
A NEW PARTICLE SWARM OPTIMIZATION ALGORITHM

AND ITS APPLICATION TO LOAD FLOW

M.Tech. Dissertation

BY

Uttam Kumar

2K14/PSY/19

DEPARTMENT OF ELCTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042 (INDIA)

JUNE, 2016

A NEW PARTICLE SWARM OPTIMIZATION AND ITS

APPLICATION TO LOAD FLOW

M.Tech Dissertation

Submitted in partial fulfillment of the
requirements for the award of the degree

of

Master of Technology

in

Power Systems

BY

UTTAM KUMAR

2K14/PSY/19

DEPARTMENT OF ELCTRICAL ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

DELHI-110042 (INDIA)

JUNE, 2016

CERTIFICATE

I hereby certify that the work which is being presented in the M.Tech. Dissertation

entitled “ A New Particle Swarm Optimization Algorithm and its Application to Load

Flow”, in partial fulfillment of the requirements for the award of the Degree of Master of

Technology in Electrical Engineering and submitted to the Department of Electrical

Engineering of Delhi Technological University is an authentic record of my own work carried

out under the supervision of Prof. N.K. Jain (Professor) and Prof. Uma Nangia

(Professor) , EE Department.

 The matter presented in this report has not been submitted by me for the award of any

other Degree/Diploma elsewhere.

 Uttam Kumar

 2K14/PSY/19

Date: 20th June, 2016 Mentors

Prof. N.K. Jain

 Professor

 EE Dept., DTU

 Prof. Uma Nangia

 Professor

EE Dept., DTU

LIST OF FIGURES

FIGURE 1. FLOWCHART OF PSO

FIGURE 2. FLOWCHART FOR SEPSO

FIGURE 3. PARAMETERS’ WINDOW FOR ENTERING PSO PARAMETERS

FIGURE 4. WINDOW FOR SELECTING THE BENCHMARK FUNCTION

FIGURE 5. PARAMETERS’ WINDOW FOR ENTERING SEPSO PARAMETERS

FIGURE 6. COMPARISON OF SEPSO AND CONVENTIONAL PSO FOR

ROSENBROCK’S FUNCTION.

FIGURE 7. COMPARISON OF SEPSO AND CONVENTIONAL PSO FOR

GRIEWANK’S FUNCTION.

FIGURE 8. COMPARISON OF SEPSO AND CONVENTIONAL PSO FOR SPHERE

FUNCTION.

FIGURE 9. SEPSO COMPARED WITH PSO FOR RASTRIGIN’S FUNCTION.

FIGURE 10 COMPUTATIONAL EFFORT FOR CONVENTIONAL PSO AND SEPSO

(IEEE 5 BUS SYSTEM).

FIGURE 11 COMPUTATIONAL EFFORT FOR CONVENTIONAL PSO AND SEPSO

(IEEE 14 BUS SYSTEM).

FIGURE I. IEEE 5 BUS SYSTEM

FIGURE II. IEEE 14 BUS SYSTEM

LIST OF TABLES

TABLE 1. 2-D BENCHMARK FUNCTIONS

TABLE 2. PLOTS OF 2-D BENCHMARK FUNCTIONS

TABLE 3. RESULTS OF CONVENTIONAL PSO (ROSENBROCK)

TABLE 4. RESULTS OF SEPSO (R=2) (ROSENBROCK)

TABLE 5. RESULTS OF CONVENTIONAL PSO (GRIEWANK)

TABLE 6. RESULTS OF SEPSO (FOR R=2) (GRIEWANK)

TABLE 7. RESULTS OF CONVENTIONAL PSO (SPHERE)

TABLE 8. RESULTS OF SEPSO (SPHERE) FOR R=2

TABLE 9. RESULTS OF CONVENTIONAL PSO (RASTRIGIN)

TABLE 10. RESULTS OF SEPSO (R=2) (RASTRIGIN)

TABLE 11: COMPUTATIONAL EFFORT FOR LOAD FLOW USING CONVENTIONAL

PSO (IEEE 5 BUS SYSTEM)

TABLE 12: COMPUTATIONAL EFFORT FOR LOAD FLOW USING SEPSO. (IEEE 5

BUS SYSTEM)

TABLE 13: RESULTS OF LOAD FLOW USING SEPSO; FS=2 AND R=2; (IEEE 5 BUS

SYSTEM)

TABLE 14: COMPUTATIONAL EFFORT FOR LOAD FLOW USING CONVENTIONAL

PSO (IEEE 14 BUS SYSTEM)

TABLE 15: COMPUTATIONAL EFFORT FOR LOAD FLOW USING SEPSO (IEEE 14

BUS SYSTEM).

TABLE 16: RESULTS OF LOAD FLOW USING SEPSO (IEEE 14 BUS SYSTEM).

TABLE 17. COMPARISON OF SEPSO WITH CONVENTIONAL PSO (IEEE 5 BUS

SYSTEM).

TABLE 18. COMPARISON OF SEPSO WITH CONVENTIONAL PSO (IEEE 14 BUS

SYSTEM).

TABLE 19: RESULTS OF LOAD FLOW USING NEWTON RAPHSON’S (NR) METHOD

(IEEE 5 BUS SYSTEM)

TABLE 20: RESULTS OF LOAD FLOW USING NR METHOD (IEEE 14 BUS SYSTEM).

TABLE I: SPECIFIED VALUES OF LOAD(S), GENERATION(S), VOLTAGE(S) AND

ANGLE(S).

TABLE II: LINE REACTANCE VALUES AND LINE RESISTANCE VALUES.

TABLE III: LINE REACTANCE VALUES, LINE RESISTANCE VALUES AND LINE

SUSCEPTANCE VALUES.

TABLE IV: SPECIFIED VALUES OF LOAD(S), GENERATION(S), VOLTAGE(S) AND

ANGLE(S).

TABLE V: REACTIVE POWER LIMITS.

ACKNOWLEDGEMENT

 Apart from the efforts of me, the success of any project depends largely on the

encouragement and guidelines of many others. I take this opportunity to express my

gratitude to the people who have been instrumental in the successful completion of my

M.Tech thesis.

We also thank our Head of Electrical Department Dr. Madhusudan Singh for supporting

our work.

I must give my high, respectful gratitude to my supervisors, Prof. N.K. Jain and Prof.

Uma Nangia for their guidance, supervision and help throughout this project. I have

learned a lot throughout this course, with many challenging yet valuable experience.

My endless thanks to Prof. N.K. Jain and Prof. Uma Nangia for giving me the chance

to explore a new knowledge of mine, as well as for giving me precious advices in order

to improve myself in every aspect.

Finally, I would like to thank all those people who have directly or indirectly helped me

successfully to complete my dissertation.

 Uttam Kumar

 2K14/PSY/19

ABSTRACT

A new variant of Particle Swarm Optimization (PSO) algorithm along with a novel approach

of implementing reactive power constraints for PV buses has been presented in this thesis. The

new PSO version, Selection Enabled PSO (SEPSO), “selects” particles with better objective

function value and eliminates worse particles after a certain number of iterations. The

computational efficiency of SEPSO over the conventional PSO is ratified by using it to

minimize mathematical benchmark functions. The number of function evaluations up to

convergence is significantly reduced in case of SEPSO. Henceforth, SEPSO is applied to

perform load flow studies on IEEE 5 bus and IEEE 14 bus system. As expected, a considerable

reduction in terms of function evaluations is observed when contrasted with the number of

function evaluations required by conventional PSO to perform load flow on IEEE 5 bus and

IEEE 14 bus system.

Contents

CHAPTER-1: INTRODUCTION…………...………………………………………………1

1.1 Overview………………………………………………………………………….....…........1

1.2 Aim and Approach………………………………………………………………….....…....2

1.3 Literature Review………………………………………………………………………….3

1.4 Plan of Thesis……………………………………………………………………………...4

CHAPTER-2: PARTICLE SWARM OPTIMIZATION………...……………….……......5

2.1 Introduction……………………………………………………………….....……………..5

2.2 Model of PSO……………………………………………………………………………...6

2.3 Parameters of PSO………………………...………….…………………..……………......7

2.3.1 Swarm size……………...……………………………………………………...7

2.3.2 Inertia weight factor…………………………………………………………....7

2.3.3 Cognitive learning acceleration factor………………………………………....8

2.3.4 Social learning acceleration factor………………………………………...…...8

2.4 Algorithm …………………………………………………………….…………………....8

2.5 Flow chart………………....……………..…………………………….…………………....9

2.6 Applications of PSO………………………………...…………………………….…..….......10

2.7 Advantages and limitations of PSO……….…...…………………………………................10

CHAPTER-3: SELECTION ENABLED PARTICLE SWARM OPTIMIZATION…....11

3.1 Introduction………………………………………………….……………………...…..…11

3.2 The SEPSO model…………………………………………………………………..……12

3.3 Additional parameters for SEPSO….………..…………………………………..…….....12

3.3.1 Reduction factor……………………………………………………..…….....12

3.3.2 Sorting frequency……………………………………………………..……...12

3.4 Algorithm ………………………………………………………………………………12

3.5 Flow chart……..……………………………………………………………….………..13

3.6 Advantage of SEPSO…….…………………………...………………………………...14

CHAPTER-4: COMPARISON OF SEPSO WITH PSO………………………………....15

4.1 Benchmark functions……………………………………………………………………..15

4.2 Computational results …………......……………………………………………………..18

 4.2.1 Rosenbrock function…………………………………………………….…...18

 4.2.2 Griewank function…………………………………………...….…………...22

 4.2.3 Rastrigin function……………………………………………………………23

 4.2.4 Sphere function……………………………………………………………....24

4.3 Discussion………………………………………………………………………………..25

CHAPTER-5: LOAD FLOW STUDIES USING SEPSO………………..……………....26

5.1 Problem formulation……………………………………………………………………..27

5.2 Computational procedure ……………………………………….……………………….27

5.3 Computational results………………….…………………………………………….…..29

 5.3.1 Results for IEEE 5 bus system………………………………………………...29

 5.3.2 Results for IEEE 14 bus system………………………………………………..31

5.4 Comparison of SEPSO and PSO for load flow…………………………………...………34

5.5 Results of N-R algorithm………………………………………………………………....38

CHAPTER-6: CONCLUSION AND FUTURE DIRECTION.……………………...…..40

6.1 Conclusion………………………………………………………………………………..40

6.2 Future direction…………………………………………………………………………..41

APPENDIX...……………………………………………………………………………...…42

A. IEEE 5 bus system………………………………………………………………..42

B. IEEE 14 bus system……………………………………………………………....44

i. MATLAB code for load flow on IEEE 5 bus system using SEPSO……………..47

ii. MATLAB code for load flow on IEEE 14 bus system using SEPSO………..…..59

iii. MATLAB code for minimizing benchmark functions using PSO………...……..68

iv. MATLAB code for minimizing benchmark functions using SEPSO...…...……..70

v. Benchmark functions implemented in MATLAB………………………………..72

REFERENCES.………….………………………………………………………………...…74

1

Chapter-1

INTRODUCTION

1.1 Overview

This thesis puts forth a new variant of the conventional particle swarm optimization (PSO)

algorithm, the selection enabled particle swarm optimization (SEPSO) algorithm to perform load

flow.

Load flow studies are of cardinal importance when it comes to designing, planning and

future capacity augmenting of a power system. Not only the load flow analysis yields voltages and

corresponding voltage angles for each bus in the power system but also the total transmission loss

occurred as generator(s) supply the load. Iterative numerical methods are usually employed to

perform the load flow. Although methods like Newton Raphson, show fast convergence, they are

more complex to implement than the conventional PSO. No research paper performing load flow

and explicitly mentioning how reactive power constraints were implemented has yet been reported

in any journal of repute. The novelty of the present work lies in successfully implementing PSO

for load flow study. The computational efficiency of the new algorithm (SEPSO) has been

compared to that of the conventional PSO and NR.

Particle swarm optimization, a stochastic metaheuristic algorithm, when applied to load

flow, does away with the complexity of the Newton-Raphson (N-R) algorithm. In addition, the

speed of convergence is also satisfactory. Building on these advantages, the SEPSO algorithm

aims to further reduce the computational effort and consequently speeds up the convergence.

The modified PSO algorithm, SEPSO, presented in this work is implemented in computer

code using MATLAB. The SEPSO algorithm is tested using mathematical benchmark functions

and then tried on IEEE 5 bus and IEEE 14 bus systems for load flow.

2

1.2 Aim and approach

The aim of the research work presented in this dissertation is two fold, first to implement

PSO for load flow study and second to enhance the computational efficiency of PSO and to exploit

this improvement to perform load flow. The proposed PSO is referred to as the selection enabled

PSO (SEPSO) in this thesis.

The efficiency achieved, for SEPSO, in terms of reduction in number of function

evaluations is first verified using four mathematical benchmark functions. The results for the

conventional PSO and SEPSO are compared in terms of the number of function evaluations up to

the convergence. Load flow is then performed on IEEE 5 bus and IEEE 14 bus system using

SEPSO. Results obtained from Newton Raphson method are used to ascertain whether both the

algorithms, conventional PSO and SEPSO, have properly converged. As in case of benchmark

functions, the algorithms are compared in terms of the number of function evaluations for load

flow.

3

1.3 Literature Review

During the past years a number of intelligent techniques – GA, PSO and ACO have been

proposed by researchers. These intelligent techniques are derivative free and simple to implement.

Though these techniques sometimes take large number of iterations to converge, yet they guarantee

global optimum solution.

PSO is a population based stochastic algorithm, developed by Kennedy and Eberhart [1]

in 1995, inspired by collective behaviour of bird flocking, fish schooling etc. Many modifications

have followed the original algorithm, like Memory Enhanced PSO [2], Predator-Prey PSO [3] and

PCPSO [4]. All these modifications add to the basic structure of conventional PSO. As an example,

Predator-Prey PSO has two groups of particles called predator and prey. While position update for

a prey is identical to that of a particle in case of conventional PSO, a predator has one additional

component of velocity directing it towards a prey.

There are newer variants like: CLPSO [5], SLPSO [6] and OLPSO [7] which do not require

parameter tuning. These algorithms, unlike previously mentioned variants, have a structure

entirely different from the PSO. They make use of the current information and usually do not

include the previous iteration(s) information. For example, in case of SLPSO, particles with poorer

objective function values learn from particles with better objective function values in the current

iteration and update their position. There is no need to store the previous velocities or the previous

positions of the particles as in case of conventional PSO.

In all variants of conventional PSO a balance has to be obtained between exploration and

exploitation stage for faster convergence. Feng Chen et. al. [8] studied the trade-off strategy

between these two stages. Initially the change in the particles’ positions are large on account of a

larger value of the inertia weight factor. Afterwards when there is sufficient improvement in the

objective function value pertaining to the global best, the exploitation stage is induced by reducing

the inertia weight factor accordingly [9, 10]. Yuhong Chi et. al. [11] employed the concept of

swarm diversity to ascertain if the particles are still exploring or they have found the region

containing the global minimum.

4

Load flow studies can be performed using conventional PSO or any of its variant by

formulating an appropriate objective function depending on real and reactive power mismatches.

PSO has already been applied to solve various problems in Electrical Engineering including

economic load dispatch [12] and optimal load flow [13, 14]. There have been attempts to perform

load flow [15, 16] using PSO, these attempts, however, do not address the issue of reactive power

generation limits for PV buses [17]. In this dissertation, a strategy has been developed and

embedded in the PSO algorithm to deal with such cases. The devised approach is further extended

to SEPSO to perform load flow.

1.4 Plan of Thesis

This thesis report is organised in six chapters as follows:

1. Introduction: This chapter summarizes the research work discussed in this report.

2. Particle Swarm Optimization: The inception, parameters, algorithm, flow chart,

applications, advantages and limitations of conventional PSO are discussed in detail in this

chapter.

3. Selection Enabled Particle Swarm Optimization: The SEPSO algorithm is presented in

this chapter.

4. Comparison of SEPSO with PSO: SEPSO is compared with conventional PSO using four

mathematical benchmark functions: Rosenbrock, Rastrigin, Sphere, and Griewank.

5. Load Flow Studies using SEPSO: Load flow studies are performed using SEPSO and

conventional PSO on IEEE 5 bus system and IEEE 14 bus system.

6. Conclusion and Future Direction: This chapter consists of insights into the

computational results and the strategies used. Future possibilities of improvement and

fusion with other existing intelligent algorithms is also discussed.

5

Chapter-2

PARTICLE SWARM OPTIMIZATION

2.1 Introduction

Particle swarm optimization was developed by Dr. Eberhart and Dr. Kennedy of Purdue

School of Engineering and Technology in 1995. Inspired by food searching ability of a swarm,

PSO optimizes a problem by having an initial population of solutions (here particles) and moving

these particles around in the search space. Each particle's velocity is influenced by its previous

velocity, local best known position, pbest, and by the best known position, gbest, of the swarm.

These are updated as better positions are found by other particles. This is expected to move the

swarm towards the best solution.

The conventional PSO has emerged as a promising research area in application of

optimization techniques to solve various problems in the field of Electrical Engineering. The

conventional PSO has gained acclaim as it can be employed to solve problems which involve non-

linear elements. Though there exists always a specific approach for a specific problem, it is an

innovative idea to opt for a generic method like PSO. The charm of this method is that it is simpler

to code when compared to methods like GA, while the results are found to be sufficiently accurate.

PSO wins hands down in computational efficiency and accuracy when compared to GA.

PSO shares many similarities with other intelligent computation techniques such as Genetic

Algorithms (GA). The system is initialized with a population of random solutions and searches for

optima by updating generations. However, unlike GA, PSO has no evolution operators such as

crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem

space by following the current optimum particles.

Recently, PSO has been applied successfully to various fields of power system optimization

such as power system stabilizer design, reactive power and voltage control. The conventional PSO

proposed by Kennedy and Eberhert is directly applicable to the problems with continuous domain

http://en.wikipedia.org/wiki/Point_particle
http://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation

6

and without any constraints. Therefore, conventional PSO is used with some modifications to take

into account these constraints.

2.2 Model of PSO

It is a meta-heuristic optimization technique which exploits food searching ability of a swarm.

Here the “food” is used as a metaphor for the optimal solution and swarm represents the set of

particles spread randomly in the search space. Each of these particles for a particular iteration

undergoes displacement depending upon its previous velocity, the best performance for the swarm

and each particle's personal best performance. The global best performance is the minimum value

of the objective function when all the particles of the swarm and their respective OF (objective

function) values are considered. This is the case when OF is to be minimized, for case where OF

is to be maximized we consider maximum of OF as global best. The individual best is considered

as the value of OF before iteration or after iteration, depending on which one is smaller. Larger of

the two values shall be considered for a maximization problem. The global best and the personal

best are defined below.

a) The global best, gbest

The global best value corresponds to the best of all values corresponding to the defined

objective function, in the swarm including all particles for a given iteration.

b) The Personal best, pbest

The best value of a given particle corresponding to the objective function, up to the current

iteration is referred to as the personal best value of the particle.

The velocity update equation and the position update equation are given by equation 1 and

equation 2 respectively as follows:

7

Velocity update:

 Vk
i+1 = w × Vk

i + rp × rand() × (pbestk
i − Xk

i) + rg × rand() × (gbest
i − Xk

i)  1

Position update:

 Xk
i+1 = Xk

i +Vk
i+1  2

Where, Vk
i+1=velocity of particle k for ith iteration.

 w = Inertia weight factor.

 rp = Cognitive learning acceleration factor.

 rg = Social learning acceleration factor.

 Xk
i+1 = position of particle k for i+1th iteration.

 pbestk
i =best position of particle k till ith iteration.

 gbesti =position of the overall best particle of the swarm till the ith iteration.

2.3 Parameters of PSO

Swarm size, inertia weight factor, cognitive learning acceleration factor and social learning

acceleration factors are the parameters of conventional PSO. Their values need to be chosen

suitably as they are crucial for the algorithm’s convergence.

2.3.1 Swarm size: Swarm size is the number of particles in a PSO swarm. If the number of

particles in the swarm is less than a critical value, the algorithm does not converge.

2.3.2 Inertia weight factor ‘w’ : Inertia weight factor determines the weightage of a particle’s

previous velocity in the velocity update equation. Higher the value of this factor, greater the

8

influence of the previous velocity. It can, therefore, be said that this parameter determines the

“inertia” of a particle, hence the name inertia weight factor.

2.3.3 Cognitive learning acceleration factor: This parameter, which appears as a constant

coefficient in the second term of the velocity update equation, is represented by rp. An increased

value of rp, improves the local search capability of the particles and a reduction in rp hampers the

local searching by the swarm.

2.3.4 Social learning acceleration factor: Social learning acceleration factor denoted by rg, is

used in the third term of the velocity update equation. Higher value of rg enhances the global search

ability of the swarm. The value rp + rg is usually 4, where rp=2 and rg=2, which is sufficient for

most optimization problems.

2.3.5 Random Factors: In equation 1, random factors are associated with the cognitive as well as

social learning terms. These are useful for better exploration. These are important only when

problem to be solved is new and problem solver does not have any idea about the solution of the

problem. But, in our case, we have sufficiently good idea about the solution of the problem. For

this reason these factors have been dropped in conventional PSO as well as SEPSO.

2.4 Algorithm

The algorithm for PSO is presented below.

i) Initialize swarm by assigning positions and velocities to every particle in the swarm.

Input ‘T’. It is the negative integer which appears as the exponent in expression for

tolerance: tolerance=10T.

i) Calculate the objective function value and call it OFi.

ii) Update positions for all the particles, using eq. 2), and calculate their objective function

value and call it OFf.

iii) Compare OFf and OFi for each particle. The position of the particle corresponding to

smaller of the two is taken as pbest.

iv) Find out the gbest by considering the particle with the position yielding the least value

of the objective function.

v) Update velocity for all the particles using eq. 1).

9

vi) Check whether the objective function value for the gbest is less than the tolerance

specified. If it is less than the tolerance specified, then go to viii) else go to iii)

vii) Exit and display the gbest’s objective function value, the position of the gbest particle

and number of function evaluations along with positions and velocities for all particles

in the swarm.

2.5 Flowchart

START

Input the swarm size and ‘T’

Input the maximum number of iterations.

Initialize particles. Assign random value

to each particles.

Calculate OFi

Position update

Calculate OFf

Pbest=minimum of OFf and OFi

Velocity update

Is

Gbest<=

Tolerence

STOP

YES

NO

 Fig.1. Flowchart of PSO

10

2.6 Applications of PSO

Particle swarm optimization, conventional or modified, has been applied to solve

problems in various fields of knowledge. It has found its use in areas including but not limited

to medical science, economics, operations research, antenna design, and power systems

engineering. PSO because of its stochastic nature and simple computer code implementation

can be applied to virtually any kind of problem which may or may not be solvable by

conventional methods.

In training neural networks PSO has replaced the conventional approach of

backpropagation because of its simplicity and efficacy [18]. Diagnosis of human tremor has

been accomplished by the algorithm and the results are found to be reliable [19]. Milling

operations, an integral part of production, is also optimized using PSO and the pitfalls faced

using conventional approaches are averted [20]. For Economics and Operations Management

where most of the problems need a “good enough” solution, PSO is highly required [21].

Reactive power control and voltage control in Power Systems can be achieved using

PSO [22]. A fuel gauge equivalent for batteries used in battery power vehicles has also been

implemented using PSO in conjunction with the neural network. The results for state of the

battery pack were found to be sufficiently accurate [23]. Economic load dispatch and optimal

power flow are other areas where PSO has been extensively used.

2.7 Advantages and limitations of PSO

The two major advantages of PSO, in comparison to other stochastic algorithms, are

that it is easier to implement and there are less parameters to tune. Also, unlike deterministic

algorithms, Newton-Raphson for example, PSO is derivative free. As a result, PSO converges

even for cases when the Jacobian matrix for a problem becomes zero. In comparison to other

stochastic and conventional methods the objective function has less negative impact on the

convergence of PSO. Less number of parameters, in contrast to other stochastic methods, to

adjust is another strong point of the algorithm. Additionally, PSO seems to be more immune

to the non-convergence which might occur when initial values are not chosen suitably or lie

outside a desirable range [24].

11

That said, PSO has some limitations as well. Lack of a solid mathematical framework

is a major drawback. Also, the time taken to solve problems increases with the number of

variables faster than a linear relationship. However, this can be resolved to some extent by

parameter tuning.

12

Chapter-3

Selection Enabled Particle Swarm Optimization

3.1 Introduction

This thesis presents a modified version of PSO called selection enabled PSO (SEPSO)

which involves the selection of better particles. The particles are arranged in ascending order

of their objective function values and better particles are ‘selected’ or retained in the swarm,

while the worse particles are eliminated. Though there is not much reduction in number of

iterations in case of a selection enabled PSO (SEPSO), yet the time taken for convergence

plummets. The computational results corroborate the fact that removing the worse particles do

not affect convergence. Trapped particles with worse values of objective function, are always

an overhead and it is better to do away with them in order to reduce the time taken up to

convergence.

3.2 The SEPSO model

The velocity update equation and the position update equation used are same as that of the

conventional PSO. The difference lies in the algorithm for the SEPSO. The selection process is invoked

whenever the iteration number is equal to the sorting frequency ‘fs’. At this point the swarm size is

reduced using reduction factor. The reduction factor ‘r’ is an integer which, like sorting frequency, is

inputted from the user and determines the new swarm size as follows,

 New Swarm Size =
Old Swarm Size

r
 → 3

Various values of ‘r’ and ‘fs’ have been tried and the results corresponding to the best values

have only been reported in this paper.

13

3.3 Additional parameters for SEPSO

As mentioned in the previous section, SEPSO has two additional parameters:

3.3.1 Reduction factor (r)

The reduction factor is a user inputted value to decide the swarm size, as per equation

3, whenever the selection process is applied.

3.3.2 Sorting frequency (fs)

A number of experiments have to be performed to determine the best combination of

sorting frequency ‘fs’ and reduction factor ‘r’ to achieve maximum reduction in the function

evaluations. Choosing a sorting frequency lower than a particular iteration number would be

tantamount to calling the selection process before the exploration stage is over. On the other

hand, a higher value leads to unnecessary function evaluations increasing computational time.

3.4 Algorithm

The algorithm for SEPSO is presented below.

i) Initialize swarm and enter maximum number of iterations. Assign positions and

velocities to every particle. Input reduction factor ‘r’ and sorting frequency ‘fs’.

ii) Input the value of ‘T’, the negative integer which appears as exponent in the

convergence criterion: tolerance=10T.

iii) Calculate the objective function value and call it OFi.

iv) Update positions for all the particles, using eq. 2), and calculate their objective

function value and call it OFf.

v) Compare OFf and OFi for each particle. The position of the particle corresponding

to smaller of the two is taken as pbest.

vi) Find out the gbest by considering the particle with the position yielding the least

value of the objective function.

vii) Update velocity for all the particles using eq. 1).

viii) Check if iteration number ‘i’ equals ‘fs’. If it does, arrange the particles in the

ascending order of their objective function value, OFf.

ix) Invoke selection and determine new swarm size of better particles using eq. 3.

x) Check whether the objective function value for the gbest is less than the tolerance

specified. If it is less than the tolerance specified, then go to xi) else go to iv)

14

xi) Exit and display the gbest’s objective function value, the position of the gbest

particle and number of function evaluations along with positions and velocities for

all particles in the swarm.

3.5 Flowchart

 Initialize particles. Assign random velocity to each particle.

input('enter the number of particles in the swarm')
input('enter the number of iterations')
input('enter the value of T for tolerance
input(‘enter the reduction factor and the sorting frequency’)

Calculate OFi

Position update (eq.1)

Calculate OFf

 pbest=minimum of OFf and OFi

 gbest=minimum of all OFf

 Velocity update

 if i=fs

NO

Initialize particles. Assign random velocity to each particle.

Invoke Selection

(eq.3)

YES

Is gbest < =

Tolerance?

NO

 YES

STOP

START

Fig.2 Flowchart for SEPSO

Arrange particles in

ascending order of

their objective

functions.

15

3.6 Advantage of SEPSO

Several variants of conventional PSO suffer from convergence at local optima. Local

version of conventional PSO does reliably converge at the global minima but its reliability is

overshadowed by slow convergence. In cases of no convergence for both the local and the

global version, there is occurrence of particles at the local minima. Even when the exploitation

stage is imminent some particles appear to localize around a point and are inept at moving

away from its vicinity. These particles can be removed from the swarm in SEPSO to make

computation faster. Selection enabled PSO takes lesser number of function evaluations to

converge as the particles not showing much improvement, after suitable number of iterations,

are removed during selection and better particles are retained.

16

Chapter-4

Comparison of SEPSO with PSO

Introduction

 In this chapter, four mathematical benchmark functions in two dimensions are used to

compare the performance of SEPSO and conventional PSO. The parameters for both the

algorithms are kept fixed to find the number of function evaluations and the number of

iterations up to convergence. The reported observations for SEPSO are for those values of

sorting frequency ‘fs’ and reduction factor ‘r’ for which best results were obtained.

4.1 Benchmark functions

 Table 1 below enlists, in detail, the benchmark functions used for evaluating the

performance of SEPSO and PSO.

Table 1. 2-D Benchmark functions

 The plots of the above 2 D benchmark functions used are shown in table 2. It can be

seen that while Rosenbrock and Sphere have only one minimum, Rastrigin and Griewank have

several local minima and one global minimum which makes finding the global minimum tough.

The sphere function is the simplest amongst all four and can be used to determine whether the

algorithm designed is working properly i.e. there are no bugs in the computer program and/or

the algorithm is properly designed.

S.No. Function Description Search

range
Minimum

occurs

at

Function

value at

minimum

1. Rosenbrock f(𝒙𝟏,𝒙𝟐)=𝟏𝟎𝟎(𝒙𝟐 − 𝒙𝟏
𝟐) +

(𝒙𝟏 − 𝟏)𝟐

xi ϵ

[-2.048,2.048]

i=1,2

𝑥∗ = (1,1) f(𝑥∗)=0

2. Griewank f(𝒙𝟏,𝒙𝟐)=1+(1/4000)∑ 𝐱𝐢
𝟐𝟐

𝐢=𝟏

-∏ 𝐜𝐨𝐬 (
𝐱𝐢

√𝐢
⁄)𝟐

𝐢=𝟏

xi ∈
[-600, 600]

i=1,2

𝑥∗ = (0,0) f(𝑥∗)=0

3. Sphere f(𝒙𝟏,𝒙𝟐)=∑ 𝐱𝐢
𝟐𝟐

𝐢=𝟏 xi ϵ

[-5.12,5.12]

i=1,2

𝑥∗ = (0,0) f(𝑥∗)=0

4. Rastrigin f(𝒙𝟏, 𝒙𝟐)= 20 + ∑ [xi
2 −2

i=1

10cos (2πxi)]

xi ϵ

[-5.12,5.12]

i=1,2

𝑥∗ = (0,0) f(𝑥∗)=0

17

Table 2. Plots Of 2-D Benchmark Functions

S.No. Function Plot

1. Rosenbrock

2. Griewank

3. Sphere

4. Rastrigin

18

4.2 Computational Results

The performance of SEPSO is compared with that of conventional PSO with respect to

computational efficiency in terms of function evaluations. Both these algorithms were applied

on Rosenbrock, Griewank, Sphere, and Rastrigin functions to minimize them. The error in

objective function’s value for all cases is taken to be 10−4. For all functions, in case of both

SEPSO and conventional PSO: the parameters are w=0.6, rp=1 and rg=1. The MATLAB

program written in this thesis for testing PSO on four benchmark functions has been designed

to enable the user to input parameters through a graphical user interface, as shown in fig 3.

Fig 3. Parameters’ window for entering PSO parameters

19

 Any of the four benchmark functions can be selected using the window shown in

figure 4. Figure 4 shows the window which appears after clicking on the OK button of the

window in figure 3.

Fig 4. Window for selecting the benchmark function

20

 A separate program for testing SEPSO algorithm is written using MATLAB. The

parameters’ window in this case contains all the parameters of SEPSO as shown below in figure

5. Rest of the interface is same as that for PSO.

Fig 5. Parameters’ window for entering SEPSO parameters

21

4.2.1 Rosenbrock function

 Table 3 shows the number of iterations and function evaluations up to convergence for

swarm sizes 50, 80, 100, 120, 140 and 180 when conventional PSO is applied to minimize

Rosenbrock function.

Table 3. Results of conventional PSO

(Rosenbrock)

S.No. Swarm size Function

evaluations

Iterations Error

1. 50 1500 30 9.77e-5

2. 80 2320 29 5.83e-5

3. 100 2900 29 1.55e-5

4. 120 4320 36 5.79e-5

5. 140 4060 29 4.56e-5

6. 180 4860 27 8.87e-5

 The proposed algorithm, SEPSO, is applied to Rosebrock’s function and the results are

presented in table 4.

Table 4. Results of SEPSO (r=2)

 (Rosenbrock)

Serial

Number

Swarm size Function

evaluations

(FEV)

%

Reduction

in FEV

Sorting

frequency

Iterations Error

1. 50 975 35 16 23 5.56e-5

2. 80 1075 53.66 16 27 1.17e-5

3. 100 2050 29.31 16 25 5.55e-5

4. 120 2880 33.33 18 30 2.29e-5

5. 140 3080 24.14 19 25 4.81e-5

6. 180 3960 18.52 19 25 6.55e-5

 On comparing with table 3, it can be seen that there has been a significant reduction in the

number of function evaluations in case of SEPSO.

 Figure 6 depicts comparison between SEPSO and conventional PSO for Rosenbrock’s

function.

22

Fig 6. Comparison of SEPSO and conventional PSO for Rosenbrock’s function.

 It is clearly brought out by Fig. 6 that function evaluations are less in case of SEPSO for

all the swarm sizes considered.

4.2.2 Griewank function

 Proceeding in the same manner as Rosenbrock, SEPSO and conventional PSO are

compared by using them to minimize Griewank function. Table 5 shows the results of

conventional PSO.

Table 5. Results of conventional PSO

(Griewank)

S.No. Swarm size Function

evaluations (FEV)

Iterations Error

1. 80 32000 400 5.48e-5

2. 90 35280 392 7.81e-5

3. 100 19600 196 5.59e-5

4. 120 21360 178 9.28e-5

 From table 5, above, it can be seen that conventional PSO takes larger number of function

evaluations, as compared to that for Rosenbrock, to find the point corresponding to global

minimum. Also swarm size needs to be larger in case of Griewank for convergence. This

function does not for swarm size smaller than 80. These differences can be attributed to the

fact that Griewank function has a large number of local minima and minimizing the function,

therefore, becomes more difficult.

23

 Table 6 shows the results for SEPSO.

Table 6. Results of SEPSO (for r=2)

 (Griewank)

S.No. Swarm size Function

evaluations

(FEV)

%

Reduction

in FEV

Sorting

frequency

Iterations Error

1. 80 16880 47.25 26 396 2.29e-5

2. 90 18630 47.19 26 388 4.81e-5

3. 100 10650 45.66 26 187 6.55e-5

4. 120 12600 41.01 30 180 4.92e-5

From table 6, it is observed that SEPSO takes less number of function evaluations than

conventional PSO to converge in the case of Griewank function.

The comparison is of conventional PSO and SEPSO is also shown in Fig. 7.

Fig 7. Comparison of SEPSO and conventional PSO for Griewank’s function.

Figure 7 shows that function evaluations decrease when SEPSO is applied to

Griewank’s function.

4.2.3 Sphere function

Now, sphere function is minimized by using SEPSO and conventional PSO. Table 7

and 8 below show the results pertaining to PSO and SEPSO respectively.

24

Table 7. Results of conventional PSO (Sphere)

S.No. Swarm size Function

evaluations(FEV)

Iterations Error

1. 50 1350 27 3.62e-5

2. 80 1840 23 2.87e-5

3. 100 2200 22 2.86e-5

4. 120 3000 25 9.62e-5

Table 8. Results of SEPSO

(Sphere) for r=2

S.No. Swarm size Function

evaluations

(FEV)

%

Reduction

in FEV

Sorting

frequency

Iterations Error

1. 50 575 57.41 6 17 6.63e-5

2. 80 1200 34.78 5 25 7.50e-5

3. 100 1300 40.91 5 21 6.03e-5

4. 120 1440 52.00 5 19 2.22e-5

From table 7, it is clear that conventional PSO takes lesser number of function

evaluations for sphere in comparison to Griewank. Also, smaller swarm size can be used to

minimize sphere function. This function converges when the swarm size is 50, whereas

Griewank function converges for larger swarm size.

From table 8, it is observed that number of function evaluations taken by SEPSO is

smaller than that of conventional PSO as in the case of Rosenbrock and Griewank function.

Figure 8 compares SEPSO and conventional PSO in terms of the number of function

evaluations when applied to sphere function.

Fig 8. Comparison of SEPSO and conventional PSO for Sphere function.

25

4.2.4 Rastrigin’s function

Two dimensional variant of Rastrigin’s function is used in this work, to compare the

performance of SEPSO and conventional PSO. Table 9 and table 10 compare the performance

of PSO and SEPSO respectively when applied to Rastrigin’s fuction.

Table 9. Results of conventional PSO

(Rastrigin)

S.No. Swarm size Function

evaluations(FEV)

Iterations Error

1. 50 1950 39 8.87e-5

2. 80 3120 39 8.97e-5

3. 100 3300 33 8.63e-5

4. 120 4920 41 9.28e-5

Table 10. Results of SEPSO (r=2)

(Rastrigin)

S.No. Swarm size Function

evaluations

(FEV)

%

Reduction

in FEV

Sorting

frequency

Iterations Error

1. 50 1925 1.28 35 42 8.15e-5

2. 80 3080 1.28 36 41 9.06e-5

3. 100 3250 1.52 31 34 1.27e-5

4. 120 3960 19.51 31 35 9.13e-5

It can be seen from table 10 that for swarm sizes corresponding to S.No. 1,2, and 3 i.e.

50,80, and 100 respectively, very little reduction in function evaluations (FEV) is obtained for

but for the swarm size of 120, a significant reduction of 19.51% is obtained. Fig. 9 shows the

comparison between SEPSO and conventional PSO for Rastrigin’s function.

Fig 9. SEPSO compared with PSO for Rastrigin’s function.

26

4.3 Discussion

The selection enabled PSO is tested and compared with conventional PSO on four two

dimensional mathematical benchmark functions. Reduction in number of function evaluations

is observed for all functions.

 Number of function evaluations has been taken as a measure of computational

efficiency because it is independent of processor’s clock speed and numerous ways in which

an algorithm can be implemented.

Therefore, it is concluded that if sorting frequency ‘fs’ and reduction factor ‘r’ are

chosen suitably, the number of function evaluations can be reduced while maintaining the same

allowable error in the objective function value. Hence, SEPSO is more computationally

efficient than conventional PSO and as accurate.

27

Chapter-5

Load Flow studies using SEPSO

5.1 Problem formulation

Load flow solution gives the nodal voltages and phase angles at all the buses and

power flows through interconnected power channels. Real and reactive power for kth bus is

calculated [25] as,

 

 )2)cos()sin(

)1)sin()cos(

1

1













N

j

jkkjjkkjjkk

N

j

jkkjjkkjjkk

BGVVQ

BGVVP





Where,

 N = Number of buses.

kV = Voltage at kth bus.

 jV = Voltage at jth bus.

 kjG = Conductance between bus k and j.

 k , j = Angle of bus k and j respectively.

In load flow, the real and reactive power mismatches are minimized for every bus

using the following equations,

 ∆Pk = Pk
calc − Pk

specified 6

 ∆Qk = Qk
calc − Qk

specified
 7

 K=1,2,3, …., N ; N=Total number of buses.

Where,

 ∆Pk = Real power mismatch corresponding to kth bus

 ∆Qk = Reactive power mismatch corresponding to kth bus.

 Pk
calc = Calculated Real Power for the kth bus.

 4

 5

28

 Pk
specified

= Specified Real power fir the kth bus.

 Qk
calc = Calculated reactive power for the kth bus.

 Qk
specified

= Specified Reactive power for the kth bus.

Therefore, load flow problem is formulated as an optimization problem and the

objective is to Minimize

 f = ∑ (∆N
k=1 Pk) 2 + ∑ (∆N

k=1 Qk) 2 8

In this SEPSO implementation, various types of buses are treated as follows,

i) Load buses (PQ).

The real and reactive power mismatches are calculated using eq. 6) and 7) respectively.

ii) Generator bus/voltage regulated bus (PV buses)

For these buses real power mismatch is calculated using eq. 6), the reactive power mismatch

is equated to zero whenever the calculated reactive power is within limits. If the calculated

reactive power violates the reactive power limits, the reactive power mismatch is calculated as

the difference of the calculated value and the reactive power limit, upper or lower, whichever

is violated. Mathematically, we have,

 ∆Qi = min[|Qi
calc − Qi

max|, |Qi
min − Qi

calc|] 9

Where,

 Qi
max = Upper reactive power generation limit.

 Qi
min = Lower reactive power generation limit.

5.2 Computational procedure

This section presents the algorithm for the load flow using the proposed SEPSO

algorithm.

i) Initialize m number of particles each with 2 rows and 5/14 columns. (5 columns for a 5

bus system and 14 for a 14 bus system.). First row has all the voltage magnitudes corresponding

to buses and second row has all the corresponding angles. Initially the values of all voltage

magnitudes is kept at 1 p.u. and the corresponding angles are kept at 0 radian. Initial velocity

for voltage magnitude updation is determined by unifrnd(-.1,.1) in MATLAB. Initial velocity

29

for phase angle update is determined by unifrnd(-.5,.5) in MATLAB. The initial values for both

velocities and positions is same for both IEEE 5 bus and IEEE 14 bus system. The values of

sorting frequency ‘fs’, reduction factor ‘r’, tolerance ‘T’ and maximum number of iterations

‘iter’ are inputted.

ii) The initial value of objective function (OF) before position update is found and it is called

OFi .

iii) Update the position for all the particles as per the following equation,

 Xm
i+1 = Xm

i + Vm
i+1 10

Where,

 i= ith iteration,

 m= mth particle,

iv) The final value of OF after position update is found and it is called OFf.

v) Smaller of OFf and OFi is considered for the personal best position. (Pbest)

vi) Minimum of all OFf 's of all particles is found for global best. (gbest)

vii) Update the velocity for all the particles using the following equation,

 Vm
i+1 = w × Vm

i + rp × rand() × (pbestm
i − Xm

i) + rg × rand() × (gbesti − Xm
i) 11

Where,

x) Exit. Display all voltages and power injections.

pbestm
i = best position of particle m till ith iteration

 gbesti = global best for the entire swarm up to iteration i

 w=inertia weight factor.

 rp, rg = acceleration constants.

viii) Is the iteration number equal to sorting frequency? If NO, go to ix) .Else, Sort the particles

in ascending order of their objective function and remove the worst particles in the swarm as

dictated by the reduction factor.

ix) Is the OFf for the particle corresponding to the global best less than or equal to the specified

tolerance? If NO, go to iii). Else go to x).

30

5.3 Computational results

Load flow has been performed for IEEE-5 and 14-bus systems using conventional PSO

and selection enabled PSO (SEPSO). The parameters for the conventional PSO and SEPSO

were fixed as; w=0.7, rp=1 and rg=1.

5.3.1 IEEE 5 bus system

(i) Conventional PSO

Table 11 below shows the results of load flow by conventional PSO for IEEE-5 bus

system. The accuracy for convergence for the value of function has been taken as 1×10-7. In

column 3 of table 11, the accuracy of final function value at convergence has been mentioned.

Table 11: Computational Effort for Load flow using conventional PSO

 (IEEE 5 bus system)

S. No.

(1)

swarm size

(2)

Accuracy

(3)

Function

evaluations.

(4)

Iterations

(5)

Time

(ms)

(6)

1. 30 -10 3780 125 815

2. 32 -10 5024 156 959

3. 64 -10 7232 112 1367

4. 128 -11 12672 98 2273

5. 256 -11 24320 94 4306

6. 512 -10 40960 79 6891

7. 1024 -11 86016 83 16743

From this table it is clear that the computational time increases with the number of

particles. In this table, column 4,5 and 6 representing function evaluations, iterations and time

are all measures of computational effort. The time taken to solve a problem depends on the

processor speed of the computer, which goes on changing with the advancement of technology.

Further, various researchers may use different processors for their research work. For these

reasons, the time in seconds of ms cannot be taken as standard measure for computational

effort. Computational effort for each iteration depends on the size of the problem and, therefore,

doesn’t prove to be a consistent measure of computational effort. However, number of function

evaluations can prove to be the most consistent parameter for measuring computational effort

31

and would reflect as a measure of computational efficiency of a given algorithm. For these

reasons number of function evaluations has been taken as index for measuring/comparing the

computational effort in this thesis report.

(ii) Selection Enabled PSO (SEPSO)

Load flow has been performed for IEEE 5 bus system using SEPSO. In order to obtain

the best sorting frequency ‘fs’ and reduction factor ‘r’, many load flows are performed for

IEEE-5 bus system by varying sorting frequency ‘fs’ and reduction factor ‘r’.

The initial swarm size of 1024, 512, 256, 128 and 64 is considered and sorting

frequency is varied from 1 to 10 for reduction factors of 2, 4, 6 and 8. The sorting frequency is

also varied from 50 to 500 in steps of 50 for reduction factor of 2. Table 12 shows the results

for which minimum number of function evaluations are obtained. For IEEE-5 bus system. It

can be observed from table 12 that the minimum number of function evaluations are obtained

for fs=2 and r=2. This is shown at s.no. 3 of table 12 and is highlighted.

Table 12: Computational Effort for Load flow using SEPSO.

(IEEE 5 bus system)

No. a. b. Fs r Accuracy i Fev t(ms)

1 32 32 - - -10 156 5024 959

2 1024 512 2 2 -10 88 46608 8086

3 512 256 2 2 -11 86 23127 3934

4 256 128 2 2 -10 95 12544 2432

5 128 64 1 2 -11 124 4224 914

6 64 32 2 2 -10 121 4000 858

7 128 32 1 4 -10 157 4992 634

a=initial swarm size ; b=final swarm size; i=number of iterations; fev=number of function

evaluations ; t=time

32

Table 13 shows the load flow results as obtained using SEPSO for IEEE 5 bus system.

Table 13: Results of Load flow using SEPSO; fs=2 and r=2; (IEEE 5 bus system)

5.3.2 IEEE 14 bus system

(i) Conventional PSO

Table 14 shows the computational effort in terms of function evaluation, iterations and

time taken of load flow by conventional PSO for IEEE-14 bus system.

Table 14: Computational Effort for Load flow using conventional PSO

(IEEE 14 bus system)

S.No. swarm size Accuracy Function

evaluations.

Iterations Time

(in s)

1. 256 -7 5.13 Lakhs 5214 447.7

2. 512 -10 52 Lakhs 5080 1938

(ii) Selection Enabled PSO (SEPSO)

Table 15 shows the results of load flow for IEEE 14 bus system using SEPSO. For

various combinations of ‘fs’ and ‘r’. Here ‘fs’ is the number of iterations after which

selection is to be performed and ‘r’ is the factor by which the swarm size is to be reduced.

Bus V δ PGk QGk PDk QDk Pk Qk

1 1.02 0 0.651 0.326 0.651 0.329 0.651 0.329

2 0.9552 -3.9453 0 0 0.6 0.3 -0.6 -0.3

3 1.04 2.0676 1.0 0.480 0 0 1.0 0.478

4 0.9237 -8.0075 0 0 0.4 0.1 -0.4 -0.1

5 0.9934 -2.0771 0 0 0.6 0.2 -0.6 -0.2

V= Voltage Magnitude (p.u.); δ= Phase angle (in degrees);

PGk = Generated Real Power(p.u.) at kth bus; QGk = Generated reactive power(p.u.) at kth

bus; PDk = Real Power Demand(p.u.) at kth bus; QDk = Reactive Power Demand(p.u.) at

kth bus; Pk = Calcuated Real Power(p.u.) at kth bus; Qk = Calculated Reactive Power(p.u.)

at kth bus, Base values are 1kV and 100MVA

33

Table 15: Computational Effort for Load flow using SEPSO

 (IEEE 14 bus system).

S No.

(1)

a

(2)

b

(3)

fs

(4)

R

(5)

Accuracy

(6)

I

(7)

Fev

(8)

t(s)

(9)

1 512 512 - - -7 5080 52 Lakhs 1938

2 512 256 200 2 -7 1057 6.4 Lakhs 254.5

3 256 256 - - -7 5214 5.13 Lakhs 447.7

4 256 128 200 2 -7 1039 3.17 Lakhs 131.3

5 512 128 250 2 -6 1416 6 Lakhs 267

a=initial swarm size ; b=final swarm size; i=number of iterations; fev=number of

function evaluations ; t=time

In column 4 and 5 of row 1 and 3 of this table (-) indicates that selection has not been

used. This means these are the results corresponding to conventional PSO. It is observed that

minimum number of function evaluations are obtained for a sorting frequency of 200 and

reduction factor ‘r’ of 2. This is shown at serial no. 4 of table 15 and is highlighted.

34

Table 16 shows the results as obtained using SEPSO for load flow studies on IEEE 14

bus system.

Table 16: Results of load flow using SEPSO.

 (IEEE 14 bus system)

Bus V δ PGk

(MW)

QGk

(MVAR)

PDk

(MW)

QDk

(MVAR)

Pk

(MW)

Qk

(MVAR)

1
1.0600 0.0000 125.591 3.480 0 0 125.59 3.47

2
1.0450 -2.4590 70.000 15.532 21.70 12.700 48.30 2.83

3
1.0100 -9.1061 0.000 21.261 94.20 19.000 -94.20 2.26

4
1.0251 -5.8438 0.000 0.000 47.80 -3.900 -47.80 3.90

5
1.0262 -5.0419 0.000 0.000 7.600 1.600 -7.59 -1.60

6
1.0701 -8.9216 0.000 19.674 11.20 7.500 -11.20 12.17

7
1.0549 -3.9782 0.000 0.000 0.000 0.000 0.000 0.000

8
1.0900 2.1795 70.000 25.613 0.000 0.000 70.00 25.61

9
1.0415 -7.0081 0.000 0.000 29.50 16.600 -29.50 -16.60

10
1.0395 -7.6300 0.000 0.000 9.000 5.800 -8.98 -5.80

11
1.0515 -8.3860 0.000 0.000 3.500 1.800 -3.50 -1.80

12
1.0538 -9.6078 0.000 0.000 6.100 1.600 -6.10 -1.60

13
1.0486 -9.4870 0.000 0.000 13.50 5.800 -13.50 -5.80

14
1.0265 -9.1062 0.000 0.000 14.90 5.000 -14.91 -5.00

V= Voltage Magnitude (in p.u.); δ= Phase angle (in degrees);

PGk = Generated Real Power at kth bus; QGk = Generated reactive power at kth bus;

 PDk = Real Power Demand at kth bus; QDk = Reactive Power Demand at kth bus; Pk =

Calculated Real Power at kth bus; Qk = Calculated Reactive Power at kth bus.

35

5.4 Discussion

Load flow has been performed using SEPSO and conventional PSO for IEEE 5 and 14

bus systems. In case of SEPSO, each combination of the user’s input comprising of the

reduction factor ‘r’ and the sorting frequency ‘fs’ is executed thirty times in case of the IEEE

5 bus system and 10 times in case of the IEEE 14 bus system. The programs were written in

MATLAB and executed on a PC with 4 GB RAM. From table 11 and 12, a comparative study

for computational effort in terms of function evaluations has been carried out for IEEE 5 bus

system and is shown in table 17 below.

Table 17. Comparison of SEPSO with conventional PSO

(IEEE 5 bus system).

S.No. Swarm size Function

evaluations

(conventional

PSO)

Function

evaluations

(SEPSO)

% Saving

1 1024 86016 46608 41.81

2 512 40960 23127 43.54

3 256 24320 12544 48.42

4 128 12672 4224 66.67

5 64 7232 4000 44.67

36

Similarly, from table 14 and 15, a comparative study for computational effort in terms

of function evaluations has been carried out for IEEE 14 bus system and is shown in table 18

below.

Table 18. Comparison of SEPSO with conventional PSO

 (IEEE 14 bus system).

From table 17 and table 18, it is observed that SEPSO takes lesser function evaluations

to converge for both IEEE 5 and 14 bus systems when compared to the conventional PSO. The

last column in both tables show the percentage saving in terms of function evaluations obtained

by SEPSO. The comparison of both the algorithms is also shown in Figure 10 and 11 for IEEE

5 and 14 bus system respectively.

Fig.10 Computational Effort for conventional PSO and SEPSO

(IEEE 5 bus system).

S.No. Swarm size Function evaluations

(conventional

PSO)

Function

evaluations

(SEPSO)

%

Saving

1 512 52 Lakhs 6.4 Lakhs 87.7

2 256 41.3 Lakhs 3.15 Lakhs 92.4

37

Fig.11 Computational Effort for conventional PSO and SEPSO

 (IEEE 14 bus system).

It is observed from the above analysis that SEPSO takes less function evaluations to

converge for both IEEE 5 and 14 bus systems when compared to the conventional PSO. The

results obtained from proposed algorithm SEPSO are as accurate as NR method. The results of

load flow using NR method for IEEE 5 and 14 bus system are shown in table 19 and 20

respectively.

38

5.5 Results of N-R algorithm

 The values of voltages and their corresponding angles for all buses are obtained by load

flow studies using Newton-Raphson’s (NR) method. The results from the same are shown in

table 19 and 20.

Table 19: Results of load flow using Newton Raphson’s (NR) method

(IEEE 5 bus system)

Bus V δ PGk QGk PDk QDk Pk Qk

1. 1.02 0 0.651 0.326 0 0 0.651 0.327

2. 0.9552 -3.9450 0 0 0.6 0.3 -0.6 -0.3

3 1.04 2.0675 1.0 0.480 0 0 1.0 0.480

4 0.9237 -8.0073 0 0 0.4 0.1 -0.4 -0.1

5 0.9934 -2.0770 0 0 0.6 0.2 -0.6 -0.2

V= Voltage Magnitude (p.u.) ; δ= Phase angle (in degrees); All calculated and specified

powers are at kth bus, PGk = Generated Real Power(p.u.); QGk = Generated reactive

power(p.u.); PDk = Real Power Demand(p.u.); QDk = Reactive Power Demand(p.u.); Pk =

Calcuated Real Power(p.u.); Qk = Calculated Reactive Power(p.u.) , Base values are 1kV

and 100MVA

39

Table 20: Results of load flow using NR method.

(IEEE 14 bus system)

 The results of load flow using SEPSO are exactly same as that of NR method for

IEEE 5 and 14 bus systems. This establishes the fact that the proposed method Selection

enabled PSO (SEPSO) has been correctly designed and has converged to global minimum.

Bus V δ PGk QGk PDk QDk Pk Qk

1 1.0600 0.0000 125.59 3.48 0 0 125.59 3.48

2 1.0450 -2.4591 70.00 15.53 21.70 12.700 48.30 2.83

3 1.0100 -9.1059 0.000 21.26 94.20 19.000 -94.20 2.26

4 1.0252 -5.8436 0.000 0.000 47.80 -3.900 -47.80 3.90

5 1.0262 -5.0418 0.000 0.000 7.600 1.600 -7.60 -1.60

6 1.0700 -8.9214 0.000 19.67 11.20 7.500 -11.20 12.17

7 1.0547 -3.9781 0.000 0.000 0.000 0.000 0.000 0.000

8 1.0900 2.1792 70.00 25.613 0.000 0.000 70.00 25.61

9 1.0417 -7.0080 0.000 0.000 29.50 16.600 -29.50 -16.60

10 1.0395 -7.6301 0.000 0.000 9.000 5.800 -9.00 -5.80

11 1.0514 -8.3862 0.000 0.000 3.500 1.800 -3.50 -1.80

12 1.0537 -9.6076 0.000 0.000 6.100 1.600 -6.10 -1.60

13 1.0486 -9.4869 0.000 0.000 13.50 5.800 -13.50 -5.80

14 1.0265 -9.1060 0.000 0.000 14.90 5.000 -14.90 -5.00

V= Voltage Magnitude (in p.u.) ; δ= Phase angle (in degrees); All calculated and

specified powers are at kth bus, PGk = Generated Real Power(MW); QGk =

Generated reactive power(MVAR); PDk = Real Power Demand(MW); QDk =

Reactive Power Demand(MVAR); Pk = Calcuated Real Power(MW); Qk =

Calculated Reactive Power(MVAR)

40

Chapter-6

Conclusions and Future Direction

6.1 Conclusions

The following are the conclusions of this research work:

i) A modified version of conventional PSO called Selection enabled PSO (SEPSO)

has been developed which involves the selection of better particles. The strategy of

retaining only the better particles reduces the time taken up to convergence. It has

been observed from the tables of computational results that retaining half of the

total number of particles leads to reliable convergence than any other value of

reduction factor. The trapped particles create computational overhead which is

undesirable. Such particles are needed only up to the exploration phase. During the

exploitation phase, these ‘trapped’ particles become stationary.

ii) Load flow is performed using SEPSO for IEEE 5 and 14 bus system successfully

for the first time.

iii) A strategy has been developed to treat reactive power mismatches for PV buses.

Voltage buses have been kept fixed and therefore each particle in the swarm

unambiguously moves towards the region where reactive power limits are not

violated.

iv) The results have been compared with conventional PSO and NR method.

v) SEPSO is found to converge faster than conventional PSO and is as accurate as NR

method.

 Selection enabled PSO (SEPSO) is applied to the IEEE 5 bus system and the IEEE 14

bus system for load flow. Load flow results obtained from SEPSO are as accurate as that for

the Newton-Raphson method. The results from Newton-Raphson’s method are used just to

ensure that SEPSO has converged properly at the global minimum.

41

6.2 Future direction

The process of trying several combinations of reduction factor ‘fs’ and sorting

frequency ‘r’ can be replaced by making the selection adaptive using a well-designed criterion.

Further SEPSO can be used along with other swarm intelligence algorithms to reduce the

number of function evaluations in load flow problems. Those particles that reach near the

global optimum and keep oscillating around it, can also be slowed down to reach the global

optimum earlier without oscillating while the particles unable to come sufficiently close to

global optimum, in a certain number of iterations, can be eliminated.

42

APPENDIX

A: IEEE 5 bus system

Table I: Specified values of load(s), generation(s), voltage(s) and angle(s).

Bus

No.

Voltage

Magnitude

(p.u.)

Phase

Angle

(radians)

Generated

Real

Power(p.u.)

Generated

Reactive

Power(p.u.)

Real

Power

Demand(p.u.)

Reactive

Power

Demand(p.u.)

1. 1.02 0 - - - -

2. - - - - 0.6 0.3

3. 1.04 - 1.0 - - -

4. - - - - 0.4 0.1

5. - - - - 0.6 0.2

Fig.I. IEEE 5 Bus System

43

Table II: Line reactance values and line resistance values.

From bus To bus R(in p.u.) X(in p.u.)

1 2 0.1 0.4

1 4 0.15 0.6

1 5 0.05 0.2

3 5 0.05 0.2

2 3 0.05 0.2

2 4 0.05 0.4

44

B. IEEE 14 bus system

Table III: Line reactance values, line resistance values and line susceptance values.

From bus To bus R(in p.u.) X(in p.u.) B/2(in p.u.)

1 2 0.01938

0.05917 0.0264

1 5 0.05403 0.22304 0.0246

2 3 0.04699 0.19797 0.0219

2 4 0.05811 0.17632 0.0170

2 5 0.05695 0.17388 0.0173

3 4 0.06701 0.17103 0.0064

4 5 0.01335 0.04211 0.0

4 7 0.0 0.20912 0.0

4 9 0.0 0.55618 0.0

5 6 0.0 0.25202 0.0

6 11 0.09498 0.19890 0.0

6 12 0.12291 0.25581 0.0

6 13 0.06615 0.13027 0.0

7 8 0.0 0.17615 0.0

7 9 0.0 0.11001 0.0

9 10 0.03181 0.08450 0.0

9 14 0.12711 0.27038 0.0

10 11 0.08205 0.19207 0.0

12 13 0.22092 0.19988 0.0

13 14 0.17093 0.34802 0.0

45

Table IV: Specified values of load(s), generation(s), voltage(s) and angle(s).

Bus

No.

Voltage

magnitude

(p.u.)

Phase

angle

(radians)

Generated

Real

Power (MW)

Generated

reactive

Power(MVAR)

Real

Power

Demand

(MW)

Reactive

Power

Demand

(MVAR)

1 1.060 0 0 0 0 0

2 1.045 0 70 42.4 21.7 12.7

3 1.010 0 0 23.4 94.2 19.0

4 1.0 0 0 0 47.8 -3.9

5 1.0 0 0 0 7.6 1.6

6 1.0 0 0 12.2 11.2 7.5

7 1.070 0 0 0 0.0 0.0

8 1.0 0 70 17.4 0.0 0.0

9 1.090 0 0 0 29.5 16.6

10 1.0 0 0 0 9.0 5.8

11 1.0 0 0 0 3.5 1.8

12 1.0 0 0 0 6.1 1.6

13 1.0 0 0 0 13.5 5.8

14 1.0 0 0 0 14.9 5.0

Table V: Reactive Power Limits

Bus

No.

Qmin

(MVAR)

Qmax

(MVAR)

2 -40 50

3 0 40

6 -6 24

8 -6 30

46

Fig.II. IEEE 14 Bus System

47

i) MATLAB code for load flow on IEEE 5 bus system using SEPSO.

Main program:

clear all
clc
nbus = 5; % IEEE-5
Y = ybusppg(nbus); % Calling ybusppg.m to get Y-Bus Matrix..
busd = busdatas(nbus);
BMva=100; % Calling busdatas.. % Base

MVA..
Pg = busd(:,5)/BMva; % gen erated real power
Qg = busd(:,6)/BMva; % generated reactive power.
Pl = busd(:,7)/BMva; % load real power
Ql = busd(:,8)/BMva; % load reactive power
Qlim1 = busd(:,9)/BMva;
Qlim2 = busd(:,10)/BMva;
P = Pg - Pl; % Pi = PGi - PLi..
Q = Qg - Ql; % Qi = QGi - QLi..
Psp = P ; % P Specified..
Qsp = Q ; % q specified
Qmin=Qlim1(3);
Qmax=Qlim2(3);
G = real(Y) ; % Conductance matrix..
B = imag(Y) ; % Susceptance matrix..

%---------------------PSO PARAMETERS INITIALIZATION --------------%
particle=[];
mn=[];
fr1=[];
it=input('maximum no. of iterations');
p=input('enter initial no. of particles');
pf=input('final no. of particles'); % no of particle
fs=input('frequency for sorting');
r=input('enter r');
% rfv=input('enter rfv');
% rft=input('enter rft');
c12=[];
tic
particle(1)=p;
rp=1;
T=10;
fr=[];
count=1;
deltai=zeros(p,1);
zeta=0;
i2=0;
rg=1;
rf=1;
%f=[];
f=zeros(p,it);
fp=zeros(p,1);
thp=zeros(p,5);
thg=zeros(p,5);
vp=zeros(p,5);
vg=zeros(p,5);
rft=[];
rfv=[];
for j=1:p
 rft(j)=1;
 rfv(j)=1;

48

end
%v=[];
%th=[];
%vv=[];
%vth=[];
v=zeros(p,it,5);
th=zeros(p,it,5);
vth=zeros(p,it,5);
vv=zeros(p,it,5);
%vtemp=zeros(p,it,5);
%thtemp=zeros(p,it,5);
%vthtemp=zeros(p,it,5);
%vvtemp=zeros(p,it,5);
%ftemp=zeros(p,it);
a=.5;
b=-0.5;
vth(:,1,:)=a+(b-a)*rand(p,5); %initial velocity of theta vector%
a=-.1;
b=0.1;
vv(:,1,:)=a+(b-a)*rand(p,5); %initial velocity of voltage vector%
vth(:,:,1)=0;
vv(:,:,1)=0;
a=0.5;
b=-0.5;
th(:,1,:)=a+(b-a)*rand(p,5);
a=1.1;
b=0.9;
v(:,1,:)=a+(b-a)*rand(p,5);
v(:,:,1)=1.02;
v(:,:,3)=1.04;
th(:,:,1)=0;
vg(:,1)=1.02;
vp(:,1)=1.02;
vg(:,3)=1.04;
vp(:,3)=1.04;
thp(:,1)=0;
thg(:,1)=0;
%-----------------------initial value of objective function-------------%
% Calculate P and Q
PVIND=zeros(p,1);
fev=0;
 for j=1:p
 P = zeros(nbus,1);
 Q = zeros(nbus,1);
 MPS=zeros(p,1);
 MQS=zeros(p,1);

for i = 2:nbus
 for k = 1:nbus
 P(i) = P(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*cos(th(j,1,i)-

th(j,1,k)) + B(i,k)*sin(th(j,1,i)-th(j,1,k)));
 end
end

for i = 2:nbus
 for k = 1:nbus
 Q(i) = Q(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*sin(th(j,1,i)-

th(j,1,k)) - B(i,k)*cos(th(j,1,i)-th(j,1,k)));
 end

end

49

 % real power mismatch
 MP=P-Psp;
 MPS=MP.^2;
 %reactive power mismatch in third bus
 Qsp(3)=Q(3);
 if Q(3)<Qmin;
 Q(3)=Qmin;
 PVIND(j,1)=1;
 else PVIND(j,1)=0;
 end
 if Q(3)>Qmax;
 Q(3)=Qmax;
 PVIND(j,1)=1;
 else PVIND(j,1)=0;
 end

 %reactive power mismatch
 MQ=Q-Qsp;
 MQ(3)=0;
 MQS=MQ.^2;
 %objective function value
 f(j,1)=sum(MPS)+sum(MQS);
 % fr(j,1)=f(j,1);
 % fr(j,2)=j;
 fev=fev+1;
 end

 %Initial personal best values
for i=1:p
 for k=2:5
 thp(i,k)=th(i,1,k);
 end
 for k=2:5
 vp(i,k)=v(i,1,k);
 end
end
%for Initial Global best values updation
fmin=min(f(:,1));
for k=1:p
 if f(k,1)==fmin
 gb=k;
 else
 end
end
%Initial global best value

for k=1:p
 for j=2:5
 thg(k,j)=th(gb,1,j);
 end
 for j=2:5
 vg(k,j)=v(gb,1,j);
 end
end
fgm = min(f(:,1));
 Q3=zeros(p,it);
for i=1:it
 %for inertia weight W
 %wmax=.4;

50

 %wmin=.4;
 % w=wmax-((wmax-wmin)*i/it);
 %w =0.1+(rand()/2);
 %velocity update
 %position update
 w=.7;
for j=1:p
 for k=2:5

 vth(j,(i+1),k) = w*vth(j,i,k) + rp*rand()*(thp(j,k)-th(j,i,k)) +

rg*rand()*(thg(j,k)-th(j,i,k));
 % if vth(j,(i+1),k)<-0.1
 % vth(j,(i+1),k)=-0.1;
 %end
 %if vth(j,(i+1),k)>0.1
 % vth(j,(i+1),k)=0.1;
 %end
 th(j,(i+1),k) = th(j,i,k) + rft(j)*vth(j,(i+1),k);
 end

 for q=2:5
 vv(j,(i+1),q) = w*vv(j,i,q) + rp*rand()*(vp(j,q)-v(j,i,q)) +

rg*rand()*(vg(j,q)-v(j,i,q));

 v(j,(i+1),q) = v(j,i,q) + rfv(j)*vv(j,(i+1),q);
 end

 for q=3
 if PVIND(j,1)==0
 v(j,(i+1),q)=1.04;
 end
 end

end

%th(:,i,5)

%objective function value
for j=1:p
 P = zeros(nbus,1);
 Q = zeros(nbus,1);
 MPS=zeros(p,1);
 MQS=zeros(p,1);

 for m = 2:nbus
 for k = 1:nbus
 P(m) = P(m) + v(j,(i+1),m)*

v(j,(i+1),k)*(G(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k)) +

B(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k)));

 end
 end
 for m = 2:5
 for k = 1:nbus

51

 Q(m) = Q(m) + v(j,(i+1),m)*

v(j,(i+1),k)*(G(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k)) -

B(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k)));

 end
 end
 % real power mismatch
 MP=P-Psp;
 MPS=MP.^2;
 %reactive power mismatch in third bus
 Qsp(3)=Q(3);
 if Q(3)<Qmin;
 Q(3)=Qmin;
 PVIND(j,1)=1;
 else PVIND(j,1)=0;
 end
 if Q(3)>Qmax;
 Q(3)=Qmax;
 PVIND(j,1)=1;
 else PVIND(j,1)=0;
 end
 Q3(j,i)=Q(3);
 %reactive power mismatch
 MQ=Q-Qsp;
 MQ(3)=0;
 MQS=MQ.^2;
 %objective function value

 f(j,(i+1))=sum(MPS)+sum(MQS);
 fr(j,1)=f(j,i+1);
 fr(j,2)=j;
 fev=fev+1;

end
 %personal best values updatio
for j=1:p
 P = zeros(nbus,1);
 Q = zeros(nbus,1);
 MPS=zeros(p,1);
 MQS=zeros(p,1);
 for t =2:nbus
 for k = 1:nbus
 P(t) = P(t) + vp(j,t)* vp(j,k)*(G(t,k)*cos(thp(j,t)-thp(j,k)) +

B(t,k)*sin(thp(j,t)-thp(j,k)));

 end
 end
 for t = 2:nbus
 for k = 1:nbus
 Q(t) = Q(t) + vp(j,t)* vp(j,k)*(G(t,k)*sin(thp(j,t)-thp(j,k)) -

B(t,k)*cos(thp(j,t)-thp(j,k)));

 end
 end

 % real power mismatch
 MP=P-Psp;
 MPS=MP.^2;
 %reactive power mismatch in third bus
 Qsp(3)=Q(3);

52

 if Q(3)<Qmin;
 Q(3)=Qmin;
 PVIND(j,1)=1;
 else PVIND(j,1)=0;
 end
 if Q(3)>Qmax;
 Q(3)=Qmax;
 PVIND(j,1)=1;
 else PVIND(j,1)=0;
 end

 %reactive power mismatch
 MQ=Q-Qsp;
 MQ(3)=0;
 MQS=MQ.^2;
 %objective function value
 %objective function value
 fp(j)=sum(MPS)+sum(MQS);
end

 %calculating delta i and zeta

 % sum1=0;
 % for i1=1:p
 % deltai(i1,1)=f(i1,i)-f(i1,(i+1));
 % sum1=sum1+deltai(i1,1);
 % end
 % zeta=sum1/(p);

 %retaining particles with better performance

 % i1=1;
 % k2=50;
 % if(p>=k2+1)
 % while(i1<=p)
 % count=count+1;
 % if(p<=k2)
 % break
 % end
 % if((f(i1,i)-f(i1,(i+1)))<0)
 % v(i1,:,:)=[];
 % th(i1,:,:)=[];
 % vv(i1,:,:)=[];
 % vth(i1,:,:)=[];
 % f(i1,:)=[];
 % p=p-1;
 % if(p==k2)
 % break
 % end
 % end
 % i1=i1+1;
 % end
 %end
 %count=1;
 %particle(i+1)=p;

 %sorting and eliminating

53

 if(p>pf && mod(i,fs)==0)
 fr=sortrows(fr);
 fr1=fr;
 k1=1;
 k2=0;
 k3=((p/r));
 k4=1;
 for i1=(k3+1):p
 mn(1,k1)=fr(i1,2);
 k1=k1+1;
 end
 v(mn,:,:)=[];
 th(mn,:,:)=[];
 vv(mn,:,:)=[];
 vth(mn,:,:)=[];
 f(mn,:,:)=[];
 fr(mn,:)=[];
 p=p/r;
 end
 mn=[];

 %personal best value updation
 for k=1:p
 for m=2:5
 if f(k,i+1)<fp(k)
 thp(k,m)=th(k,i+1,m);
 else
 end

 end

 end

 for k=1:p
 for m=2:5
 if f(k,i+1)<fp(k)
 vp(k,m)=v(k,i+1,m);
 else
 end

 end
 end

 %for Global best values updation
 fgm=min(f(:,(i+1)));

 for m=2:5

 for k=1:p
 if f(k,i+1)==fgm
 for l=2:p
 thg(l,m) = th(k,i+1,m); %global best values
 end
 else
 end

 end

54

 end
 for m=2:5

 for k=1:p
 if f(k,i+1)==fgm
 for l=2:p
 vg(l,m) = v(k,i+1,m); %global best values
 end
 else
 end

 end
 end

 %stopping

 gb1=gb;
 fgm=min(f(:,(i+1)));
for k=1:p
 if f(k,i+1)==fgm
 gb1=k;
 else
 end
end
 if(p==1)
 break
 end
 if (abs(f(gb1,i+1)-f(gb1,i))<=10^(-T))
 if(abs(f(gb1,i+1))<=10^(-T))
 break
 end
 end
 if abs(max(vv(gb1,i,:)))<=10^-(2.9) && abs(max(vth(gb1,i,:)))<=10^-

(2.9) && i>=10 && abs(max(vv(gb1,i,:)))>=10^-(3.1) &&

abs(max(vth(gb1,i,:)))>=10^-(3.1)
 for j=1:p
 rfv(j)=(((abs(max(vv(gb1,i,:))/max((vv(j,i,:)))))^-1));
 rft(j)=(((abs(max(vth(gb1,i,:))/max((vth(j,i,:)))))^-1));
 end
 end
% if abs(max(vv(gb1,i,:)))<=10^-(3.9) && abs(max(vth(gb1,i,:)))<=10^-

(3.9) && i>=10 && abs(max(vv(gb1,i,:)))>=10^-(4.1) &&

abs(max(vth(gb1,i,:)))>=10^-(4.1)
% rfv=min(1.2,((abs(max(vv(gb1,i,:))/max((vv(gb,1,:)))))^-1));
% rft=min(1.2,((abs(max(vth(gb1,i,:))/max((vth(gb,1,:)))))^-1));
% end
% if abs(max(vv(gb1,i,:)))<=10^-(4.9) && abs(max(vth(gb1,i,:)))<=10^-

(4.9) && i>=10 && abs(max(vv(gb1,i,:)))>=10^-(5.1) &&

abs(max(vth(gb1,i,:)))>=10^-(5.1)
% rfv=min(1.28,(abs(max(vv(gb1,i,:))/max((vv(gb,1,:)))))^-1);
% rft=min(1.28,(abs(max(vth(gb1,i,:))/max((vth(gb,1,:)))))^-1);
% end
% if max(vv(gb1,i,:))<=10^-(5) && max(vth(gb1,i,:))<=10^-(5) && i>=10
% rfv=1.21;
% rft=1.21;
% end

vth(gb1,(i+1),2);

55

end
%Q3(:,it)
bus=zeros(5,10) ;
bus(1,3)=v(gb1,i,1);
bus(2,3)=v(gb1,i,2);
bus(3,3)=v(gb1,i,3);
bus(4,3)=v(gb1,i,4);
bus(5,3)=v(gb1,i,5);
%bus angle updation
bus(1,4)=th(gb1,i,1);
bus(2,4)=th(gb1,i,2);
bus(3,4)=th(gb1,i,3);
bus(4,4)=th(gb1,i,4);
bus(5,4)=th(gb1,i,5);
bus(3,6)=Q3(gb1,it)*BMva;
x=bus(3,6);
V = bus(:,3) ; % Specified Voltage..
del = bus(:,4) ; % Voltage Angle..
toc
%load flow function calling
loadflow(nbus,V,del,BMva,x);
disp('function value');
f(gb1,i)
disp('no. of function evaluations =');
fev

ybusppg.m

% Program to for Admittance And Impedance Bus Formation....

function Y = ybusppg(num) % Returns Y

linedata = linedatas(num); % Calling Linedatas...
fb = linedata(:,1); % From bus number...
tb = linedata(:,2); % To bus number...
r = linedata(:,3); % Resistance, R...
x = linedata(:,4); % Reactance, X...
b = linedata(:,5); % Ground Admittance, B/2...
a = linedata(:,6); % Tap setting value..
z = r + i*x; % z matrix...
y = 1./z; % To get inverse of each element...
b = i*b; % Make B imaginary...

nb = max(max(fb),max(tb)); % No. of buses...
nl = length(fb); % No. of branches...
Y = zeros(nb,nb); % Initialise YBus...

 % Formation of the Off Diagonal Elements...
 for k = 1:nl
 Y(fb(k),tb(k)) = Y(fb(k),tb(k)) - y(k)/a(k);
 Y(tb(k),fb(k)) = Y(fb(k),tb(k));
 end

 % Formation of Diagonal Elements....
 for m = 1:nb
 for n = 1:nl
 if fb(n) == m

56

 Y(m,m) = Y(m,m) + y(n)/(a(n)^2) + b(n);
 elseif tb(n) == m
 Y(m,m) = Y(m,m) + y(n) + b(n);
 end
 end
 end
 %Y; % Bus Admittance Matrix
 %Z = inv(Y); % Bus Impedance Matrix

linedatas.m

% Returns Line datas of the system...

function linedt = linedatas(num)

% | From | To | R | X | B/2 | X'mer |
% | Bus | Bus | pu | pu | pu | TAP (a) |
linedat5 = [1 2 .1 0.4 0 1
 1 4 0.15 0.6 0 1
 1 5 0.05 0.2 0 1
 2 3 0.05 0.2 0 1
 2 4 0.10 0.4 0 1
 3 5 0.05 0.2 0 1];

switch num
 case 5
 linedt = linedat5;
 case 30
 linedt = linedat30;
 case 57
 linedt = linedat57;
end

loadflow.m

% Program for Bus Power Injections, Line & Power flows (p.u)...

function [Pi Qi Pg Qg Pl Ql] = loadflow(nb,V,del,BMva,x)
Y = ybusppg(nb); % Calling Ybus program..
lined = linedatas(nb); % Get linedats..
busd = busdatas(nb); % Get busdatas..
Vm = pol2rect(V,del); % Converting polar to rectangular..
Del = 180/pi*del; % Bus Voltage Angles in Degree...
fb = lined(:,1); % From bus number...
tb = lined(:,2); % To bus number...
nl = length(fb); % No. of Branches..
k1=busd(:,2); %bus type
Pl = busd(:,7) ; % PLi..
Ql = busd(:,8) ; % QLi..
Pl2 = busd(:,5) ; % PLi..
Ql2 = busd(:,6) ; % QLi..
Iij = zeros(nb,nb);
Sij = zeros(nb,nb);
Si = zeros(nb,1);

% Bus Current Injections..
 I = Y*Vm;
 Im = abs(I);

57

 Ia = angle(I);

%Line Current Flows..
for m = 1:nl
 p = fb(m); q = tb(m);
 Iij(p,q) = -(Vm(p) - Vm(q))*Y(p,q); % Y(m,n) = -y(m,n)..
 Iij(q,p) = -Iij(p,q);
end
Iij = sparse(Iij);
Iijm = abs(Iij);
Iija = angle(Iij);

% Line Power Flows..
for m = 1:nb
 for n = 1:nb
 if m ~= n
 Sij(m,n) = Vm(m)*conj(Iij(m,n))*BMva;
 end
 end
end
Pij = real(Sij);
Qij = imag(Sij);

% Line Losses..
Lij = zeros(nl,1);
for m = 1:nl
 p = fb(m); q = tb(m);
 Lij(m) = Sij(p,q) + Sij(q,p);
end
Lpij = real(Lij);
Lqij = imag(Lij);

% Bus Power Injections..
for i = 1:nb
 for k = 1:nb
 Si(i) = Si(i) + conj(Vm(i))* Vm(k)*Y(i,k)*BMva;
 end
end
Pi = real(Si);
Qi = -imag(Si);
Pg = busd(:,5);
Qg = busd(:,6);
Pg(1)=sum(Pl)+sum(Lpij)-Pg(3);
Qg(3)=x;
Qg(1)=sum(Ql)+sum(Lqij)-Qg(3);

disp('###

###############');
disp('---

--------------------');
disp(' PSO Loadflow Analysis ');
disp('---

--------------------');
disp('| Bus | V | Angle | Injection | Generation |

Load |');
disp('| No | pu | Degree | MW | MVar | MW | Mvar |

MW | MVar | ');
for m = 1:nb

58

 disp('---

------------------------');
 fprintf('%3g', m); fprintf(' %8.4f', V(m)); fprintf(' %8.4f',

Del(m));
 fprintf(' %8.3f', Pi(m)); fprintf(' %8.3f', Qi(m));
 fprintf(' %8.3f', Pg(m)); fprintf(' %8.3f', Qg(m));
 fprintf(' %8.3f', Pl(m)); fprintf(' %8.3f', Ql(m)); fprintf('\n');
end
disp('---

--------------------');
fprintf(' Total ');fprintf(' %8.3f', sum(Pi)); fprintf('

%8.3f', sum(Qi));
fprintf(' %8.3f', sum(Pi+Pl)); fprintf(' %8.3f', sum(Qi+Ql));
fprintf(' %8.3f', sum(Pl)); fprintf(' %8.3f', sum(Ql)); fprintf('\n');
disp('###

####################');

disp('---

----------------');
disp(' Line FLow and Losses ');
disp('---

----------------');
disp('|From|To | P | Q | From| To | P | Q |

Line Loss |');
disp('|Bus |Bus| MW | MVar | Bus | Bus| MW | MVar |

MW | MVar |');
for m = 1:nl
 p = fb(m); q = tb(m);
 disp('---

--------------------');
 fprintf('%4g', p); fprintf('%4g', q); fprintf(' %8.3f', Pij(p,q));

fprintf(' %8.3f', Qij(p,q));
 fprintf('%4g', q); fprintf('%4g', p); fprintf(' %8.3f', Pij(q,p));

fprintf(' %8.3f', Qij(q,p));
 fprintf(' %8.3f', Lpij(m)); fprintf(' %8.3f', Lqij(m));
 fprintf('\n');
end
disp('---

----------------');
fprintf(' Total Loss ');
fprintf(' %8.3f', sum(Lpij)); fprintf(' %8.3f', sum(Lqij));

fprintf('\n');
disp('---

----------------');
disp('###

################');

59

ii) MATLAB code for load flow on IEEE 14 bus system using SEPSO.

Main program:

% objective function multiplied by 100 on 7th September , Monday , 2015
clc
nbus =14; % IEEE-5
Y = ybusppg(nbus); % Calling ybusppg.m to get Y-Bus Matrix..
busd = busdatas(nbus);
BMva=100; % Calling busdatas.. % Base

MVA..
Pg = busd(:,5)/BMva; % gen erated real power
Qg = busd(:,6)/BMva; % generated reactive power.
Pl = busd(:,7)/BMva; % load real power
Ql = busd(:,8)/BMva; % load reactive power
Qlim1 = busd(:,9)/BMva;
Qlim2 = busd(:,10)/BMva;
P = Pg - Pl; % Pi = PGi - PLi..
Q = Qg - Ql; % Qi = QGi - QLi..
Psp = P ; % P Specified..
Qsp = Q ; % q specified
for i=[2,3,6,8]
Qmin(i)=Qlim1(i)-Ql(i);
Qmax(i)=Qlim2(i)-Ql(i);
end
G = real(Y) ; % Conductance matrix..
B = imag(Y) ; % Susceptance matrix..
%kv=input('kv')
%---------------------PSO PARAMETERS INITIALIZATION --------------%
fev=0;
c12=0;
kcm=1;
kpm=input('enter kpm');
kqm=input('enter kqm');
%kp=input('enter kp');
%kq=input('enter kq');
%kthm=input('enter kthm');
p=input('enter no. of initial particles'); % no of

particle
it=input('enter maximum no. of iterations'); % no of

iteration
rp=1;
T=input('enter tolerance'); %tolerance factor
particle=[];
mn=[];
fr1=[];
fs=input('frequency for sorting');
pf=input('final no. of particles'); % no of particle
r=input('enter r');
tic
c12=[];
rg=1;
rf=1;
f=zeros(p,it);
MQS1=zeros(4,1);
fp=zeros(p,1);
thp=zeros(p,nbus);
thg=zeros(p,nbus);
vp=zeros(p,nbus);
vg=zeros(p,nbus);
v=zeros(p,it,nbus);

60

th=zeros(p,it,nbus);
vth=zeros(p,it,nbus);
vv=zeros(p,it,nbus);
a=-0.5;
b=0.5;
vth(:,1,:)=a+(b-a)*rand(p,nbus); %initial velocity of theta vector%
a=.1;
b=-0.1;
vv(:,1,:)=a+(b-a)*rand(p,nbus); %initial velocity of voltage vector%
%vth(:,:,1)=0;
a=0;
b=0;
th(:,1,:)=a+(b-a)*rand(p,nbus);
a=1;
b=1;
v(:,1,:)=a+(b-a)*rand(p,nbus);
% volage asuumption
v(:,:,1)=1.060;
v(:,:,2)=1.045;
v(:,:,3)=1.010;
v(:,:,6)=1.070;
v(:,:,8)=1.090;
vv(:,:,1)=0;
th(:,:,1)=0;
thp(:,1)=0;
thg(:,1)=0;
vp(:,1)=1.060;
vp(:,2)=1.045;
vp(:,3)=1.010;
vp(:,6)=1.070;
vp(:,8)=1.090;
vg(:,1)=1.060;
vg(:,2)=1.045;
vg(:,3)=1.010;
vg(:,6)=1.070;
vg(:,8)=1.090;
vmin=[0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9];
vmax=[1.06 1.045 1.010 1.1 1.1 1.070 1.1 1.090 1.1 1.1 1.1 1.1 1.1 1.1];

%-----------------------initial value of objective function-------------%
% Calculate P and Q
PVIND=zeros(p,nbus);
MV=zeros(p,nbus);
check_no=0;
 for j=1:p
 P = zeros(nbus,1);
 Q = zeros(nbus,1);
 MPS=zeros(14,1);
 MQS=zeros(14,1);
 MQS1=zeros(4,1);
 MVS=zeros(14,1);

for i = 1:nbus
 for k = 1:nbus
 P(i) = P(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*cos(th(j,1,i)-

th(j,1,k)) + B(i,k)*sin(th(j,1,i)-th(j,1,k)));
 end
end

for i = 1:nbus
 for k = 1:nbus

61

 Q(i) = Q(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*sin(th(j,1,i)-

th(j,1,k)) - B(i,k)*cos(th(j,1,i)-th(j,1,k)));
 end

end

 % real power mismatch
 MP=P-Psp;
 if (P(1)-.5)*(2-(P(1))) >= 0
 MP(1)=0;
 end
 if (P(1)-.5)*(2-(P(1))) < 0
 MP(1)=abs(min((P(1)-.5),(2-(P(1)))));
 end
 %if (P(2)-.2)*(1-(P(2))) >= 0
 % MP(2)=P(2)-Psp(2);
 %end
 %if (P(2)-.2)*(1-(P(2))) < 0
 % MP(2)=abs(min((P(2)-.5),(2-(P(2)))));
 %end
 MPS=MP.^2;

 %reactive power mismatch and voltage mismatch
 MQ=Q-Qsp;
 MQS=MQ.^2;
 MQS(1)=0;

% MVS=zeros(14,1);
 % for jk=2:14
 % if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) < 0
 % MVS(jk)=(min((v(j,1,jk)-0.9),(1.1-v(j,1,jk))))^2;
 % end
 % if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) >= 0
 % MVS(jk)=0;
 % end
 % end

 for jk=[2,3,6,8]
 if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))<0)
 % MVS(jk)=((v(j,1,jk)-vmax(jk))^2);
 MQS(jk)=(min((Q(jk)-Qmin(jk)),(Qmax(jk)-Q(jk))))^2;
 vv(j,1,jk)=0; %change made at 1906 hrs , 6th September , Sunday

, 2015
 end
 if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))>=0)
 MQS(jk)=0;
 % MVS(jk)=(vmax(jk)-v(j,1,jk))^2;
 vv(j,1,jk)=0;
 end
 end

 %objective function value
 %

f(j,1)=max(max(kpm*max(MPS),kqm*max(MQS)),max(kvm*max(MVS),kthm*sum(MTHS)))

;
 f(j,1)=(kpm*sum(MPS)+kqm*sum(MQS));%+kvm*sum(MVS);%+kthm*sum(MTHS);
 %fr(j,1)=f(j,1);
 %fr(j,2)=j;
 fev=fev+1;
 end

62

%Initial personal best values
for i=1:p
 for k=1:nbus
 thp(i,k)=th(i,1,k);
 end
 for k=1:nbus
 vp(i,k)=v(i,1,k);
 end
end
%for Initial Global best values updation
fmin=min(f(:,1));
for k=1:p
 if f(k,1)==fmin
 gb=k;
 else
 end
end
%Initial global best value

for k=1:p
 for j=1:nbus
 thg(k,j)=th(gb,1,j);
 end
 for j=1:nbus
 vg(k,j)=v(gb,1,j);
 end
end
fgm = min(f(:,1));
Q3=zeros(p,it,nbus);
for i=1:it
 %for inertia weight W
 %wmax=.4;
 %wmin=.3;
 %w=wmax-((wmax-wmin)*i/it);
 %velocity update
 %position update
 w=0.8;
for j=1:p
 % w(j)=.4+(f(j,i)*(min(f(:,i)-f(j,i)))/(fp(j)*(min(f(:,i)-

f(j,i)))));
 % L1(j)=sqrt(fp(j)/f(j,i));
 % L2(j)=sqrt(min(f(:,i))/f(j,i));
 for k=1:nbus

 vth(j,(i+1),k) = w*vth(j,i,k) + rp*rand()*(thp(j,k)-th(j,i,k)) +

rg*rand()*(thg(j,k)-th(j,i,k));
 th(j,(i+1),k) = th(j,i,k) + rf*vth(j,(i+1),k);
 end

 for q=2:nbus
 vv(j,(i+1),q) = w*vv(j,i,q) + rp*rand()*(vp(j,q)-v(j,i,q)) +

rg*rand()*(vg(j,q)-v(j,i,q));
 v(j,(i+1),q) = v(j,i,q) + rf*vv(j,(i+1),q);
 end

end
%objective function value
for j=1:p

63

 P = zeros(nbus,1);
 Q = zeros(nbus,1);
 MPS=zeros(14,1);
 MQS=zeros(14,1);
 MQS1=zeros(14,1);
 for m = 1:nbus
 for k = 1:nbus
 P(m) = P(m) + v(j,(i+1),m)*

v(j,(i+1),k)*(G(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k)) +

B(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k)));

 end
 end
 for m = 1:nbus
 for k = 1:nbus
 Q(m) = Q(m) + v(j,(i+1),m)*

v(j,(i+1),k)*(G(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k)) -

B(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k)));

 end
 end

% real power mismatch
 MP=P-Psp;
 if (P(1)-.5)*(2-(P(1))) >= 0
 MP(1)=0;
 end
 if (P(1)-.5)*(2-(P(1))) < 0
 MP(1)=abs(min((P(1)-.5),(2-(P(1)))));
 end
 % if (P(2)-.2)*(1-(P(2))) >= 0
 % MP(2)=P(2)-Psp(2);
 % end
 % if (P(2)-.2)*(1-(P(2))) < 0
 % MP(2)=abs(min((P(2)-.5),(2-(P(2)))));
 % end
 MPS=MP.^2;

 %reactive power mismatch and voltage mismatch
 MQ=Q-Qsp;
 MQS=MQ.^2;
 MQS(1)=0;

 % MVS=zeros(14,1);
 % for jk=2:14
 % if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) < 0
 % MVS(jk)=(min((v(j,1,jk)-0.9),(1.1-v(j,1,jk))))^2;
 % end
 % if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) >= 0
 % MVS(jk)=0;
 % end
 % end

 for jk=[2,3,6,8]
 if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))<0)
 % MVS(jk)=((v(j,1,jk)-vmax(jk))^2);
 MQS(jk)=(min((Q(jk)-Qmin(jk)),(Qmax(jk)-Q(jk))))^2;
 end
 if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))>=0)
 MQS(jk)=0;

64

 end
 end

 %objective function value

%f(j,i+1)=max(max(kpm*max(MPS),kqm*max(MQS)),max(kvm*max(MVS),kthm*sum(MTHS

)));
 f(j,(i+1))=(kpm*sum(MPS)+kqm*sum(MQS));%+kvm*sum(MVS);%+kthm*sum(MTHS);
 fr(j,1)=f(j,i+1);
 fr(j,2)=j;
 fev=fev+1;
end

 %personal best values updation
for j=1:p
 P = zeros(nbus,1);
 Q = zeros(nbus,1);
 MPS=zeros(p,1);
 MQS=zeros(p,1);
 for t =1:nbus
 for k = 1:nbus
 P(t) = P(t) + vp(j,t)* vp(j,k)*(G(t,k)*cos(thp(j,t)-thp(j,k)) +

B(t,k)*sin(thp(j,t)-thp(j,k)));

 end
 end
 for t = 1:nbus
 for k = 1:nbus
 Q(t) = Q(t) + vp(j,t)* vp(j,k)*(G(t,k)*sin(thp(j,t)-thp(j,k)) -

B(t,k)*cos(thp(j,t)-thp(j,k)));

 end
 end

% real power mismatch
 MP=P-Psp;
 if (P(1)-.5)*(2-(P(1))) >= 0
 MP(1)=0;
 end
 if (P(1)-.5)*(2-(P(1))) < 0
 MP(1)=abs(min((P(1)-.5),(2-(P(1)))));
 end
 % if (P(2)-.2)*(1-(P(2))) >= 0
 % MP(2)=P(2)-Psp(2);
 % end
 % if (P(2)-.2)*(1-(P(2))) < 0
 % MP(2)=abs(min((P(2)-.5),(2-(P(2)))));
 % end
 MPS=MP.^2;

 %reactive power mismatch and voltage mismatch
 MQ=Q-Qsp;
 MQS=MQ.^2;
 MQS(1)=0;

 % MVS=zeros(14,1);
 % for jk=2:14
 % if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) < 0
 % MVS(jk)=(min((v(j,1,jk)-0.9),(1.1-v(j,1,jk))))^2;
 % end

65

 % if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) >= 0
 % MVS(jk)=0;
 % end
 % end

 for jk=[2,3,6,8]
 if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))<0)
 % MVS(jk)=((v(j,1,jk)-vmax(jk))^2);
 MQS(jk)=(min((Q(jk)-Qmin(jk)),(Qmax(jk)-Q(jk))))^2;
 end
 if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))>=0)
 MQS(jk)=0;
 end
 end

 %objective function value

%fp(j)=max(max(kpm*max(MPS),kqm*max(MQS)),max(kvm*max(MVS),kthm*sum(MTHS)))

;
 fp(j)=(kpm*sum(MPS)+kqm*sum(MQS));%+kvm*sum(MVS);%+kthm*sum(MTHS);
 fev=fev+1;
end

 if(p>pf && mod(i,fs)==0)
 fr=sortrows(fr);
 fr1=fr;
 k1=1;
 k2=0;
 k3=((p/r));
 k4=1;
 for i1=(k3+1):p
 mn(1,k1)=fr(i1,2);
 k1=k1+1;
 end
 v(mn,:,:)=[];
 th(mn,:,:)=[];
 vv(mn,:,:)=[];
 vth(mn,:,:)=[];
 vp(mn,:)=[];
 thp(mn,:)=[];
 vg(mn,:)=[];
 thg(mn,:)=[];
 f(mn,:,:)=[];
 fr(mn,:)=[];
 p=p/r;
 end
 mn=[];

%personal best value updation
 for k=1:p
 for m=1:nbus
 if f(k,i+1)<fp(k)
 thp(k,m)=th(k,i+1,m);
 vp(k,m)=v(k,i+1,m);
 else
 end
 end
 end

66

 %for Global best values updation
 % if min(f(:,(i+1)))<fgm
 fgm=min(f(:,(i+1)));
 %end
 %end

 for m=1:nbus

 for k=1:p
 if f(k,i+1)==fgm
 for l=1:p
 thg(l,m) = th(k,i+1,m); %global best values
 end
 else
 end

 end
 end
 for m=2:nbus

 for k=1:p
 if f(k,i+1)==fgm
 for l=1:p
 vg(l,m) = v(k,i+1,m); %global best values
 end
 else
 end

 end
 end
%stopping criteria
% gb1=gb;
fgm=min(f(:,(i)));
for k=1:p
 if f(k,i)==fgm
 gb1=k;
 else
 end
end
 if (abs(f(gb1,i))<=10^(-T))

 break
 end

%vth(gb1,(i+1),2)
end
toc;
c12=toc;
 P=zeros(14,1);
 Q=zeros(14,1);
 for m = 1:nbus
 for k = 1:nbus
 P(m) = P(m) + v(gb1,(i),m)*

v(gb1,(i),k)*(G(m,k)*cos(th(gb1,(i),m)-th(gb1,(i),k)) +

B(m,k)*sin(th(gb1,(i),m)-th(gb1,(i),k)));

 end
 end
 for m = 1:nbus
 for k = 1:nbus

67

 Q(m) = Q(m) + v(gb1,(i),m)*

v(gb1,(i),k)*(G(m,k)*sin(th(gb1,(i),m)-th(gb1,(i),k)) -

B(m,k)*cos(th(gb1,(i),m)-th(gb1,(i),k)));

 end
 end
for j=1:1:14
 fprintf('\n power calculated at bus no. %d is %f + j %f',j,P(j),Q(j));
 fprintf('\n power demand at bus no. %d is %f + j %f',j,Psp(j),Qsp(j));
 fprintf('\n voltage %f',v(gb1,i,j));
 fprintf('\n delta %f',th(gb1,i,j)*180/(pi));
 fprintf('\n');
end
disp('function value =');
f(gb1,i)
disp('no. of function evaluations');
fev
disp('time elapsed')
c12
disp('no. of iterations')
i

68

iii) MATLAB code for minimizing benchmark functions using PSO.

Main program

clc
clear all;
p1=0;
p2=0;
prompt = {'Enter dimension:','Enter swarm size:','Enter maximum number of

iterations','Enter tolerance','Enter inertia weight factor','Enter

cognitive learning acceleration factor','Enter social learning acceleration

factor','Enter constriction factor','Enter initial velocity range','Enter

initial position range'};
dlg_title = 'We have to minimize inputted function';
num_lines = 1;
def = {'2','400','1000','4','.6','1','1','1','unifrnd(-

5,10,1,p)','unifrnd(-5,10,1,p)'};
answer = inputdlg(prompt,dlg_title,num_lines,def);
[D vald] = str2num(answer{1});
[p valp] = str2num(answer{2});
[it valit]=str2num(answer{3});
[T valT] = str2num(answer{4});
[w valw] = str2num(answer{5});
[rp valrp] = str2num(answer{6});
[rg valrg]=str2num(answer{7});
[rf valrf] = str2num(answer{8});
str={'Select a function'};
S={'rosenbrock';'sphere';'griewank';'rastrigin'};
choice=listdlg('PromptString',str,'ListSize',[100,100],'ListString',S,'Sele

ctionMode','Single');
switch choice
 case 1
 str1=rosenbrock(D);
 case 2
 str1=sphere(D);
 case 3
 str1=griewank(D);
 case 4
 str1=rastrigin(D);
end
fev=0;
x=zeros(D,p,it);
v=zeros(D,p,it);
f=zeros(p,it);
fr=zeros(p,2);
df=zeros(1,(it-1));
mn=[];
tic
for d=1:D
 x(d,:,1)=eval(answer{9});
 v(d,:,1)=eval(answer{10});
end

for j=1:p
 i=0;
 f(j,1)=0;
 f(j,1)=f(j,1)+ eval(str1);
end

69

[val gb1]=min(f(:,1));
gbest=gb1;
pbest=ones(1,p);
for i=1:it

%for inertia weight W

 for j=1:p
 for d=1:D
 k2=0;
 kstr='w*v(d,j,i) + (rp*(x(d,j,pbest(j))-x(d,j,i))) +

(rg*(x(d,gbest,i)-x(d,j,i)))';
 k2=k2+eval(kstr);
 v(d,j,(i+1)) = (rf*k2);
 x(d,j,(i+1)) = x(d,j,i) + v(d,j,(i+1));
 end
 end

 for j=1:p
 f(j,i+1)=0;
 f(j,i+1)= f(j,i+1)+ eval(str1);
 fev=fev+1;
 end
 choice1=2;
 if mod(i,20000)==0
 str23={'Exit ?'};
 S1={'Yes';'No'};

choice1=listdlg('PromptString',str23,'ListSize',[100,100],'ListString',S1,'

SelectionMode','Single');
 end
 %stopping criterion
 if i>1
% print = [x(d,:,i-1) x2(:,i-1) v1(:,i-1) v2(:,i-1) f(:,i-1)];
% disp(' x1 x2 v1 v2 f')
% disp(print)
 [val gb1]=min(f(:,i+1));
 if val<10^(-T) || choice1==1
 break
 end
 end
 gbest=gb1;
 for i2=1:p
 if f(i2,i+1)<= f(i2,i)
 pbest(i2)=i+1;
 end
 end
end
toc
sprintf('the value of objective function is %d',(f(gb1,i+1)))
sprintf('the number of function evaluations is %d',fev)
for d=1:D
 fprintf('the value of x %d is',d)
 x(d,gb1,i+1)
end

70

iv) MATLAB code for minimizing benchmark functions using SEPSO.

Main program

clc
mn=[];
fr1=[];
clear all;
p1=0;
p2=0;
prompt = {'Enter dimension:','Enter swarm size:','Enter maximum number of

iterations','Enter tolerance','Enter inertia weight factor','Enter

cognitive learning acceleration factor','Enter social learning acceleration

factor','Enter constriction factor','Enter initial velocity range','Enter

initial position range','Enter final swarm size','Enter reduction

factor','Enter sorting frequency'};
dlg_title = 'We have to minimize inputted function';
num_lines = 1;
def = {'2','400','1000','4','.6','1','1','1','unifrnd(-

5,10,1,p)','unifrnd(-5,10,1,p)','200','2','10'};
answer = inputdlg(prompt,dlg_title,num_lines,def);
[D vald] = str2num(answer{1});
[p valp] = str2num(answer{2});
[it valit]=str2num(answer{3});
[T valT] = str2num(answer{4});
[w valw] = str2num(answer{5});
[rp valrp] = str2num(answer{6});
[rg valrg]= str2num(answer{7});
[rf valrf] = str2num(answer{8});
[pf valPf]=str2num(answer{11});
[r valr]=str2num(answer{12});
[fs valfs]=str2num(answer{13});
str={'Select a function'};
S={'rosenbrock';'sphere';'griewank';'rastrigin'};
choice=listdlg('PromptString',str,'ListSize',[100,100],'ListString',S,'Sele

ctionMode','Single');
switch choice
 case 1
 str1=rosenbrock(D);
 case 2
 str1=sphere(D);
 case 3
 str1=griewank(D);
 case 4
 str1=rastrigin(D);
end
fev=0;
x=zeros(D,p,it);
v=zeros(D,p,it);
f=zeros(p,it);
fr=zeros(p,2);
df=zeros(1,(it-1));
mn=[];
tic
for d=1:D
 x(d,:,1)=eval(answer{9});
 v(d,:,1)=eval(answer{10});
end

for j=1:p

71

 i=0;
 f(j,1)=0;
 f(j,1)=f(j,1)+ eval(str1);
end

[val gb1]=min(f(:,1));
gbest=gb1;
pbest=ones(1,p);
for i=1:it

%for inertia weight W

 for j=1:p
 for d=1:D
 k2=0;
 kstr='w*v(d,j,i) + (rp*(x(d,j,pbest(j))-x(d,j,i))) +

(rg*(x(d,gbest,i)-x(d,j,i)))';
 k2=k2+eval(kstr);
 v(d,j,(i+1)) = (rf*k2);
 x(d,j,(i+1)) = x(d,j,i) + v(d,j,(i+1));
 end
 end

 for j=1:p
 f(j,i+1)=0;
 f(j,i+1)= f(j,i+1)+ eval(str1);
 fr(j,1)=f(j,i+1);
 fr(j,2)=j;
 fev=fev+1;
 end
 choice1=2;
 if mod(i,20000)==0
 str23={'Exit ?'};
 S1={'Yes';'No'};

choice1=listdlg('PromptString',str23,'ListSize',[100,100],'ListString',S1,'

SelectionMode','Single');
 end

 if(p>pf && mod(i,fs)==0)
 fr=sortrows(fr);
 fr1=fr;
 k1=1;
 k2=0;
 k3=((p/r));
 k4=1;
 for i1=(k3+1):p
 mn(1,k1)=fr(i1,2);
 k1=k1+1;
 end
 v(:,mn,:)=[];
 x(:,mn,:)=[];
 f(mn,:)=[];
 fr(mn,:)=[];
 p=p/r;
 end
 mn=[];

 %stopping criterion
 if i>1

72

% print = [x(d,:,i-1) x2(:,i-1) v1(:,i-1) v2(:,i-1) f(:,i-1)];
% disp(' x1 x2 v1 v2 f')
% disp(print)
 [val gb1]=min(f(:,i+1));
 if val<10^(-T) || choice1==1
 break
 end
 end
 gbest=gb1;
 for i2=1:p
 if f(i2,i+1)<= f(i2,i)
 pbest(i2)=i+1;
 end
 end
end
toc
sprintf('the value of objective function is %d',(f(gb1,i+1)))
sprintf('the number of function evaluations is %d',fev)
for d=1:D
 fprintf('the value of x %d is',d)
 x(d,gb1,i+1)
end

v) Benchmark functions implemented in MATLAB

Rosenbrock

function f = rosenbrock(D)
str2=' ';
str1='(100*((x(d,j,(i+1)))^2 - x(d+1,j,(i+1)))^2) +((1-

x(d,j,(i+1)))^2)';
for d=1:D-1
 str2=strcat(str2,'+',str1);
 str2=strrep(str2,'d',num2str(d));
end
f=str2;
f(1)=[];
end

Griewank

function f = griewank(D)
str2=' ';
str1='((1/4000)*(x(d,j,(i+1)))^2)';
str3='(cos(x(d,j,(i+1)))/(sqrt(d)))';
for d=1:D
 str2=strcat(str2,'+',str1);
 str2=strrep(str2,'d',num2str(d));
end
str4='(cos(x(1,j,(i+1)))/(sqrt(1)))';
for d=2:D
 str4=strcat(str4,'*',str3);
 str4=strrep(str4,'d',num2str(d));
end
 f=strcat('1',str2,'-',str4);
end

73

Sphere

function f = sphere(D)
str2=' ';
str1='(x(d,j,(i+1)))^2';
for d=1:D
 str2=strcat(str2,'+',str1);
 str2=strrep(str2,'d',num2str(d));
end
f=str2;
f(1)=[];
end

Rastrigin

function f = rastrigin(D)
str2=' ';
str1='((x(d,j,(i+1)))^2)';
str3='(10*(cos(2*pi*(x(d,j,(i+1))))))';
for d=1:D
 str2=strcat(str2,'+',str1);
 str2=strrep(str2,'d',num2str(d));
end
str4='(10*(cos(2*pi*(x(1,j,(i+1))))))';
for d=2:D
 str4=strcat(str4,'+',str3);
 str4=strrep(str4,'d',num2str(d));
end
 f=strcat(num2str(10*D),str2,'-','(',str4,')');
end

74

REFERENCES

[1] Kennedy J., Eberhart R., “Particle Swarm Optimization”, Proceedings of IEEE

International Conference on Neural Networks, 1995, vol. 4, Nov/Dec 1995, pp.1942-1948.

[2] Benedetti M., Massa, A., “Memory Enhanced PSO-Based Optimization Approach for

Smart Antennas Control in Complex Interference Scenarios”, IEEE Transactions on

Antennas and Propagation Magazine, vol. 56, no. 7, July 2008, pp.1939-1947.

[3] Haibin Duan, Pei Li, Yaxiang Yu., “A predator-prey Particle swarm optimization

approach to multiple UCAV air combat modeled by Dynamic game theory”, IEEE/CAA

Journal of Automatica Sinica, vol. 2, no. 1, January 10 2015, pp.11-18.

[4] J Voss M.S.,” Principal Component Particle Swarm Optimization (PCPSO)”, IEEE

Proceedings on Swarm Intelligence Symposium, 2005, 8-10 June 2005, pp.401-404.

[5] Liang J. J., A. K. Qin, Ponnuthurai Nagaratnam Suganthan, S. Baskar,

“Comprehensive Learning Particle Swarm Optimizer for Global Optimization of

Multimodal Functions.”, IEEE Transactions On Evolutionary Computation, Vol. 10, No.

3, June 2006.

[6] Changhe Li, Shengxiang Yang, Trung Thanh Nguyen,” A Self-Learning Particle

Swarm Optimizer for Global Optimization Problems”, IEEE Transactions On Systems,

Man, And Cybernetics—Part B: Cybernetics, Vol. 42, No .3, June 2012.

[7] Zhi-Hui Zhan, Jun Zhang, Yun Li, Yu-Hui Shi, “Orthogonal Learning Particle Swarm

Optimization.”, IEEE Transactions On Evolutionary Computation, Vol. 15, No. 6,

December 2011.

[8] Feng Chen, Xinxin Sun, Dali Wei, Yongning Tang, ”Tradeoff Strategy between

Exploration and Exploitation for PSO”, 2011 Seventh International Conference on Natural

Computation.

[9] J.C. Bansal, P.K. Singh, Mukesh Saraswat, Abhishek Verma, Shimpi Singh Jadon,

Ajith Abraham, “Inertia Weight Strategies in Particle Swarm Optimization”, IEEE Third

World Congress on Nature and Biologically Inspired Computing, 2011, pp.633-640.

[10] Xia Yu, Jianchang Liu, Hongru Li, “An Adaptive Inertia Weight Particle Swarm

Optimization Algorithm for IIR Digital Filter”, IEEE Artificial Intelligence and

Computational Intelligence Magazine, vol. 1, November 2009, pp.114-118 .

75

[11] Yuhong Chi, Fuchun Sun, Langfan Jiang, Chunming Yu, “An efficient population

diversity measure for improved particle swarm optimization algorithm ”, Intelligent

Systems (IS), 2012 6th IEEE International Conference , 6-8 Sept. 2012 ,pp. 361 – 367.

[12] Narender Kumar Jain, Uma Nangia, Aishwary Jain, “PSO for Multiobjective

Economic Load Dispatch (MELD) for Minimizing Generation Cost and Transmission

Losses”, Journal of The Institution of Engineers (India): Series B, 7 February 2015.

[13] M.A. Abido, "Optimal power flow using particle swarm optimization”, International

Journal of Electrical and Power Energy systems, Volume 24, Issue 7, October 2002, pp.

563–571.

[14] Ruey-Hsun Liang, Ruey-Hsun Liang, Yie-Tone Chen, Wan-Tsun Tseng, “Optimal

power flow by a fuzzy based hybrid particle swarm optimization approach”, Electric Power

Systems Research, Volume 81, Issue 7, July 2011, pp. 1466–1474.

[15] Salomon C.P., Lambert-Torres G., Martins H.G.,Ferreira, C. Costa C.I.A. “Load flow

computation via Particle Swarm Optimization”, 9th IEEE/IAS International Conference on

Industry Applications (INDUSCON) 2010, 8-10 Nov. 2010, pp. 1 – 6

[16] Acharjee P., Goswami S.K., “Chaotic Particle Swarm Optimization based reliable

algorithm to overcome the limitations of conventional power flow methods,

“ Power Systems Conference and Exposition, 2009. PSCE '09. IEEE/PES, 15-18 March

2009 , pp. 1 – 7.

[17] “Flexible AC Transmission System (Facts) Devices” by Nkusi Ernest.

[18] E. A. Grimaldi, F. Grimaccia, M. Mussetta, R. E. Zich, “PSO as an effective learning

algorithm for neural network applications”, Proceedings of 3rd International Conference

on Computational Electromagnetics and Its Applications, 2004. ICCEA 2004, 1-4 Nov.

2004, pp. 557-560.

[19] R.C. Eberhart, Xiaohui Hu, “Human Tremor Analysis Using Particle Swarm

Optimization”, Purdue School of Engineering and Technology.

[20] Norfadzlan Yusupa, Azlan Mohd Zainb, Siti Zaiton Mohd Hashimc, “Overview of PSO

for Optimizing Process Parameters of Machining”, International Workshop on Information

and Electronics Engineering 2012, Procedia Engineering vol. 29, 2012, pp. 914–923.

76

[21] Taher Niknam, Hamed Zeinoddini Meymand, Hasan Doagou Mojarrad “A practical

multi-objective PSO algorithm for optimal operation management of distribution network

with regard to fuel cell power plants”, Renewable Energy, vol. 36, Issue 5, May 2011, pp.

1529–1544.

[22] Hirotaka Yoshida, Kenichi Kawata, Yoshikazu Fukuyama, Member, Shinichi

Takayama, Yosuke Nakanishi, “A Particle Swarm Optimization for Reactive Power and

Voltage Control Considering Voltage Security Assessment”, IEEE Transactions On Power

Systems, vol. 15, no. 4, November 2000, pp. 1232-1239.

[23] Jianxun Lv, Haiwen Yuan, Yingming Lv,“Battery State-of-charge Estimation Based on

Fuzzy Neural Network and Improved Particle Swarm Optimization Algorithm”, Second

International Conference on Instrumentation, Measurement, Computer, Communication

and Control (IMCCC), 2012 , 8-10 Dec. 2012, pp. 22-27.

[24] Z. L. Gaing, “Particle swarm optimization to solving the economic dispatch considering

the generator constraints,” IEEE Trans. on Power Systems, Aug. 2003, vol. 18, no. 3, pp.

1187-1195.

[25] John Grainger, Stevenson Jr. William, “Power Systems Analysis ,” Tata McGraw Hill,

5th December, 2003.

http://www.sciencedirect.com/science/article/pii/S0960148110005409
http://www.sciencedirect.com/science/article/pii/S0960148110005409
http://www.sciencedirect.com/science/article/pii/S0960148110005409
http://www.sciencedirect.com/science/journal/09601481
http://www.sciencedirect.com/science/journal/09601481/36/5
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Jianxun%20Lv.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Haiwen%20Yuan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yingming%20Lv.QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6425312
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6425312

77

78

