
 

Cognitive Packet Network 

A dissertation submitted in the partial fulfillment for the award of Degree of 

Master of Technology 

In 

Software Technology 

by 

Kishore Chandra Dixit (Roll no. 2K11/ST/10) 

 

Under the guidance of 

Vinod Kumar 

 

DEPARTMENT OF COMPUTER ENGINEERING 

DELHI TECHNOLOGICAL UNIVERSITY 

BAWANA ROAD, DELHI 

2014 

 



 

i 

 

 

DECLARATION 

 

 

 

I hereby want to declare that the thesis entitled “Cognitive Packet Network” which is being 

submitted to the Delhi Technological University, in partial fulfillment of the requirements for 

the award of degree in Master of Technology in Software Technology is an authentic work 

carried out by me. The material contained in this thesis has not been submitted to any institution 

or university for the award of any degree. 

 

 

 

___________________________________  

Kishore Chandra Dixit 

Department of Computer Engineering  

Delhi Technological University, 

Delhi-110042 



 

ii 

 

CERTIFICATE 

 
 

 

DELHI TECHNOLOGICAL UNIVERSITY 

BAWANA ROAD, DELHI-110042 

Date:                                                       

This is to certify that the thesis entitled “Cognitive Packet Network “submitted by Kishore 

Chandra Dixit (Roll Number: 2K11/ST/10), in partial fulfillment of the requirements for the 

award of degree of Master of Technology in Software Technology, is an authentic work carried 

out by him under my guidance. The content embodied in this thesis has not been submitted by 

him earlier to any institution or organization for any degree or diploma to the best of my 

knowledge and belief. 

 

 Vinod Kumar, 

Assoc. Professor,  

Department of Computer Engineering, 

Delhi Technological University, Delhi-110042 



iii 

 

 

ACKNOWLEDGEMENT 

 

I would like to take this opportunity to express my appreciation and gratitude to all those who 

have helped me directly or indirectly towards the successful completion of this work. 

 Firstly, I would like to express my sincere gratitude to my guide Mr.Vinod Kumar, Associate 

Professor, Department of Computer Engineering, Delhi Technological University, Delhi 

whose benevolent guidance, encouragement, constant support and valuable inputs were always 

there for me throughout the course of my work. Without his continuous support and interest, this 

thesis would not have been the same as presented here. 

Besides my guide, I would like to thank Mr. Kamal Garg, M Tech. Scholar DTU for his help. 

Also I would like to extend my thanks to the entire staff in the Department of Software 

Engineering, DTU for their help during my course of work. 

 

 

KISHORE CHANDRA DIXIT 

 2K11/ST/10 

 



 

iv 

 

ABSTRACT 

 

The development of computer networks has seen a paradigm shift from static, hierarchical 

network structures to highly distributed, autonomous systems without any form of centralized 

control. For networking nodes the ability to self-adapt and self-organize in a changing 

environment has become a key issue. One of the main challenges faced by computer networks is 

the efficient management of increasing complexity. 

Here we discuss the definition and framework for a novel type of adaptive data network: The 

cognitive network. In a cognitive network, the collection of elements that make up the network 

observes network conditions and then, using prior knowledge gained from previous interactions 

with the network, plans, decides and acts on this information. They are capable of perceiving 

current network conditions and then planning, learning, and acting according to end-to-end 

goals. Cognitive networks are motivated by the complexity, heterogeneity, and reliability 

requirements of tomorrow's networks, which are increasingly expected to self-organize to meet 

user and application objectives. 

 

In Cognitive Packets Network (CPN) the intelligent capabilities for routing and flow control are 

concentrated in the packets, rather than in the nodes and protocols. Cognitive packets within a  
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CPN route themselves. They are assigned goals before entering the network and pursue these 

goals adaptively. Cognitive packets learn from their own observations about the network and 

from the experience of other packets with which they exchange information via mailboxes. 

Cognitive packets rely minimally on routers. 

Here we have tried to present the advantages of CPN over the legacy IP routing protocol with the 

help of various measurement which we have performed under identical conditions showing the 

gain resulting from the use of CPN. 
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CHAPTER 1 

 

INTRODUCTION 

Today our reliance on computer networks is a fact of life; as such the adaptability, security 

and reliability of these networks are of utmost importance. Increased connectivity and 

availability of the world’s networks has lead to more and more complex systems, with an 

equally increasing number of vulnerabilities. 

Reliable networks that provide good service quality are expected to become the norm in 

all communication aspects, especially as the information transferred between network users 

gets more complex and confidential, and as malicious users try to deliberately degrade or 

altogether deny legitimate network service. There is therefore an increased need for network 

adaptability, stability and reliability which has led to the growth of autonomic networks that 

use QOS-driven approaches for greater stability and reliability in communications.  

 

Here we will discuss about a packet switching networks in which intelligence is constructed 

into the packets, rather than at the nodes or in the protocols. Networks which contain such 

packets will be called “Cognitive Packet Networks (CPN)”. Cognitive packets in CPN 

route themselves, and learn to avoid congestion and to avoid being lost or destroyed. 

 

 Cognitive packets learn from their own observations about the network and from the 

experience of other packets. They rely minimally on routers. Each cognitive packet 

progressively updates its own model of the network as it travels through the network, and 

uses the model to make routing decisions. 

 In the most extreme case, a cognitive packet will “know” where it is in the network without 

asking for the identity of the switch where it is being currently stored, so that packets can be 

self-routed without relying on the routing algorithms provided by the network nodes. 

Cognitive packets rely minimally on routers, so that network nodes only serve as buffers, 

mailboxes and processors. 
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In CPN, the steady-state of Random Neural Networks (RNN) [12] running on network 

routers decides network paths. Random Neural Networks (RNNs) are trained continuously by 

enhancing network flows with packets that monitor performance. These packets store 

information about the network state as they cross the network from a source to a destination, 

and get updated at each hop in the path. The Cognitive Packet Network provides good 

network adaptation properties under varying network conditions and user requirements. They 

can perceive current network conditions, plan, decide, act on those conditions, learn from the 

consequences of its actions, all while following end-to-end goals. 

 

 
 

Cognitive Packet Network 

The Cognitive Packet Network (CPN) is a routing protocol that uses adaptive techniques 

based on on-line measurements to provide QoS to its users. The users themselves can declare 

individually their QoS goals, such as minimum delay, minimum packet loss, maximum 

bandwidth, minimum power consumption or a weighted combination of these. CPN has been 

designed to perform self-improvement in a distributed manner by learning from the 

experience of the packets in the network and by constantly probing for the current best routes. 

 

Cognitive packets in CPN route themselves, and learn to avoid congestion and to avoid being 

lost or destroyed. Cognitive packets learn from their own observations about the network and 

from the experience of other packets with which they exchange information via mailboxes. 

Each cognitive packet progressively refines its own model of the network as it travels through 

the network, and uses the model to make routing decisions. In the most extreme case, a 

cognitive packet will know, whether it is in the network without asking for the identity of the 

node where it is being currently stored. So the packets can be self-routed without relying on 

the routing algorithms provided by the network nodes.  
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1.1 Structure of Cognitive Packets 

 

A Cognitive Packet (CP) contains the following fields: 

 The Identifier Field (IF) which provides a unique identifier for the CP, as well as 

information about the class of packets it may belong to, such as its quality of service 

(QoS) requirements. 

 The Data Field contains the data/payload. It contains the real information which has to 

be transferred from source to destination. 

 A Cognitive Map (CM) which contains the usual Source and Destination (S-D) 

information, as well as a map showing where the packet currently .thinks. it is, the 

packet's view of the state of the network, and information about where it wants to go 

next. 

The S-D information may also be stored in the IF. 

 Executable code that the CP uses to update its CM. This code will contain learning 

algorithms for updating the CM, and decision algorithms which use the CM. 

 

 

 

 

                   

Fig-1 Structure of Cognitive Packets. 

 

CPs store information in their private Cognitive Map (CM) [20] and update the CM and make 

their routing decisions using the code which is in each packet. This code will include neural 

networks or other adaptive algorithms which will be described above.  

In a CPN, the packets use nodes act as .parking. Or resting areas where they make decisions 

and route themselves. They also use nodes as places where they can read their mailboxes. 

Identifier

Field
DATA

Cognitive

Map

Executable

Code
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Mailboxes may be filled by the node, or by other packets which pass through the node. 

Packets also use nodes as processors which execute their code to update their CM and then 

execute their routing decisions. As a result of code execution, certain information may be 

moved from the CP to certain mailboxes. The nodes may execute the code of CPs in some 

order of priority between classes of CPs, for instance as a function of QoS requirements 

which are contained in the identification field). 

The manner in which Cognitive Memory at a Node is updated by the node’s processor is 

shown in Figure 2. 

 

 

Fig-2 Update of a CP by a node CPN 

Packet arrives at the input buffer of a node. The code of each CP in the input buffer is 

executed and the following is done. 

– The CP retrieves relevant information from the mailbox 

– The packet’s CM is updated 

– Some information is moved from the CP to the MB 

– The CP is moved to an output buffer 
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A node in the CPN acts as a storage area for CPs and for mailboxes which are used to 

exchange data between CPs, and between CPs and the node.  

It has an input buffer for CPs arriving from the input links, a set of mailboxes, and a set of 

output buffers which are associated with output links. 

 

Nodes in a CPN carry out the following functions: 

 

1. A node receives packets via a finite set of ports and stores them in an input buffer. 

2. It transmits packets to other nodes via a set of output buffers. Once a CP is placed 

in an output buffer. It is transmitted to another destination node with some priority 

indicated in the output buffer. 

3. A node receives information from CP,s which it stores in Mailboxes(MB).MB,s 

may be reserved for certain classes of CP,s or may be specialized by classes of 

CP,s. For instance, there may be different MB,s for packets identified by different 

Source-Destination pairs. 

4. A node executes the code for each CP in the input buffer [17]. During the 

execution of the CPs code, the CP may ask the node to decline its identity, and to 

provide information about its local connectivity (i.e. “This is Node A, and I am 

connected to Nodes B, C, D via out-put buffers) while executing its code. In some 

cases, the CP may already have this information in its CM as a result of the initial 

information it received at its source, and as a result of its own memory of the 

sequence of moves it has made. 

 

 

Cognitive packet routing is carried out using a reinforcement learning (RL) algorithm 

based on Random Neural Networks (RNN). The algorithm code is stored in each router and 

its parameters are updated by the router. For each successive smart packet, the router 

computes the appropriate outgoing link based on the outcome of this computation. 

 

So we can conclude the below:- 

 

 Storage area for CPs: Input and Output Buffers 

 Mailboxes are used to exchange data between CPs 

 The Node executes the code for each CP in the input buffer. 

 

A recurrent RNN, with as many “neurons” as there are possible outgoing links, is used in 

the computation of CPN. The weights of the RNN are updated so that decision outcomes are 

reinforced or weakened depending on how they have contributed to the success of the QoS 

goal. 
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Fig-3   Node in a CPN 

 

 

 

 

 

As a result of this execution in a node:  

 

 The CM's of the packets in the input buffer are updated,  

 

 Certain information is moved from CPs to certain MB's,  

 

 A CP which has made the decision to be moved to an output buffer is transferred 

there, with the priority it may have requested. 
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CPN makes use of adaptive techniques to seek out routes based on user defined QoS 

criteria. For in- stance, packet loss and delay can be used as routing criteria to improve 

overall reliability for the users of the network, or delay and its variance can be used to 

find routes which provide the QoS requested by voice packets. 

 

 

1.2 Types of CPN Packets 

 
 

A CPN carries three types of packets:- 

 

– Smart packets (SP) 

– Dumb packets (DP)   

– Acknowledgments (ACK). 

 

 Smart or cognitive packets route themselves, they learn to avoid link and node 

failures and congestion and to avoid being lost. They learn from their own observations 

about the network and from the experience of other packets. They rely minimally on 

routers. Smart packets use reinforcement learning to discover routes, and the 

reinforcement learning “re-ward” function incorporates the QoS requested by a particular 

user. This reward is the inverse of a QoS “goal” which each user can provide before 

initiating a connection. 

 

 When a smart packet arrives to a destination, an acknowledgment (ACK) packet is 

generated by the destination and the ACK heads back to the source of the smart packet 

along the inverse route. As it traverses successive routers, it updates mailboxes in the 

CPN routers; 

 

 When it reaches the source node it provides source routing information for the dumb 

packets. Dumb packets of a specific QoS class use successful routes which have been 

selected in this manner by the smart packets of the same class. 
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1.3 Classes of CPN packets 

Cognitive packets can be hierarchically arranged into various classes [5],[8].  

A Class is a set of packets having the same QoS requirements, sets of internal states, control 

rules, input-output signals. 

 

The nodes of a Cognitive packet network may handle various cognitive packets based on 

their class they may assign a set of mailbox for a particular class of cognitive packet. 

The routing information carried by ACK packets of a specific class is passed to dumb packets 

of same class only. 

 

 

 

 

 

 

 

          

 

Fig-4 Classes of Cognitive Packets 
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1.4 STD of a CPN Router 

The below diagram shows the various states of a CPN router which handles the CPN packets. 

All these activities are carried by the CPN router after the packet has arrived in the input 

buffer. The packets are send to output buffer as per the below diagram. 

 

 

                         

Fig 5 State transition diagram or a CPN Router 
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CHAPTER 2 

 

2.1 Adaptation by cognitive packets 

Each cognitive packet starts with a given representation of the network from which it then 

progressively constructs its own Cognitive Map of network state and uses it to make routing 

decisions. Learning paradigms are used by CPs to update their CM and reach decisions using 

the packet's prior experience [12],[15] and the input provided via mailboxes. 

 

 

 In the adaptive approach we propose for CPs, each packet entering the network is 

assigned a Goal before it enters the net-work, and the CP uses the goal to determine its 

course of action each time it has to make a decision. For instance if the CP contains part of a 

telephone conversation, a typical goal assigned to the packet might be: “Go from source S to 

destination D in minimum time”. A more sophisticated goal in this case could be: “go from S 

to D in minimum time, but do not overtake any packets of the same sequence which left 

before you”, since voice packets need to be used at the receiver in the sequence they were 

transmitted. On the other hand, if these were data packets, the goal may simply be: “go from 

S to D without getting lost or destroyed”.  

 

In our work, these goals are translated into numerical quantities (e.g. delay values, loss 

probabilities, and weighted combinations of such numerical quantities) which are then used 

directly in the adaptation. A simple approach to adaptation is to respond in the sense of the 

most recently available data. Here the CPs cognitive memory contains data which is up-dated 

from the contents of the node's mailbox. After this update is made, the CP makes the decision 

which is most advantageous (lowest cost or highest reward) simply based on this 

information; we will call this approach the Bang-Bang algorithm.  

We will be using the below learning paradigms for CPs. 
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Random neural networks with reinforcement learning (RNNRL) [16]. 

 In this case a recurrent network is used both for storing the CM and making decisions. The 

weights of the network are updated so that decisions are reinforced or weakened depending 

on whether they have been observed to contribute to increasing or decreasing the 

accomplishment of the declared goal. A description of the RNN and the related algorithms 

used in this paper are presented in next section. 

 

 

2.2 The Random Neural Network and related algorithms  
 

For the Reinforcement learning (RL)[12] approach to CP adaptation, as well the feed-

forward neural network predictor [18], we have used the RNN, which is an analytically 

tractable spiked random neural network model whose mathematical structure is akin to that of 

queuing networks.  

 

The state qi of the i-th neuron in the network represents the probability that i-th neuron is  

excited. Each neuron is associated with a distinct outgoing link at a node.  

The state qi should satisfy the following system of non-linear equations:- 

 

 

 

Where  

 

  

 Wij
+ is the rate at which neuron i sends excitation spikes to neuron j when neuron i 

is excited. 

  

j

ijiji wq

  

j

ijiji wq 






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ii
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i
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  Wij
- is the rate at which neuron i sends inhibition spikes to neuron j when i is 

excited 

 and r(i) is the total firing rate from the neuron i. 

 

 

Fig-6  Example of RNN 

 

 

Where w+
ij = r(i)p+ (i,j) and w-

ij = r(i)p- (i,j) 

Are the rates at which neuron i sends excitation and inhibition spikes to neuron j respectively. 
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For a neuron network, the network parameters are these n by n “weight matrices”, which 

need to be “learned” from input data. 

 

RL is used in CPN as follows. Each node stores a specific RNN for each active source-

destination pair, and each QoS class. The numbers of nodes of the RNN are specific 

to the router, since (as indicated earlier) each RNN node will represent the decision to choose 

a given output link for a smart packet.  

 

Decisions are taken by selecting the output link j for which the corresponding neuron is the 

most excited, i.e. qi < qj for all i=1,2….n. 

 

 

Each QoS class for each source-destination pair has a QoS goal G, which expresses a 

function to be minimized, e.g., Transit Delay or Probability of Loss, or Jitter, or a 

weighted combination, and so on.  

The reward R which is used in the RL algorithm is simply the inverse of the goal 

                                      R = G−1 

Successive measured values of R are denoted by Rl, where l=1, 2… 

These are first used to compute the current value of the decision threshold T: 

 

               Tl = βTl−1 + (1 − β)Rl ; 0 < β < 1 

 

Where β is some constant 0<β<1, typically close to 1. 

 

 

Suppose we have now taken the l th decision which corresponds to neuron j and that we have 

measured the l th reward Rl. We first determine whether the most recent value of the reward 

is larger than the previous value of the threshold Tl-1.  
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If that is the case, then we increase very significantly the excitatory weights going into the 

neuron that was the previous winner (in order to reward it for its new success), and make a 

small increase of the inhibitory weights leading to other neurons.  

 

If the new reward is not greater than the previous threshold), then we simply increase 

moderately all excitatory weights leading to all neurons, except for the previous winner, and 

increase significantly the inhibitory weights leading to the previous winning neuron (in order 

to punish it for not being very successful this time). 

 

 

 

Learning comes from past experience: 

 

If       Tl+1 ≤ Rl+1 

         wji+ ← wji
+ + Rl 

        wji
− ← wji

− + nR−l2 , k = j,                            (Reward) 

 

Else   wji+ ← wji+ + nR−l2 , k = j, 

          wji
−  ← wji

− + Rl.                                            (Punishment) 

 

Rl is calculated from information stored in Mailbox. 
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Since the relative sizes of the weights of the RNN, rather than the actual values, determine 

the state of the neural network, we then re-normalize all the weights by carrying out the 

following operations.  

 

Normalization 

 

First for each i we compute: 

 

 

And then re-normalize the weights with: 

 

 

 

Finally, the probabilities qi are computed using the nonlinear iterations. The largest of the 

qi’s is again chosen to select the new output link used to send the smart packet forward. This 

procedure is repeated for each smart packet for each QoS class and each source-destination 

pair. 
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CHAPTER 3 

 

3.1 Simulation of Cognitive packet network 

The purpose of our simulation was to see whether algorithms which can be implemented 

inside the CPs can result in delay and loss performance improvements as compared to normal 

IP networks. 

Under identical traffic conditions. A single network simulation program was written, and 

three different learning algorithms were used by the CPs. The CPN was chosen to be quite 

large with 20 nodes, and we chose a locally interconnected rectangular grid topology as 

shown in Figure 10.All link speeds were normalized to 1, and packets were allowed to enter 

and leave the network either from the top ten nodes or the bottom ten nodes.  

Traffic arrival into the network was taken to be Poisson. Each packet's destination was one of 

the nodes at the opposite end of the network, and the destination node for each packet were 

chosen to be fixed when the packet enters the network, and drawn to be equally likely among 

all possible 10 destination nodes. 

 Buffers in each node are of unlimited capacity so that blocking or loss is not tied to 

congestion. Packet loss was simulated probabilistically at all nodes with a small fixed 

probability of loss throughout all but a few specific nodes where there is a high packet loss 

probability; these latter nodes are not known in advance by the packets.  
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Congestion at a node can be caused by the normal packet traffic and routing, or by packets 

which route to certain nodes because of congestion elsewhere in the network. It can also 

occur when packets remain in a “safe” node due to the risk of congestion or loss in other parts 

of the network. All the packets were assigned a common goal, which was to minimize a 

weighted combination of delay (W) and loss (L). 

G = W + L 

 

 

 

 

 

 

 

 

 

 

 

 

Fig-7 The Simulated CPN Topology 
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All the algorithms uses four items of information which are deposited in the nodes' 

mailboxes: (1)The length of the local queues in the node,(2) recent values of the downstream 

delays experienced by packets which have previously gone through the output links and 

reached their destinations, (3) the loss rate of packets which have passed through the same 

node and gone through the output links, (4) estimates made by the most recent CPs which 

have used the output links headed for some destination d of its estimated delay Dd and loss Ld 

from this node to its destination.  

The value Dd is updated by each successive CP passing through the node and whose 

destination is d as discussed below. 

 Only a fraction of the packets to any destination are marked for monitoring. The departure 

time-stamps of these marked packets are stored in each node's mailboxes, and the arrival 

dates to destination for the same marked packets arrive via acknowledgement (ACK) packets 

sent back by the destination nodes. These two times used to reconstruct the downstream 

delays for each node.  

In the Bang-Bang algorithm, the CPs read the mailboxes and for each destination compute an 

estimated running average delay of the form Wd aWd + (1 , a)Vd where Vd is the most 

recently available downstream delay value to destination d based on the current decision. 

Similar information is collected and updated for packet loss ld. 

 The CP then makes an assessment of what a “reasonable” value of downstream Loss Ld and 

Delay Dd should be to its destination d, based on its knowledge of where it currently is in the 
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network, of its distance to the destination node, and using the output queue lengths at the 

node.  

 

If either Ld < ld or Dd < Wd, then the CP selects at random any other output link which is on 

some path to the destination d. 

Throughout the simulation results, we vary the arrival rates of packets to each input node 

between 0:1 and 1. All simulations compare the CPs with controls of different kinds, Normal 

IP traffic which has a static routing policy where the packet is routed along a static shortest 

path to the output layer of nodes, and then horizontally to its destination.  

Clearly, this static algorithm could also be implemented in a CPN. However the adaptive 

algorithms we have simulated allow each individual CP to carry out a separate computation 

and make its own individual decisions; thus these adaptive algorithms are a better illustration 

of the capabilities which can be implemented in a CPN as compared to our legacy networks 

using IP. 

 

Simulations results which compare the Cognitive approach to normal IP networks shortest-

path type routing are shown in Fig 9, 10, 11. 

The simulation results obtained in next section will show that the average delay is reduced by 

10% in the CPN as compared to normal IP network where the packets have no intelligence 

and are dependent on the nodes for their routing. Also the packet loss is decreased 

significantly by almost 70 to 80 % in CPN. 
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3.2 The normal CPN implementation 

We have tried to capture the path that a normal IP network will follow and the path which 

may be selected by cognitive packets. The path selected by cognitive packets is not constant 

it varies depending upon the various conditions like traffic, delay and packet loss.The below 

figure shows the basic CPN implementation where 

– Pink dots with blue boundary are nodes. 

– Blue dotted line is link between various nodes. 

– Bold red line is route formed by our cognitive packet algorithm. 

– Bold green line is normal route formed on the basis of distance. 

 

 

 

 

Fig-8 The CPN implementation  
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As can been seen the above figure,the cognitive packets finds the route based on the 

intelligence.This route must be the most efficient route which has been chosen by the smart 

packets considering all the various factors. 

 

3.3 Comparision of Average Delay in CPN and IP Network  

In CPN the dumb packets carry the payload or the actual information.So their performance 

indicates the quality level perceived by the user.Here we measure the round trip delay w.r.t. 

the packet rate or load.The round-trip delay of the packets was calculated at the source node 

from the departure time of the packets and the arrival time of their corresponding 

acknowledgments 

The below figure plots the average delay encountered in both CPN and normal IP 

network.Here the y-axis shows the average delay encountered in milli seconds(ms) and x-axis 

shows the packet arrival rate into the network(load). 

As can be seen in the below graph that average delay encountered by IP network increases as 

compared to CPN with increase in packet load.This is mainly due to fact that CP are 

intelligent and adaptive in nature hence are capable of finding of new and suitables routes 

with the increase in packet load/traffic of a particular roue.But normal IP packets will still 

follow the same route as they cant change the route themselves. 

Also as seen in the below graphs the average delay encountered in normal IP is almost same 

as CPN till some extent.But as the packet arrival rate increases gradually the delay 

encountered increases, which can be associated with the fact that in presence of low packet 

traffic normal IP packets are capable of travelling in the fixed route with high speed same as 
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that of cognitive packets.With increase in packet arrival rate or load the packet traffic 

increases thus leading to small movement of normal IP packets.CP are able to avoid this by 

looking for new routes. 

 

 

                       

Fig-9   Average Delay Vs packet arrival 
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3.4 Comparision of Package loss in CPN and IP Network 

The below figure plots the package loss encountered in both CPN and normal IP network.The 

packet loss ratio (LR) is calculated from the number of dumb packets received by the 

destination DPr and the number of dumb packets sent by the source DPs and the number of 

dumb packets sent by the source DPs. 

Here the y-axis shows the package loss (Mbit/s) and x-axis shows the packet arrival into the 

network .As can be seen in the below graph that package loss in IP significantly high as 

compared to Cognitive packet Network . 

 

Fig-10  Package loss Vs packet arrival 
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This is mainly due to the intelligence of cognitive packets. They have knowledge of the 

network in which they exist and can take routing decisions on their own to avoid any packet 

loss region. Thus leading to significant decrease in package loss as compared to IP network. 

 

3.5 Simulation result obtained by varying CP percentage 

The performance of CPN was found to be changing with change in smart packet ratio of 

CPN. This has been discussed in the next sections. 

Roundtrip delay Vs offered load 

 

                        Fig 11 Roundtrip delay Vs offered load 
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The round-trip delay of the packets was calculated at the source node from the departure time 

of the packets and the arrival time of their corresponding acknowledgments. 

 Fig 11 shows the average round-trip delay of dumb packets as a function of the input traffic 

ratio (load). As can be seen from the graph with increase in smart packets (higher SP ratio) , 

the average round-trip delay of dumb packets drops to lower values; this is explained by the 

fact that the more smart packets, the higher the probability to exploit more paths per unit of 

time. 

Packet loss Ratio Vs offered load 

The below graph plots the packet loss and packet load/rate. Here x-axis represents the 

percentage of lost packets and y-axis shows the package arrival rate/package load. 

 

Fig 12 Packet loss Ratio Vs offered load 
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As can be seen from the graph, packet loss increases with increase in the input load. The 

packet loss is maximum in normal IP packets it is less a bit less in smart packets. It can also 

be observed that different smart packet ratios made no appreciable difference in packets loss. 

 

Packet loss during Route Repair 

Cognitive packets have learning capability. So they can handle route failure in a much better 

way as compared to normal IP networks. Due to the learning capability and internal 

communication between smart packets of a CPN, the link failure or data loss related 

information is transmitted to all the smart packets once any of them faces it. 

Once a smart packet comes to know about link or route failure they look for new routes with 

their inherent route finding mechanism. As soon as a new route is found this info is 

communicated to the dumb packets. Which then follow the new route thus leading to the 

decrease or avoidance of packet loss. 

The next figure shows a graph where the packet loss before route recovery is plotted against 

smart packet ration and logarithm of packet arrival rate. 

As can be seen from the graph. The Packet loss is highest in case when the smart packet ratio 

is zero (normal IP packets). The package loss performance improves with increase the 

percentage of smart packets in the Cognitive Packet Network which can be associated with 

the fact that with increase in smart packet ratio the ability to find new routes also increases 

thus decreasing the packet loss before route recovery. 
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Fig 13 Packet loss during route repair 

 

The packet loss performance improves with increase in packet arrival rate or packet load.  

This is mainly due to the fact that at low packet rate/load the number of smart packet will be 

less. Thus the chances of discovering new routes will be less. With increase in packet rate this 

improves as the number of smart packet increases. 
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CHAPTER 4 

 

CONCLUSION AND FUTURE WORK 

6.1 Conclusion 

Cognitive Packet Networks (CPN) are a new packet network paradigm which address some 

of the needs of global networking. CPN simplifies router architecture by transferring the 

control of QOS based best-effort routing to the packet s, away from the routers. Routing 

tables are replaced by reinforcement-algorithm based routing functions. 

 

CPN is a new packet network paradigm which addresses some of the needs of peer-to-peer 

networking. CPN transfers the control of QoS based best-effort routing to the connections, 

which use smart packets for route discovery. Routing tables are replaced by reinforcement 

algorithm based routing functions. CPN offers “best effort” QoS routing with smart packets 

both for wire line and wireless networks.  

 

 

A CPN carries three distinct types of packets: Smart or cognitive packets which search for 

route based on a QOS driven reinforcement learning algorithm,ACK packets which bring 

back route information and measurement data from successful smart packets and Dumb 

packets which do source routing. 

 

 

In this work we have tried to cover the basic principles of CPNs.Then have tried to describe 

the Re-enforcement Learning (RL) algorithm which tailors the specific routing algorithm to 

the QOS needs of a class of packets. And have tried to show the capacity of CPN network to 

adapt to changes in traffic load and to failures of links. 
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6.2 Limitations and Future work 

 

Route selection in Cognitive Packet Networks (CPN) occurs continuously for active flows 

and is driven by the users’ choice of a Quality of Service (QoS) goal.  

Because routing occurs concurrently to packet forwarding, CPN flows are able to better deal 

with unexpected variations in network status, while still achieving the desired QoS. 

 

 Random neural networks (RNN) play a key role in CPN routing and are responsible to the 

next-hop decision making of CPN packets. By using reinforcement learning, RNNs’ weights 

are continuously updated based on expected QoS goals and information that is collected by 

packets as they travel on the network experiencing the current network conditions.  

 

CPN’s QoS performance had been extensively investigated for a variety of operating 

conditions. Its dynamic and self-adaptive properties make them suitable for withstanding 

availability attacks, such as those caused by worm propagation and denial-of-service attacks.  

 

However, security weaknesses related to confidentiality and integrity attacks have not been 

examined. This makes them susceptible to integrity and availability attacks. 

 

 

The inherent self-adaptive properties of the Cognitive Packet Network constitute a significant 

advantage for helping it withstand attacks against its availability. Its self-adaptation becomes 

even more effective after introducing packet losses into the goal formulation for training the 

distributed random neural networks that are used in the routing algorithm. 

 

 A denial of service defense mechanism with a given set of detection probabilities becomes 

more effective if applied in conjunction with the dynamic routing of CPN. Yet, similarly to 

the Internet Protocol, CPN was designed based on trust. By trusting the information carried 

by packets and that no node could be compromised, 
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 CPN becomes vulnerable to confidentiality and integrity attacks. It offers, by default, little 

support to ensure end-to-end confidential delivery of data or integrity of packets, which is of 

crucial importance given that it relies on real-time packets’ information to effectively setup 

and maintain paths. 

  

If we are able to overcome that the benefits from strengthening the confidentiality and 

integrity, along with the availability of information transmitted through CPN, outweigh the 

disadvantage of the associated delays that are incurred. 
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