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ABSTRACT 

 

A new variant of Particle Swarm Optimization (PSO) algorithm along with a novel approach 

of implementing reactive power constraints for PV buses has been presented in this thesis. The 

new PSO version, Selection Enabled PSO (SEPSO), “selects” particles with better objective 

function value and eliminates worse particles after a certain number of iterations. The 

computational efficiency of SEPSO over the conventional PSO is ratified by using it to 

minimize mathematical benchmark functions. The number of function evaluations up to 

convergence is significantly reduced in case of SEPSO. Henceforth, SEPSO is applied to 

perform load flow studies on IEEE 5 bus and IEEE 14 bus system.  As expected, a considerable 

reduction in terms of function evaluations is observed when contrasted with the number of 

function evaluations required by conventional PSO to perform load flow on IEEE 5 bus and 

IEEE 14 bus system. 
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Chapter-1 

 

INTRODUCTION 
 

1.1 Overview 

This thesis puts forth a new variant of the conventional particle swarm optimization (PSO) 

algorithm, the selection enabled particle swarm optimization (SEPSO) algorithm to perform load 

flow. 

Load flow studies are of cardinal importance when it comes to designing, planning and 

future capacity augmenting of a power system. Not only the load flow analysis yields voltages and 

corresponding voltage angles for each bus in the power system but also the total transmission loss 

occurred as generator(s) supply the load. Iterative numerical methods are usually employed to 

perform the load flow. Although methods like Newton Raphson, show fast convergence, they are 

more complex to implement than the conventional PSO. No research paper performing load flow 

and explicitly mentioning how reactive power constraints were implemented has yet been reported 

in any journal of repute. The novelty of the present work lies in successfully implementing PSO 

for load flow study. The computational efficiency of the new algorithm (SEPSO) has been 

compared to that of the conventional PSO and NR. 

Particle swarm optimization, a stochastic metaheuristic algorithm, when applied to load 

flow, does away with the complexity of the Newton-Raphson (N-R) algorithm. In addition, the 

speed of convergence is also satisfactory. Building on these advantages, the SEPSO algorithm 

aims to further reduce the computational effort and consequently speeds up the convergence. 

The modified PSO algorithm, SEPSO, presented in this work is implemented in computer 

code using MATLAB. The SEPSO algorithm is tested using mathematical benchmark functions 

and then tried on IEEE 5 bus and IEEE 14 bus systems for load flow. 
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1.2 Aim and approach 

The aim of the research work presented in this dissertation is two fold, first to implement 

PSO for load flow study and second to enhance the computational efficiency of PSO and to exploit 

this improvement to perform load flow. The proposed PSO is referred to as the selection enabled 

PSO (SEPSO) in this thesis. 

The efficiency achieved, for SEPSO, in terms of reduction in number of function 

evaluations is first verified using four mathematical benchmark functions. The results for the 

conventional PSO and SEPSO are compared in terms of the number of function evaluations up to 

the convergence. Load flow is then performed on IEEE 5 bus and IEEE 14 bus system using 

SEPSO. Results obtained from Newton Raphson method are used to ascertain whether both the 

algorithms, conventional PSO and SEPSO, have properly converged. As in case of benchmark 

functions, the algorithms are compared in terms of the number of function evaluations for load 

flow. 
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1.3 Literature Review 

During the past years a number of intelligent techniques – GA, PSO and ACO have been 

proposed by researchers. These intelligent techniques are derivative free and simple to implement. 

Though these techniques sometimes take large number of iterations to converge, yet they guarantee 

global optimum solution.  

PSO is a population based stochastic algorithm, developed by Kennedy and Eberhart [1] 

in 1995, inspired by collective behaviour of bird flocking, fish schooling etc. Many modifications 

have followed the original algorithm, like Memory Enhanced PSO [2], Predator-Prey PSO [3] and 

PCPSO [4]. All these modifications add to the basic structure of conventional PSO. As an example, 

Predator-Prey PSO has two groups of particles called predator and prey. While position update for 

a prey is identical to that of a particle in case of conventional PSO, a predator has one additional 

component of velocity directing it towards a prey.  

There are newer variants like: CLPSO [5], SLPSO [6] and OLPSO [7] which do not require 

parameter tuning. These algorithms, unlike previously mentioned variants, have a structure 

entirely different from the PSO. They make use of the current information and usually do not 

include the previous iteration(s) information. For example, in case of SLPSO, particles with poorer 

objective function values learn from particles with better objective function values in the current 

iteration and update their position. There is no need to store the previous velocities or the previous 

positions of the particles as in case of conventional PSO. 

In all variants of conventional PSO a balance has to be obtained between exploration and 

exploitation stage for faster convergence. Feng Chen et. al. [8] studied the trade-off strategy 

between these two stages. Initially the change in the particles’ positions are large on account of a 

larger value of the inertia weight factor. Afterwards when there is sufficient improvement in the 

objective function value pertaining to the global best, the exploitation stage is induced by reducing 

the inertia weight factor accordingly [9, 10]. Yuhong Chi et. al. [11] employed the concept of 

swarm diversity to ascertain if the particles are still exploring or they have found the region 

containing the global minimum. 
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Load flow studies can be performed using conventional PSO or any of its variant by 

formulating an appropriate objective function depending on real and reactive power mismatches. 

PSO has already been applied to solve various problems in Electrical Engineering including 

economic load dispatch [12] and optimal load flow [13, 14]. There have been attempts to perform 

load flow [15, 16] using PSO, these attempts, however, do not address the issue of reactive power 

generation limits for PV buses [17]. In this dissertation, a strategy has been developed and 

embedded in the PSO algorithm to deal with such cases. The devised approach is further extended 

to SEPSO to perform load flow. 

 

1.4 Plan of Thesis  

This thesis report is organised in six chapters as follows: 

1. Introduction: This chapter summarizes the research work discussed in this report. 

2. Particle Swarm Optimization: The inception, parameters, algorithm, flow chart, 

applications, advantages and limitations of conventional PSO are discussed in detail in this 

chapter. 

3. Selection Enabled Particle Swarm Optimization: The SEPSO algorithm is presented in 

this chapter. 

4. Comparison of SEPSO with PSO: SEPSO is compared with conventional PSO using four 

mathematical benchmark functions: Rosenbrock, Rastrigin, Sphere, and Griewank. 

5. Load Flow Studies using SEPSO: Load flow studies are performed using SEPSO and 

conventional PSO on IEEE 5 bus system and IEEE 14 bus system. 

6. Conclusion and Future Direction: This chapter consists of insights into the 

computational results and the strategies used. Future possibilities of improvement and 

fusion with other existing intelligent algorithms is also discussed. 
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Chapter-2 

 

PARTICLE SWARM OPTIMIZATION 

2.1 Introduction 

Particle swarm optimization was developed by Dr. Eberhart and Dr. Kennedy of Purdue 

School of Engineering and Technology in 1995. Inspired by food searching ability of a swarm, 

PSO optimizes a problem by having an initial population of solutions (here particles) and moving 

these particles around in the search space. Each particle's velocity is influenced by its previous 

velocity, local best known position, pbest, and by the best known position, gbest, of the swarm. 

These are updated as better positions are found by other particles. This is expected to move the 

swarm towards the best solution. 

 

The conventional PSO has emerged as a promising research area in application of 

optimization techniques to solve various problems in the field of Electrical Engineering. The 

conventional PSO has gained acclaim as it can be employed to solve problems which involve non-

linear elements. Though there exists always a specific approach for a specific problem, it is an 

innovative idea to opt for a generic method like PSO. The charm of this method is that it is simpler 

to code when compared to methods like GA, while the results are found to be sufficiently accurate. 

PSO wins hands down in computational efficiency and accuracy when compared to GA. 

 

PSO shares many similarities with other intelligent computation techniques such as Genetic 

Algorithms (GA). The system is initialized with a population of random solutions and searches for 

optima by updating generations. However, unlike GA, PSO has no evolution operators such as 

crossover and mutation. In PSO, the potential solutions, called particles, fly through the problem 

space by following the current optimum particles. 

 

Recently, PSO has been applied successfully to various fields of power system optimization    

such as power system stabilizer design, reactive power and voltage control. The conventional PSO 

proposed by Kennedy and Eberhert is directly applicable to the problems with continuous domain 

http://en.wikipedia.org/wiki/Point_particle
http://en.wikipedia.org/wiki/Optimization_(mathematics)#Concepts_and_notation
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and without any constraints. Therefore, conventional PSO is used with some modifications to take 

into account these constraints. 

 

 

2.2 Model of PSO 

 
It is a meta-heuristic optimization technique which exploits food searching ability of a swarm. 

Here the “food” is used as a metaphor for the optimal solution and swarm represents the set of 

particles spread randomly in the search space. Each of these particles for a particular iteration 

undergoes displacement depending upon its previous velocity, the best performance for the swarm 

and each particle's personal best performance. The global best performance is the minimum value 

of the objective function when all the particles of the swarm and their respective OF (objective 

function) values are considered. This is the case when OF is to be minimized, for case where OF 

is to be maximized we consider maximum of OF as global best. The individual best is considered 

as the value of OF before iteration or after iteration, depending on which one is smaller. Larger of 

the two values shall be considered for a maximization problem. The global best and the personal 

best are defined below. 

 

a) The global best, gbest 

 

The global best value corresponds to the best of all values corresponding to the defined 

objective function, in the swarm including all particles for a given iteration. 

 

b) The Personal best, pbest 

 

The best value of a given particle corresponding to the objective function, up to the current 

iteration is referred to as the personal best value of the particle. 

 

The velocity update equation and the position update equation are given by equation 1 and 

equation 2 respectively as follows: 
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Velocity update: 

      Vk
i+1 = w ×  Vk

i   + rp × rand( ) × (pbestk
i − Xk

i ) + rg × rand( ) × (gbest 
i − Xk

i )      1 

Position update: 

                                                      Xk
i+1   =  Xk

i  +Vk
i+1                                                             2 

Where,      Vk
i+1=velocity of particle k for ith iteration. 

                      w = Inertia weight factor. 

                      rp = Cognitive learning acceleration factor. 

                      rg = Social learning acceleration factor. 

                       Xk
i+1    = position of particle k for i+1th iteration. 

                      pbestk
i =best position of particle k till ith iteration. 

               gbesti   =position of the overall best particle of the swarm till the ith iteration. 

 

 

2.3 Parameters of PSO 

Swarm size, inertia weight factor, cognitive learning acceleration factor and social learning 

acceleration factors are the parameters of conventional PSO. Their values need to be chosen 

suitably as they are crucial for the algorithm’s convergence. 

2.3.1 Swarm size: Swarm size is the number of particles in a PSO swarm. If the number of 

particles in the swarm is less than a critical value, the algorithm does not converge. 

2.3.2 Inertia weight factor ‘w’ : Inertia weight factor determines the weightage of a particle’s 

previous velocity in the velocity update equation. Higher the value of this factor, greater the 
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influence of the previous velocity. It can, therefore, be said that this parameter determines the 

“inertia” of a particle, hence the name inertia weight factor. 

2.3.3 Cognitive learning acceleration factor: This parameter, which appears as a constant 

coefficient in the second term of the velocity update equation, is represented by rp. An increased 

value of rp, improves the local search capability of the particles and a reduction in rp hampers the 

local searching by the swarm.  

2.3.4 Social learning acceleration factor: Social learning acceleration factor denoted by rg, is 

used in the third term of the velocity update equation. Higher value of rg enhances the global search 

ability of the swarm. The value rp + rg is usually 4, where rp=2 and rg=2, which is sufficient for 

most optimization problems. 

2.3.5 Random Factors: In equation 1, random factors are associated with the cognitive as well as 

social learning terms. These are useful for better exploration. These are important only when 

problem to be solved is new and problem solver does not have any idea about the solution of the 

problem. But, in our case, we have sufficiently good idea about the solution of the problem. For 

this reason these factors have been dropped in conventional PSO as well as SEPSO. 

2.4 Algorithm 

The algorithm for PSO is presented below. 

i) Initialize swarm by assigning positions and velocities to every particle in the swarm. 

Input ‘T’. It is the negative integer which appears as the exponent in expression for 

tolerance: tolerance=10T. 

i) Calculate the objective function value and call it OFi. 

ii) Update positions for all the particles, using eq. 2), and calculate their objective function 

value and call it OFf. 

iii) Compare OFf and OFi for each particle. The position of the particle corresponding to 

smaller of the two is taken as pbest. 

iv) Find out the gbest by considering the particle with the position yielding the least value 

of the objective function. 

v) Update velocity for all the particles using eq. 1). 
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vi) Check whether the objective function value for the gbest is less than the tolerance 

specified. If it is less than the tolerance specified, then go to viii) else go to iii) 

vii) Exit and display the gbest’s objective function value, the position of the gbest particle 

and number of function evaluations along with positions and velocities for all particles 

in the swarm. 

2.5 Flowchart 

 

 

 

 

 

 

                                                         

   

                                   

                                                                        

                         

                                                                           

                                        

                                                                                                                                                                     

                                                     

 

 

 

 

 

 

 

 

 

START 

Input the swarm size and ‘T’ 

Input the maximum number of iterations. 

Initialize particles. Assign random value 

to each particles. 

Calculate OFi 

Position update 

Calculate OFf 

Pbest=minimum of OFf and OFi 

Velocity update 

Is 

Gbest<= 

Tolerence 

STOP 

YES 

NO 

              Fig.1. Flowchart of PSO 
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2.6 Applications of PSO 

Particle swarm optimization, conventional or modified, has been applied to solve 

problems in various fields of knowledge. It has found its use in areas including but not limited 

to medical science, economics, operations research, antenna design, and power systems 

engineering.  PSO because of its stochastic nature and simple computer code implementation 

can be applied to virtually any kind of problem which may or may not be solvable by 

conventional methods. 

In training neural networks PSO has replaced the conventional approach of 

backpropagation because of its simplicity and efficacy [18]. Diagnosis of human tremor has 

been accomplished by the algorithm and the results are found to be reliable [19]. Milling 

operations, an integral part of production, is also optimized using PSO and the pitfalls faced 

using conventional approaches are averted [20]. For Economics and Operations Management 

where most of the problems need a “good enough” solution, PSO is highly required [21]. 

Reactive power control and voltage control in Power Systems can be achieved using 

PSO [22]. A fuel gauge equivalent for batteries used in battery power vehicles has also been 

implemented using PSO in conjunction with the neural network. The results for state of the 

battery pack were found to be sufficiently accurate [23]. Economic load dispatch and optimal 

power flow are other areas where PSO has been extensively used.  

 

2.7 Advantages and limitations of PSO 

The two major advantages of PSO, in comparison to other stochastic algorithms, are 

that it is easier to implement and there are less parameters to tune. Also, unlike deterministic 

algorithms, Newton-Raphson for example, PSO is derivative free. As a result, PSO converges 

even for cases when the Jacobian matrix for a problem becomes zero. In comparison to other 

stochastic and conventional methods the objective function has less negative impact on the 

convergence of PSO. Less number of parameters, in contrast to other stochastic methods, to 

adjust is another strong point of the algorithm. Additionally, PSO seems to be more immune 

to the non-convergence which might occur when initial values are not chosen suitably or lie 

outside a desirable range [24].  
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That said, PSO has some limitations as well. Lack of a solid mathematical framework 

is a major drawback. Also, the time taken to solve problems increases with the number of 

variables faster than a linear relationship. However, this can be resolved to some extent by 

parameter tuning. 
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Chapter-3 

 

Selection Enabled Particle Swarm Optimization 

3.1 Introduction 

This thesis presents a modified version of PSO called selection enabled PSO (SEPSO) 

which involves the selection of better particles. The particles are arranged in ascending order 

of their objective function values and better particles are ‘selected’ or retained in the swarm, 

while the worse particles are eliminated. Though there is not much reduction in number of 

iterations in case of a selection enabled PSO (SEPSO), yet the time taken for convergence 

plummets. The computational results corroborate the fact that removing the worse particles do 

not affect convergence. Trapped particles with worse values of objective function, are always 

an overhead and it is better to do away with them in order to reduce the time taken up to 

convergence. 

3.2 The SEPSO model 

The velocity update equation and the position update equation used are same as that of the 

conventional PSO. The difference lies in the algorithm for the SEPSO. The selection process is invoked 

whenever the iteration number is equal to the sorting frequency ‘fs’. At this point the swarm size is 

reduced using reduction factor. The reduction factor ‘r’ is an integer which, like sorting frequency, is 

inputted from the user and determines the new swarm size as follows, 

                                                New Swarm Size =
Old Swarm Size

r
                                                           → 3 

Various values of ‘r’ and ‘fs’ have been tried and the results corresponding to the best values 

have only been reported in this paper. 
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3.3 Additional parameters for SEPSO 

As mentioned in the previous section, SEPSO has two additional parameters: 

3.3.1 Reduction factor (r)  

The reduction factor is a user inputted value to decide the swarm size, as per equation 

3, whenever the selection process is applied. 

3.3.2 Sorting frequency (fs) 

A number of experiments have to be performed to determine the best combination of 

sorting frequency ‘fs’ and reduction factor ‘r’ to achieve maximum reduction in the function 

evaluations. Choosing a sorting frequency lower than a particular iteration number would be 

tantamount to calling the selection process before the exploration stage is over. On the other 

hand, a higher value leads to unnecessary function evaluations increasing computational time. 

 

3.4 Algorithm 

The algorithm for SEPSO is presented below. 

i) Initialize swarm and enter maximum number of iterations. Assign positions and 

velocities to every particle. Input reduction factor ‘r’ and sorting frequency ‘fs’.  

ii) Input the value of ‘T’, the negative integer which appears as exponent in the 

convergence criterion: tolerance=10T.  

iii) Calculate the objective function value and call it OFi.  

iv) Update positions for all the particles, using eq. 2), and calculate their objective 

function value and call it OFf. 

v) Compare OFf and OFi for each particle. The position of the particle corresponding 

to smaller of the two is taken as pbest. 

vi) Find out the gbest by considering the particle with the position yielding the least 

value of the objective function. 

vii) Update velocity for all the particles using eq. 1). 

viii) Check if iteration number ‘i’ equals ‘fs’. If it does, arrange the particles in the 

ascending order of their objective function value, OFf. 

ix) Invoke selection and determine new swarm size of better particles using eq. 3. 

x) Check whether the objective function value for the gbest is less than the tolerance 

specified. If it is less than the tolerance specified, then go to xi) else go to iv) 
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xi) Exit and display the gbest’s objective function value, the position of the gbest 

particle and number of function evaluations along with positions and velocities for 

all particles in the swarm. 

3.5 Flowchart  

 

 

    

 

 

 

                               Initialize particles. Assign random velocity to each particle. 

 

                                              

 

 

 

 

 

  

input('enter the number of particles in the swarm') 
input('enter the number of iterations') 
input('enter the value of T for tolerance 
input(‘enter the reduction factor and the sorting frequency’) 

 

Calculate OFi 

Position update (eq.1) 

 
Calculate OFf 

       pbest=minimum of OFf and OFi        

          gbest=minimum of all OFf   

 

 Velocity update       
 

     if i=fs  

 

 
NO 

Initialize particles. Assign random velocity to each particle. 

 

Invoke Selection 

(eq.3) 

YES 

Is gbest < = 

Tolerance? 

NO 

 YES 

STOP 

START 

Fig.2 Flowchart for SEPSO 

Arrange particles in 

ascending order of 

their objective 

functions. 
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3.6 Advantage of SEPSO 

Several variants of conventional PSO suffer from convergence at local optima. Local 

version of conventional PSO does reliably converge at the global minima but its reliability is 

overshadowed by slow convergence. In cases of no convergence for both the local and the 

global version, there is occurrence of particles at the local minima. Even when the exploitation 

stage is imminent some particles appear to localize around a point and are inept at moving 

away from its vicinity. These particles can be removed from the swarm in SEPSO to make 

computation faster. Selection enabled PSO takes lesser number of function evaluations to 

converge as the particles not showing much improvement, after suitable number of iterations, 

are removed during selection and better particles are retained. 
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Chapter-4 

 

Comparison of SEPSO with PSO 

Introduction   

            In this chapter, four mathematical benchmark functions in two dimensions are used to 

compare the performance of SEPSO and conventional PSO. The parameters for both the 

algorithms are kept fixed to find the number of function evaluations and the number of 

iterations up to convergence. The reported observations for SEPSO are for those values of 

sorting frequency ‘fs’ and reduction factor ‘r’ for which best results were obtained. 

4.1 Benchmark functions 

            Table 1 below enlists, in detail, the benchmark functions used for evaluating the 

performance of SEPSO and PSO. 

Table 1. 2-D Benchmark functions 

 

              The plots of the above 2 D benchmark functions used are shown in table 2. It can be 

seen that while Rosenbrock and Sphere have only one minimum, Rastrigin and Griewank have 

several local minima and one global minimum which makes finding the global minimum tough. 

The sphere function is the simplest amongst all four and can be used to determine whether the 

algorithm designed is working properly i.e. there are no bugs in the computer program and/or 

the algorithm is properly designed. 

S.No. Function Description Search 

range 
Minimum 

occurs 

at 

Function 

value at 

minimum 

1. Rosenbrock f(𝒙𝟏,𝒙𝟐)=𝟏𝟎𝟎(𝒙𝟐 −  𝒙𝟏
𝟐) +

(𝒙𝟏 − 𝟏)𝟐 

xi ϵ 

[-2.048,2.048] 

i=1,2 

𝑥∗ = (1,1) f(𝑥∗ )=0 

2. Griewank f(𝒙𝟏,𝒙𝟐)=1+(1/4000)∑ 𝐱𝐢
𝟐𝟐

𝐢=𝟏  

-∏ 𝐜𝐨𝐬 (
𝐱𝐢

√𝐢
⁄ )𝟐

𝐢=𝟏  

xi ∈ 
[-600, 600] 

i=1,2 

𝑥∗ = (0,0) f(𝑥∗ )=0 

3. Sphere f(𝒙𝟏,𝒙𝟐)=∑ 𝐱𝐢
𝟐𝟐

𝐢=𝟏  xi ϵ 

[-5.12,5.12] 

i=1,2 

𝑥∗ = (0,0) f(𝑥∗ )=0 

4. Rastrigin f(𝒙𝟏, 𝒙𝟐)= 20 + ∑ [xi
2 −2

i=1

10cos (2πxi)] 

xi ϵ 

[-5.12,5.12] 

i=1,2 

𝑥∗ = (0,0) f(𝑥∗ )=0 
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Table 2. Plots Of 2-D Benchmark Functions 

 

 

 

S.No. Function Plot 

1. Rosenbrock 

 
2. Griewank 

 
3. Sphere 

 
4. Rastrigin 
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4.2 Computational Results 

The performance of SEPSO is compared with that of conventional PSO with respect to 

computational efficiency in terms of function evaluations. Both these algorithms were applied 

on Rosenbrock, Griewank, Sphere, and Rastrigin functions to minimize them. The error in 

objective function’s value for all cases is taken to be 10−4. For all functions, in case of both 

SEPSO and conventional PSO: the parameters are w=0.6, rp=1 and rg=1. The MATLAB 

program written in this thesis for testing PSO on four benchmark functions has been designed 

to enable the user to input parameters through a graphical user interface, as shown in fig 3.  

 

Fig 3. Parameters’ window for entering PSO parameters 
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              Any of the four benchmark functions can be selected using the window shown in 

figure 4. Figure 4 shows the window which appears after clicking on the OK button of the 

window in figure 3. 

 

 

 

 

 

 

 

 

Fig 4. Window for selecting the benchmark function 
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               A separate program for testing SEPSO algorithm is written using MATLAB. The 

parameters’ window in this case contains all the parameters of SEPSO as shown below in figure 

5. Rest of the interface is same as that for PSO. 

 

Fig 5. Parameters’ window for entering SEPSO parameters  
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4.2.1 Rosenbrock function 

        Table 3 shows the number of iterations and function evaluations up to convergence for 

swarm sizes 50, 80, 100, 120, 140 and 180 when conventional PSO is applied to minimize 

Rosenbrock function. 

Table 3. Results of conventional PSO  

(Rosenbrock) 

S.No. Swarm size Function 

evaluations 

Iterations Error 

1. 50 1500 30 9.77e-5 

2. 80 2320 29 5.83e-5 

3. 100 2900 29 1.55e-5 

4. 120 4320 36 5.79e-5 

5. 140 4060 29 4.56e-5 

6. 180 4860 27 8.87e-5 

 

        The proposed algorithm, SEPSO, is applied to Rosebrock’s function and the results are 

presented in table 4. 

Table 4. Results of SEPSO (r=2) 

 (Rosenbrock)  

Serial 

Number 

Swarm size Function 

evaluations 

(FEV) 

% 

Reduction 

in FEV 

Sorting 

frequency 

Iterations Error 

1. 50 975 35 16 23 5.56e-5 

2. 80 1075 53.66 16 27 1.17e-5 

3. 100 2050 29.31 16 25 5.55e-5 

4. 120 2880 33.33 18 30 2.29e-5 

5. 140 3080 24.14 19 25 4.81e-5 

6. 180 3960 18.52 19 25 6.55e-5 

 

        On comparing with table 3, it can be seen that there has been a significant reduction in the 

number of function evaluations in case of SEPSO. 

        Figure 6 depicts comparison between SEPSO and conventional PSO for Rosenbrock’s 

function. 
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Fig 6. Comparison of SEPSO and conventional PSO for Rosenbrock’s function. 

 

        It is clearly brought out by Fig. 6 that function evaluations are less in case of SEPSO for 

all the swarm sizes considered. 

4.2.2 Griewank function 

        Proceeding in the same manner as Rosenbrock, SEPSO and conventional PSO are 

compared by using them to minimize Griewank function. Table 5 shows the results of 

conventional PSO. 

Table 5. Results of conventional PSO  

(Griewank) 

S.No. Swarm size Function 

evaluations (FEV) 

Iterations Error 

1. 80 32000 400 5.48e-5 

2. 90 35280 392 7.81e-5 

3. 100 19600 196 5.59e-5 

4. 120 21360 178 9.28e-5 

 

        From table 5, above, it can be seen that conventional PSO takes larger number of function 

evaluations, as compared to that for Rosenbrock, to find the point corresponding to global 

minimum. Also swarm size needs to be larger in case of Griewank for convergence. This 

function does not for swarm size smaller than 80. These differences can be attributed to the 

fact that Griewank function has a large number of local minima and minimizing the function, 

therefore, becomes more difficult. 
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        Table 6 shows the results for SEPSO. 

Table 6. Results of SEPSO (for r=2) 

    (Griewank)                 

S.No. Swarm size Function 

evaluations 

(FEV) 

% 

Reduction 

in FEV 

Sorting 

frequency 

Iterations Error 

1. 80 16880 47.25 26 396 2.29e-5 

2. 90 18630 47.19 26 388 4.81e-5 

3. 100 10650 45.66 26 187 6.55e-5 

4. 120 12600 41.01 30 180 4.92e-5 

 

From table 6, it is observed that SEPSO takes less number of function evaluations than 

conventional PSO to converge in the case of Griewank function.  

The comparison is of conventional PSO and SEPSO is also shown in Fig. 7. 

 

Fig 7. Comparison of SEPSO and conventional PSO for Griewank’s function. 

Figure 7 shows that function evaluations decrease when SEPSO is applied to 

Griewank’s function. 

4.2.3 Sphere function 

Now, sphere function is minimized by using SEPSO and conventional PSO. Table 7 

and 8 below show the results pertaining to PSO and SEPSO respectively.  

 

 

 



24 
 

Table 7. Results of conventional PSO (Sphere) 

S.No. Swarm size Function 

evaluations(FEV) 

Iterations Error 

1. 50 1350 27 3.62e-5 

2. 80 1840 23 2.87e-5 

3. 100 2200 22 2.86e-5 

4. 120 3000 25 9.62e-5 

 

Table 8. Results of SEPSO  

(Sphere) for r=2 

S.No. Swarm size Function 

evaluations 

(FEV) 

% 

Reduction  

in FEV 

Sorting 

frequency 

Iterations Error 

1. 50 575 57.41 6 17 6.63e-5 

2. 80 1200 34.78 5 25 7.50e-5 

3. 100 1300 40.91 5 21 6.03e-5 

4. 120 1440 52.00 5 19 2.22e-5 

From table 7, it is clear that conventional PSO takes lesser number of function 

evaluations for sphere in comparison to Griewank. Also, smaller swarm size can be used to 

minimize sphere function. This function converges when the swarm size is 50, whereas 

Griewank function converges for larger swarm size. 

From table 8, it is observed that number of function evaluations taken by SEPSO is 

smaller than that of conventional PSO as in the case of Rosenbrock and Griewank function. 

Figure 8 compares SEPSO and conventional PSO in terms of the number of function 

evaluations when applied to sphere function.  

 

Fig 8. Comparison of SEPSO and conventional PSO for Sphere function. 
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4.2.4 Rastrigin’s function 

Two dimensional variant of Rastrigin’s function is used in this work, to compare the 

performance of SEPSO and conventional PSO. Table 9 and table 10 compare the performance 

of PSO and SEPSO respectively when applied to Rastrigin’s fuction. 

Table 9. Results of conventional PSO  

(Rastrigin) 

S.No. Swarm size Function 

evaluations(FEV) 

Iterations Error 

1. 50 1950 39 8.87e-5 

2. 80 3120 39 8.97e-5 

3. 100 3300 33 8.63e-5 

4. 120 4920 41 9.28e-5 

 

Table 10. Results of SEPSO (r=2) 

(Rastrigin)    

S.No. Swarm size Function 

evaluations 

(FEV) 

% 

Reduction 

in FEV 

Sorting 

frequency 

Iterations Error 

1. 50 1925 1.28 35 42 8.15e-5 

2. 80 3080 1.28 36 41 9.06e-5 

3. 100 3250 1.52 31 34 1.27e-5 

4. 120 3960 19.51 31 35 9.13e-5 

It can be seen from table 10 that for swarm sizes corresponding to S.No. 1,2, and 3 i.e. 

50,80, and 100 respectively, very little reduction in function evaluations (FEV) is obtained for 

but for the swarm size of 120, a significant reduction of 19.51% is obtained. Fig. 9 shows the 

comparison between SEPSO and conventional PSO for Rastrigin’s function.  

 

Fig 9. SEPSO compared with PSO for Rastrigin’s function. 
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4.3 Discussion 

The selection enabled PSO is tested and compared with conventional PSO on four two 

dimensional mathematical benchmark functions. Reduction in number of function evaluations 

is observed for all functions. 

  Number of function evaluations has been taken as a measure of computational 

efficiency because it is independent of processor’s clock speed and numerous ways in which 

an algorithm can be implemented.  

Therefore, it is concluded that if sorting frequency ‘fs’ and reduction factor ‘r’ are 

chosen suitably, the number of function evaluations can be reduced while maintaining the same 

allowable error in the objective function value. Hence, SEPSO is more computationally 

efficient than conventional PSO and as accurate. 
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Chapter-5 

 

Load Flow studies using SEPSO 

5.1 Problem formulation 

Load flow solution gives the nodal voltages and phase angles at all the buses and 

power flows through interconnected power channels. Real and reactive power for kth bus is 

calculated [25] as,  

 

  )2)cos()sin(

)1)sin()cos(

1

1













N

j

jkkjjkkjjkk

N

j

jkkjjkkjjkk

BGVVQ

BGVVP





 

Where, 

   N   = Number of buses. 

  
kV  = Voltage at kth bus. 

  jV  = Voltage at jth bus. 

  kjG = Conductance between bus k and j. 

  k , j = Angle of bus k and j respectively. 

In load flow, the real and reactive power mismatches are minimized for every bus 

using the following equations, 

                                    ∆Pk  = Pk
calc −  Pk

specified                                                        6 

                                    ∆Qk = Qk
calc −  Qk

specified
                                                      7 

   K=1,2,3, …., N ; N=Total number of buses. 

Where, 

                    ∆Pk  = Real power mismatch corresponding to kth bus 

                           ∆Qk = Reactive power mismatch corresponding to kth bus. 

           Pk
calc   =  Calculated Real Power for the kth bus. 

        4 

 

        5 
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               Pk
specified

  
=  Specified Real power fir the kth bus. 

            Qk
calc = Calculated reactive power for the kth bus. 

                     Qk
specified

=  Specified Reactive power for the kth bus. 

Therefore, load flow problem is formulated as an optimization problem and the 

objective is to Minimize 

                                           f = ∑ ( ∆N
k=1 Pk ) 2 +  ∑ ( ∆N

k=1 Qk ) 2                                            8 

 

In this SEPSO implementation, various types of buses are treated as follows, 

i) Load buses (PQ). 

The real and reactive power mismatches are calculated using eq. 6) and 7) respectively. 

ii) Generator bus/voltage regulated bus (PV buses) 

For these buses real power mismatch is calculated using eq. 6), the reactive power mismatch 

is equated to zero whenever the calculated reactive power is within limits. If the calculated 

reactive power violates the reactive power limits, the reactive power mismatch is calculated as 

the difference of the calculated value and the reactive power limit, upper or lower, whichever 

is violated. Mathematically, we have, 

                                        ∆Qi = min[|Qi
calc −  Qi

max|, |Qi
min − Qi

calc|]                           9 

Where,                                                              

                                       Qi
max = Upper reactive power generation limit. 

                                       Qi
min = Lower reactive power generation limit. 

5.2 Computational procedure 

This section presents the algorithm for the load flow using the proposed SEPSO 

algorithm. 

i) Initialize m number of particles each with 2 rows and    5/14   columns. (5 columns for a 5 

bus system and 14 for a 14 bus system.). First row has all the voltage magnitudes corresponding 

to buses and second row has all the corresponding angles. Initially the values of all voltage 

magnitudes is kept at 1 p.u. and the corresponding angles are kept at 0 radian. Initial velocity 

for voltage magnitude updation is determined by unifrnd(-.1,.1) in MATLAB. Initial velocity 
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for phase angle update is determined by unifrnd(-.5,.5) in MATLAB. The initial values for both 

velocities and positions is same for both IEEE 5 bus and IEEE 14 bus system. The values of 

sorting frequency ‘fs’, reduction factor ‘r’, tolerance ‘T’ and maximum number of iterations 

‘iter’ are inputted. 

 

ii) The initial value of objective function (OF) before position update is found and it is called 

OFi . 

iii) Update the position for all the particles as per the following equation, 

                                                        Xm
i+1   =  Xm

i  + Vm
i+1                                                      10 

Where,     

                                                        i= ith   iteration, 

                                                        m= mth particle, 

iv) The final value of OF after position update is found and it is called OFf. 

 

v) Smaller of  OFf  and OFi is considered for the personal best position. (Pbest) 

 

vi) Minimum of all OFf 's of all particles is found for global best. (gbest) 

 

vii) Update the velocity for all the particles using the following equation,                    

  Vm
i+1 = w ×  Vm

i   + rp × rand( ) × (pbestm
i − Xm

i ) + rg × rand( ) × (gbesti − Xm
i )            11                                                                                                                                            

Where, 

 

x) Exit. Display all voltages and power injections. 

pbestm
i = best position of particle m till ith iteration    

                  gbesti = global best for the entire swarm up to iteration i 

                                   w=inertia weight factor. 

                                   rp, rg   = acceleration constants. 

viii) Is the iteration number equal to sorting frequency? If NO, go to ix) .Else, Sort the particles 

in ascending order of their objective function and remove the worst particles in the swarm as 

dictated by the reduction factor. 

ix) Is the OFf   for the particle corresponding to the global best less than or equal to the specified 

tolerance? If NO, go to iii). Else go to x).  
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5.3 Computational results 

Load flow has been performed for IEEE-5 and 14-bus systems using conventional PSO 

and selection enabled PSO (SEPSO). The parameters for the conventional PSO and SEPSO 

were fixed as; w=0.7, rp=1 and rg=1. 

5.3.1 IEEE 5 bus system 

(i)      Conventional PSO 

Table 11 below shows the results of load flow by conventional PSO for IEEE-5 bus 

system. The accuracy for convergence for the value of function has been taken as 1×10-7. In 

column 3 of table 11, the accuracy of final function value at convergence has been mentioned. 

Table 11: Computational Effort for Load flow using conventional PSO 

 (IEEE 5 bus system) 

S. No. 

(1) 

swarm size 

(2) 

Accuracy 

(3) 

Function 

evaluations. 

(4) 

Iterations 

(5) 

Time 

(ms) 

 

(6) 

1. 30 -10 3780 125 815 

2. 32 -10 5024 156 959 

3. 64 -10 7232 112 1367 

4. 128 -11 12672 98 2273 

5. 256 -11 24320 94 4306 

6. 512 -10 40960 79 6891 

7. 1024 -11 86016 83 16743 

 

From this table it is clear that the computational time increases with the number of 

particles. In this table, column 4,5 and 6 representing function evaluations, iterations and time 

are all measures of computational effort. The time taken to solve a problem depends on the 

processor speed of the computer, which goes on changing with the advancement of technology. 

Further, various researchers may use different processors for their research work. For these 

reasons, the time in seconds of ms cannot be taken as standard measure for computational 

effort. Computational effort for each iteration depends on the size of the problem and, therefore, 

doesn’t prove to be a consistent measure of computational effort. However, number of function 

evaluations can prove to be the most consistent parameter for measuring computational effort 
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and would reflect as a measure of computational efficiency of a given algorithm. For these 

reasons number of function evaluations has been taken as index for measuring/comparing the 

computational effort in this thesis report. 

(ii) Selection Enabled PSO (SEPSO) 

Load flow has been performed for IEEE 5 bus system using SEPSO. In order to obtain 

the best sorting frequency ‘fs’ and reduction factor ‘r’, many load flows are performed for 

IEEE-5 bus system by varying sorting frequency ‘fs’ and reduction factor ‘r’. 

The initial swarm size of 1024, 512, 256, 128 and 64 is considered and sorting 

frequency is varied from 1 to 10 for reduction factors of 2, 4, 6 and 8. The sorting frequency is 

also varied from 50 to 500 in steps of 50 for reduction factor of 2. Table 12 shows the results 

for which minimum number of function evaluations are obtained. For IEEE-5 bus system. It 

can be observed from table 12 that the minimum number of function evaluations are obtained 

for fs=2 and   r=2. This is shown at s.no. 3 of table 12 and is highlighted. 

Table 12: Computational Effort for Load flow using SEPSO. 

(IEEE 5 bus system) 

No. a. b. Fs r Accuracy i Fev t(ms) 

1 32 32 - - -10 156 5024 959 

2 1024 512 2 2 -10 88 46608 8086 

3 512 256 2 2 -11 86 23127 3934 

4 256 128 2 2 -10 95 12544 2432 

5 128 64 1 2 -11 124 4224 914 

6 64 32 2 2 -10 121 4000 858 

7 128 32 1 4 -10 157 4992 634 

a=initial swarm size ; b=final swarm size; i=number of iterations;  fev=number of function 

evaluations ; t=time 
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Table 13 shows the load flow results as obtained using SEPSO for IEEE 5 bus system. 

Table 13: Results of Load flow using SEPSO; fs=2 and r=2; (IEEE 5 bus system) 

 

5.3.2 IEEE 14 bus system 

(i) Conventional PSO 

Table 14 shows the computational effort in terms of function evaluation, iterations and 

time taken of load flow by conventional PSO for IEEE-14 bus system. 

Table 14: Computational Effort for Load flow using conventional PSO  

(IEEE 14 bus system) 

S.No. swarm size Accuracy Function 

evaluations. 

Iterations Time 

(in s) 

1. 256 -7 5.13 Lakhs  5214 447.7 

2. 512 -10 52 Lakhs 5080 1938 

 

(ii) Selection Enabled PSO (SEPSO) 

Table 15 shows the results of load flow for IEEE 14 bus system using SEPSO. For 

various combinations of ‘fs’ and ‘r’. Here ‘fs’ is the number of iterations after which 

selection is to be performed and ‘r’ is the factor by which the swarm size is to be reduced. 

 

 

 

 

Bus V δ PGk QGk PDk QDk Pk Qk 

1 1.02 0 0.651 0.326 0.651 0.329 0.651 0.329 

2 0.9552 -3.9453 0 0 0.6 0.3 -0.6 -0.3 

3 1.04 2.0676 1.0 0.480 0 0 1.0 0.478 

4 0.9237 -8.0075 0 0 0.4 0.1 -0.4 -0.1 

5 0.9934 -2.0771 0 0 0.6 0.2 -0.6 -0.2 

V= Voltage Magnitude (p.u.);  δ= Phase angle (in degrees); 

PGk  = Generated Real Power(p.u.) at kth bus;  QGk = Generated reactive power(p.u.) at kth 

bus;  PDk  = Real Power Demand(p.u.) at kth bus;  QDk  = Reactive Power Demand(p.u.) at 

kth bus;  Pk = Calcuated Real Power(p.u.) at kth bus;  Qk = Calculated Reactive Power(p.u.) 

at kth bus, Base values are 1kV and 100MVA 
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Table 15: Computational Effort for Load flow using SEPSO 

 (IEEE 14 bus system). 

S No. 

(1) 

a 

(2) 

b 

(3) 

fs 

(4) 

R 

(5) 

Accuracy 

(6) 

I 

(7) 

Fev 

(8) 

t(s) 

(9) 

1 512 512 - - -7 5080 52 Lakhs 1938 

2 512 256 200 2 -7 1057 6.4 Lakhs 254.5 

3 256 256 - - -7 5214 5.13 Lakhs 447.7 

4 256 128 200 2 -7 1039 3.17 Lakhs 131.3 

5 512 128 250 2 -6 1416 6 Lakhs 267 

a=initial swarm size ; b=final swarm size; i=number of iterations;  fev=number of 

function evaluations ; t=time 

 

In column 4 and 5 of row 1 and 3 of this table (-) indicates that selection has not been 

used. This means these are the results corresponding to conventional PSO. It is observed that 

minimum number of function evaluations are obtained for a sorting frequency of 200 and 

reduction factor ‘r’ of 2. This is shown at serial no. 4 of table 15 and is highlighted.  
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Table 16 shows the results as obtained using SEPSO for load flow studies on IEEE 14 

bus system.  

Table 16: Results of load flow using SEPSO. 

 (IEEE 14 bus system) 

 

 

 

 

 

 

 

 

 

Bus V δ PGk 

(MW) 

QGk 

(MVAR) 

PDk 

(MW) 

QDk 

(MVAR) 

Pk 

(MW) 

Qk 

(MVAR) 

1 
1.0600 0.0000 125.591 3.480 0 0 125.59 3.47 

2 
1.0450 -2.4590 70.000 15.532 21.70 12.700 48.30 2.83 

3 
1.0100 -9.1061 0.000 21.261 94.20 19.000 -94.20 2.26 

4 
1.0251 -5.8438 0.000 0.000 47.80 -3.900 -47.80 3.90 

5 
1.0262 -5.0419 0.000 0.000 7.600 1.600 -7.59 -1.60 

6 
1.0701 -8.9216 0.000 19.674 11.20 7.500 -11.20 12.17 

7 
1.0549 -3.9782 0.000 0.000 0.000 0.000 0.000 0.000 

8 
1.0900 2.1795 70.000 25.613 0.000 0.000 70.00 25.61 

9 
1.0415 -7.0081 0.000 0.000 29.50 16.600 -29.50 -16.60 

10 
1.0395 -7.6300 0.000 0.000 9.000 5.800 -8.98 -5.80 

11 
1.0515 -8.3860 0.000 0.000 3.500 1.800 -3.50 -1.80 

12 
1.0538 -9.6078 0.000 0.000 6.100 1.600 -6.10 -1.60 

13 
1.0486 -9.4870 0.000 0.000 13.50 5.800 -13.50 -5.80 

14 
1.0265 -9.1062 0.000 0.000 14.90 5.000 -14.91 -5.00 

V= Voltage Magnitude (in p.u.);  δ= Phase angle (in degrees); 

PGk  = Generated Real Power at kth bus;  QGk = Generated reactive power at kth bus;  

 PDk  = Real Power Demand at kth bus;  QDk  = Reactive Power Demand at kth bus;  Pk = 

Calculated Real Power at kth bus;  Qk = Calculated Reactive Power at kth bus. 
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5.4 Discussion 

Load flow has been performed using SEPSO and conventional PSO for IEEE 5 and 14 

bus systems. In case of SEPSO, each combination of the user’s input comprising of the 

reduction factor ‘r’ and the sorting frequency ‘fs’ is executed thirty times in case of the IEEE 

5 bus system and 10 times in case of the IEEE 14 bus system. The programs were written in 

MATLAB and executed on a PC with 4 GB RAM. From table 11 and 12, a comparative study 

for computational effort in terms of function evaluations has been carried out for IEEE 5 bus 

system and is shown in table 17 below.  

Table 17. Comparison of SEPSO with conventional PSO  

(IEEE 5 bus system). 

S.No. Swarm size Function 

evaluations 

(conventional 

PSO) 

Function 

evaluations 

(SEPSO) 

% Saving 

1 1024 86016 46608 41.81 

2 512 40960 23127 43.54 

3 256 24320 12544 48.42 

4 128 12672 4224 66.67 

5 64 7232 4000 44.67 
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Similarly, from table 14 and 15, a comparative study for computational effort in terms 

of function evaluations has been carried out for IEEE 14 bus system and is shown in table 18 

below.  

Table 18. Comparison of SEPSO with conventional PSO  

 (IEEE 14 bus system). 

 

From table 17 and table 18, it is observed that SEPSO takes lesser function evaluations 

to converge for both IEEE 5 and 14 bus systems when compared to the conventional PSO. The 

last column in both tables show the percentage saving in terms of function evaluations obtained 

by SEPSO. The comparison of both the algorithms is also shown in Figure 10 and 11 for IEEE 

5 and 14 bus system respectively.   

 

Fig.10 Computational Effort for conventional PSO and SEPSO  

(IEEE 5 bus system). 

S.No. Swarm size Function evaluations 

(conventional 

PSO) 

Function 

evaluations 

(SEPSO) 

% 

Saving 

1 512 52 Lakhs 6.4 Lakhs 87.7 

2 256 41.3 Lakhs 3.15 Lakhs 92.4 
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Fig.11 Computational Effort for conventional PSO and SEPSO  

                                                            (IEEE 14 bus system). 

 

It is observed from the above analysis that SEPSO takes less function evaluations to 

converge for both IEEE 5 and 14 bus systems when compared to the conventional PSO. The 

results obtained from proposed algorithm SEPSO are as accurate as NR method. The results of 

load flow using NR method for IEEE 5 and 14 bus system are shown in table 19 and 20 

respectively. 
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5.5 Results of N-R algorithm 

        The values of voltages and their corresponding angles for all buses are obtained by load 

flow studies using Newton-Raphson’s (NR) method. The results from the same are shown in 

table 19 and 20. 

Table 19: Results of load flow using Newton Raphson’s (NR) method 

(IEEE 5 bus system) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bus V δ PGk QGk PDk QDk Pk Qk 

1. 1.02 0 0.651 0.326 0 0 0.651 0.327 

2. 0.9552 -3.9450 0 0 0.6 0.3 -0.6 -0.3 

3 1.04 2.0675 1.0 0.480 0 0 1.0 0.480 

4 0.9237 -8.0073 0 0 0.4 0.1 -0.4 -0.1 

5 0.9934 -2.0770 0 0 0.6 0.2 -0.6 -0.2 

V= Voltage Magnitude (p.u.) ;  δ= Phase angle (in degrees); All calculated and specified 

powers are at kth bus, PGk  = Generated Real Power(p.u.);  QGk = Generated reactive 

power(p.u.);  PDk  = Real Power Demand(p.u.);  QDk  = Reactive Power Demand(p.u.);  Pk = 

Calcuated Real Power(p.u.);  Qk = Calculated Reactive Power(p.u.) , Base values are 1kV 

and 100MVA 
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Table 20: Results of load flow using NR method. 

(IEEE 14 bus system) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The results of load flow using SEPSO are exactly same as that of NR method for 

IEEE 5 and 14 bus systems. This establishes the fact that the proposed method Selection 

enabled PSO (SEPSO) has been correctly designed and has converged to global minimum. 

  

 

 

 

 

 

 

 

Bus V δ PGk QGk PDk QDk Pk Qk 

1 1.0600 0.0000 125.59 3.48 0 0 125.59 3.48 

2 1.0450 -2.4591 70.00     15.53     21.70 12.700 48.30 2.83 

3 1.0100 -9.1059 0.000 21.26   94.20    19.000 -94.20 2.26 

4 1.0252 -5.8436 0.000      0.000     47.80   -3.900 -47.80 3.90 

5 1.0262 -5.0418 0.000       0.000   7.600       1.600 -7.60 -1.60 

6 1.0700 -8.9214 0.000      19.67    11.20     7.500 -11.20 12.17 

7 1.0547 -3.9781 0.000       0.000     0.000       0.000 0.000 0.000 

8 1.0900 2.1792 70.00  25.613     0.000       0.000 70.00 25.61 

9 1.0417 -7.0080 0.000      0.000     29.50   16.600 -29.50 -16.60 

10 1.0395 -7.6301 0.000       0.000      9.000       5.800 -9.00 -5.80 

11 1.0514 -8.3862 0.000       0.000     3.500       1.800 -3.50 -1.80 

12 1.0537 -9.6076 0.000      0.000     6.100       1.600 -6.10 -1.60 

13 1.0486 -9.4869 0.000       0.000     13.50 5.800 -13.50 -5.80 

14 1.0265 -9.1060 0.000       0.000     14.90      5.000 -14.90 -5.00 

V= Voltage Magnitude (in p.u.) ;  δ= Phase angle (in degrees);   All calculated and 

specified powers are at kth bus, PGk  = Generated Real Power(MW);  QGk = 

Generated reactive power(MVAR);  PDk  = Real Power Demand(MW);  QDk  = 

Reactive Power Demand(MVAR);  Pk = Calcuated Real Power(MW);  Qk = 

Calculated Reactive Power(MVAR)  
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Chapter-6 

 

Conclusions and Future Direction 

6.1 Conclusions 

The following are the conclusions of this research work: 

i) A modified version of conventional PSO called Selection enabled PSO (SEPSO) 

has been developed which involves the selection of better particles. The strategy of 

retaining only the better particles reduces the time taken up to convergence. It has 

been observed from the tables of computational results that retaining half of the 

total number of particles leads to reliable convergence than any other value of 

reduction factor. The trapped particles create computational overhead which is 

undesirable. Such particles are needed only up to the exploration phase. During the 

exploitation phase, these ‘trapped’ particles become stationary. 

ii) Load flow is performed using SEPSO for IEEE 5 and 14 bus system successfully 

for the first time. 

iii) A strategy has been developed to treat reactive power mismatches for PV buses. 

Voltage buses have been kept fixed and therefore each particle in the swarm 

unambiguously moves towards the region where reactive power limits are not 

violated. 

iv) The results have been compared with conventional PSO and NR method. 

v) SEPSO is found to converge faster than conventional PSO and is as accurate as NR 

method. 

         Selection enabled PSO (SEPSO) is applied to the IEEE 5 bus system and the IEEE 14 

bus system for load flow. Load flow results obtained from SEPSO are as accurate as that for 

the Newton-Raphson method. The results from Newton-Raphson’s method are used just to 

ensure that SEPSO has converged properly at the global minimum. 
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6.2 Future direction 

The process of trying several combinations of reduction factor ‘fs’ and sorting 

frequency ‘r’ can be replaced by making the selection adaptive using a well-designed criterion. 

Further SEPSO can be used along with other swarm intelligence algorithms to reduce the 

number of function evaluations in load flow problems. Those particles that reach near the 

global optimum and keep oscillating around it, can also be slowed down to reach the global 

optimum earlier without oscillating while the particles unable to come sufficiently close to 

global optimum, in a certain number of iterations, can be eliminated. 
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APPENDIX 

A: IEEE 5 bus system 

Table I: Specified values of load(s), generation(s), voltage(s) and angle(s). 

Bus 

No. 

Voltage 

Magnitude 

(p.u.) 

Phase 

Angle 

(radians) 

Generated 

Real 

Power(p.u.) 

Generated 

Reactive  

Power(p.u.) 

Real 

Power 

Demand(p.u.) 

Reactive  

Power 

Demand(p.u.) 

1. 1.02 0 - - - - 

2. - - - - 0.6 0.3 

3. 1.04 - 1.0 - - - 

4. - - - - 0.4 0.1 

5. - - - - 0.6 0.2 

 

 

 

 

 

Fig.I. IEEE 5 Bus System 
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Table II: Line reactance values and line resistance values. 

From bus To bus R(in p.u.) X(in p.u.) 

1 2 0.1 0.4 

1 4 0.15 0.6 

1 5 0.05 0.2 

3 5 0.05 0.2 

2 3 0.05 0.2 

2 4 0.05 0.4 
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B. IEEE 14 bus system 

 

Table III: Line reactance values, line resistance values and line susceptance values. 

From bus To bus R(in p.u.) X(in p.u.) B/2(in p.u.) 

1 2 0.01938 

 
0.05917     0.0264 

1 5 0.05403    0.22304     0.0246 

2 3 0.04699    0.19797     0.0219 

2 4 0.05811    0.17632     0.0170 

2 5 0.05695    0.17388     0.0173 

3 4 0.06701    0.17103     0.0064 

4 5 0.01335    0.04211    0.0 

4 7 0.0       0.20912  0.0 

4 9 0.0       0.55618    0.0 

5 6 0.0       0.25202   0.0 

6 11 0.09498    0.19890     0.0 

6 12 0.12291    0.25581     0.0 

6 13 0.06615    0.13027     0.0 

7 8 0.0        0.17615    0.0 

7 9 0.0        0.11001     0.0 

9 10 0.03181    0.08450     0.0 

9 14 0.12711    0.27038     0.0 

10 11 0.08205    0.19207     0.0 

12 13 0.22092    0.19988 0.0 

13 14 0.17093    0.34802 0.0 
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Table IV: Specified values of load(s), generation(s), voltage(s) and angle(s). 

Bus 

No. 

Voltage 

magnitude

(p.u.) 

Phase 

angle 

(radians) 

Generated 

Real 

Power (MW) 

Generated 

reactive 

Power(MVAR) 

Real 

Power 

Demand

(MW) 

Reactive 

Power 

Demand 

(MVAR) 

1 1.060 0 0 0 0 0 

2 1.045 0 70 42.4 21.7 12.7 

3 1.010 0 0 23.4 94.2 19.0 

4 1.0 0 0 0 47.8 -3.9 

5 1.0 0 0 0 7.6 1.6 

6 1.0 0 0 12.2 11.2 7.5 

7 1.070 0 0 0 0.0 0.0 

8 1.0 0 70 17.4 0.0 0.0 

9 1.090 0 0 0 29.5 16.6 

10 1.0 0 0 0 9.0 5.8 

11 1.0 0 0 0 3.5 1.8 

12 1.0 0 0 0 6.1 1.6 

13 1.0 0 0 0 13.5 5.8 

14 1.0 0 0 0 14.9 5.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table V: Reactive Power Limits 

Bus 

No. 

Qmin 

(MVAR) 

Qmax 

(MVAR) 

2 -40 50 

3 0 40 

6 -6 24 

8 -6 30 
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Fig.II. IEEE 14 Bus System 
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i) MATLAB code for load flow on IEEE 5 bus system using SEPSO. 

Main program: 

clear all 
clc 
nbus = 5;                   % IEEE-5 
Y = ybusppg(nbus);          % Calling ybusppg.m to get Y-Bus Matrix.. 
busd = busdatas(nbus);  
BMva=100;                     % Calling busdatas..                % Base 

MVA.. 
Pg = busd(:,5)/BMva;        % gen  erated real power 
Qg = busd(:,6)/BMva;        % generated reactive power. 
Pl = busd(:,7)/BMva;        % load real power 
Ql = busd(:,8)/BMva;        % load reactive power 
Qlim1 = busd(:,9)/BMva; 
Qlim2 = busd(:,10)/BMva; 
P = Pg - Pl;                % Pi = PGi - PLi.. 
Q = Qg - Ql;                % Qi = QGi - QLi.. 
Psp = P   ;                 % P Specified.. 
Qsp = Q    ;               % q specified  
Qmin=Qlim1(3); 
Qmax=Qlim2(3); 
G = real(Y)   ;            % Conductance matrix.. 
B = imag(Y)    ;           % Susceptance matrix.. 

  
%---------------------PSO PARAMETERS INITIALIZATION --------------% 
particle=[]; 
mn=[]; 
fr1=[]; 
it=input('maximum no. of iterations'); 
p=input('enter initial no. of particles'); 
pf=input('final no. of particles');  % no of particle 
fs=input('frequency for sorting');  
r=input('enter r'); 
% rfv=input('enter rfv'); 
% rft=input('enter rft'); 
c12=[]; 
tic 
particle(1)=p; 
rp=1; 
T=10; 
fr=[]; 
count=1; 
deltai=zeros(p,1); 
zeta=0; 
i2=0; 
rg=1; 
rf=1; 
%f=[]; 
f=zeros(p,it); 
fp=zeros(p,1); 
thp=zeros(p,5); 
thg=zeros(p,5); 
vp=zeros(p,5); 
vg=zeros(p,5); 
rft=[]; 
rfv=[]; 
for j=1:p 
    rft(j)=1; 
    rfv(j)=1; 
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end 
%v=[]; 
%th=[]; 
%vv=[]; 
%vth=[]; 
v=zeros(p,it,5); 
th=zeros(p,it,5); 
vth=zeros(p,it,5); 
vv=zeros(p,it,5); 
%vtemp=zeros(p,it,5); 
%thtemp=zeros(p,it,5); 
%vthtemp=zeros(p,it,5); 
%vvtemp=zeros(p,it,5); 
%ftemp=zeros(p,it); 
a=.5; 
b=-0.5; 
vth(:,1,:)=a+(b-a)*rand(p,5); %initial velocity of theta vector% 
a=-.1; 
b=0.1; 
vv(:,1,:)=a+(b-a)*rand(p,5); %initial velocity of voltage vector% 
vth(:,:,1)=0; 
vv(:,:,1)=0; 
a=0.5; 
b=-0.5; 
th(:,1,:)=a+(b-a)*rand(p,5); 
a=1.1; 
b=0.9; 
v(:,1,:)=a+(b-a)*rand(p,5); 
v(:,:,1)=1.02; 
v(:,:,3)=1.04; 
th(:,:,1)=0; 
vg(:,1)=1.02; 
vp(:,1)=1.02; 
vg(:,3)=1.04; 
vp(:,3)=1.04; 
thp(:,1)=0; 
thg(:,1)=0; 
%-----------------------initial value of objective function-------------% 
% Calculate P and Q 
PVIND=zeros(p,1); 
fev=0; 
 for j=1:p 
 P = zeros(nbus,1); 
 Q = zeros(nbus,1); 
 MPS=zeros(p,1); 
 MQS=zeros(p,1); 

  
for i = 2:nbus 
        for k = 1:nbus 
            P(i) = P(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*cos(th(j,1,i)-

th(j,1,k)) + B(i,k)*sin(th(j,1,i)-th(j,1,k))); 
        end 
end 

  
for i = 2:nbus 
        for k = 1:nbus 
            Q(i) = Q(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*sin(th(j,1,i)-

th(j,1,k)) - B(i,k)*cos(th(j,1,i)-th(j,1,k))); 
        end 

            
end 
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 % real power mismatch 
  MP=P-Psp; 
  MPS=MP.^2; 
  %reactive power mismatch in third bus 
  Qsp(3)=Q(3); 
  if Q(3)<Qmin; 
      Q(3)=Qmin; 
      PVIND(j,1)=1; 
  else PVIND(j,1)=0; 
  end 
      if Q(3)>Qmax; 
          Q(3)=Qmax; 
          PVIND(j,1)=1; 
  else PVIND(j,1)=0; 
      end 

    
  %reactive power mismatch 
  MQ=Q-Qsp; 
  MQ(3)=0; 
  MQS=MQ.^2; 
  %objective function value 
  f(j,1)=sum(MPS)+sum(MQS); 
 % fr(j,1)=f(j,1); 
 % fr(j,2)=j; 
  fev=fev+1;   
 end 

  
 %Initial personal best values 
for i=1:p 
    for k=2:5 
        thp(i,k)=th(i,1,k); 
    end 
    for k=2:5 
        vp(i,k)=v(i,1,k); 
    end 
end 
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for k=1:p 
    if f(k,1)==fmin 
        gb=k; 
    else 
    end 
end 
%Initial global best value 

  
for k=1:p 
    for j=2:5 
        thg(k,j)=th(gb,1,j); 
    end 
       for j=2:5 
        vg(k,j)=v(gb,1,j); 
    end 
end 
fgm = min(f(:,1)); 
 Q3=zeros(p,it); 
for i=1:it 
   %for inertia weight W 
   %wmax=.4; 
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   %wmin=.4; 
   % w=wmax-((wmax-wmin)*i/it); 
    %w =0.1+(rand()/2);  
      %velocity update 
      %position update 
    w=.7; 
for j=1:p 
        for k=2:5 

     
        vth(j,(i+1),k) = w*vth(j,i,k) + rp*rand()*(thp(j,k)-th(j,i,k)) + 

rg*rand()*(thg(j,k)-th(j,i,k)); 
       % if vth(j,(i+1),k)<-0.1 
        %    vth(j,(i+1),k)=-0.1; 
        %end 
        %if vth(j,(i+1),k)>0.1 
         %   vth(j,(i+1),k)=0.1; 
        %end 
        th(j,(i+1),k) = th(j,i,k) + rft(j)*vth(j,(i+1),k); 
        end 

           

         
        for q=2:5 
        vv(j,(i+1),q) = w*vv(j,i,q) + rp*rand()*(vp(j,q)-v(j,i,q)) + 

rg*rand()*(vg(j,q)-v(j,i,q)); 

               
        v(j,(i+1),q) = v(j,i,q) + rfv(j)*vv(j,(i+1),q); 
        end 

         
        for q=3 
            if PVIND(j,1)==0 
                v(j,(i+1),q)=1.04; 
            end 
        end 

             

         
end 

  

  
%th(:,i,5) 

  
%objective function value 
for j=1:p 
 P = zeros(nbus,1); 
 Q = zeros(nbus,1); 
 MPS=zeros(p,1); 
 MQS=zeros(p,1); 

  
     for m = 2:nbus 
        for k = 1:nbus 
            P(m) = P(m) + v(j,(i+1),m)* 

v(j,(i+1),k)*(G(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k)) + 

B(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k))); 

            
        end 
     end 
        for m = 2:5 
        for k = 1:nbus 
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            Q(m) = Q(m) + v(j,(i+1),m)* 

v(j,(i+1),k)*(G(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k)) - 

B(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k))); 

            
        end 
        end 
  % real power mismatch 
  MP=P-Psp; 
  MPS=MP.^2; 
  %reactive power mismatch in third bus 
  Qsp(3)=Q(3); 
  if Q(3)<Qmin; 
      Q(3)=Qmin; 
      PVIND(j,1)=1; 
  else PVIND(j,1)=0; 
  end 
      if Q(3)>Qmax; 
          Q(3)=Qmax; 
          PVIND(j,1)=1; 
  else PVIND(j,1)=0; 
      end 
   Q3(j,i)=Q(3); 
  %reactive power mismatch 
  MQ=Q-Qsp; 
  MQ(3)=0; 
  MQS=MQ.^2; 
  %objective function value 

   
  f(j,(i+1))=sum(MPS)+sum(MQS); 
  fr(j,1)=f(j,i+1); 
  fr(j,2)=j; 
  fev=fev+1; 

   
end 
          %personal best values updatio  
for j=1:p 
 P = zeros(nbus,1); 
 Q = zeros(nbus,1); 
 MPS=zeros(p,1); 
 MQS=zeros(p,1); 
        for t =2:nbus 
        for k = 1:nbus 
            P(t) = P(t) + vp(j,t)* vp(j,k)*(G(t,k)*cos(thp(j,t)-thp(j,k)) + 

B(t,k)*sin(thp(j,t)-thp(j,k))); 

            
        end 
        end 
        for t = 2:nbus 
        for k = 1:nbus 
            Q(t) = Q(t) + vp(j,t)* vp(j,k)*(G(t,k)*sin(thp(j,t)-thp(j,k)) - 

B(t,k)*cos(thp(j,t)-thp(j,k))); 

            
        end 
        end 

        
 % real power mismatch 
  MP=P-Psp; 
  MPS=MP.^2; 
  %reactive power mismatch in third bus 
  Qsp(3)=Q(3); 
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  if Q(3)<Qmin; 
      Q(3)=Qmin; 
      PVIND(j,1)=1; 
  else PVIND(j,1)=0; 
  end 
      if Q(3)>Qmax; 
          Q(3)=Qmax; 
          PVIND(j,1)=1; 
  else PVIND(j,1)=0; 
      end 

    
  %reactive power mismatch 
  MQ=Q-Qsp; 
  MQ(3)=0; 
  MQS=MQ.^2; 
  %objective function value 
  %objective function value 
  fp(j)=sum(MPS)+sum(MQS); 
end      

    

   
   %calculating delta i and zeta 

  

    
 % sum1=0; 
 %  for i1=1:p 
 %          deltai(i1,1)=f(i1,i)-f(i1,(i+1)); 
 %         sum1=sum1+deltai(i1,1); 
 %  end     
 %  zeta=sum1/(p); 

    
   %retaining particles with better performance 

  
 % i1=1; 
 % k2=50; 
 % if(p>=k2+1) 
 %  while(i1<=p) 
 %    count=count+1; 
 %    if(p<=k2) 
 %           break 
 %    end 
 %    if((f(i1,i)-f(i1,(i+1)))<0) 
 %       v(i1,:,:)=[]; 
 %       th(i1,:,:)=[]; 
 %       vv(i1,:,:)=[]; 
 %       vth(i1,:,:)=[]; 
 %       f(i1,:)=[]; 
 %       p=p-1; 
       % if(p==k2) 
       %     break 
       % end     
  %   end  
  %   i1=i1+1; 
  % end  
  %end 
  %count=1; 
  %particle(i+1)=p; 

   
  %sorting and eliminating 
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  if(p>pf && mod(i,fs)==0) 
     fr=sortrows(fr); 
     fr1=fr; 
     k1=1; 
     k2=0; 
     k3=((p/r)); 
     k4=1; 
     for i1=(k3+1):p 
        mn(1,k1)=fr(i1,2); 
        k1=k1+1; 
     end 
       v(mn,:,:)=[]; 
       th(mn,:,:)=[]; 
       vv(mn,:,:)=[]; 
       vth(mn,:,:)=[]; 
       f(mn,:,:)=[]; 
       fr(mn,:)=[]; 
       p=p/r; 
  end 
  mn=[]; 

   

   
  %personal best value updation 
        for k=1:p 
            for m=2:5 
               if f(k,i+1)<fp(k) 
               thp(k,m)=th(k,i+1,m); 
             else 
            end 

        
        end 

         
       end 

           
        for k=1:p 
             for m=2:5 
             if f(k,i+1)<fp(k) 
                 vp(k,m)=v(k,i+1,m); 
             else 
            end 

        
        end 
      end 

   
  %for Global best values updation 
        fgm=min(f(:,(i+1))); 

     
  for m=2:5 

        
       for k=1:p 
        if f(k,i+1)==fgm 
            for l=2:p 
                thg(l,m) = th(k,i+1,m);     %global best values 
            end 
        else 
       end 

         
   end 
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  end 
       for m=2:5 

       
        for k=1:p 
        if f(k,i+1)==fgm 
            for l=2:p 
                  vg(l,m) = v(k,i+1,m);          %global best values 
            end 
        else 
        end 

        
        end 
        end 

    

   
       %stopping 

        
   gb1=gb; 
   fgm=min(f(:,(i+1))); 
for k=1:p 
    if f(k,i+1)==fgm 
        gb1=k; 
    else 
    end 
end 
    if(p==1) 
        break 
    end     
    if (abs(f(gb1,i+1)-f(gb1,i))<=10^(-T)) 
           if(abs(f(gb1,i+1))<=10^(-T)) 
                  break 
           end 
    end 
    if abs(max(vv(gb1,i,:)))<=10^-(2.9) && abs(max(vth(gb1,i,:)))<=10^-

(2.9) && i>=10 && abs(max(vv(gb1,i,:)))>=10^-(3.1) && 

abs(max(vth(gb1,i,:)))>=10^-(3.1) 
     for j=1:p 
        rfv(j)=(((abs(max(vv(gb1,i,:))/max((vv(j,i,:)))))^-1)); 
        rft(j)=(((abs(max(vth(gb1,i,:))/max((vth(j,i,:)))))^-1)); 
     end   
    end 
%     if abs(max(vv(gb1,i,:)))<=10^-(3.9) && abs(max(vth(gb1,i,:)))<=10^-

(3.9) && i>=10 && abs(max(vv(gb1,i,:)))>=10^-(4.1) && 

abs(max(vth(gb1,i,:)))>=10^-(4.1) 
%         rfv=min(1.2,((abs(max(vv(gb1,i,:))/max((vv(gb,1,:)))))^-1)); 
%         rft=min(1.2,((abs(max(vth(gb1,i,:))/max((vth(gb,1,:)))))^-1)); 
%     end 
%     if abs(max(vv(gb1,i,:)))<=10^-(4.9) && abs(max(vth(gb1,i,:)))<=10^-

(4.9) && i>=10 && abs(max(vv(gb1,i,:)))>=10^-(5.1) && 

abs(max(vth(gb1,i,:)))>=10^-(5.1) 
%         rfv=min(1.28,(abs(max(vv(gb1,i,:))/max((vv(gb,1,:)))))^-1); 
%         rft=min(1.28,(abs(max(vth(gb1,i,:))/max((vth(gb,1,:)))))^-1); 
%     end 
%     if max(vv(gb1,i,:))<=10^-(5) && max(vth(gb1,i,:))<=10^-(5) && i>=10 
%         rfv=1.21; 
%         rft=1.21; 
%     end 

  
vth(gb1,(i+1),2);  
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end 
%Q3(:,it) 
bus=zeros(5,10) ;             
bus(1,3)=v(gb1,i,1); 
bus(2,3)=v(gb1,i,2); 
bus(3,3)=v(gb1,i,3); 
bus(4,3)=v(gb1,i,4); 
bus(5,3)=v(gb1,i,5); 
%bus angle updation 
bus(1,4)=th(gb1,i,1); 
bus(2,4)=th(gb1,i,2); 
bus(3,4)=th(gb1,i,3); 
bus(4,4)=th(gb1,i,4); 
bus(5,4)=th(gb1,i,5); 
bus(3,6)=Q3(gb1,it)*BMva; 
x=bus(3,6); 
V = bus(:,3)    ;        % Specified Voltage.. 
del = bus(:,4) ; % Voltage Angle.. 
toc 
%load flow function calling 
loadflow(nbus,V,del,BMva,x);  
disp('function value'); 
f(gb1,i) 
disp('no. of function evaluations ='); 
fev 

 

ybusppg.m  

% Program to for Admittance And Impedance Bus Formation.... 

  
function Y = ybusppg(num)  % Returns Y 

  
linedata = linedatas(num);      % Calling Linedatas... 
fb = linedata(:,1);             % From bus number... 
tb = linedata(:,2);             % To bus number... 
r = linedata(:,3);              % Resistance, R... 
x = linedata(:,4);              % Reactance, X... 
b = linedata(:,5);              % Ground Admittance, B/2... 
a = linedata(:,6);              % Tap setting value.. 
z = r + i*x;                    % z matrix... 
y = 1./z;                       % To get inverse of each element... 
b = i*b;                        % Make B imaginary... 

  
nb = max(max(fb),max(tb));      % No. of buses... 
nl = length(fb);                % No. of branches... 
Y = zeros(nb,nb);               % Initialise YBus... 

  
 % Formation of the Off Diagonal Elements... 
 for k = 1:nl 
     Y(fb(k),tb(k)) = Y(fb(k),tb(k)) - y(k)/a(k); 
     Y(tb(k),fb(k)) = Y(fb(k),tb(k)); 
 end 

  
 % Formation of Diagonal Elements.... 
 for m = 1:nb 
     for n = 1:nl 
         if fb(n) == m 
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             Y(m,m) = Y(m,m) + y(n)/(a(n)^2) + b(n); 
         elseif tb(n) == m 
             Y(m,m) = Y(m,m) + y(n) + b(n); 
         end 
     end 
 end 
 %Y;                  % Bus Admittance Matrix 
 %Z = inv(Y);      % Bus Impedance Matrix 

 

linedatas.m 

 
% Returns Line datas of the system... 

  
function linedt = linedatas(num) 

  
%         |  From |  To   |   R     |   X     |     B/2  |  X'mer  | 
%         |  Bus  | Bus   |  pu     |  pu     |     pu   | TAP (a) | 
linedat5 = [ 1      2       .1        0.4             0         1 
             1      4       0.15      0.6            0         1 
             1      5       0.05      0.2            0         1 
             2      3       0.05      0.2            0         1 
             2      4       0.10      0.4            0         1 
             3      5       0.05      0.2            0         1]; 

  
switch num 
    case 5 
        linedt = linedat5; 
    case 30 
        linedt = linedat30; 
    case 57 
        linedt = linedat57; 
end 

 

loadflow.m 

% Program for Bus Power Injections, Line & Power flows (p.u)... 

  
function [Pi Qi Pg Qg Pl Ql] = loadflow(nb,V,del,BMva,x) 
Y = ybusppg(nb);                % Calling Ybus program.. 
lined = linedatas(nb);          % Get linedats.. 
busd = busdatas(nb);            % Get busdatas.. 
Vm = pol2rect(V,del);           % Converting polar to rectangular.. 
Del = 180/pi*del;               % Bus Voltage Angles in Degree... 
fb = lined(:,1);                % From bus number... 
tb = lined(:,2);                % To bus number... 
nl = length(fb);                % No. of Branches.. 
k1=busd(:,2);                   %bus type 
Pl = busd(:,7)   ;               % PLi.. 
Ql = busd(:,8)    ;              % QLi.. 
Pl2 = busd(:,5)     ;             % PLi.. 
Ql2 = busd(:,6)    ;             % QLi.. 
Iij = zeros(nb,nb); 
Sij = zeros(nb,nb); 
Si = zeros(nb,1); 

  
% Bus Current Injections.. 
 I = Y*Vm; 
 Im = abs(I); 
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 Ia = angle(I); 

  
%Line Current Flows.. 
for m = 1:nl 
    p = fb(m); q = tb(m); 
    Iij(p,q) = -(Vm(p) - Vm(q))*Y(p,q); % Y(m,n) = -y(m,n).. 
    Iij(q,p) = -Iij(p,q); 
end 
Iij = sparse(Iij); 
Iijm = abs(Iij); 
Iija = angle(Iij); 

  
% Line Power Flows.. 
for m = 1:nb 
    for n = 1:nb 
        if m ~= n 
            Sij(m,n) = Vm(m)*conj(Iij(m,n))*BMva; 
        end 
    end 
end 
Pij = real(Sij); 
Qij = imag(Sij); 

  
% Line Losses.. 
Lij = zeros(nl,1); 
for m = 1:nl 
    p = fb(m); q = tb(m); 
    Lij(m) = Sij(p,q) + Sij(q,p); 
end 
Lpij = real(Lij); 
Lqij = imag(Lij); 

  
% Bus Power Injections.. 
for i = 1:nb 
    for k = 1:nb 
        Si(i) = Si(i) + conj(Vm(i))* Vm(k)*Y(i,k)*BMva; 
    end 
end 
Pi = real(Si); 
Qi = -imag(Si); 
Pg = busd(:,5); 
Qg = busd(:,6); 
Pg(1)=sum(Pl)+sum(Lpij)-Pg(3); 
Qg(3)=x; 
Qg(1)=sum(Ql)+sum(Lqij)-Qg(3); 

  

  
disp('#####################################################################

###############'); 
disp('---------------------------------------------------------------------

--------------------'); 
disp('                              PSO Loadflow Analysis '); 
disp('---------------------------------------------------------------------

--------------------'); 
disp('| Bus |    V   |  Angle  |     Injection      |     Generation     |          

Load      |'); 
disp('| No  |   pu   |  Degree |    MW   |   MVar   |    MW   |  Mvar    |     

MW     |  MVar | '); 
for m = 1:nb 
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    disp('-----------------------------------------------------------------

------------------------'); 
    fprintf('%3g', m); fprintf('  %8.4f', V(m)); fprintf('   %8.4f', 

Del(m)); 
    fprintf('  %8.3f', Pi(m)); fprintf('   %8.3f', Qi(m));  
    fprintf('  %8.3f', Pg(m)); fprintf('   %8.3f', Qg(m));  
    fprintf('  %8.3f', Pl(m)); fprintf('   %8.3f', Ql(m)); fprintf('\n'); 
end 
disp('---------------------------------------------------------------------

--------------------'); 
fprintf(' Total                  ');fprintf('  %8.3f', sum(Pi)); fprintf('   

%8.3f', sum(Qi));  
fprintf('  %8.3f', sum(Pi+Pl)); fprintf('   %8.3f', sum(Qi+Ql)); 
fprintf('  %8.3f', sum(Pl)); fprintf('   %8.3f', sum(Ql)); fprintf('\n'); 
disp('#####################################################################

####################'); 

  
disp('---------------------------------------------------------------------

----------------'); 
disp('                              Line FLow and Losses '); 
disp('---------------------------------------------------------------------

----------------'); 
disp('|From|To |    P    |    Q     | From| To |    P     |   Q     |      

Line Loss      |'); 
disp('|Bus |Bus|   MW    |   MVar   | Bus | Bus|    MW    |  MVar   |     

MW   |    MVar  |'); 
for m = 1:nl 
    p = fb(m); q = tb(m); 
    disp('-----------------------------------------------------------------

--------------------'); 
    fprintf('%4g', p); fprintf('%4g', q); fprintf('  %8.3f', Pij(p,q)); 

fprintf('   %8.3f', Qij(p,q));  
    fprintf('%4g', q); fprintf('%4g', p); fprintf('   %8.3f', Pij(q,p)); 

fprintf('   %8.3f', Qij(q,p)); 
    fprintf(' %8.3f', Lpij(m)); fprintf('   %8.3f', Lqij(m)); 
    fprintf('\n'); 
end 
disp('---------------------------------------------------------------------

----------------'); 
fprintf('   Total Loss                                                 '); 
fprintf('  %8.3f', sum(Lpij)); fprintf('   %8.3f', sum(Lqij));  

fprintf('\n'); 
disp('---------------------------------------------------------------------

----------------'); 
disp('#####################################################################

################'); 
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ii) MATLAB code for load flow on IEEE 14 bus system using SEPSO. 

Main program: 

% objective function multiplied by 100 on 7th September , Monday , 2015 
clc 
nbus =14;                    % IEEE-5 
Y = ybusppg(nbus);          % Calling ybusppg.m to get Y-Bus Matrix.. 
busd = busdatas(nbus);  
BMva=100;                     % Calling busdatas..                % Base 

MVA.. 
Pg = busd(:,5)/BMva;        % gen  erated real power 
Qg = busd(:,6)/BMva;        % generated reactive power. 
Pl = busd(:,7)/BMva;        % load real power 
Ql = busd(:,8)/BMva;        % load reactive power 
Qlim1 = busd(:,9)/BMva; 
Qlim2 = busd(:,10)/BMva; 
P = Pg - Pl;                % Pi = PGi - PLi.. 
Q = Qg - Ql;                % Qi = QGi - QLi.. 
Psp = P       ;             % P Specified.. 
Qsp = Q        ;           % q specified 
for i=[2,3,6,8] 
Qmin(i)=Qlim1(i)-Ql(i); 
Qmax(i)=Qlim2(i)-Ql(i); 
end 
G = real(Y)  ;        % Conductance matrix.. 
B = imag(Y) ;         % Susceptance matrix.. 
%kv=input('kv') 
%---------------------PSO PARAMETERS INITIALIZATION --------------% 
fev=0; 
c12=0; 
kcm=1; 
kpm=input('enter kpm'); 
kqm=input('enter kqm'); 
%kp=input('enter kp'); 
%kq=input('enter kq'); 
%kthm=input('enter kthm'); 
p=input('enter no. of initial particles');                  % no of 

particle 
it=input('enter maximum no. of iterations');                % no of 

iteration 
rp=1; 
T=input('enter tolerance');                    %tolerance factor 
particle=[]; 
mn=[]; 
fr1=[]; 
fs=input('frequency for sorting');  
pf=input('final no. of particles');  % no of particle 
r=input('enter r'); 
tic 
c12=[]; 
rg=1; 
rf=1; 
f=zeros(p,it); 
MQS1=zeros(4,1); 
fp=zeros(p,1); 
thp=zeros(p,nbus); 
thg=zeros(p,nbus); 
vp=zeros(p,nbus); 
vg=zeros(p,nbus); 
v=zeros(p,it,nbus); 
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th=zeros(p,it,nbus); 
vth=zeros(p,it,nbus); 
vv=zeros(p,it,nbus); 
a=-0.5; 
b=0.5; 
vth(:,1,:)=a+(b-a)*rand(p,nbus); %initial velocity of theta vector% 
a=.1; 
b=-0.1; 
vv(:,1,:)=a+(b-a)*rand(p,nbus); %initial velocity of voltage vector% 
%vth(:,:,1)=0; 
a=0; 
b=0; 
th(:,1,:)=a+(b-a)*rand(p,nbus); 
a=1; 
b=1; 
v(:,1,:)=a+(b-a)*rand(p,nbus); 
% volage  asuumption  
v(:,:,1)=1.060; 
v(:,:,2)=1.045; 
v(:,:,3)=1.010; 
v(:,:,6)=1.070; 
v(:,:,8)=1.090; 
vv(:,:,1)=0; 
th(:,:,1)=0; 
thp(:,1)=0; 
thg(:,1)=0; 
vp(:,1)=1.060; 
vp(:,2)=1.045; 
vp(:,3)=1.010; 
vp(:,6)=1.070; 
vp(:,8)=1.090; 
vg(:,1)=1.060; 
vg(:,2)=1.045; 
vg(:,3)=1.010; 
vg(:,6)=1.070; 
vg(:,8)=1.090; 
vmin=[0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9]; 
vmax=[1.06 1.045 1.010 1.1 1.1 1.070 1.1 1.090 1.1 1.1 1.1 1.1 1.1 1.1]; 

  
%-----------------------initial value of objective function-------------% 
% Calculate P and Q 
PVIND=zeros(p,nbus); 
MV=zeros(p,nbus); 
check_no=0; 
 for j=1:p 
 P = zeros(nbus,1); 
 Q = zeros(nbus,1); 
 MPS=zeros(14,1); 
 MQS=zeros(14,1); 
 MQS1=zeros(4,1); 
 MVS=zeros(14,1); 

  
for i = 1:nbus 
        for k = 1:nbus 
            P(i) = P(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*cos(th(j,1,i)-

th(j,1,k)) + B(i,k)*sin(th(j,1,i)-th(j,1,k))); 
        end 
end 

  
for i = 1:nbus 
        for k = 1:nbus 
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            Q(i) = Q(i) + v(j,1,i)* v(j,1,k)*(G(i,k)*sin(th(j,1,i)-

th(j,1,k)) - B(i,k)*cos(th(j,1,i)-th(j,1,k))); 
        end 

            
end 

  
 % real power mismatch 
  MP=P-Psp; 
  if (P(1)-.5)*(2-(P(1))) >= 0 
       MP(1)=0; 
  end 
  if (P(1)-.5)*(2-(P(1))) < 0 
      MP(1)=abs(min((P(1)-.5),(2-(P(1))))); 
  end         
  %if (P(2)-.2)*(1-(P(2))) >= 0 
  %     MP(2)=P(2)-Psp(2); 
  %end 
  %if (P(2)-.2)*(1-(P(2))) < 0 
   %   MP(2)=abs(min((P(2)-.5),(2-(P(2))))); 
  %end    
  MPS=MP.^2; 

   
  %reactive power mismatch and voltage mismatch 
  MQ=Q-Qsp; 
  MQS=MQ.^2; 
  MQS(1)=0; 

   
% MVS=zeros(14,1); 
 % for jk=2:14 
 %     if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) < 0 
 %         MVS(jk)=(min((v(j,1,jk)-0.9),(1.1-v(j,1,jk))))^2; 
 %     end 
 %     if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) >= 0 
 %         MVS(jk)=0; 
 %     end 
 % end 

   
  for jk=[2,3,6,8] 
    if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))<0) 
       % MVS(jk)=((v(j,1,jk)-vmax(jk))^2); 
        MQS(jk)=(min((Q(jk)-Qmin(jk)),(Qmax(jk)-Q(jk))))^2; 
        vv(j,1,jk)=0;    %change made at 1906 hrs , 6th September , Sunday 

, 2015 
    end 
    if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))>=0) 
        MQS(jk)=0; 
       % MVS(jk)=(vmax(jk)-v(j,1,jk))^2; 
       vv(j,1,jk)=0; 
    end 
  end 

   
  %objective function value 
   % 

f(j,1)=max(max(kpm*max(MPS),kqm*max(MQS)),max(kvm*max(MVS),kthm*sum(MTHS)))

; 
     f(j,1)=(kpm*sum(MPS)+kqm*sum(MQS));%+kvm*sum(MVS);%+kthm*sum(MTHS); 
     %fr(j,1)=f(j,1); 
     %fr(j,2)=j; 
     fev=fev+1; 
 end 
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%Initial personal best values 
for i=1:p 
    for k=1:nbus 
        thp(i,k)=th(i,1,k); 
    end 
    for k=1:nbus 
        vp(i,k)=v(i,1,k); 
    end 
end 
%for Initial Global best values updation 
fmin=min(f(:,1)); 
for k=1:p 
    if f(k,1)==fmin 
        gb=k; 
    else 
    end 
end 
%Initial global best value 

  
for k=1:p 
    for j=1:nbus 
        thg(k,j)=th(gb,1,j); 
         end 
       for j=1:nbus 
        vg(k,j)=v(gb,1,j); 
        end 
end 
fgm = min(f(:,1)); 
Q3=zeros(p,it,nbus); 
for i=1:it 
   %for inertia weight W 
    %wmax=.4; 
    %wmin=.3; 
    %w=wmax-((wmax-wmin)*i/it); 
      %velocity update 
      %position update 
      w=0.8;       
for j=1:p 
       % w(j)=.4+(f(j,i)*(min(f(:,i)-f(j,i)))/(fp(j)*(min(f(:,i)-

f(j,i))))); 
       % L1(j)=sqrt(fp(j)/f(j,i)); 
       % L2(j)=sqrt(min(f(:,i))/f(j,i)); 
        for k=1:nbus 

     
        vth(j,(i+1),k) = w*vth(j,i,k) + rp*rand()*(thp(j,k)-th(j,i,k)) + 

rg*rand()*(thg(j,k)-th(j,i,k)); 
        th(j,(i+1),k) = th(j,i,k) + rf*vth(j,(i+1),k); 
        end 

           

         
        for q=2:nbus 
        vv(j,(i+1),q) = w*vv(j,i,q) + rp*rand()*(vp(j,q)-v(j,i,q)) + 

rg*rand()*(vg(j,q)-v(j,i,q)); 
        v(j,(i+1),q) = v(j,i,q) + rf*vv(j,(i+1),q); 
        end 

         
end 
%objective function value 
for j=1:p 
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 P = zeros(nbus,1); 
 Q = zeros(nbus,1); 
 MPS=zeros(14,1); 
 MQS=zeros(14,1); 
 MQS1=zeros(14,1); 
     for m = 1:nbus 
        for k = 1:nbus 
            P(m) = P(m) + v(j,(i+1),m)* 

v(j,(i+1),k)*(G(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k)) + 

B(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k))); 

            
        end 
     end 
        for m = 1:nbus 
        for k = 1:nbus 
            Q(m) = Q(m) + v(j,(i+1),m)* 

v(j,(i+1),k)*(G(m,k)*sin(th(j,(i+1),m)-th(j,(i+1),k)) - 

B(m,k)*cos(th(j,(i+1),m)-th(j,(i+1),k))); 

          
        end 
        end 

          
% real power mismatch 
  MP=P-Psp; 
  if (P(1)-.5)*(2-(P(1))) >= 0 
       MP(1)=0; 
  end 
  if (P(1)-.5)*(2-(P(1))) < 0 
      MP(1)=abs(min((P(1)-.5),(2-(P(1))))); 
  end   
 %  if (P(2)-.2)*(1-(P(2))) >= 0 
 %      MP(2)=P(2)-Psp(2); 
 % end 
 % if (P(2)-.2)*(1-(P(2))) < 0 
 %     MP(2)=abs(min((P(2)-.5),(2-(P(2))))); 
 % end         
  MPS=MP.^2; 

   
 %reactive power mismatch and voltage mismatch 
  MQ=Q-Qsp; 
  MQS=MQ.^2; 
  MQS(1)=0; 

   
 % MVS=zeros(14,1); 
 % for jk=2:14 
 %     if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) < 0 
 %         MVS(jk)=(min((v(j,1,jk)-0.9),(1.1-v(j,1,jk))))^2; 
 %     end 
 %     if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) >= 0 
 %         MVS(jk)=0; 
 %     end 
 % end 

   
  for jk=[2,3,6,8] 
    if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))<0) 
       % MVS(jk)=((v(j,1,jk)-vmax(jk))^2); 
        MQS(jk)=(min((Q(jk)-Qmin(jk)),(Qmax(jk)-Q(jk))))^2; 
    end 
    if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))>=0) 
        MQS(jk)=0; 
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    end 
  end 

  
  %objective function value 
  

%f(j,i+1)=max(max(kpm*max(MPS),kqm*max(MQS)),max(kvm*max(MVS),kthm*sum(MTHS

))); 
  f(j,(i+1))=(kpm*sum(MPS)+kqm*sum(MQS));%+kvm*sum(MVS);%+kthm*sum(MTHS); 
  fr(j,1)=f(j,i+1); 
  fr(j,2)=j; 
  fev=fev+1; 
end 

  
 %personal best values updation  
for j=1:p 
 P = zeros(nbus,1); 
 Q = zeros(nbus,1); 
 MPS=zeros(p,1); 
 MQS=zeros(p,1); 
        for t =1:nbus 
        for k = 1:nbus 
            P(t) = P(t) + vp(j,t)* vp(j,k)*(G(t,k)*cos(thp(j,t)-thp(j,k)) + 

B(t,k)*sin(thp(j,t)-thp(j,k))); 

            
        end 
        end 
        for t = 1:nbus 
        for k = 1:nbus 
            Q(t) = Q(t) + vp(j,t)* vp(j,k)*(G(t,k)*sin(thp(j,t)-thp(j,k)) - 

B(t,k)*cos(thp(j,t)-thp(j,k))); 

            
        end 
        end 

        
% real power mismatch 
  MP=P-Psp; 
  if (P(1)-.5)*(2-(P(1))) >= 0 
       MP(1)=0; 
  end 
  if (P(1)-.5)*(2-(P(1))) < 0 
      MP(1)=abs(min((P(1)-.5),(2-(P(1))))); 
  end  
 % if (P(2)-.2)*(1-(P(2))) >= 0 
 %      MP(2)=P(2)-Psp(2); 
 % end 
 % if (P(2)-.2)*(1-(P(2))) < 0 
 %     MP(2)=abs(min((P(2)-.5),(2-(P(2))))); 
 % end         
  MPS=MP.^2; 

   
  %reactive power mismatch and voltage mismatch 
  MQ=Q-Qsp; 
  MQS=MQ.^2; 
  MQS(1)=0; 

   
 % MVS=zeros(14,1); 
 % for jk=2:14 
 %     if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) < 0 
 %         MVS(jk)=(min((v(j,1,jk)-0.9),(1.1-v(j,1,jk))))^2; 
 %     end 
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 %     if (v(j,1,jk)-0.9)*(1.1-v(j,1,jk)) >= 0 
 %         MVS(jk)=0; 
 %     end 
 % end 

   
  for jk=[2,3,6,8] 
    if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))<0) 
       % MVS(jk)=((v(j,1,jk)-vmax(jk))^2); 
        MQS(jk)=(min((Q(jk)-Qmin(jk)),(Qmax(jk)-Q(jk))))^2; 
    end 
    if((Q(jk)-Qmin(jk))*(Qmax(jk)-Q(jk))>=0) 
        MQS(jk)=0; 
    end 
  end 

   

  
  %objective function value 
  

%fp(j)=max(max(kpm*max(MPS),kqm*max(MQS)),max(kvm*max(MVS),kthm*sum(MTHS)))

; 
  fp(j)=(kpm*sum(MPS)+kqm*sum(MQS));%+kvm*sum(MVS);%+kthm*sum(MTHS); 
  fev=fev+1; 
end 

  
   if(p>pf && mod(i,fs)==0) 
     fr=sortrows(fr); 
     fr1=fr; 
     k1=1; 
     k2=0; 
     k3=((p/r)); 
     k4=1; 
     for i1=(k3+1):p 
        mn(1,k1)=fr(i1,2); 
        k1=k1+1; 
     end 
       v(mn,:,:)=[]; 
       th(mn,:,:)=[]; 
       vv(mn,:,:)=[]; 
       vth(mn,:,:)=[]; 
       vp(mn,:)=[]; 
       thp(mn,:)=[]; 
       vg(mn,:)=[]; 
       thg(mn,:)=[]; 
       f(mn,:,:)=[]; 
       fr(mn,:)=[]; 
       p=p/r; 
  end 
  mn=[]; 

   
%personal best value updation 
        for k=1:p 
            for m=1:nbus 
               if f(k,i+1)<fp(k) 
               thp(k,m)=th(k,i+1,m); 
               vp(k,m)=v(k,i+1,m); 
             else 
            end 
        end     
   end 
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   %for Global best values updation 
   % if min(f(:,(i+1)))<fgm 
        fgm=min(f(:,(i+1))); 
    %end 
    %end 

     
  for m=1:nbus 

        
        for k=1:p 
        if f(k,i+1)==fgm 
            for l=1:p 
                thg(l,m) = th(k,i+1,m);     %global best values 
               end 
        else 
       end 

         
   end 
  end 
       for m=2:nbus 

       
        for k=1:p 
        if f(k,i+1)==fgm 
            for l=1:p 
                  vg(l,m) = v(k,i+1,m);          %global best values 
            end 
        else 
        end 

        
   end 
       end 
%stopping criteria 
%    gb1=gb; 
fgm=min(f(:,(i))); 
for k=1:p 
    if f(k,i)==fgm 
        gb1=k; 
    else 
    end 
end     
    if (abs(f(gb1,i))<=10^(-T)) 

            
        break 
    end 

  
%vth(gb1,(i+1),2)  
end 
toc; 
c12=toc; 
     P=zeros(14,1); 
     Q=zeros(14,1); 
     for m = 1:nbus 
        for k = 1:nbus 
            P(m) = P(m) + v(gb1,(i),m)* 

v(gb1,(i),k)*(G(m,k)*cos(th(gb1,(i),m)-th(gb1,(i),k)) + 

B(m,k)*sin(th(gb1,(i),m)-th(gb1,(i),k))); 

            
        end 
     end 
     for m = 1:nbus 
        for k = 1:nbus 
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            Q(m) = Q(m) + v(gb1,(i),m)* 

v(gb1,(i),k)*(G(m,k)*sin(th(gb1,(i),m)-th(gb1,(i),k)) - 

B(m,k)*cos(th(gb1,(i),m)-th(gb1,(i),k))); 

          
        end 
     end 
for j=1:1:14 
    fprintf('\n power calculated at bus no. %d is %f + j %f',j,P(j),Q(j)); 
    fprintf('\n power demand at bus no. %d is %f + j %f',j,Psp(j),Qsp(j)); 
    fprintf('\n     voltage            %f',v(gb1,i,j)); 
    fprintf('\n     delta              %f',th(gb1,i,j)*180/(pi)); 
    fprintf('\n');  
end 
disp('function value ='); 
f(gb1,i) 
disp('no. of function evaluations'); 
fev 
disp('time elapsed') 
c12 
disp('no. of iterations') 
i 
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iii) MATLAB code for minimizing benchmark functions using PSO. 

Main program 

clc 
clear all; 
p1=0; 
p2=0; 
prompt = {'Enter dimension:','Enter swarm size:','Enter maximum number of 

iterations','Enter tolerance','Enter inertia weight factor','Enter 

cognitive learning acceleration factor','Enter social learning acceleration 

factor','Enter constriction factor','Enter initial velocity range','Enter 

initial position range'}; 
dlg_title = 'We have to minimize inputted function'; 
num_lines = 1; 
def = {'2','400','1000','4','.6','1','1','1','unifrnd(-

5,10,1,p)','unifrnd(-5,10,1,p)'}; 
answer = inputdlg(prompt,dlg_title,num_lines,def); 
[D vald] = str2num(answer{1}); 
[p valp] = str2num(answer{2});  
[it valit]=str2num(answer{3}); 
[T valT] = str2num(answer{4});  
[w valw] = str2num(answer{5}); 
[rp valrp] = str2num(answer{6});  
[rg valrg]=str2num(answer{7}); 
[rf valrf] = str2num(answer{8});  
str={'Select a function'}; 
S={'rosenbrock';'sphere';'griewank';'rastrigin'}; 
choice=listdlg('PromptString',str,'ListSize',[100,100],'ListString',S,'Sele

ctionMode','Single'); 
switch choice 
    case 1 
        str1=rosenbrock(D); 
    case 2 
        str1=sphere(D); 
    case 3 
        str1=griewank(D); 
    case 4 
        str1=rastrigin(D); 
end 
fev=0; 
x=zeros(D,p,it);  
v=zeros(D,p,it); 
f=zeros(p,it); 
fr=zeros(p,2); 
df=zeros(1,(it-1)); 
mn=[]; 
tic 
for d=1:D 
   x(d,:,1)=eval(answer{9}); 
   v(d,:,1)=eval(answer{10}); 
end  

  

  
for j=1:p 
    i=0; 
    f(j,1)=0; 
    f(j,1)=f(j,1)+ eval(str1); 
end 
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[val gb1]=min(f(:,1)); 
gbest=gb1; 
pbest=ones(1,p); 
for i=1:it 

       
%for inertia weight W 

         
        for j=1:p 
            for d=1:D 
                k2=0; 
                kstr='w*v(d,j,i) + (rp*(x(d,j,pbest(j))-x(d,j,i))) + 

(rg*(x(d,gbest,i)-x(d,j,i)))'; 
                k2=k2+eval(kstr); 
                v(d,j,(i+1)) = (rf*k2); 
                x(d,j,(i+1)) = x(d,j,i) +  v(d,j,(i+1)); 
            end 
        end 

     
    for j=1:p 
       f(j,i+1)=0;  
       f(j,i+1)= f(j,i+1)+ eval(str1);       
       fev=fev+1; 
    end 
    choice1=2; 
    if mod(i,20000)==0 
      str23={'Exit ?'}; 
      S1={'Yes';'No'}; 
      

choice1=listdlg('PromptString',str23,'ListSize',[100,100],'ListString',S1,'

SelectionMode','Single'); 
    end 
    %stopping criterion 
    if i>1 
%         print = [x(d,:,i-1) x2(:,i-1) v1(:,i-1) v2(:,i-1) f(:,i-1)]; 
%         disp('     x1        x2        v1        v2        f') 
%         disp(print) 
        [val gb1]=min(f(:,i+1)); 
        if val<10^(-T) || choice1==1 
            break 
        end 
    end 
    gbest=gb1; 
    for i2=1:p 
        if f(i2,i+1)<= f(i2,i) 
            pbest(i2)=i+1; 
        end 
    end 
end 
toc 
sprintf('the value of objective function is %d',(f(gb1,i+1))) 
sprintf('the number of function evaluations is %d',fev) 
for d=1:D 
   fprintf('the value of x %d is',d) 
   x(d,gb1,i+1) 
end 
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iv) MATLAB code for minimizing benchmark functions using SEPSO. 

Main program 

clc 
mn=[]; 
fr1=[]; 
clear all; 
p1=0; 
p2=0; 
prompt = {'Enter dimension:','Enter swarm size:','Enter maximum number of 

iterations','Enter tolerance','Enter inertia weight factor','Enter 

cognitive learning acceleration factor','Enter social learning acceleration 

factor','Enter constriction factor','Enter initial velocity range','Enter 

initial position range','Enter final swarm size','Enter reduction 

factor','Enter sorting frequency'}; 
dlg_title = 'We have to minimize inputted function'; 
num_lines = 1; 
def = {'2','400','1000','4','.6','1','1','1','unifrnd(-

5,10,1,p)','unifrnd(-5,10,1,p)','200','2','10'}; 
answer = inputdlg(prompt,dlg_title,num_lines,def); 
[D vald] = str2num(answer{1}); 
[p valp] = str2num(answer{2});  
[it valit]=str2num(answer{3}); 
[T valT] = str2num(answer{4});  
[w valw] = str2num(answer{5}); 
[rp valrp] = str2num(answer{6});  
[rg valrg]= str2num(answer{7}); 
[rf valrf] = str2num(answer{8});  
[pf valPf]=str2num(answer{11}); 
[r valr]=str2num(answer{12}); 
[fs valfs]=str2num(answer{13}); 
str={'Select a function'}; 
S={'rosenbrock';'sphere';'griewank';'rastrigin'}; 
choice=listdlg('PromptString',str,'ListSize',[100,100],'ListString',S,'Sele

ctionMode','Single'); 
switch choice 
    case 1 
        str1=rosenbrock(D); 
    case 2 
        str1=sphere(D); 
    case 3 
        str1=griewank(D); 
    case 4 
        str1=rastrigin(D); 
end 
fev=0; 
x=zeros(D,p,it);  
v=zeros(D,p,it); 
f=zeros(p,it); 
fr=zeros(p,2); 
df=zeros(1,(it-1)); 
mn=[]; 
tic 
for d=1:D 
   x(d,:,1)=eval(answer{9}); 
   v(d,:,1)=eval(answer{10}); 
end  

  

  
for j=1:p 
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    i=0; 
    f(j,1)=0; 
    f(j,1)=f(j,1)+ eval(str1); 
end 

  
[val gb1]=min(f(:,1)); 
gbest=gb1; 
pbest=ones(1,p); 
for i=1:it 

       
%for inertia weight W 

         
        for j=1:p 
            for d=1:D 
                k2=0; 
                kstr='w*v(d,j,i) + (rp*(x(d,j,pbest(j))-x(d,j,i))) + 

(rg*(x(d,gbest,i)-x(d,j,i)))'; 
                k2=k2+eval(kstr); 
                v(d,j,(i+1)) = (rf*k2); 
                x(d,j,(i+1)) = x(d,j,i) +  v(d,j,(i+1)); 
            end 
        end 

     
    for j=1:p 
       f(j,i+1)=0;  
       f(j,i+1)= f(j,i+1)+ eval(str1);   
       fr(j,1)=f(j,i+1); 
       fr(j,2)=j; 
       fev=fev+1; 
    end 
    choice1=2; 
    if mod(i,20000)==0 
      str23={'Exit ?'}; 
      S1={'Yes';'No'}; 
      

choice1=listdlg('PromptString',str23,'ListSize',[100,100],'ListString',S1,'

SelectionMode','Single'); 
    end 

     
    if(p>pf && mod(i,fs)==0) 
     fr=sortrows(fr); 
     fr1=fr; 
     k1=1; 
     k2=0; 
     k3=((p/r)); 
     k4=1; 
     for i1=(k3+1):p 
        mn(1,k1)=fr(i1,2); 
        k1=k1+1; 
     end 
       v(:,mn,:)=[]; 
       x(:,mn,:)=[]; 
       f(mn,:)=[]; 
       fr(mn,:)=[]; 
       p=p/r; 
  end 
  mn=[]; 

  
    %stopping criterion 
    if i>1 
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%         print = [x(d,:,i-1) x2(:,i-1) v1(:,i-1) v2(:,i-1) f(:,i-1)]; 
%         disp('     x1        x2        v1        v2        f') 
%         disp(print) 
        [val gb1]=min(f(:,i+1)); 
        if val<10^(-T) || choice1==1 
            break 
        end 
    end 
    gbest=gb1; 
    for i2=1:p 
        if f(i2,i+1)<= f(i2,i) 
            pbest(i2)=i+1; 
        end 
    end 
end 
toc 
sprintf('the value of objective function is %d',(f(gb1,i+1))) 
sprintf('the number of function evaluations is %d',fev) 
for d=1:D 
   fprintf('the value of x %d is',d) 
   x(d,gb1,i+1) 
end 

 

v) Benchmark functions implemented in MATLAB 

Rosenbrock 

function f = rosenbrock(D) 
str2=' '; 
str1='(100*( (x(d,j,(i+1)))^2 - x(d+1,j,(i+1)) )^2) +((1- 

x(d,j,(i+1)))^2)'; 
for d=1:D-1 
        str2=strcat(str2,'+',str1); 
        str2=strrep(str2,'d',num2str(d)); 
end 
f=str2; 
f(1)=[]; 
end 

 

Griewank 

function f = griewank(D) 
str2=' '; 
str1='((1/4000)*(x(d,j,(i+1)))^2)'; 
str3='(cos(x(d,j,(i+1)))/(sqrt(d)))'; 
for d=1:D 
        str2=strcat(str2,'+',str1); 
        str2=strrep(str2,'d',num2str(d)); 
end 
str4='(cos(x(1,j,(i+1)))/(sqrt(1)))'; 
for d=2:D 
    str4=strcat(str4,'*',str3); 
    str4=strrep(str4,'d',num2str(d)); 
end 
    f=strcat('1',str2,'-',str4); 
end 
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Sphere 

function f = sphere(D) 
str2=' '; 
str1='(x(d,j,(i+1)))^2'; 
for d=1:D 
        str2=strcat(str2,'+',str1); 
        str2=strrep(str2,'d',num2str(d)); 
end 
f=str2; 
f(1)=[]; 
end 

  

 

Rastrigin 

function f = rastrigin(D) 
str2=' '; 
str1='((x(d,j,(i+1)))^2)'; 
str3='(10*(cos(2*pi*(x(d,j,(i+1))))))'; 
for d=1:D 
        str2=strcat(str2,'+',str1); 
        str2=strrep(str2,'d',num2str(d)); 
end 
str4='(10*(cos(2*pi*(x(1,j,(i+1))))))'; 
for d=2:D 
    str4=strcat(str4,'+',str3); 
    str4=strrep(str4,'d',num2str(d)); 
end 
    f=strcat(num2str(10*D),str2,'-','(',str4,')'); 
end 
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