown to contain intrinsically disordered regions through which it binds to 

several proteins (Kann et al., 2007).  

 

Several studies have been carried out with respect to particular disease, for example in 

Huntington‟s disease protein-protein interaction network was generated with all proteins related 

to HD. HD is caused by the repeat expansion of CAG in the Huntingtin (Htt) gene which causes 

aggregation of the mutant Htt in insoluble neuronal inclusion bodies which consequently leads to 

neuronal degeneration. Now, the network revealed many new interactions and functional 

annotation was carried out for several uncharacterized proteins. Importantly, an interaction of the 

Htt with GIT1, a GTPase-activating protein which seems to be required for the Htt aggregation 

was discovered (Goehler et al., 2007). Thus targeting GIT1 protein can be useful in designing 

drugs and other therapeutical measures. Other studies involving ataxias and Purkinje cell 

degradation have shown that most of the proteins interact directly or indirectly with each other 

(Kann et al., 2007). These examples show that proteins involved in a disease are likely to interact 

with proteins already known to cause similar diseases.  

 

Another important characteristic of studying PPI is the discovery of disease markers, which can 

be used to access the outcome of various diseases. Studies have been carried out where the gene 
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expression profiles combined with PPI network has been used to predict the outcome of cancer 

patients that is if they are under the risk of benign or malignant tumor. 

 

A systematic computational study of a subset of proteins related to cancer was performed in 

which the authors found that the network topology of the cancer related proteins is quite different 

from those not involved in disease. They found that cancer proteins are highly interconnected 

with other cancer related proteins than other proteins (Jonsson et al., 2006).  

 

Other than the interference in protein-protein interaction network, several diseases are caused 

due to disruption in protein-DNA interaction, protein folding mechanism, protein-RNA 

disruption, can enable pathogen host protein interaction or can lead to new undesired protein 

interactions (Gonzalez et al., 2012). New interactions can alter homeostasis due to misfolding 

and aggregation which leads to the loss of vital cellular functions and can cause toxicity 

(Duennwald et al., 2006). The disruptions that lead to the establishment of Pathogen-host protein 

interactions also play a key role in bacterial and viral infections by facilitating the hijacking of 

the host‟s metabolism for microbial need. For example the infection caused by Human 

papillomavirus (HPV) generates lesions of anogenital tract and leads to cancer. HPV infection 

bypasses the immune system by interacting with important negative cell regulatory proteins to 

target them for degradation and inactivation. This leads to cellular transformation, 

immortalization of host cells and proliferation of tumorigenically-transformed cells (Scheffner et 

al., 2003). 

 

Further it is important to understand that pathways are different from PPI networks. Pathways 

comprises of series of sequential biochemical reactions involving metabolic, genetic and 

signaling process, where substrates are changed in a linear fashion into products whereas PPI 

networks only map the functional and physical interaction between protein pairs resulting in a 

complex grid of connections. Now, pathway analysis cannot be used to decipher the molecular 

basis of disease as most of genes involved in a particular process have not been assigned to a 

pathway. PPIs not only identify disease-associated interacting proteins but also the potentially 

interesting disease-associated gene candidates (genes coding for interacting proteins are putative 

disease causing genes). This assumption has been used in the present work where all the 

cardiovascular disease associated genes have been retrieved and their interacting partners have 

been identified. This methodology has been used to identify novel disease genes by finding 

interaction partners of known disease associated proteins. This has been confirmed by studies 

that found that mutations on the genes of interacting proteins lead to similar disease phenotype 

because of their functional relationship (Gonzalez et al., 2012). 

 

In reality, proteins are continuously being synthesized and degraded in the body, this kinetics of 

the process and network dynamics need to be considered to have complete understanding of how 

disruptions of protein and their interaction leads to disease (Kann et al., 2007). 
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3.4 Machine learning and methods 

Machine learning, a branch of artificial intelligence, is a system that acquires and integrate 

knowledge through training, experience and analytical observation and used to make predictions 

and classification of compounds based on its learning (Figure 6). It can be defined as : "A 

computer program is said to learn from experience E with respect to some class of tasks T and 

performance measure P, if its performance at tasks in T, as measured by P, improves with 

experience E" (Mitchell, 1997). Simply, we define machine learning as a set of methods that can 

automatically detect patterns in data, and then use the uncovered patterns to predict future data, 

or to perform other kinds of decision making under uncertainty. 

 

In machine learning a known sample is provided first, which trains the algorithm and then the 

corresponding knowledge acquired is used to test, analyze and interpret the unknown data. 

 

Machine learning algorithms can be broadly classified into two groups: 

 

 Supervised learning generates a set of function that screens the inputs into desired outputs 

(labels). In this, the data is pre-assigned to particular classes that train the model. Also 

called inductive learning. 

 Unsupervised learning labels are not known during training. No pre-assignment of the 

data into classes. 

 

 
Figure 6: The machine learning process showing learning and prediction as its two phases. 
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3.4.1 Supervised learning: 

 

Supervised machine learning algorithms discover patterns in the data that relate data attributes 

with a target (class) attribute. These patterns are then utilized to predict the values of the target 

attribute in test data instances. The classes used for training are pre-determined and based on the 

patterns searched the mathematical models are constructed (Figure 7).These models then are 

evaluated on the basis of their predictive capacity in relation to measures of variance in the data 

itself. Supervised learning is mostly performed for classification tasks (Manchanda et al., 2007). 

 

Different supervised learning processes include decision trees, Bayesian Classification, Neural 

networks, Support Vector Machines, Genetic algorithm etc. 

 

 
    Figure 7: Process of supervised learning. 

 

Random Forest: 

 

The algorithm is based on decision trees. Random Forests are a combination of tree predictors in 

which multiple classification trees are constructed from an independent identically distributed 

random input vector. It is trained in such a way that each object is classified based on certain 

decisions made on the node of the tree which is dependent on certain pre-defined variables. 

Individual trees are constructed using bootstrapping, each with different attributes. Each random 

redistribution is generated by randomly drawing with replacement N examples where N is the 
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size of the training set. A tree is grown on a fixed-size subset of attributes (smaller than the total 

number of attributes) randomly drawn on each round (Figure 8). Multiple random trees are 

constructed by repeating this method. After a large number of trees are generated, each tree in 

the forest gives a classification or votes for a class and the most popular class gives the final 

classification (Breiman, 2001). The misclassification error is calculated to predict the 

performance of the model.  

 

 
Figure 8: Construction of ensemble of trees in random forest algorithm. 

 

Training by Random Forest algorithm for some number of trees T: 

 

1. Sample N cases at random with replacement to create a subset of the data (see top layer 

of figure above). The subset should be about 66% of the total set. 

2. At each node: 

i. For some number m (see below), m predictor variables are selected at random from 

all the predictor variables. 

ii. The predictor variable that provides the best split, according to some objective 

function, is used to do a binary split on that node. 

iii. At the next node, choose another m variable at random from all predictor variables 

and do the same. 
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Depending upon the value of m, there are three slightly different systems: 

 

 Random splitter selection: m =1 

 Breiman„s bagger: m = total number of predictor variables 

 Random forest: m << number of predictor variables. Brieman suggests three possible 

values for m: ½√m, √m, and 2√m. 

 

When a new input is entered into the system, it is run down all of the trees. The result may either 

be an average or weighted average of all of the terminal nodes that are reached, or, in the case of 

categorical variables, a voting majority (Figure 9). 

 

 
Figure 9: Manual view of Random Forest. 

 

Strengths: 

 Random forest runtimes are quite fast, and 

 They are able to deal with unbalanced and missing data. 

 Capable of handling of large input variables without over-fitting. 

 The accuracy is maintained on larger sets. 
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Weaknesses: 

 When used for regression they cannot predict beyond the range in the training data. 

 They may over-fit data sets that are particularly noisy. 

 

3.4.2 Unsupervised learning: 

 

The data have no target attribute. It is explored to find some intrinsic structures in them. 

Unsupervised learners are not provided with classifications. So, the basic task of unsupervised 

learning is to develop classification labels. Unsupervised algorithms seek out similarity between 

pieces of data in order to determine whether they can be characterized as forming a group. These 

groups are termed clusters, and there is a whole family of clustering machine learning 

techniques. Clustering groups the data instances that are similar to each other in one cluster and 

data instances that are very different from each other into different clusters (Figure 10). Hence, 

clustering is often called an unsupervised learning task as no class values denoting an a priori 

grouping of the data instances are given. 

 

 

 
Figure 10: Process of unsupervised learning. 

 

Different types of clustering algorithms are known in machine learning: k-means clustering, 

hierarchical clustering, Cobweb, overlapping clustering etc. 
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Hierarchical Clustering 

Hierarchical Clustering algorithm produces a nested sequence of clusters, a tree, also called 

Dendogram. The base of the hierarchy gives the initial structures and subsequent levels provide 

smaller to larger clusters. 

 

Types of hierarchical clustering: 

 

Agglomerative (bottom up) clustering: 

 

 It builds the dendrogram (tree) from the bottom level, each data point forms a cluster (also 

called a node) and merges the most similar (or nearest) pair of clusters or nodes. It stops when all 

the data points are merged into a single cluster i.e., the root cluster (Figure 11). It is more popular 

then divisive methods. 

 

Algorithm: 

1. Make each data point in the data set D a cluster. 

2. Compute all pair-wise distances of x1,x2,….., xn € D. 

3. Repeat 

4. Find two clusters that are nearest to each other. 

5. Merge the two clusters and form a new cluster c. 

6. Compute the distance of c from all other clusters. 

7. Repeat, until there is only one cluster left. 

 

 
Figure 11: Output of hierarchical clustering algorithm showing nested clusters (left) and dendogram (right). 
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Divisive (top down) clustering: 

It starts with all data points in one cluster, the root. The main root then splits into a set of child 

clusters. Each child cluster is recursively divided further. The iteration stops when only singleton 

clusters of individual data points remain, i.e., each cluster with only a single point. 

 

In this study supervised learning using WEKA (a machine learning tool kit) using classifiers - 

Random Forest is used to predict the disease-associated protein based on the interface properties.  

 

The impact of prediction methods is considered to be huge. Prediction method uses two 

criterions-: 

 Precision-: it is expressed as percentage of correctly predicted disease protein over all 

predicted disease protein. 

 Recall-: it is the ability of method to detect disease-associated proteins in the test set. It is 

expressed as percentage of correctly predicted disease-associated proteins over all 

predicted disease-associated protein. 

 

High precision means that any predicted protein is likely to be disease-associated. High recall 

means that method is able to correctly predict a large portion of proteins in a test set. A trade-off 

is required to get high precision and recall. 

 

Precision= tp/(tp + fp), Recall= tp/(tp + fn) 

 

Sensitivity and specificity are statistical measures of the performance of a binary classification 

test.   

 

Sensitivity (called the true positive rate, or the recall rate) measures the proportion of actual 

positives which are correctly identified as such. 

 

 
 

Specificity (sometimes called the true negative rate) measures the proportion of negatives which 

are correctly identified as such. 
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Tp= true positive (correctly predicted disease protein) 

Tn= true negative (non disease protein predicted as non-disease protein) 

Fp= false positive (non disease protein that is predicted as an disease associated protein) 

Fn= false negative (disease associated protein predicted as non-disease protein) 
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Figure 12: Workflow of the present study. 
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4. METHODOLOGY 
 

4.1 Building training sample: 

 

OMIM Morbid Map was used to obtain training and test sample. 

 

Training sample: consisted of a positive set and a negative set. Positive set: list of all the 

proteins associated with the cardiovascular disorders. There are a total of 124 diseases in the 

class of cardiovascular disorders. For each disease, concerned proteins were listed. Negative set: 

list of protein set of diseases other than cardiovascular diseases. 

 

Test sample: list of all the proteins which are not known to be involved in the disease. These are 

the proteins with polymorphisms but their association with disease is not yet established. 

Proteins were retrieved from humsavar.txt – UniProtKB. It is text file describing human 

polymorphism and disease mutation and contains disease variants, polymorphisms and 

unclassified variants. In the present study, we used protein variants under polymorphism as test 

set. 

  

4.2 Retrieval of dataset 

 

There are many databases for information on protein-protein interacting partners such as HPRD, 

DIP, IntAct, MIPS, but none of the database provides the information on structural interactions 

amongst proteins. To retrieve such interactions, various databases were used: 

 OMIM 

 UNIPROT 

 PDB 

 NCBI 

 

We used morbid map from OMIM (Online Mendelian Inheritance in Mammals) database to 

identify all the genes involved in cardiovascular class of disorders (Table 1). The OMIM 

database is one of the largest catalogs of human genes and disorders and focuses on inheritable 

and heritable disease within which morbid map provides the most complete and best curated list 

of known disorder-gene associations. In morbid map, there are four fields; the name of the 

disorder, the associated gene, corresponding OMIM id and the chromosomal location. In a study 

by Kar et al., they classified the disorders into classes based on the physiological system 

affected. Using the information in morbid map, an excel sheet was made with cardiovascular 

disorders listed along with the genes.  
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Table 1: OMIM Morbid Map. 

 

The respective proteins of the genes and their gene ids were retrieved from NCBI (National 

Centre for Biotechnology Information). The National Center for Biotechnology 

Information (NCBI) is part of the United States National Library of Medicine (NLM), a branch 

of the National Institutes of Health. The NCBI is located in Bethesda, Maryland and was 

founded in 1988 through legislation sponsored by Senator Claude Pepper. It is a collection of 44 

databases. The Protein database is a collection of sequences from several sources such as-: 

GenBank, RefSeq, SwissProt, PDB. 

 

 

4.3 Retrieval of the interacting proteins: 

Wang et al., 2012; found high quality binary protein-protein interactions along with the atomic 

resolution interface. They combined reliable literature-curated binary interactions and well 

verified yeast two-hybrid interactions to produce human protein interaction network (Wang et 

al., 2012). Further, they structurally resolved the interfaces of these interactions using iPfam and 

3did utilizing homology modeling approaches. This resulted in a human structural interaction 

network (hSIN). This information is stored in the database with the gene id and Pfam id. 

 

hSIN was used to determine the structurally relevant interactions to the proteins involved in the 

cardiovascular interactions. Gene ids for the disease associated proteins were retrieved from 

NCBI, and the interacting partners with reliable structure were obtained from hSIN (Table 2). 

http://en.wikipedia.org/wiki/United_States_National_Library_of_Medicine
http://en.wikipedia.org/wiki/National_Institutes_of_Health
http://en.wikipedia.org/wiki/Bethesda,_Maryland
http://en.wikipedia.org/wiki/Claude_Pepper
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Table 2: An excel sheet representing details of human structural interaction network. 

 

4.4 Structural interaction network: 

 

Once the structurally interacting partners have been obtained, a structure interaction network was 

formed by using Interactome3D (Mosca et al., 2013). It is a web service for the structural 

annotation of protein-protein interaction networks. Interacrtome3D provides structural details at 

atomic resolution for over 12.000 protein-protein interaction in eight model organisms ranging 

from Escherichia coli to yeast to human (Figure 13). This web service is fully automated 

computational approach, which handles two types of input data: a set of interactions provided by 

the user or a list of organism for modeling of their entire protein-protein interactome. It works by 

collecting all the important information about the protein and its binary interactions and finds out 

any experimentally verified structure in PDB (Protein Data Bank), or else does homology 

modeling by selecting the best template itself. The results obtained are categorized into three: 

complete experimental structure i.e. covering more than 80% of the length of the protein with 

100% sequence identity, homology models created by Modeller with more than 80% coverage 

and partial models or structures in which fragments are grouped together to cover maximum 

possible length of the protein (Mosca et al., 2013). 
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Figure 13: Screenshot of Interactome3D web service. 

 

 

4.5 Identification of interface structure using Intercatome3D 

 

The network of the interacting proteins mapped with their structures provides essential 

information about individual proteins and their interacting partners. Structural protein-protein 

interaction network consist of nodes (proteins) and edges (interactions). For obtaining the 

interface structure, each interaction is analyzed and the edge between them depicts the structure 

of interface. By clicking on the link of two interacting proteins, PDB structures along with 

interacting chains were obtained (Figure 14). 
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Figure 14: The image depicts the PDB ID for the complex between NCK1 and RASA1. The PDB structure is also 

shown along with the chains interacting. 

 

 

4.6 Interface property analysis 

 

For interface analysis, 2P2Iinspector (a protein–protein interface analysis tool) was used that 

invokes VMD, NACCESS and SURFNET. It is a complete tool that computes the interaction 

properties from 3D structure of interacting complexes.  The various descriptors provided by this 

tool includes ASA (accessible Surface Area), Gap Volume, percentage charged residues, 

secondary structure contribution, number of hydrogen bonds, number of salt bridges and number 

of disulphide bonds. All these parameters are important in determining the specificity and the 

strength of the interface. Along with parameter details, this tool also provides the visualization of 

the protein-protein complex with a Jmol applet and also, the residue and atomic composition of 

the interface. Input can be a PDB code or the PDB file along with the chains involved in the 

complex (Basse et al., 2013) (Figure 15). 
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Figure 15: Screenshot of 2P2Iinspector tool. 

 

 

4.7 Classification analysis – algorithm and analysis 

 

Comparison between the proteins involved in cardiovascular disorders and those diseases which 

are not known to be involved in diseases were made using interfacial features which describe the 

protein complexes. By using machine learning algorithm, an automatic classifier capable of 

identifying genes more likely to be involved in cardiovascular disorders based on the interfacial 

patterns was made (Xu et al., 2006). 

 

4.7.1 Processing of dataset before classification analysis. 

 

Before running Weka (hall et al., 2009), Cygwin tool was used (Red Hat, et al.,), which is a 

popular GNU development tools for Microsoft Windows.  With cygwin it is possible to easily 

port many Unix programs without the need for extensive changes to the source code. This 

includes configuring and building most of the available GNU software (including the packages 

included with the Cygwin development tools themselves) as well as lots of BSD tools and 

packages (including OpenSSH). Even if the development tools are of little to no use to you, you 

may have interest in the many standard POSIX utilities provided with the package. They can be 

used from one of the provided UNIX shells like bash, tcsh or zsh, as well as from the standard 

Windows command shell if you have to for some sad reason. It is a free tool.  
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With cygwin, a series of random file were created by combining the positive and negative data 

set (Figure 16). These files were then used in Weka for classification and finding the prediction 

probability of test or unknown dataset.  

 

 
Figure 16: Screenshot of Cygwin GUI. 

 

 

4.7.2 Model building and prediction 

 

Weka was used for model building and using the model for the prediction of the test set. All 

classification and analyses was performed on the Weka workbench (Bouckaert et al., 2010). 

Weka (Waikato Environment for Knowledge Analysis) is popular open source Java based 

software that contains implementations of a diverse range of classification and clustering 

algorithms. It provides a simple GUI supporting the data from various sources and in different 

file formats. It has multiple algorithms (including that of regression, association rule mining, 

clustering, classification etc.) and pre-processing tools that allow comparison of different 

methods. The workbench is used for both supervised as well as unsupervised algorithms. The 

data visualization facilities help in easy access and analysis of results. We used Weka 3.7.11 for 

generating our models. The input files were converted in CSV form compatible with Weka. The 

models were built using Random Forest algorithm. 

 

Experimenter was used to determine which algorithm gives the best and accurate result (Figure 

17). Various algorithms such as Naïve Bayes, Random Forest, J48, and Multilayer Perceptron 

were used. Parameters such as true positive, true negative, false positive, false negative, 



34 
 

precision and recall were used to determine the best algorithm. Random forest with iteration 30 

was used to generate the model for prediction. 

 

 
Figure 17: Weka experimenter to select the classifier algorithm.  

 

In Random Forest, the numbers of trees were increased from 10 to 30, to obtain more precise 

results (Figure 18). Better results are obtained by using more tress as Random Forest takes 

average over many trees, but this should not exceed a particular tree otherwise prediction 

performance decreases. 
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Figure 18: Random Forest sheet showing number of trees as 30. 

 

Once the algorithm is decided, Explorer is used to form a model based on Random Forest 

classification algorithm and predictions are made using this model.  

 

4.7.2.1 Model generation 

 

 Weka explorer was opened and train dataset was uploaded in the pre-process tab.  

 

 All the attributes were selected. 

 

 From the classify tab, ‗Choose „then ‗trees‟ then ‗Random Forest‟ was selected.  

 

 Random Forest was clicked and number of trees increased to 30. 

 

 Cross validation value was set to 10. 

 



36 
 

 Build Model was clicked (Figure 19). 

 

 
Figure 19: Weka explorer to generate model based on classifier algorithm. 

 

 
 Figure 20: Weka explorer to cross validate the dataset. 

 

This results in a table showing detailed accuracy by class and a 2×2 matrix. 
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4.7.2.2 Cross Validation  

The technique is implied during training of the classifiers. K-fold cross validation is one of the 

most popularly used methods of cross-validation of the accuracy of a model. In k-fold cross 

validation, the entire data is divided into k subsets (folds) of equal sizes and training is done for 

(k-1) sets and testing is done on one set. The process is repeated k number of times so that each 

set is tested at least once. The process is shown in Figure 21. The average error rate is computed 

for all tests. We have used (k=10) or a 10-fold cross validation here. The resulting model from 

the cross-validation is applied to the test set. 

 

 
Figure 21: K-fold cross validation, one subset is used for training the model generated by rest of subsets as train set. 

The action is repeated in such a way that each subset becomes a test set at least once. The average of all is the final 

model. 

 

4.7.2.3 Model performance evaluation  

 

After the model generation, test sample is supplied and model is re-evaluated on current test set.  

 

 In the classify tab of Weka itself, Click on ‗ „Supplied Test Set‟ and the test set was 

uploaded by browsing.  

 The generated model was clicked and „re-evaluate model on current test set‟ was chosen.  

 

A CSV file was generated using prediction value, which was analyzed further. 
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4.8 DAVID (Database for Annotation, Visualization and Integrated discovery) analysis: 

DAVID analysis of the predicted proteins was carried out to analyze their relationship with 

cardiovascular diseases. DAVID is a web-accessible program that provides integrated 

information about functional genomics annotations and their graphic summaries. It contains 

annotated gene or protein identifiers that share categorical information on protein domains, 

biochemical pathway membership, Gene Ontology, and etc. It includes functionally annotated 

data for genomes such as humans, rats, fly, mouse (Huang et al., 2009). 
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5. RESULTS  

 

5.1 Proteins associated with cardiovascular disorders 

A total of 124 diseases under cardiovascular class of disorder were extracted from OMIM 

Morbid Map. Proteins associated with the specific diseases were identified from UniProtKB. An 

excel spreadsheet was created to associate proteins as well as genes with the respective disease. 

For each protein, interactions which are structurally relevant i.e. in which both the interacting 

proteins have Pfam id, were considered and listed in excel sheet (Table 3).  

DISEAS

E ID 

DISEASE 

NAME 

GENE 

SYMBOL

S 

UniProt 

ID 

INTERAC

TIONS 

OMIM 

GENE ID 

CHROMOSO

ME NO. 
CLASS 

31 

Acquired 

long QT 

syndrome, 

susceptibili

ty to (3) 

KCNH2, 

LQT2, 

HERG 

Q12809 
Q15669, 

P17612 
152427 7q35-q36 

Cardiova

scular 

130 

Aortic 

aneurysm, 

ascending, 

and 

dissection 

(3) 

FBN1, 

MFS1, 

WMS 

P35555 

O95967, 

Q9UBX5, 

P28300, 

P35556 

134797 15q21.1 
Cardiova

scular 

144 

Arrhythmo

geNAc 

right 

ventricular 

dysplasia 2, 

600996 (3) 

RYR2, 

VTSIP 
Q92736 

NO 

INTERAC

TION 

FOUND 

180902 1q42.1-q43 
Cardiova

scular 

144 

Arrhythmo

geNAc 

right 

ventricular 

dysplasia 8, 

607450 (3) 

DSP, 

KPPS2, 

PPKS2 

NA NI 125647 6p24 
Cardiova

scular 

144 

Arrhythmo

geNIc right 

ventricular 

dysplasia, 

familial, 9, 

PKP2, 

ARVD9 
NA NI 602861 12p11 

Cardiova

scular 
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163 

Atheroscler

osis, 

susceptibili

ty to (3) 

ALOX5 P09917 Q14019 152390 10q11.2 
Cardiova

scular 

166 

Atrial 

fibrillation, 

familial, 4, 

607554 (3) 

KCNE2, 

MIRP1, 

LQT6 

NA NI 603796 21q22.1 
Cardiova

scular 

166 

Atrial 

fibrillation, 

familial, 3, 

607554 (3) 

KCNQ1, 

KCNI9, 

LQT1, 

KVLQT1 

P51787 P15382 607542 11p15.5 
Cardiova

scular 

166 

Atrial 

septal 

defect-2, 

607941 (3) 

GA T A 4 P43694 Q9Y2Y9 600576 8p23.1-p22 
Cardiova

scular 

166 

Atrial 

septal 

defect 3 (3) 

MYH6, 

ASD3, 

MYHCA 

NA NI 160710 14q12 
Cardiova

scular 

166 

Atrial 

septal 

defect with 

atrioventric

ular 

conduction 

defects, 

108900 (3) 

NKX2E, 

CSX 
NA NI 600584 5q34 

Cardiova

scular 

168 

Atrioventri

cular block, 

idiopathic 

second-

degree (3) 

NKX2E, 

CSX 
NA NI 600584 5q34 

Cardiova

scular 

168 

Atrioventri

cular septal 

defect, 

600309 (3) 

GJA1, 

CX43, 

ODDD, 

SDTY3, 

ODOD 

P17302 
Q07157, 

Q02487-1 
121014 6q21-q23.2 

Cardiova

scular 

Table 3: List of all diseases associated with cardiovascular class of disorders along with the proteins and the 

interacting partners. NA – protein id was not available. NI – structural interactions were not found. 

There are a total of 124 entries. In the table above, both the proteins and their respective 

interactions are listed. Colored rows indicate the diseases for which respective protein has no 

structural interaction. Using this table, structural interaction network was created. 
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5.2 Protein-Protein Structural Interaction Network: 

A list of proteins and the interacting partners were provided to the web service Intercatome3D, 

which resulted in network along with structures, where proteins are denoted by nodes and link 

between interacting partners as edges. 

Positive set: 

Figure 22: Bar graphs showing the proteins and their interactions with color indications of experimental structures, 

models, and no structural information. 

Figure 23: Interaction network with the mapped structures. Colour legend is provided on the top left corner. 
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Negative set:  

Figure 24: Bar graph for negative set. 

 

Figure 25: Structural interaction network for negative set. 



43 
 

Test set: 

Figure 26: Bar graph for unknown set 

 

Figure 27: Structural Interaction network for unknown polymorphic proteins 
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As described in methodology, the link between individual interacting partners is clicked which 

opens in a new window showing the best three models for the proteins, and the PDB structure 

with the chains involved in interaction. This information about PDB structure and interacting 

chains was used to determine the interface parameters. 

5.3 Deducing interface parameters using 2P2Iinspector  

2P2Iinspector is a tool for determining the interface attributes. For example, for PDB id 1RY7, a 

detailed analysis of interface is given in the form of Figure 29. 

 

Figure 28: Biological Assembly Image for 1RY7. Crystal Structure of the 3 Ig form of FGFR3c in complex with 

FGF1. Protein chains are colored from the N-terminal to the C-terminal using a rainbow (spectral) color gradient 

 

Figure 29: Interface Properties 
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Along with the interface analysis between two protein chains, detailed analysis of single chain is 

also provided which can be used in various studies and elaborate structure visualization with 

various options to label interface residues, polar residues, hydrogen bonds and salt bridges 

(Figure 30). 

 

Figure 30: Jmol visualization of the interface showing interface residues. 

The interfaces properties are summarized in excel spreadsheet (Table 4, 5, 6): 

Training sample: Positive set 

DISEA

SE 

NAME 

PROT

EIN A 

PROT

EIN B 

PDB 

ID 

AS

A 
GV GVI %CR HB 

SEC 

STR

U 

SB DB 

Myocar

dial 

infarcti

on 

LTA 

(P013

74 

link) 

TNFR

SF1A 

(P194

38 

link) 

1tnr 

link 

(Cha

ins 

A:1 

and 

R:1) 

120

8.2

9 

614

9.25 

5.089

21699

3 

40 3 
BET

A 
0 0 
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LTA 

(P013

74 

link) 

TNFR

SF1B 

(P203

33 

link) 

3k5

1 

link 

(Cha

ins 

A:2 

and 

B:2) 

932

.3 

557

5.5 

5.980

37112

5 

33.3 1 Coil 1 0 

 

LTA 

(P013

74 

link) 

LTA 

(P013

74 

link) 

4mx

v 

link 

(Cha

ins 

B:1 

and 

A:1) 

182

6.7 

483

9.75 

2.649

44982

8 

21.4 3 
BET

A 
0 0 

 

LTA 

(P013

74 

link) 

LTB 

(Q066

43 

link) 

4mx

w 

link 

(Cha

ins 

A:1 

and 

D:1) 

182

8.1 

437

7.37 

2.394

49154

9 

5.9 2 
BET

A 
0 0 

 

LTA 

(P013

74 

link) 

TNFR

SF14 

(Q929

56 

link) 

memb

er 14 

3alq 

link 

(Cha

ins 

C:1 

and 

S:1) 

121

2.2 

631

4.62 

5.209

22290

1 

0 2 Beta 0 0 

Table 4: Interface parameters for positive set. ASA- Accessible Surface Area, GV- Gap Volume, GVI- Gap Volume 

Index, %CR- charged residues, HB- hydrogen bonds, Sec stru- Secondary structure, SB – number of salt bridges, 

DB- number of disulphide bonds. 

There were total 47 proteins in the list of whom the interface properties were calculated. 
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Negative set: 

 

PROTEI

N 1 

PROTEI

N 2 
PDB ID ASA GV GVI %CR HB 

SEC 

STRU 
SB DB 

FGF1 

(P05230 

link) 

FGFR3 

(P22607 

link) 

1ry7 

link 

(Chains 

A:1 and 

B:1) 

3082.

9 

815

7.37 

2.6460

05385 
18.8 3 1 2 0 

BRAF 

(P15056 

link) 

BRAF 

(P15056 

link) 

3ny5 

link 

(Chains 

B:1 and 

A:1) 

1940.

7 

363

1.5 

1.8712

3203 
28.6 6 1 1 0 

BRAF 

(P15056 

link) 

RAF1 

(P04049 

link) 

4ehe 

link 

(Chains 

A:1 and 

B:1 

2337.

2 

670

6.12 

2.8692

96594 
25 4 0 0 0 

GDF5 

(P43026 

link) 

BMPR1

A 

(P36894 

link) 

3qb4 

link 

(Chains 

D:1 and 

C:1) 

1812.

1 

401

2.87 

2.2144

85956 
13.3 5 0 0 0 

GDF5 

(P43026 

link) 

BMPR1

B 

(O00238 

link) 

3evs 

link 

(Chains 

C:1 and 

B:2) 

743.6 
355

0.5 

4.7747

44486 
42.9 0 1 0 0 

Table 5: Interface parameters for negative set. ASA- Accessible Surface Area, GV- Gap Volume, GVI- Gap Volume 

Index, %CR- charged residues, HB- hydrogen bonds, Sec stru- Secondary structure, SB – number of salt bridges, 

DB- number of disulphide bonds. 

400 interacting proteins were considered in negatives set, which was used to form training set. 
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Test Set: 

PROTEIN 

1 

PROTEIN 

2 

PDB 

ID 
ASA GV GVI 

%C

R 

H

B 

SEC 

STRU 

S

B 

S

B 

AANAT YWHAZ 
1IB1, 

AE 

2861.

3 
8100 

2.8308810

68 
43.3 11 

ALPH

A 
3 0 

A2M CELA1 
3HS0, 

AB 

7475.

3 

15406.8

7 

2.0610370

15 
22.2 30 BETA 1 0 

ABCB8 ABCB8 
1G9X

, AB 
392.8 3813.75 

9.7091395

11 
33.3 0 COIL 0 0 

ABCB8 ABCB8 
1XF9, 

AB 

1494.

2 
5764.5 

3.8579172

8 
41.7 0 COIL 1 0 

ABCB8 ABCB8 
2BBS

, AB 
437.4 

12035.2

5 

27.515432

1 
66.7 0 

ALPH

A 
0 0 

ABCB8 ABCB8 
2IXF, 

AB 

1666.

3 

11431.1

2 

6.8601812

4 
11.8 5 

ALPH

A 
0 0 

ABCB8 ABCB8 
3C41, 

JK 

1738.

2 
10246.5 

5.8948912

67 
26.7 1 COIL 0 0 

ABCB8 ABCB8 
3G61, 

AB 

2993.

3 

12544.8

7 

4.1909831

96 
22.7 0 

ALPH

A 
2 0 

ABCB8 ABCB8 

2HY

D, 

AB 

1430

3 

30543.7

5 

2.1354785

71 
19.8 12 

ALPH

A 
4 0 

ABCD1 ABCD1 
1G29, 

AB 
2855 

10337.6

2 

3.6208826

62 
33.3 5 

ALPH

A 
2 0 

 Table 6: Interface properties for test set. ASA- Accessible Surface Area, GV- Gap Volume, GVI- Gap Volume 

Index, %CR- charged residues, HB- hydrogen bonds, Sec stru- Secondary structure, SB – number of salt bridges, 

DB- number of disulphide bonds. 

600 proteins from a total of 1500 polymorphic proteins were determined to have structures and 

their interface properties are listed in the table above. 

The training set included both the positive set (i.e. cardiovascular disease associated proteins 

with their interacting partners) and negative set (i.e. proteins and their interacting partners 

associated with diseases other than cardiovascular disorders) files and the test set has a list of 

polymorphic proteins not associated with any disease. A total of 8 descriptors were defined 

namely Accessible Surface Area, Gap Volume, Gap Volume Index, % charged residues, number 

of hydrogen bonds, number of salt bridges, number of disulphide bonds and secondary structure 

at interface. These files were used as input in Weka. 
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5.4 Classification and Prediction analysis 

The descriptors files containing the parameters and the protein ids of both proteins along with the 

output were converted into CSV (Comma Separated File) which is required for Weka format. 

Weka experimenter was used to find the algorithm with the best output. A set of famous 

algorithms such as Naïve Bayes, Random Forest, J48, Random Forest with iteration 30, Bagging 

with Random Forest and Multilayer Perceptron were run on the dataset and comparisons were 

done between them (Table 7). Various statistical values were used in determining the optimum 

classifier for our training sample which is: 

True Positive: Proteins associated with cardiovascular disease correctly predicted as 

cardiovascular disorders associated. 

True Negative: Proteins associated with disease other than cardiovascular correctly predicted as 

not related to cardiovascular disorder. 

False Positive: Non cardiovascular-disease associated protein predicted as cardiovascular-

disease associated. 

False Negative: Cardiovascular-disease associated protein predicted as non-cardiovascular-

disease related. 

Precision: Percentage of correctly predicted cardiovascular-disease protein over all predicted 

cardiovascular-disease associated disease protein. 

 

Recall: Percentage of correctly predicted cardiovascular-disease protein over all cardiovascular-

disease associated disease protein. 

 

Classifier 
True Positive 

Rate 

False Positive 

Rate 

True Negative 

Rate 

False Negative 

Rate 

Precisi

on 

Rec

all 

Random 

Forest_10 0.77 0.4 0.59 0.23 0.67 0.77 

Naïve Bayes 0.6 0.41 0.59 0.4 0.6 0.56 

J48 0.74 0.39 0.61 0.26 0.67 0.74 

Random 

Forest_30 0.77 0.38 0.62 0.23 0.7 0.77 

Multilayer 

Perceptron 0.71 0.41 0.6 0.28 0.65 0.71 

Bagging_Ra

ndom Forest 0.75 0.37 0.63 0.25 0.68 0.6 

Table 7: Comparisons between different classifiers.  
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Figure 31: Bar graph with different classifiers and the statistical values. 

In Figure 31, true positive rate, true negative rate, precision and recall were highest for Random 

Forest with iterations 30 (i.e. the number of trees were increased from 10 to 30). In the columns 

of false positive and false negative, Random Forest_30 scores the least. Thus, Random Forest_30 

is the optimum classifier for the model building. 

 

5.4.1 Evaluation of Model generated  

Explorer in Weka was used for generating model with the training sample using Random 

Forest_30 (Figure 32).  
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Figure 32: Cross validation results of model generated using Weka. 

 

A confusion matrix (Kohavi and Provost, 1998) contains information about actual and predicted 

classifications done by a classification system. Performance of such systems is commonly 

evaluated using the data in the matrix.  
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Where tp is the number of 'positive' examples classified as 'positive',  

  tn is the number of 'negative' examples classified as 'negative', 

  fp is the number of 'negative' examples classified as 'positive', 

  fn is the number of 'positive' examples classified as 'negative', 

 

Accuracy 

 

It simply measures the ratio of the test examples a system classifies correctly. So, simply 

 

      Correctly classified examples 

 Accuracy = -------------------------------- 

      All examples in the sample 

 

 

For confusion matrix that would be equal to  

 

    tp + tn 

Accuracy =  -------------------- 

   tp + tn + fp + fn 

The true positive rate (TP) or sensitivity is the proportion of positive cases that were correctly 

identified, as calculated using the equation: 

           tp 

 True positive rate = -------------- 

          tp + fn 

The false positive rate (FP) is the proportion of negatives cases that were incorrectly classified 

as positive, as calculated using the equation: 

           fp 

 False positive rate = -------------- 

          fp + tn 

The true negative rate (TN) or specificity is defined as the proportion of negatives cases that 

were classified correctly, as calculated using the equation: 

           tn 

 True negative rate = -------------- 

          tn + fp 
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The false negative rate (FN) is the proportion of positives cases that were incorrectly classified 

as negative, as calculated using the equation: 

           fn 

 False negative rate = -------------- 

          fn + tp 

 

Precision and Recall 

 

 

            tp                                               tp 

 Precision = --------------                 recall = --------------- 

            tp + fp                                         tp + fn 

 

Precision and recall values are not symmetrical.  

 

Precision corresponds to ratio of correctness in the examples classified as positive, recall 

measures ratio of examples classified as positive among all positive examples. In a sense, 

remeasures precision measures fidelity, while recall measures completeness. In most cases, 

tuning machine learning system to improve one of these measures result in a drop in the other. In 

some cases high precision may be more important, and in some cases high recall may be more 

important. However, in most cases, we aim at improving both values. The combination of these 

values are called f-score, and in most common form, it is the harmonic mean of both 

 

    2 * precision * recall  

 f-score = --------------------------- 

    precision + recall 

 

Receiver Operator Characteristics (ROC) Analysis 

 

ROC analysis is done for evaluation and model selection. In ROC analysis we plot tp ratio (true 

positives divided by all positives) against fp ratio (false positives divided by all negatives).  

 

In ROC graph, the ideal classifier appears at the upper left corner (tpr=1, fpr=0). An ROC curve 

demonstrates several things: 

1. It shows the tradeoff between sensitivity and specificity (any increase in sensitivity will 

be accompanied by a decrease in specificity). 

2. The closer the curve follows the left-hand border and then the top border of the ROC 

space, the more accurate the test. 
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3. The closer the curve comes to the 45-degree diagonal of the ROC space, the less accurate 

the test. 

4. The area under the curve is a measure of accuracy of prediction.  

For Random Forest_30, the area under curve was 0.74 (Figure 33). 

 

 
Figure 33: ROC curve for Random Forest_30.  

 

5.4.2 Prediction Probability for Test set: 

 

Now, once the model has been evaluated, predictions were made using the test sample to predict 

potential cardiovascular-disorder related proteins from a set of polymorphic proteins. Further 

analysis of these can provide insight into unknown molecular mechanism involved in the 

occurrence of particular disease. 

List of all the polymorphic protein along with their prediction probability was obtained. 

Threshold value of >0.8 was set for considering those proteins which could be potential proteins 

associated with cardiovascular-disease.  

A total of 42 proteins out of 600 polymorphic proteins had prediction probability more than 0.8. 

The relevant association of these unknown polymorphic proteins with cardiovascular disease was 
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analyzed using DAVID and included in the list. As described, these proteins are not explicitly 

involved in causing cardiovascular disease but may be involved in various pathways and 

mechanisms leading to diseases. Further analysis of these proteins provides insight into the 

molecular mechanism yet to be known. The table 8 below shows the proteins with prediction 

value more than 0.8.  

 

PROT

EIN 1 

PROT

EIN 2 
PDB ID 

Predicti

on 

Probabi

lity 

Information about the potential protein 

DSG1 DSG1 
3IFQ , 

AC 
0.924 

Mutations in the desmoglein-2 (DSG2) gene have been 

reported in patients with arrhythmogenic right 

ventricular cardiomyopathy (ARVC) but clinical 

information regarding the associated phenotype is at 

present limited (Syrris et al., 2006). KEGG PATHWAY 

ENTRY - ko05412 Arrhythmogenic right ventricular 

cardiomyopathy (ARVC) 

ABI1 EPS8 
1GRI, 

AB 
0.894 

Abi1 is a central regulator of actin polymerization 

through interactions with multiple protein complexes. 

Mice lacking Abi1 or α4 exhibit midgestational lethality 

with abnormalities in placental and cardiovascular 

development (Ring et al., 2007). 

BCAR1 
BCAR

1 

1OV3 , 

AB 
0.894 

Gertow et al., 2012; identified rs4888378 in the 

BCAR1-CFDP1-TMEM170A locus as a novel genetic 

determinant of cIMT and coronary artery disease risk in 

individuals of European descent. 

CASP1 CASP1 
3E4C, 

AB 
0.892 

CASP1 haplotype carrying the A(in6) allele was 

associated with a lower mRNA expression. These 

results indicate that caspase-1 levels are predictive of 

future cardiovascular death in patients with coronary 

artery disease. The role of CASP1 genetic variations in 

the susceptibility to myocardial infarction requires 

further investigation (Blankenberg et al., 2006). 

ACTN2 
ACTN

2 

1HCI , 

AB 
0.877 

Studies indicate that HF is associated with two different 

types of remodeling of α-actinin and only one of those 

was reversed after Cardiac Rescynchronization 

therapy(Justin et al., 2012). 
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A2M CELA1 
3HS0, 

AB 
0.861 

A total of 35 genes were differentially expressed in 

cases with CHD versus controls at false discovery 

rate<0.5, including GZMB, TMEM56, and GUK1. 

Cluster analysis revealed 3 gene clusters associated with 

CHD, 2 linked to increased erythrocyte production and a 

third to reduced natural killer and T cell activity in cases 

with CHD (Joehans et al., 2013) 

ACY1 ACY1 
2ZOG , 

AB 
0.861 No significant result found 

CAND

1 

CAND

1 

1U6G, 

AB 
0.861 

Obesity is one of the most serious health problems of 

the 21st century. It is associated with highly increased 

risk of type 2 diabetes, high blood pressure, 

cardiovascular disease as well as several cancers. CHOP 

stability is controlled by a CSN-CRL3Keap1 complex, 

which is crucial for adipogenesis (Huang et al., 2012). 

FARSA FARSB 
3L4G, 

AB 
0.861 No significant result found 

EGFL6 EGFL6 
2BO2, 

AB 
0.859 

With increasing rates of obesity driving the incidence of 

type 2 diabetes and cardiovascular diseases to epidemic 

levels, understanding of the biology of adipose tissue 

expansion is a focus of current research (oberauer et al., 

2010) 

BHMT BHMT 
1LT8 , 

AB 
0.838 

Hyperhomocysteinemia, a risk factor for cardiovascular 

disease, can be caused by genetic mutations in enzymes 

of homocysteine metabolism. Homocysteine 

remethylation to methionine is catalyzed by folate-

dependent methionine synthase, or by betaine-

homocysteine methyltransferase (BHMT), which 

utilizes betaine as the methyl donor (Weisberg et al., 

2003) 

DCP2 DCP2 
2DSD , 

AB 
0.827 No significant result found 

DHPS DHPS 
1RQD, 

AB 
0.827 No significant result found 

BCR BCR 
2B3R , 

AB 
0.826 

UPR signaling in cardiovascular disease and its related 

therapeutic potential (Minamino et al., 2010) 

BHMT BHMT 
1LT7 , 

AB 
0.824 

Betaine-homocysteine S-methyltransferase (BHMT) 

uses betaine to catalyze the conversion of homocysteine 

(Hcy) to methionine. There are common genetic 

polymorphisms in the BHMT gene in humans that can 
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alter its enzymatic activity (Teng et al., 2007). 

FGG FGG 
2FFD, 

AB 
0.813 No significant result found 

ACVR1 
ACVR

1 

3O96, 

AB 
0.811 

BmpR1a and AcvR1 are needed for normal heart 

development, in which they play some non-redundant 

roles, and refine our understanding of the genetic and 

morphogenetic processes underlying Bmp-mediated 

heart development important in human congenital heart 

disease (Thomas et al., 2014). 

ABL1 ABL1 
2HYY , 

AB 
0.809 

The pathophysiological dysfunction of protein kinase 

signaling pathways underlies the molecular basis of 

many cancers and of several manifestations of 

cardiovascular disease, such as hypertrophy and other 

types of left ventricular remodeling, 

ischemia/reperfusion injury, angiogenesis, and 

atherogenesis (Force et al., 2004). 

FBP1 FBP1 
3KC1, 

AB 
0.809 

Insulin-like growth factors (IGFs) are peptide hormones 

that have significant structural homology with insulin. 

IGF binding proteins (IGFBPs), in particular IGFBP-1, 

are important determinants of IGF activity such as 

enhancing peripheral glucose uptake, decreasing hepatic 

glucose output and modifying lipid metabolism. Herein 

factors which alter IGFBP-1 and the utility of measuring 

IGFBP-1 are considered as the role of IGFBP-1 is 

explored within the context of insulin resistance and the 

development of cardiovascular disease (Mehta et al., 

2012). 

ABLIM

1 

ABLI

M1 

2DFY , 

CX 
0.806 No significant result found 

BCL6 BCL6 
3LBZ , 

AB 
0.806 

The Bcl6 gene encodes a sequence-specific 

transcriptional repressor and is ubiquitously expressed 

in adult murine tissues including heart muscle. The 

objective of this study was to examine the role of Bcl6 

in cardiac myocytes (Yoshida et al., 1999). 

BAIAP

2 

BAIAP

2 

1Y2O , 

AB 
0.802 No significant result found 

Table 8: Proteins predicted as potentially associated with cardiovascular disorders and their associations described. 
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6. CONCLUSION 

 

In the present study, the main aim was to identify and distinguish proteins based on the interface 

parameters of the structure involved.  It started with genes associated with disease to the 

structures associated with diseases. A classifier using Random Forest with iteration 30 algorithm 

was used for training based on the training set which included interface properties of proteins 

(with their interacting partners) associated with cardiovascular diseases and proteins (with their 

interacting partners) associated with other diseases than cardiovascular disease. Based on the 

training, a list of 42 proteins from a set of 600 unknown polymorphic proteins was obtained 

which are predicted to be potentially associated with cardiovascular disorders. These proteins 

may not be the causing factor of particular disease but can be involved in various pathways and 

mechanism yet unknown to us. Study of their interactions with other proteins can significantly 

improve our understanding in the molecular mechanism of diseases.  Generally, mutations in 

proteins affect the structure of protein and hence it is becoming important to shift the focus from 

genetic studies to molecular studies. Significant work has been done recently to incorporate 

structures and this work is an addition to the previous studies. The wider scope of this study is 

the characterization of all the hereditary disorders based on their structural properties to gain 

better understanding in the molecular mechanism (such as effect of mutation on protein structure, 

which residue is being affected, affect of all the residues including charged, polar, uncharged, 

how hydrogen bonding between complexes are important and so on) behind these diseases. 
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7. DISCUSSION AND FUTURE PERSPECTIVE 

 

Main concern of the present study is to present interface analysis of cardiovascular-disorder 

related proteins to shed lights on details of interactions and to emphasize the importance of using 

structures in network studies (Kar et al., 2009). The positive results showed that the data on 

interface properties can be accessed for classification purposes be it between two different 

diseases, a set of disease having same phenotypic effect with other set of disease with different 

phenotype, or for all the hereditary diseases known. This study provided insights into the usage 

fine structural details in disorders related to cardiac system. A further exploration of this study 

can be utilized to study whether the classifier could work equally efficient when used for 

classifying all the inherited disease. 

These results can be used as evidence when searching for candidate gene in predefined disease 

loci and also for predictions, to identify novel genes involved in the mechanisms. Studies have 

been carried out where sequence features such as cDNA, number of exons, protein size were 

investigated between set of genes known to be involved in hereditary disease and those not (Adie 

et al., 2005; Lopez-Bigas and Ouzounis, 2004). Functional annotation shared between known 

diseases genes had also been used to design a classifier (Perez-Iratxeta et al., 2002; Turner et al., 

2003). The classification based on genomic sequences have disadvantages associated with them, 

as algorithms which are based on functional annotations are inherently biased towards a 

particular known subset of genes. The present study utilized human PPI network with structural 

properties to compare genes involved in diseases or not. It is assumed that structural properties 

provide a much wider coverage of the understanding of mechanism of disease than sequence 

analysis. A promising approach for disease gene discovery is to combine all the evidences 

available such as PPIs, structures, sequences, transcriptional expression, functional annotation to 

make a classifier that would be possible to predict accurately without any ambiguities (Calvo et 

al., 2006). 

 

Protein-Protein interaction network provide a vast area of study in which different criteria, 

different features can be utilized to devise new diagnostic tool or to understand a novel 

mechanism. Mutations leading to interaction disruptions or creation of new interaction in disease 

stare are possible using PPI networks with structural perspective. Further, new prognostic tools 

can be created by identification of pathways or disease sub networks that get activated only in 

diseases states. For instance, a recent study integrated protein networks with cancer expression 

profile and identified pathway that get activated only during tumor progression discriminating 

metastasis better than earlier described markers (Gonzalez et al., 2012). 

 

Drug target identification and drug design can be made more comprehensive by including 

disease networks and structural details, for example, structural information on allosteric site or 
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binding site can be used to design potential drug to affect protein function. Further, rebuilding 

different interaction networks such as metabolic, signaling etc, prediction about hub protein can 

be made which are involved in various pathways for proper functioning of the cell. This 

knowledge can be used while designing the drugs, i.e. whether to target hub proteins or not 

(Gonzalez et al., 2012). 

 

Some studies have shown the association between age-related cardiovascular diseases and 

osteoporosis with common etiology such as increased risk of hip fracture in women. Recent 

studies have shown that drugs have common effect for cardiovascular diseases and osteoporosis, 

for example bone antiresorptive drug reduces the risk of cardiovascular diseases. Similarly, 

positive effects of statins, antihypertensive drugs have been shown on bone mass. These studies 

points to the common physiopathological molecular pathways between both the diseases. Statins 

for example, reduces cardiovascular mortality through reduction of LDL cholesterol levels, these 

have also been associated to increase bone mineralization in mice and reduction of fractures. All 

these examples suggest a link between the vascular and skeletal systems; therefore it is the main 

concern to understand the exact physiopathological mechanism shared between both the diseases 

as well as to determine common risk factors and genetic determinants (Marini et al., 2010). 
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