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ABSTRACT 

 

Control  of  iactive  power  and  reactive  ipower  is  required  to keep theisystem in the 

steady state. Asithe system load changes continuously, ithe generation is adjusted 

automatically to irestore the frequency to ithe nominal value. This scheme is known as 

theiautomatic generation control (iAGC). To generate and ideliver power in an 

interconnected isystem as economically and reliably asipossible while maintaining the 

voltageiand frequency within permissible limits, iseveral control strategies have been iniuse. 

One of the most controllers available icommercially is the proportional integral derivative 

(PID) icontroller. The PID controller is used toiimprove the dynamic response as iwell as to 

reduce or eliminateithe steady-state error. 

 In this thesis modernicontrol designs are employed that requireithe use ofistate 

variables to form a linearicontroller. One approach inimodern control systems iaccomplished 

by the use of state ifeedback also known as pole placement design. Theipole placement 

design allows alliroots of the system characteristic equationi to be placed in desired locations. 

The iother approach to the design of regulator isystems is the optimal control problem, 

iwhere a specified mathematical performance icriterion is minimized. Anioptimal controller 

for linear systems with quadraticiperformance index, the so called lineariquadratic regulator 

(LQR) has been designed ifor the AGC for two area and three iarea system and LQR isialso 

designed for theitwo area system in deregulated ienvironment. Multiple case studies arei used 

to illustrate the effectiveness iof the proposed load frequency icontrol strategy. 
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CHAPTER 1 

INTRODUCTION 
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Interconnection in large electric power system is intended to make electric energy more 

economical and more reliable. However, with highly interconnected power grid load 

frequency problem and load frequency instabilities may arises. 

 

The economical aspect of the large scale interconnection is remarkable reduction of 

spinning reserve or stand by the generating capacity for maintenance or emergency use. 

Interconnected systems also enhance the reliability by transferring power from one area to 

other within the system. But in the mean time multiple interconnections between areas make 

the system unstable. For safe and efficient operation of interconnected power systems there 

are verities of control problem that need to be addressed. 

 

In interconnected power systems among the various problems one of the 

problems is Load Frequency Control (LFC). LFC supplies time varying load along with 

maintaining scheduled frequency and tie-line power as nominal values. As we know that 

three-phase AC is used in transmission. Between generating units and loads, the active and 

reactive power both should be balanced.  

 

 

This balance will provide two stable points’ i.e frequency and voltage. If any 

misbalance will occur between these two powers than these points will change. Both 

frequency along with voltage should remain at nominal values during operation for 

satisfactory operation of an electric power system. However the demand of supply changes 

randomly. It will not be possible control active and reactive power balances without a 

controller. As result, frequency along with voltage level will change as load change will takes 

place. Thus a control system is required for controlling thea frequency and voltage to its 

nominal avalues. 

 

 

An active and areactive power both has combined aeffects on frequencyand 

voltage control but it can be decoupled. The voltage mainly affects reactive power and the 

frequency mainly affects active power, that’s why the control problem ina power isystems 

can be decoupled ainto itwo independent iproblems. Active apower control problem is icalled 

load frequency control. 

 

 

The function of LFC is maintaining the frequency constant when load is varying. And the 

other function of LFC is decreasing the tie-line power error. Many generating units are 

interconnected and make a large scale power system. For increasing fault bearing capacity of 

thei power system, generatingi units will be interconnected through tie-line. Use of the tie-

line poweri will generate new error in system and this is called tie line error. When suddenly 

load change will takes place into the area, area will interchange the energy through tie-lines 
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foranother area. Area in which load is varying should balance it without external support. 

Otherwise it will create an economic conflict issues among different areas. So that every area 

should have a its ownLFC so that they can regulate their tie-line poweriso that all areas can 

set their set points accordingly. Second problem is, if we connect several power systems than 

order and number of control parameters will also increase. As a result, when we do modelling 

of such complex high-order power systems, we have to consider some parameters 

approximation [2]. 

 

 

In summary, LFC has to perform the major function of maintaining the frequency 

within the limit and maintain the tie-line power exchange within the range if load changes 

takes place [1].  

 

 

Modelling is basic part of the modern control design. It is obvious that without a 

proper model, we cannot be successful in controlling the behaviour of any system. Generally 

for modern control dynamical systems are described in state space form. To achieve desired 

response of a system without high control effort, optimal control is employed, where a 

performance index or cost function for the system is defined. We have to minimize the cost 

function for optimal control law. Weighted quadratic function of state variables and the 

control inputs is called cost function. Hence it is called Linear Quadratic Regulator (LQR). 

 

In this thesis we shall concentrate on modern control approaches to LFC. 

Basically three category of control is discussed. These are the pole placement method, 

optimal control method and optimal control method in deregulated environment. 

 

1.1 LITERATURE REVIEW 

 

 

Proportional-integral (PI) controller is using from last many years in industries. The design of 

PI controller for a power system that has three areas is ipresentedi in [3], where theiother 

parameters are tunedi by trial-and-errorimethod. The designing of LFC is taken as a 

centralizediimethod. In [4] and [5], this methodiiintroduced along with simplified multiple-

area power system in orderi to implement such ioptimization itechniques on whole model. 

Thei simplificationi is done accordingly on the assumptioni that all isubsystems of whole 

power systemi are same while they are inot. Second problem of centralized imethods is that 

although if the methodiiworks well for a low-orderiisystem, it will face an iexponentially 

increasing calculation problem iwith the increase of the system isize. 
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 There are many techniques which appliedi to the idecentralized power isystems. 

In [6–10], decentralizedi PI andiPID controller is described. As H2/H∞ icontrol is known ifor 

robustness against iparameter uncertainties, the controllers are utilizing forisolving the 

decentralized LFC problems in [11–14]. There iare many imodern control itheories that have 

yielded decentralizediisolutions of the LFC problemi, such as disturbance iaccommodation 

control, optimali tracking iapproach, predictive controli scheme and iramp following control, 

whichi can be found in [15–18]. 

 

 

iFuzzyi logici is based on the ifuzzy iset itheory, in which fuzzy ilogic variables 

will be betweeni 0 and 1 instead iof true orifalse. In [19-22] resulti obtained fromithe fuzzy 

logic controli technique to idecentralized LFCi problem have been described. A fuzzyi logic 

controller is developi directly ifrom fuzzy model of the poweriisystem is developed in [19]. A 

fuzzy logici approach of tie line bias control schemei of a two-area power system is 

describedi in [20] whilei a same method on a icombined cycle power plant including the 

comparisoni between the fuzzy logic control and iconventional PID control techniques are 

introducedi in [21]. A ifuzzy based PI icontroller and its implementation ion theiIraqi 

National Super Grid poweri system can be found in [22]. A comparisonibetween the fuzzy 

based PI icontrolleri and the traditional PI icontroller was alsoi presented in [22]. 

 

 

Among the most popular computer intelligence algorithms one is Genetic 

algorithm (GA). It has been verified that it is very useful for solving complexi optimization 

problemi [23] where iPI-type controllersi tuned through GA and linear matrixiiinequalities 

(GALMI) is described for a idecentralized three-area power system. iIn [23], it is presented 

that, istructure of GALMI tuned iPI controller iis much simple than that iof ithe H2/H∞ 

controlleri even though the performance of twoiimethods are approximately samei.For 

sudden large load changei many of the given solution have beeni tested. In [2],  author set 

15% ifloating ratei for parameters iin one area and isuccessfully icontrolled the system via an 

optimallyi tuned PID controller.  

The design and implementationi of the LQR with integral controli action is 

presented in [24]. The integral action minimizes the steady state errors, whereas LQR only 

provides feedback gain matrix. Increasinglyi popular control technique ADRC, was 

iproposed by J. Han and modifiedi by Z. Gao In [25-26]. In [28-31] authors presented various 

ADRC based control design. In [36] ADRC-based LFC solution for the power systems with 

turbines of various types, such as non-reheat, reheat, and hydraulic is discussed. In [39] after 

deregulation LFC issues in power systems are discussed. Authors [41-42] discussed price-

based operation of AGC simulator. 
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1.2 ORGANISATION OF THE THESIS  

 

 

In this thesis, optimal control is employed for centralized as well as in deregulated 

environment system for LFC problem. The thesis consists of five chapters. 

 

 

Chapter one is an overview of general ideas about load frequency control (LFC), 

linear quadratic control (LQR) and related works and approaches to LFC and LQR. 

 

Chapter two addresses the modelling of the AGC (automatic generation control) 

in two area system with supplementing the exciter loop for the generators to takei into 

consideration the effectiof the exciters on the response of the isystem. 

 

 

Chapter three addresses ithe modelling of the AGC in deregulated environment 

and modelling of two area system in deregulated environment. 

 

 

Chapter four addresses the mathematical modelling of Optimal controller (LQR) 

for two area and three area system. 

 

 

Chapter five presents the different case studies taken up for analysis and the 

results. 
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CHAPTER 2 

AUTOMATIC GENERATION CONTROL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

In this chapter, modelling of a ipower generating system, In additionithe modelling of two 

typesi of generating units, tie-linei modelling and the modelling of paralleli operation of multi 

areasi is introduced. 

 

 

2.1 LOAD FREQUENCY CONTROL (LFC) 
 

 

 Main work of LFC is maintaining uniform frequencyi by dividing the loads among the 

generators and control tie-line power deviation within limit. The ifrequency deviation and tie-

line real ipower change are examined, which is a measure of the ichange in rotor angle δ, the 

error Δδ to be icorrected. The error isignal, i.e, Δf and ΔPtie, are iamplified, imixed and 

transformed into reali power icommand ΔPV signal, whichi is sent to theiprime moveri to 

iincrementithe torque. 

 

 

 

 
 

Fig 2.1 Schematic diagram of LFC and AVR of a synchronous generator 

 

 

 

Therefore the prime mover brings change in the generator output by an amount ΔPgwhich 

will change the values of Δf and ΔPtie within specified limit. 
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2.1.1 GENERATOR MODEL 

 

 

Small perturbation analysis of the swing equation of the synchronous machine gives, 

2𝐻

𝜔𝑆

𝑑2𝛥𝛿

𝑑𝑡2
=  𝛥𝑃m – ΔPe(2.1) 

 

If small deviation occurs in speed 

𝑑∆
𝜔

𝜔𝑠

𝑑𝑡
=  

1

2𝐻
(∆𝑃𝑚 − ∆𝑃𝑒)(2.2) 

 

 Speed in p.u can be expressed as:  

 
𝑑∆𝜔

𝑑𝑡
=  

1

2𝐻
(∆𝑃𝑚 − ∆𝑃𝑒)(2.3) 

 

Take Laplace transform of (2.3), we obtain 

 

     Δω(s) = 
1

2𝐻𝑠
[ΔPm(s) – ΔPe(s)]                                                                            (2.4) 

 

The above relation is shown in block diagram 2.2 

 

 

 

 
 

Fig 2.2 Generator block diagram 

 

 

2.1.2 LOAD MODEL 

 

 

A power system consist many electrical devices as a load. For resistive load, for example 

lighting and heating loads, the power does not depend on frequency. But the load like motors 

is very sensitive to changes in frequency. For all the driven devices change in frequency will 

depends up on the speed load characteristic of the device. 

The speed load equation for a total load can be written as: 

 

                                                    ΔPe = ΔPL + D Δω 
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Where ΔPL = The load change which is not frequency sensitive 

D Δω = The change in load which is frequency sensitive 

D can be written as percentagei change in load divide by percentagei change in frequency. 

Now include load model in generator block diagram, resultant blocki diagram is showni in fig 

2.3 

 

 

 

 
 

Fig 2.3 Generator and load block diagram 

 

 

 

 
 

Fig 2.4 Generator and load block diagram 
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2.1.3 PRIME MOVER MODEL 

 

 

Prime mover provides mechanical power. It may be a hydraulic turbine or can be steam 

turbine. Turbine model will relate the ichanges in the mechanical power ioutput ΔPm to the 

steam ivalve position ΔPV. 

Simpler prime mover model of a non ireheat steam turbine can be approximated ias single 

time constant TT, will result the following itransfer function 

 

GT(s) = 
∆𝑃𝑚(𝑠)

∆𝑃𝑉(𝑠)
=  

1

1+𝑠𝑇𝑇
(2.5) 

 

The block diagram for a simple turbine is shown in fig 2.5 

 

 

 

 
Fig 2.5 Block diagram for a simple non reheat steam turbine 

 

 

 

The time constant TT is in the range of 0.2 to 2 seconds. 

Due to the inertia of water hydraulic iturbines units are non minimum phase units. In 

hydraulic turbines, the iwater pressurei response is iopposite to gate iposition ichange at first 

and irecovers iafter the transient iresponse. Hence for hydraulic turbine transfer function will 

be 

                                 GH (s) = 
∆𝑃𝑚 (𝑠)

∆𝑃𝑣 (𝑠)
 = 

−𝑠𝑇𝑤+1

𝑠(
𝑇𝑤

2
)+1

 

 

where Tw is starting time of water. 

For istability, a itransient droop icompensation part in igovernor iis added for ithe hydraulic 

turbine. iThe transfer ifunction of the itransient idroop compensation ipart is 

 

                                     GTDC (s) = 
𝑠𝑇𝑅+1

𝑠𝑇𝑅(
𝑅𝑇
𝑅

)+1
 

 

where TR, RTand R presents the ireset itime, itemporary droop and ipermanent idroop 

irespectively. 

 

 

             (2.6) 

                         (2.7) 
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2.1.4 GOVERNOR MODEL 

 

 

If generator load increases suddenly, than the output of electrical power becomes greater than 

the mechanical input power. The deficient power is isupplied through the kinetic 

energy,which is istored in the rotating system. So that kinetic energy starts decreasing and 

turbine speed starts decreases and the igenerator frequency start begins to drop. Turbine 

governor sensed the change in speed iwhich acts to alter the iturbine input valve position for 

changing imechanical power output and speed reaches to a new steady state value. 

 

 

 

 
                                                  Fig 2.6 Speed governing system 

 

 

 

The speed governor action will function like aicomparator whose ioutput ΔPg is idifference 

ibetween the ireferencei set power ΔPrefand ipower
1

𝑅
∆𝜔. 

     ΔPg = ΔPref -  
1

𝑅
∆𝜔                                                                                                                       (2.8) 

R = Speed regulation 

Or in s- domain 

       ΔPg(s) = ΔPref(s) -  
1

𝑅
∆𝜔(𝑠)                                                                                                     (2.9) 

 

The command ΔPg is converted into the steam valve position command ΔPV through the 

hydraulic amplifier.  Let us suppose a linear relationship and consider a time constant Tg,  

 

         ΔPV(s) = 
1

1+𝑠𝑇𝑔
 ΔPg(s)                                                                                                (2.10) 
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                    Fig 2.7 Block diagram of speed governing system for speed turbine 

 

 

 

 

Equations (2.7) and (2.8)can be represented by the iblock diagram as shown in fig 2.7. 

Combining ithe block diagrams of figures 2.4, 2.5, 2.7 results in the complete block diagram 

of LFC of a power station as shown in fig 2.8 

 

 

 

 
 

Fig 2.8 Load frequency control block diagram of an isolated power system 

  

 

Redrawing the block diagram of fig 2.8 by considering the change in load –ΔPL(s) as input 

and frequency deviation Δω(s) as the ioutput results in the block idiagram i.e shown in fig 

2.9.The open loop transfer function of  block diagram in fig 2.9 is 

 



13 
 

 K G(s)H(s) =  
1

𝑅

1

(2𝐻𝑠+𝐷)(1+𝑠𝑇𝑔)(1+𝑠𝑇𝑇)
(2.11) 

 

and the closed loop transfer function which represents the relation between the load change 

ΔPL to the frequency deviation Δω is 

 

𝑇(𝑆)  =  
𝛥𝜔(𝑠)

−𝛥𝑃𝐿(𝑠)
=  

(1+𝑠𝑇𝑔)(1+𝑠𝑇𝑇)

(2𝐻𝑠+𝐷)(1+𝑠𝑇𝑔)(1+𝑠𝑇𝑇)+
1

𝑅

(2.12) 

 

 

 

 
 

Fig 2.9 LFC block diagram with input ΔPL(s) and output Δω(s) 

 

 

 

 

                          Δω(s) = - ΔPL(s) T(s)                                                                    (2.13) 

 

The load change is a step input , i.e, ΔPL(s) = ΔPL / s. Applying final value theorem, the 

steady state value of Δω is  

 

                         Δωss = lim s Δω(s) = (-ΔPL)
1

𝐷+
1

𝑅

(2.14) 

For no frequency sensitive load D = 0, frequency deviation in steady state can be determined 

by the speed regulation of governor, and is 

 

                           Δωss = (-ΔPL) R                                                                         (2.15) 
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2.2 MODELLING OF AUTOMATIC iGENERATION CONTROL 

 

 

iIf the iload is increased abruptly theniturbine speed starts to decrease beforeigovernor ican 

adjust ithe input iof the steam to the inew iload. As the changeiin ispeed decreases the error 

signal will becomeismaller and the position of the igovernor will get closeri to the point 

requiredi to imaintain the constant ispeed. iOne way to recover the ispeed or ifrequency to its 

given ivalue is to add an integrator on the iway. The integrator will monitor theierror over a 

period and will reduce the ioffset. For bringing back frequency to nominal position when load 

changes occur, generation should be changed accordingly. This type of scheme is called AGC 

(automatic igeneration control). In theiinterconnected power system consists of iseveral 

pools, ithe irole of the AGC is to idivide the load iamong the different systems, istations and 

generators so that imaximum economy and fairly uniform frequency can be achieved.  

 

 

2.2.1 AGC FOR SINGLE AREA SYSTEM 

 

 

When we consider only primary LFC loop, load change will iresult in steady istate frequency 

ideviation, it idepends on speed regulation of the igovernor. Tomaking frequency ideviation 

to zero we must arrange a ireset action by adding an integral control action to act on the load 

ireference isetting for changing the speediiset point. The integraliicontrol action will increase 

the type of system by one, which will make the change in frequency to zero. The gain of 

integral control action can be readjusted for achieving desired transient response. 

 

 

 

 
Fig 2.10 AGC for an isolated power system 
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The transfer function of a closed loop system is given below: 

 

∆𝜔(𝑠)

−∆𝑃𝐿(𝑠)
  = 

𝑠(1+𝑠𝑇𝑔) (1+𝑠𝑇𝑡)

𝑠(2𝐻𝑠+𝐷)(1+𝑠𝑇𝑔)(1+𝑠𝑇𝑇)+𝐾+
𝑠

𝑅

                                                                                            (2.16) 

 

 

2.2.2 AGC FOR TWO AREA SYSTEM 

 

 

In many cases many generators are internally coupled and swing coherently. Moreover, these 

generator turbines tend ito have ithe same response icharacteristics. iSuch type of group of 

igeneratorsi are said to be coherent. Then it is possible to let the LFC loop represent the 

whole system and the group is called the control group. For a two area system, iduring 

inormal operation the ireal power transferred iover the tie iline is given by  

 

 

                       P12 = 
|𝐸1||𝐸2|

𝑋12
𝑆𝑖𝑛𝛿12(2.17) 

Where X12 = X1 + Xtie + X2 and δ12 = δ1 – δ2 

 

If a small change occur in tie-line flow: 

 

                     ΔP12 =  
𝑑𝑝12

𝑑𝛿12
 

 

                            = Ps Δδ12 

Ps is islope of the power angle curve at initialioperating angle δ120 = δ10-δ20. Hence we have 

                                Ps = 
𝑑𝑃12

𝑑𝛿12
 

 

                                 = 
𝐸1𝐸2

𝑋12
𝑐𝑜𝑠𝛿120                                                                                                        (2.19) 

 

 Then the tie line power deviation becomes              

 

ΔP12 = PS (Δδ1 – Δδ2 )                                                                                          (2.20) 

 

The tie-line power will appear as increment in the load for one area and decrement in the load 

for another area, it depends upon the direction of the flow. The idirection of flow is governed 

by the difference in iphase angle; if Δδ1> Δδ2, the power will flow from area1 to area2. A 

block diagram when LFC containing only primary loop for two area system is ishown in fig 

2.11 

 

 

 

 

(2.18) 
𝛿12 
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Fig 2.11 Two area system with only primary LFC loop 
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2.2.3 STATE SPACE MODEL OF TWO AREA POWER SYSTEM 

 

Consider a two area system as shown in fig 2.12 

 

 

 

 
Fig 2.12 Two Area system 

 

 

 

State variables: 

X1 = Δf1 

X2 = ΔPt1 

X3 = ΔPg1 

X4 = Δf2 

X5 = ΔPt2 

X6 = ΔPg2 

X7 = ΔPtie1-2 

X8 = ∫ 𝐴𝐶𝐸1 𝑑𝑡 

X9 = ∫ 𝐴𝐶𝐸2 𝑑𝑡 

Control inputs: u1 and u2 

Disturbance inputs: d1 = ΔPD1 and d2 = ΔPD2 

State equations: 

From the transfer function blocks labelled from 1 to 9 (fig 2.12) 

Ẋ1 = 
1

𝑇𝑃1
𝑋1 +  

𝐾𝑃1

𝑇𝑃1
𝑋2 −

𝐾𝑃1

𝑇𝑃1
𝑋7 - 

𝐾𝑃1

𝑇𝑃1
𝑑1(2.21) 

Ẋ2 = −
1

𝑇𝑡1
𝑋2 +  

𝐾𝑃1

𝑇𝑡1
𝑋3(2.22) 
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Ẋ3 = 
−1

𝑅1𝑇𝑔1
𝑋1 −

1

𝑇𝑔1
𝑋3 −

1

𝑇𝑔1
𝑢1(2.23) 

Ẋ4 = −
1

𝑇𝑝2
𝑋4 +

𝐾𝑃2

𝑇𝑝2
𝑋5 + 

𝐾𝑃2

𝑇𝑝2
𝑋7 −

𝐾𝑃2

𝑇𝑝2
𝑑2(2.24)          

Ẋ5 = −
1

𝑇𝑡2
𝑋5 +  

1

𝑇𝑡2
𝑋6(2.25) 

Ẋ6 = 
−1

𝑅2 𝑇𝑔2
𝑋4 −

1

𝑇𝑔2
𝑋6 +  

1

𝑇𝑔2
𝑢2(2.26) 

Ẋ7 =  2𝜋𝑇0𝑋1 − 2𝜋𝑇0𝑋4(2.27) 

Ẋ8 = B1 X1 + X7                                                                                                                                                      (2.28) 

Ẋ9 = B2 X4 - X7(2.29) 

The matrices A, B are 

 

 

 

 

 

         

     

 

    

         

         

   

 

 

      

−1

𝑇𝑃1
 

𝐾𝑃1

𝑇𝑃1
 0 0 0 0 

−𝐾𝑃1

𝑇𝑃1
 0 0 

0 
−1

𝑇𝑡1
 

1

𝑇𝑡1
 0 0 0 0 0 0 

−1

𝑅1𝑇𝑔1
 0 

−1

𝑇𝑔1
 0 0 0 0 0 0 

0 0 0 
−1

𝑇𝑃2
 

𝐾𝑃2

𝑇𝑃2
 0 

𝐾𝑃2

𝑇𝑃2
 0 0 

0 0 0 

 

 0 
 

−1

𝑇𝑡2
 

−1

𝑇𝑡2
 0 0 0 

0 0 0 
−1

𝑅2𝑇𝑔2
 0 

−1

𝑇𝑔2
 0 0 0 

2𝜋𝑇° 0 0 2𝜋𝑇° 0 0 0 0 0 

𝐵1 0 0 0 0 0 1 0 0 

0 0 0 B2 0 0   -1 0 0 

           A =  
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  0 0 

0 0 
1

𝑇𝑔1
 0 

0 0 

0 0 

0 
1

𝑇𝑔2
 

0 0 

0 0 

0 0 
 

      

         

         

         

2.2.4 TIE-LINE BIAS CONTROL 

 

 

For normal working conditions control strategies are: 

 Keep frequency around at rated value 

 It maintain the flow of tie-line power within limit 

 Each area have to adjust the changes which is occurring in its own area 

Every area has to reduce ACE to zero, conventional LFC is based upon it. For each area ACE 

is summation of frequency deviation and tie-line power error. 

 

                ACEi = ∑ ∆𝑃𝑖𝑗 +  𝐾𝑖 
𝑛
𝑗=1 ∆𝜔(2.30) 

 

During a disturbance in the neighbouring areas, the amount of interaction is determined by 

area bias factor Ki. ACEs for a two area system are 

ACE1 = ΔP12 + B1Δω1 

ACE2 = ΔP21 + B2 Δω2                                                                                                                                   (2.31) 

Where Bi =  
1

𝑅𝑖
+  𝐷𝑖 

For changing the reference power set point, ACEs are used as actuating signal and in steady 

state condition ΔP12 and Δωwill become zero. 

 

 

B=  

X = [X1 X2 X3 X4 X5 X6 X7 X8 X9]
T 

 u = [u1 u2]
T 
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Fig 2.13 AGC block diagram for a two area system 

 

 

 

2.3 AGC FOR THREE AREA SYSTEM 

 

 

For three area system, a scheme with LFC and delayed control signal is shown in Fig 2.14. 

ACE signals are inputs to the controller, which is summation of frequency variations in 

control area and tie-line power deviation: 

 

ACEi(t) = KBi * Δfi(t) + ΔPtie (t)                                                                     (2.32) 
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Fig 2.14 Interconnection of Three Areas 

 

 

 

 The simplified icontinuous model of one control iarea, shown in fig.2.15 

 

 

 

 
                                        Fig 2.15 The block diagram of ith area 

 

 

 

Let’s suppose that control signals and disturbance are constant. It can be seen that from 

Fig.2.15, in Area i in steady state change in frequency depends upon the input disturbance 

and icontroller output signal, as is given in ithe equation below: 
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∆𝑓𝑠𝑠  =  
𝑢𝑖− ∆𝑃𝑑𝑖−∆𝑃𝑡𝑖𝑒𝑖

1

𝐾𝑝𝑖
+

1

𝑅𝑖

(2.33) 

 Where i=1,2,3….. 

In the steady state, frequency deviation of all the interconnected areas will be same; it is a 

property of power system [38] 

 

∆𝑓1𝑠𝑠 = ∆𝑓2𝑠𝑠= ∆𝑓3𝑠𝑠 

 

In the interconnected multi area power system the addition of power flow among the areas is 

equal to zero, this is another property of power system. 

 

ΔPtie1 + ΔPtie2 + ΔPtie3 = 0                                                                                    (2.34) 

 

Assume that in area i controller’s output is not zero, while in all the other areas controller’s 

output and the load disturbances are equal to zero , than tie line power for area1 can be 

written as: 

 

∆𝑃𝑡𝑖𝑒1  =  
𝑅1(𝑅2+ 𝑅3)

𝑅1𝑅2+𝑅1𝑅3+𝑅2𝑅3
𝑢1(2.35) 

 

Assume that in area i load disturbance is other than the zero, the dependency of ΔPtie on ΔPdi 

can be calculated. Tie-line power for area1 can be written as: 

 

∆𝑃𝑡𝑖𝑒1  =  
𝑅1(𝑅2+ 𝑅3)

𝑅1𝑅2+𝑅1𝑅3+𝑅2𝑅3
 ΔPd1(2.36) 

 

Block diagram for three interconnected areas is shown in fig 2.16 
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2.4 STATE SPACE MODEL OF THREE AREA SYSTEM 

 

 

Consider a interconnected three area system shown in fig 2.16. From the blocks labelled from 

1 to 16  

State Variables: 

X1 = Δf1 

X2 = ΔPt1 

X3 = ΔPg1 

X4 = Δf2 

X5 = ΔPt2 

X6 = ΔPg2 

X7 = Δf3 

X8 = ΔPtw 

X9 = ΔPG2 

X10 = ΔPG1 

X11 = ΔPtie1-2 

X12 = ΔPtie1-3 

X13 = ΔPtie2-3 

X14 = ∫ 𝐴𝐶𝐸1 𝑑𝑡 

X15 = ∫ 𝐴𝐶𝐸2 𝑑𝑡 

X16 = ∫ 𝐴𝐶𝐸2 𝑑𝑡 

Control inputs:  u1 , u2 and u3 

State equations: 

Ẋ1 = −
1

𝑇𝑃1
𝑋1 + 

𝐾𝑃1

𝑇𝑃1
𝑋2 −  

𝐾𝑃1

𝑇𝑃1
𝑋11 −

𝐾𝑃1

𝑇𝑃1
𝑋12 - 

𝐾𝑃1

𝑇𝑃1
𝑑1(2.37) 

Ẋ2 = −
1

𝑇𝑡1
𝑋2 +

1

𝑇𝑡1
𝑋3(2.38) 

Ẋ3 = 
−1

𝑅1𝑇𝑔1

𝑋1 −  
1

𝑇𝑔1
𝑋3 +  

1

𝑇𝑔1
𝑢1(2.39) 

Ẋ4 = −
1

𝑇𝑃2
𝑋4 +  

𝐾𝑃2

𝑇𝑃1
𝑋2 − 

𝐾𝑃1

𝑇𝑃1
𝑋11 −

𝐾𝑃1

𝑇𝑃1
𝑋12 - 

𝐾𝑃1

𝑇𝑃1
𝑑1(2.40) 

Ẋ5 = −
1

𝑇𝑡2
𝑋5 +  

1

𝑇𝑡2
𝑋6(2.41) 

Ẋ6 = 
−1

𝑅2 𝑇𝑔2
𝑋4 −  

1

𝑇𝑔2
𝑋6 +  

1

𝑇𝑔2
𝑢2(2.42)          

Ẋ7 = −
1

𝑇𝑃3
𝑋7 +  

𝐾𝑃3

𝑇𝑃3
𝑋8 + 

𝐾𝑃3

𝑇𝑃3
𝑋12 +

𝐾𝑃3

𝑇𝑃3
𝑋13 - 

𝐾𝑃3

𝑇𝑃3
𝑑3(2.43) 

Ẋ8 = 
2𝑇2

𝑅3𝑇1𝑇3
𝑋7 −  

2

𝑇𝑤
X8 + (

2

𝑇𝑤
+ 

2

𝑇3
)𝑋9 + (

2𝑇2

𝑇1𝑇3
− 

2

𝑇3
) X10 - 

2𝑇2

𝑇1𝑇3
𝑢3(2.44) 

Ẋ9 = 
−𝑇2

𝑅3𝑇1𝑇3
𝑋7 −  

1

𝑇3
X9 + (

−𝑇2

𝑇1𝑇3
+  

1

𝑇3
) X10 +  

𝑇2

𝑇1𝑇3
𝑢3(2.45)     

Ẋ10 = 
−1

𝑅3 𝑇1
𝑋7 −  

1

𝑇1
𝑋10 +  

1

𝑇1
𝑢3(2.46) 

Ẋ11 = 2𝜋 𝑇12 𝑋1 - 2𝜋 𝑇12 𝑋4(2.47) 

Ẋ12 = 2𝜋 𝑇13 𝑋1 - 2𝜋 𝑇13 𝑋7(2.48) 

Ẋ13 = 2𝜋 𝑇23 𝑋4 - 2𝜋 𝑇23 𝑋7(2.49) 

Ẋ14 = B1𝑋1 +𝑋11 +X12                                                                                                                                        (2.50) 
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Ẋ15 = B2𝑋4 -𝑋11 +X13(2.51) 

Ẋ16 = B3𝑋7 - 𝑋12 −X13(2.52) 

 

The matrix A and B are: 

 

 

 
−1

𝑇𝑃1
 𝐾𝑃1

𝑇𝑃1
 

   0      0   0 0     0    0        0         0 KP1

TP1
 

𝐾𝑃1

𝑇𝑃1
 

   0 0 0 0 

     0 −1

𝑇𝑡1
 

1

𝑇𝑡1
 

    0   0  0     0    0       0         0   0   0    0  0 0 0 

−1

𝑅1𝑇𝑔1
 

  0 −1

Tg1
 

    0   0 0     0    0        0        0   0   0    0  0 0 0 

     0    0    0 −1

𝑇𝑃2
 

𝐾𝑃2

𝑇𝑃2
 

0     0    0        0        0 𝐾𝑃2

𝑇𝑃2
 

  0 −KP2

TP2
 

 0 0 0 

     0    0    0     0 −1

𝑇𝑡2
 

1

Tt2
 

    0    0        0        0   0   0    0  0 0 0 

     0    0    0 −1

R2Tg2
 

  0 −1

Tg2
 

    0    0        0        0   0   0    0  0 0 0 

     0    0    0      0   0 0 −1

TP3
 

𝐾𝑃3

𝑇𝑃3
 

       0        0   0 𝐾𝑃3

𝑇𝑃3
 

𝐾𝑃3

𝑇𝑃3
 

 0 0 0 

     0    0    0      0   0 0 2𝑇2

𝑅3𝑇1𝑇3
 

−2

𝑇𝑤
 

2

Tw
 +  

2

T3
 

2T2

T1T3

−
2

T3
 

  0   0    0  0 0 0 

     0    0    0      0   0 0 −T2

R3T1T3
 

   0 −1

𝑇3
 

1

T3
−

T2

T1T3
 

  0   0    0  0 0 0 

     0    0    0      0   0 0 −1

𝑅3𝑇1
 

   0        0 −1

𝑇1
 

  0   0    0 0 0 0 

2𝜋𝑇12    0    0 -2𝜋𝑇12   0 0     0    0        0        0   0   0    0  0 0 0 

2𝜋𝑇13    0    0      0   0 0 -2𝜋𝑇13    0        0        0   0   0    0  0 0 0 

    0    0    0 2𝜋𝑇23   0 0 -2𝜋𝑇23    0        0        0   0   0    0  0 0 0 

B1    0    0      0   0 0     0    0        0        0   1    1    0  0 0 0 

    0    0    0     B2   0 0     0    0        0        0  -1   0    1  0 0 0 

    0    0    0      0   0 0 B3   0        0        0   0   -1   -1  0 0 0 

 

 

 

 

 

 

 

 

 

 

 

A= 
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     0      0      0 
     0      0      0 

1

𝑇𝑔1
 

     0      0 

     0      0      0 
     0      0      0 
     0 1

𝑇𝑔2
 

     0 

     0      0      0 
     0      0 −2𝑇2

𝑇1𝑇3
 

     0      0 𝑇2

𝑇1𝑇3
 

     0      0 1

𝑇1
 

     0      0      0 
     0      0      0 
     0      0      0 
     0      0      0 
     0      0      0 
     0      0      0 

 

 

State vector (X) =  [X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16]
T 

Control vector (u) = [u1 u2  u3]
T 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B = 
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iCHAPTER 3 

iAGC IN DEREGULATED ENVIRONMENT 
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3.1 INTRODUCTION 

 

 

Planning and operation of engineering aspects has been modified in a irestructured power 

isystem in the recent years despite the fact that main ideas are remain same. For improving 

the efficiency of theipower system operation isome big changes in the istructure of electric 

power service have ibeen introduced by decentralizing the industryi and open it for private 

competition. A single body is not responsible for generation, transmission and distribution; 

rather than system is divided into three individual bodies, viz., iGENCO (Generationi 

Companies), iTRANSCOs (Transmissioni Companies) and DISCOs (Distributioni 

Companies). 

In the deregulated environment there are many GENCOs and DISCOs and a distribution 

company can deal with any generating company. A distribution company can deal to the 

other area generation company. Such type of contracts or deals is called bilateral transactions. 

ISO (Independent system operator) is an impartial body which have to clear all the deals 

between the GENCOs and DISCOs. ISO has many extra services in which one is AGC. 

 

 

3.1.1 TRADITIONAL VS. RESTRUCTURED SCENARIO 

 

Verticallyi integrated utilities (VIUs) controls igeneration-transmission-distribution isystems 

and at the iregulated rates power supplies to the customer. Vertically integrated utility 

structure is ishown in fig. 3.1 in which ilarge boxi denotes VIU. Mostly VIUs are connected 

at the transmission voltage. So that tie-lines power can be purchased and sold out among the 

VIUs and furthermore, this type of interconnection increases reliability of the system [39]. 

 

 

 
Fig 3.1 Vertically Integrated Utility Structure. 
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All the square box represents IPP (independent power producers) which sells the power to 

VIU’s. In the deregulation environment firstly we have to separate generation from 

transmissioni on the same basis as ithe IPP’s in figure 3.2 , In a open market generating 

companies will compete with each other to sell their produced electricity . 

 

 

 

 
 

Fig 3.2 Deregulated Utility Structure 

 

 

 

3.1.2 SIGNIFICANCEi OF iAUTOMATIC iGENERATION CONTROL 

IN iDEREGULATED ENVIRONMENT          

 

 

In deregulated ienvironment the isignificance of AGC is triple; 

(i)  For achieving zero change in frequency. 

(ii) To match the tie-line power flow within limit by distributing the generation between   

areas. 

(iii)  To make the balance between generation and load and tie-line power transfer. 

Control is highly decentralized in the deregulated environment. A separate control system is 

required for every load matching transaction, still to restore ithe frequency and tie-line power 

to its nominal value this process act simultaneously. ISOs (independent system operator) like 

market operators, supervisors and new organizations are responsible to balance the generation 

and load for reducing frequency deviations and iload for reducing ifrequency deviations and 

controlling tie-line power flow, iwhich will help to extend bilateral contracts in various areas. 

AGC should note every moment variations in load so that control area performance criterion 

can meet. 
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3.1.3 TECHNICAL ISSUES  

 

 

In the deregulated environment, the operation of power system can create some serious 

technical problems. Sometimes on the basis of market demand and price based operation 

simple frequency control will become challenging. Regulatory policies allows the 

competition among the generating companies and creating market conditions in power sector, 

it is mandatory for increasing distribution and production efficiency of electrical energy, for 

reducing price and higher quality. 

 

 

3.1.4 REQUIREMENTS OF DEREGULATIONI 

 

Deregulation is necessary because: 

(1)For fine operations, planning and market design engineers. 

(2)  There is diversity in supply and fuel. 

(3) Satisfactory transmission infrastructure. 

(4) Effective demand side responsiveness and management. 

(5) Provide right iincentives and good price isignals. 

 

 

3.1.5 IBENEFITS OF DEREGULATION 

 

 

Deregulationi advantages are given below: 

(i) Efficient unit will survive others will be perish. 

(ii) Because of competition and innovation electricity will become cheaper. 

(iii) It will improve generating and iplanning iefficiency and economy also. 

(iv) Regeneration of the power engineeringi profession means this will increasedi jobs and 

challenging iopportunities. 

 

3.2 iGENERAL CONFIGURATIONi OF iAUTOMATIC GENERATION 

CONTROL IN A iDEREGULATED ENVIRONMENT 

 

 

AGC in a deregulated ienvironment is shown in Figure 3.3. By a secure network generating 

companies sent the bid regulating reserves to the AGC. On the basis of pre-specified time and 

price these bids are sorted.  
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Fig 3.3 AGC configuration in deregulated environment 

 

 

 

Then, the load demanded from distributing companies, tie-lines data from transmission 

companies and area ifrequency are used for sending control icommands for tracking the load 

changesi in the area. On the basis of received crowding information from transmission 

companies and available capacity screening which is collected from generating companies, 

bids are examined and shorted. 

 

 

3.3 PARTICIPATION MATRIX FOR DISCO 

 

 

Amount of the participationi of a generator in automatic generationi control is called 

participation factor. When a sudden load disturbance will occur in a area, a suitable control 

signal is produced and distributed in proportioni to their participation factor, so that 

generation can ifollow the load. The addition of participation factors of a control area is equal 

to one.                       

In a competing atmosphere, participation factors of AGC are time dependent 

variables and should be calculated vigorously based on prices of bid, costs, problems in 

congestion, availability and other related issues by an independent organization. 
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In the irestructured scenario, generating companiesi can sell their power to the 

different distributingi companies at competing prices. So, for deal distribution companies 

have the choice in various generating companies. From their own area generating companies 

they may have deal or not. So that many GENCOs and DISCOs combinations are possible for 

deal. To make contract decision simpler, concept of DPM (disco participation factor) is 

bought. In iDPM matrix, number iof rows of matrix is equal ito the number of generating 

companies and inumber of column of a matrix is equal to the number of distribution 

companies. The part of the load deal by a DISCO from a GENCO is an entry in the matrix.  

So, the entry will relate the power that is given by a GENCO to a DISCO. In the matrix 

addition of all entries in a single column will be equal to one. The participation of a 

distribution company in a generating company is displayed by DPM, that’s why it is called 

“DISCO participation matrix.” 

 

 

 

 
Fig 3.4 Schematici of a Two-Area System in iRestructured Environment 

 

 

 

3.4 IFORMULATION OF STATE MODEL 

 

 

In deregulated environment AGC for a two iarea system is shown in Figure 3.5. When a 

distribution company demands a load, it is represented as a ilocal load in the iarea from 

which Distribution Company ibelongs to. This will correlate to the local loads ΔPL1 and 

ΔPL2 and in the block diagram of AGC in deregulated environment iat the point of input it 

should be reproduced. According to the participation of several GENCOs in AGC, ACE 

signals are distributed in same proportion. In the itraditional AGC a distribution company 

demands a particular generating company, but in deregulated environment ACE signal are 

send to many GENCOs called ACE participation factor. These idemands must be reproduced 

in the idynamics of the system. Turbineiiand governor unitsi must respondi to this ipower 

Area 1    Area 2 
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demand. So load demand by a distribution company is followed by a generating company, 

information signals which indicating demands will flow from Distribution Company to 

Generating Company. In the traditional scenario information signal were absent. Contract 

participation factor indicates the demand and load of a distribution company. Load demanded 

by a DISCO followed by a GENCO, this information is carried by signal. 

 

 

 

 
Figure 3.5: Two-Area AGC System Block Diagram in Restructured Scenario. 

 

 

 

The scheduled power flow in steady state condition in the tie line is given below: 

 

 ΔPtie1-2, scheduled= (demandi of iDISCOs in area two from iGENCOs in iarea one) - (demandi 

of iDISCOs in areai one from iGENCOs in area two) 

 

For a particular time, the error in tie linei power, ΔPtie1-2,errorcan be written as 

 

iΔPtie1-2, error = iΔPtie1-2, actual - iΔPtie1-2,scheduled(3.1) 

 

ΔPtie1-2, error will become nil in the condition of steady state when the actual itie-line power 

will be equal to ithe scheduled tie-line power. In the traditional scenario this ierror signal will 

be used to igenerate the ACE signals. 
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iACE1= iB1Δf1+ iΔPtie1-2, error(3.2) 

iACE2= iB1Δf2+ iΔPtie2-1, error(3.3) 

Where 

ΔPtie1-2, error = - 
𝑃𝑟1

𝑃𝑟2
ΔPtie1-2, error 

Pr1 and Pr2 are rated powers of areas one and two respectively. Therefore 

 

iACE1= B1Δf1+ α12 ΔPtie1-2, error                                                                                                               (3.4) 

 𝛼12 =  −
𝑃𝑟1

𝑃𝑟2
 

 

In deregulated environment the iblock diagram of AGC is ishown in Fig. 3.5. In area 1 and 2 

local loads are presented by ΔPL1,Loc and ΔPL2,Loc, respectively. 

 

 

3.5 STATE iSPACE iCHARACTERIZATION OF THEiTWO-AREA 

iSYSTEM IN iDEREGULATED ENVIORNMENT 
 

 

The proposed AGC scheme explains the behaviour of two area system. Both the areas are 

kept identical. State space modelling is carried out by expressing the differential equation of 

individuali block of figure 3.5 in termsi of state variables. Let us consider the istate space 

vector as follows: 

 

X1 = Δf1 

X2 = Δf2 

X3 = ΔPGV1 

X4 = ΔPGV2 

X5 = ΔPGV3 

X6 = ΔPGV4 

X7 = ΔPM1 

X8 = ΔPM2 

X9 = ΔPM3 

X10 = ΔPM4 

X11 = ∫ 𝐴𝐶𝐸1 

X12 = ∫ 𝐴𝐶𝐸2 

 

X1 = (ΔPL1,LOC – X3 + X4) 
𝐾𝑃1

1+𝑆𝑇𝑃1
 

Ẋ1 = 
1

𝑇𝑃1
𝑋1 −  

𝐾𝑃1

𝑇𝑃1
X3 + 

𝐾𝑃1

𝑇𝑃1
X4 - ΔPL1,LOC

𝐾𝑃1

𝑇𝑃1
(3.5)   

X2 = (ΔPL2,LOC – a12 X3 + X6)
𝐾𝑃2

1+𝑠𝑇𝑃2
 

Ẋ2 = 
1

𝑇𝑃2
𝑋1 −  𝑎12

𝐾𝑃2

𝑇𝑃2
X3 + 

𝐾𝑃2

𝑇𝑃2
X6 - ΔPL1,LOC

𝐾𝑃2

𝑇𝑃2
(3.6) 
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X3 = 
1

1+𝑠𝑇𝑇1
 X4 

Ẋ3 = 
1

𝑇𝑇1
 (X4 – X3)                                                                                                               (3.7) 

X4 = 
1

1+𝑆𝑇𝑇2
 X5 

Ẋ4 = 
1

𝑇𝑇2
(X5 – X4)                                                                                                                (3.8) 

X5 = 
1

1+𝑆𝑇𝑇3
 X6 

Ẋ5 = 
1

𝑇𝑇3
 (X6 – X5)                                                                                                               (3.9) 

X6 = 
1

1+𝑆𝑇𝑇4
 X7 

Ẋ6 = 
1

𝑇𝑇4
 (X7 – X6)                                                                                                              (3.10) 

Ẋ7 = - 
𝑋1

𝑇𝐺1𝑅1
 - 

𝑋5

𝑇𝐺1
 + (-K1 apf1) 

1

𝑇𝐺1
(3.11) 

Ẋ8 = - 
𝑋1

𝑇𝐺2𝑅2
 - 

𝑋6

𝑇𝐺2
 + (-K1 apf2) 

1

𝑇𝐺2
(3.12) 

Ẋ9 = - 
𝑋2

𝑇𝐺3𝑅2
 - 

𝑋7

𝑇𝐺3
 + (-K2 apf3) 

1

𝑇𝐺3
(3.13) 

Ẋ10 = - 
𝑋4

𝑇𝐺4𝑅2
 - 

𝑋8

𝑇𝐺4
 + (-K1 apf4) 

1

𝑇𝐺4
(3.14) 

Ẋ11 = B1 X1 + X13                                                                                                                                                        (3.15) 

Ẋ12 = B2 X2 + a12 X13                                                                                                                                                (3.16) 

Ẋ13 = 
𝑇12

2𝜋
 (X1 – X2)                                                                                                            (3.17) 

 

The equationsi from (3.5) to (3.17) can bei formulated in the matrix iform. In figure 3.5 

shown closed loop system can be described in state space form as: 

 
𝒅𝑿

𝒅𝒕
= 𝑨 𝑿 + 𝑩 𝒖 

 

wherei ‘X’ is called state ivector and u is called as input vector of ipower demands of the 

Disco’s. From Fig 3.5 A and Bare formed: 
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−𝐾𝑃1

𝑇𝑃1
 

−𝐾𝑃1

𝑇𝑃1
 

0 0 

0 0 
−𝐾𝑃2

𝑇𝑃1
 

−𝐾𝑃2

𝑇𝑃1
 

0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

𝑐𝑝𝑓11

𝑇𝐺1
 

𝑐𝑝𝑓12

𝑇𝐺1
 

𝑐𝑝𝑓13

𝑇𝐺1
 

𝑐𝑝𝑓14

𝑇𝐺1
 

𝑐𝑝𝑓21

𝑇𝐺2
 

𝑐𝑝𝑓22

𝑇𝐺2
 

𝑐𝑝𝑓23

𝑇𝐺2
 

𝑐𝑝𝑓24

𝑇𝐺2
 

𝑐𝑝𝑓31

𝑇𝐺3
 

𝑐𝑝𝑓32

𝑇𝐺3
 

𝑐𝑝𝑓33

𝑇𝐺3
 

𝑐𝑝𝑓34

𝑇𝐺3
 

𝑐𝑝𝑓41

𝑇𝐺4
 

𝑐𝑝𝑓42

𝑇𝐺4
 

𝑐𝑝𝑓43

𝑇𝐺4
 

𝑐𝑝𝑓44

𝑇𝐺4
 

(𝑐𝑝𝑓31 + 𝑐𝑝𝑓41)   (𝑐𝑝𝑓32 + 𝑐𝑝𝑓42) −(𝑐𝑝𝑓13 + 𝑐𝑝𝑓23) −(𝑐𝑝𝑓14 + 𝑐𝑝𝑓24) 
−(𝑐𝑝𝑓31 + 𝑐𝑝𝑓41) −(𝑐𝑝𝑓32 + 𝑐𝑝𝑓42)   (𝑐𝑝𝑓13 + 𝑐𝑝𝑓23)   (𝑐𝑝𝑓14 + 𝑐𝑝𝑓24) 

0 0 0 0 
 

 

u = [ΔPL1 ΔPL2 ΔPL3 ΔPL4]T 

−1

𝑇𝑃1
 0 𝐾𝑃1

𝑇𝑃1
 

𝐾𝑃1

𝑇𝑃1
 

0 0 0 0 0 0 0 0 −𝐾𝑃1

𝑇𝑃1
 

0 −1

𝑇𝑃2
 

0  0 𝐾𝑃2

𝑇𝑃2
 

𝐾𝑃2

𝑇𝑃2
 

0 0 0 0 0 0 𝐾𝑃2

𝑇𝑃2
 

0 0 −1

𝑇𝑇1
 

 0 0 0 1

𝑇𝑇1
 

0 0 0 0 0 0 

0 0 0 −1

𝑇𝑇2
 

0 0 0 1

𝑇𝑇1
 

0 0 0 0 0 

0 0 0  0 −1

𝑇𝑇3
 

0 0  0 1

𝑇𝑇3
 

0 0 0 0 

0 0 0  0 0 −1

𝑇𝑇4
 

0  0  0 1

𝑇𝑇4
 

0 0 0 

−1

2𝜋𝑅1𝑇𝐺1
 

0 0  0 0 0 −1

𝑇𝐺1
 

 0  0  0 −𝐾1𝑎𝑝𝑓1

𝑇𝐺1
 

0 0 

−1

2𝜋𝑅2𝑇𝐺2
 0 0  0 0 0 0 −1

𝑇𝐺2
 

 0  0 −𝐾1𝑎𝑝𝑓2

𝑇𝐺2
 

0 0 

0 −1

2𝜋𝑅3𝑇𝐺3
 

0  0 0 0 0 0 −1

𝑇𝐺3
 

 0 0 −𝐾2𝑎𝑝𝑓3

𝑇𝐺3
 

0 

0 −1

2𝜋𝑅4𝑇𝐺4
 

0  0 0 0 0 0 0 −1

𝑇𝐺4
 

0 −𝐾2𝑎𝑝𝑓4

𝑇𝐺4
 

0 

𝐵1

2𝜋
 

0 0  0 0 0 0 0 0 0 0 0 1 

0 𝐵2

2𝜋
 

0  0 0 0 0 0 0 0 0 0 -1 

𝑇12

2𝜋
 

−𝑇12

2𝜋
 

0  0 0 0 0 0 0 0 0 0 0 

B = 

A = 
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X = [Δf1 Δf2 ΔPGV1 ΔPGV2 ΔPGV3 ΔPGV4 ΔPM1 ΔPM2 ΔPM3 ΔPM4 ∫ACE1 ∫ACE2 ΔPtie1-2]
T 
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CHAPTER 4 

OPTIMAL CONTROL OF AGC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 
 

4.1 OPTIMAL CONTROL 
 

It is a methodiapplied in the control system designithat is performed byiminimizing the 

performance indexiof the system variables. iHere we consider theidesign of the optimal 

controllersifor the linear systemsiwith quadratic performanceiindex, which is alsoispecify as 

LQR (linear quadratic regulator). Optimaliregulator design objective isifind the control law 

u*(x,t), whichiminimizes the performanceiindex and transfer the systemifrom initial state to 

finalistate. The performance index is widelyiused is the quadratic performanceiindex and is 

basedion the minimal energyicriterion. 

Suppose the plantias given below: 

X(t)=Ax(t) + Bu(t)                                                                

The problem is toifind the vector K of the control law  

u(t)= -K(t)*x(t)  

Iti will reduce the valueiof J called quadratic performanceiindex is given below: 

 

J = ∫ (𝒙′𝑡𝑓

𝑡0
Q𝒙 +  𝒖′ 𝑹𝒖)dt                                                                                         (4.1) 

Where Q and R are positiveisemi definite matrix and real symmetricimatrix respectively. If 

all the principaliminors of Q are not positiveithan Q is a positive definiteimatrix. We can 

choose the elementsiof Q andR, this allows the relativeiweighting of individual controliinput 

and state variables.  

Weiwill use Lagrange multipliersimethod using an n vectoriof the unconstrained equationifor 

getting the solutioniof this equation: 

                                [x, λ, u, t]= [xʹ Qx + uʹ Ru] + λʹ [Ax + Bu – ẋ]                        (4.2) 

For find out theioptimal values, the partialiderivative will equal to zero. 
𝜕𝐿

𝜕𝜆
 = AX* + Bu* - Ẋ* =0    Ẋ* = AX* + Bu* (4.3) 

𝜕𝐿

𝜕𝑢
 = 2Ru* + Bλʹ = 0  u* = - -

𝟏

𝟐
 R-1 λʹ B(4.4) 

𝜕𝐿

𝜕𝑥
 = 2xʹ*Q+ λ’ - λ’A =0   λ’ = -2Qx* - A’ λ (4.5) 

Assume that thereiis a time varying positive definiteiand symmetric matrix p(t) satisfyingithe 

condition given below: 

                                       λ = 2 p(t) x*(4.6) 

Substituting 4.6 intoi4.4, we get 

                                  u*(t)= - R-1 Bʹ p(t) x* (4.7) 

Find the derivative of 4.6 than we can write 

                                   λ= 2(ṗ x* + p ẋ*)                                                                  (4.8) 

Finally we equate 4.5 and 4.8 

ṗ(t) = - p(t) A - Aʹ p(t)  - Q + p(t) BR-1Bʹ p(t)                                                       (4.9) 

The equation (4.9) is known as theiRiccati equation. 

Compensators areimainly used to satisfy all theidesired conditions in a system. Butiin most of 

the cases the system needs toifull fill some more conditionsithat are difficult to attain inicase 

of a compensatedisystem. As an alternative to this weimainly use Optimal Control system. 

Theitrial and error method for theicompensated design system makesiit cumbersome for the 

designersito attain the specifications. This trialiand error procedure works wellifor the system 
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with aisingle input and a single output.iBut for a MIMO (multi input multi output) systemithe 

trial andierror method is replaced fromiOptimal Control design methodiwhere the trial and 

erroriuncertainties are removed in parameterioptimization. Optimal controlidesign has a 

single performanceiindex specially the integral squareiperformance index.iThe minimization 

of the performance indexiis done using the Lyapunovistability theorem in order toiyield 

better systemiperformance for a fixed systemiconfiguration. The values of Qiand R have to 

selecticarefully and if the responsesiare inappropriate then the someiother values of Q and R 

canibe placed. K is automatically generatediand then we can find closediloop response.  

 

4.2 PROBLEM STATEMENT 

 

From an N-interconnectedisystem an uncertain power system isioriginating with eachisample 

of an uncertain systemihaving the equations as givenibelow:  

 

X(t)= [Aii + Δ Aii(t)] Xi(t) + Σ [Aij + Δ Aij(t)]Xj(t) + Σ [Bij + Δ Bij(t)]uj(t) + Σ [Γij + ΔΓij(t)]Dj(t) 

 (4.10) 

                              Y(t)= CiiXi(t) + Σ CijXj(t)                                                        (4.11) 

It is pretendedithat the A,B,C,Γ matrices are of suitableidimensions and are completely 

controllable andiobservable. 

Equations 4.10 and 4.11 can also beiwritten as: 

X(t)= [A + Δ A(t)] X(t) + [B + Δ B(t)]u(t) + [Γ + Δ Γ(t)]D(t)                                (4.12)  

                                                        Y(t)= CX(t)                                                  (4.13) 

The main purpose ofiinterest is to determine the controlifunction U(t)= -KX(t) where K isia 

constant gainimatrix. Here in this case the u(t) achievedithe objective, Soidetermining the 

control matrixiis same as find theimatrix K i.e callediconstant gain matrix. 

In the LQRidesign the stabilityirobustness is not moreiexposed to the uncertainties of 

parametricivariations. LQR based designidoes not provide guaranteeiof stability of perturbed 

system.  

Supposeian uncertain linear system,  

                               Ẋ(t)= [A + Δ A(t)] X(t) + [B + Δ B(t)]u(t)                                (4.14)                                       

Where A(n×n) and B(n×m) iare the nominaliparameter matrices and ΔA(t) and B(t) are  

continuousimatrices that describeithe ranges of the uncertaintyiin the parameters.  

Assume that A andiB matrices are completelyiobservable and controllable, ithe condition 

described in 4.14 shouldibe matched if thereiexists G(r(t)) and H(s(t)) matrixifunctions 

which is continuous time functions such that:  

                      Δ A(t)= AG(r(t))                                                                             (4.15)                                                                                     

                       Δ B(t)= AH(s(t))                                                                            (4.16)                                  

The matrices H and G are continuousifunctions of s(t) and r(t) respectivelyiand continuous 

time-varyingimatrices. These are uncertain parametersithat are supposed to beibounded by 

the conditions:  

                HT (s(t)) * H(s(t)) <=  I                                                                                   (4.17)  

              GT (r(t)) * G(r(t)) <=   I                                                                            (4.18) 
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The mainiaim to define a inputiin the form of u(t) = – K X(t) iniwhich K belongs to Rm*nso 

that lawican match the uncertainisystem defined in equation (4.14). 

                           Let’s suppose that theiconditions defined in 4.15 and 4.16 areisatisfied by 

the system 4.14. Let Q(n×m) be aimatrix which is positive-definiteisymmetric matrixiand there 

is an optimal ψ*>0 in thisiway that all the values of ψ  areigreater than or equalito ψ* and 

have a positive definiteisolution of the given equation: 

               ATP + P A - 2ψ*P B R-1BT P + η GT (r(t)) G(r(t)) + Q= [0]                   (4.19) 

Suppose that the system is lineariand the uncertainties areinot present.  

Hence                                                    Δ A(t)=0                                                   (4.20) 

                                                              Δ B(t)=0                                                   (4.21)    

Therefore theiequation 4.19 can be written as  

                                                 AT P + PA - 2ψ*PBR-1BT P + Q= [0]             (4.22) 

This is called riccatiiequation. 

 

4.3 DESIGN OF OPTIMAL CONTROLLER FOR TWO AREA SYSTEM 

 

Considering the stateiequations from 2.28 to 2.36 and fig 2.14.In optimalicontrol, the inputs 

are selectedias a linear combination of feedbackifrom all the nine system states (X1 , X2 , 

X3…………. X9 ) as given below: 

u = K11 X1 + K12 X2 + .......... + K19 X9 

u = K21 X1 + K22 X2 + .......... + K29 X9 

Where, ‘K’ (2×9) is the feedback gain matrix given by; 

 

K = [  K11  K12  K13 K14 K15 K16 K17 K18 K19 

          K21  K22  K23 K24 K25 K26 K27 K28 K29 ] 

Now the system state equation is: 

Ẋ = AX + Bu ……. (For a step load change of a constant magnitude, ‘Γ = 0) 

The equation of output can beiwritten as:: 

                           y = CX + Du 

However, for a closediloop control system, the matrix D is assumedizero. 

So;                    y = CX                                        where C (2 × 9) is the Output Matrix. 

Finally, the state space model of theisystem under considerationitakes a form as; 

                   Ẋ = AX + Bu                    and 

                     y = CX 

The control inputs are linearicombinations of system statesigiven by, u = − KX 

 

4.3.1 DETERMINATION OFiFEEDBACK GAIN MATRIX (K): 

 

Optimal controller finds the feedbackigain matrix K by reducingiPI (performance index) 

when the system is transferringifrom initial random state x(0) ≠ 0 toioriginal state in infinite 

time i.e x (∞) = 0. 

Generallyiperformance index is taken in quadraticiform as given below: 

                              PI = 
1

2
∫ (𝒙𝑻∞

0
𝑸𝒙 +  𝒖𝑻𝑹𝒖) 𝑑𝑡                                                                     (4.23) 



42 
 

Where, ‘Q’ is a real, positiveisemi-definite and symmetric matrixicalled as ‘state weighting 

matrix’iand ‘R’ is a real, symmetric andipositive definite matrix called asi ‘control weighting 

matrix. 

The matrices Q and Riare find out on the basisiof following system consideration. 

1) Theideviations of area control errors aboutisteady values are minimized. Inithis model, 

these excursionsiare; 

                              ACE1 = B1 Δf1 + Ptie1-2 = B1 X1 + X7              and     (4.24) 

 ACE2 = B2 Δf2 - Ptie1-2 = B2 X4 - X7(4.25) 

2) The excursionsiof ∫ 𝐴𝐶𝐸 𝑑𝑡 about steady valuesiare minimized. In thisimodel, these 

excursionsiare X8 and X9. 

3) The excursions oficontrol inputs u1 and u2iabout steady values areiminimized. 

    Under these conditions, the PIiwill take a form as givenibelow: 

                   PI = 
1

2
∫ [(𝐵1𝑋1 + 𝑋7)2∞

0
+ (𝐵2𝑋4 − 𝑋7)2 + 𝑋8

2 +  𝑋9
2 + 𝑢1

2 + 𝑢2
2] 𝑑𝑡 

i.e PI = 
1

2
∫  [𝐵1

2∞

0
𝑋1

2 + 2𝐵1𝑋1𝑋7+2𝑋7
2+ 𝐵2

2𝑋4
2 − 2𝐵2𝑋4𝑋7 + 𝑋8

2+𝑋9
2 + 𝑢1

2 + 𝑢2
2]dt 

This gives theimatrices Q and R as follows: 

 

 

 

 
The matricesiA, B, Q&R are known. 

The optimal control isigiven by        u = − KX 

Feedback gain matrix ‘K’ is givenibelow: 

K = R-1 BT S 

Where, ‘S’ is the unique solution ofiiRiccati Equation, it is aisymmetric, real andipositive 

definite matrix: 

           AT S + SA – SBR-1BTS + Q = 0 

The closed loopiequation of a system is givenibelow: 

Ẋ = AX + B(-KX) = (A-BK)X = AC X 

The matrix AC = (A-BK) is callediclosed loop system matrix. 
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4.4 OPTIMAL CONTROLLERiiDESIGN OF THREE AREA SYSTEM 

 

 

Consider the state equationsifrom 2.37 to 2.52 and fig 2.15. The controliinputs are given 

below; 

             u1 = K11 X1 + K12 X2 +…………………..+K1-16 X16 

             u2 = K21 X1 + K22 X2 +…………………..+K2-16 X16 

             u3 = K31 X1 + K32 X2 +…………………..+K2-16 X16 

Where, 

 

                K = [K11 K12 K13 K14 K15 K16 K17 K18 K19 K1-11 K1-12 K1-13 K1-14 K1-15 K1-16 

K21 K22 K23 K24 K25 K26 K27 K28 K29 K2-11 K2-12 K2-13 K2-14 K2-15 K2-16 

K31 K32 K33 K34 K35 K36 K37 K38 K39 K3-11 K3-12 K3-13 K3-14 K3-15 K3-16] 

So,           u = -KX 

The system state equation is: 

Ẋ = AX + Bu 

The output equation is: 

Y = CX 

 

 

4.4.1 DETERMINATION OF FEEDBACK GAIN MATRIX FOR THREE 

AREAS (K): 

 

 

                                                 PI = 
1

2
∫ (𝒙𝑻∞

0
𝑸𝒙 +  𝒖𝑻𝑹𝒖) 𝑑𝑡 

 

As we know Q and R matrices are derived under certain conditions as discussed in 4.3.1 so 

 

PI = 
1

2
∫ [(𝐵1𝑋1 + 𝑋11 + 𝑋12)2∞

0
+ (𝐵2𝑋4 − 𝑋11 + 𝑋13)2 + (𝐵3𝑋7 − 𝑋12 − 𝑋13)2 + 𝑋14

2 +

 𝑋15
2  + 𝑋16

2 + 𝑢1
2 + 𝑢2

2] 𝑑𝑡 

 

i.e PI = 
1

2
∫ [𝐵1

2𝑋1
2∞

0
+ 2𝐵1𝑋1𝑋9 + 2𝑋9

2 + 𝐵2
2𝑋5

2 − 2𝐵2𝑋5𝑋9 + 𝑋10
2 + 𝑋11

2 + 𝑢1
2 + 𝑢2

2] dt 

 

This will give Q and R matrices as: 
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CASE STUDY AND RESULTS 
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5.1 UNCOMPENSATED SINGLE AREA SYSTEM 
 

 

Single area uncompensated system is considered which has the following parameters: 

   TT = 0.5 s 

   Tg = 0.2 s 

    H = 5 s 

    D = 0.8 

    R = 0.05 pu 

    ΔPL = 0.2 pu 

Uncompensated plant transfer function: 

−0.1𝑠2 − 0.7𝑠 − 1

𝑠3 + 7.08 𝑠2 + 10.56𝑠 + 20.8
 

 

Simulation block diagrami for a single area system without any icontroller is ishown in fig 

5.1        

  

 

 
Fig 5.1 Simulation block diagram of uncompensated single area system 

 

 

 

 
 

 

Fig 5.2 Uncompensated system frequency deviation response 
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5.2 SINGLE AREA SYSTEM USING POLE PLACEMENT METHOD 

 

 

Same uncompensated system is considered as in 5.1 and the compensated closed loop poles 

are taken at -2± j6 and -3 and compensated system closed loop transfer function is: 

 

−0.1𝑠2 − 0.7𝑠 − 1

𝑠3 + 7𝑠2 + 52𝑠 + 120
 

 

Simulation of a single area system using pole placement method is ishown in fig 5.3 

 

 

 

 
Fig 5.3 Simulation of single area system using pole placement 
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Time (s) 

 

Fig 5.4 Frequency deviation response using pole placement method 

 

 

 

5.3 AGC FOR SINGLE AREA USING PID CONTROL ACTION 

 

 

A single area system is considered which has the following parameter: 

                                              Gain                                 Time constant 

Turbine                                  iKT= 1                                     TT = 0.5 

Governori                               Kg = 1                                     Tg = 0.2 

Amplifier                               iKA = 10                                  iTA = 0.1 

Exciterii                                  KE = 1                                    iTE = 0.4 

Generatori                               KG = 0.8                                 iTG = 1.4 

Sensori                                   iKR = 1                                    iTR = 0.05 

Inertiaii                                    H = 5 

Regulationii                             R = 0.05 

 

D = 0.8, PS = 1.5, K6(voltage coefficients) = 0.5, coupling constants iK2 = 0.2, iK4 = 1.4, K5 = 

-0.1, ΔPL1 = 0.2 p.u 

AGC for single iarea system using PID icontroller simulation is shown in fig 5.5 
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Fig 5.5 Simulation block diagram of AGC for single area using PID controller 
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Time (s) 

Fig 5.6 – Frequency deviation step response using PID controller 

 

 

 

5.4 OPTIMAL CONTROLLER FOR SINGLE AREA SYSTEM 

 

 

Optimal controller (LQR) is designed for single area system using MATLAB coding. 

Designed A,B,C,Q and R matrices are given as: 

A = [-5 0 -100; 2 -2 0; 0 0.1 -0.08] 

B = [0; 0; -0.1] 

C = [0 0 1] 

Q = [20 0 0; 0 10 0; 0 0 5] 

Frequency deviation response using LQR is shown in fig 5.7 

 

 

 

 
 

Fig 5.7 – Frequency deviation step response using LQR 
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5.5 AGC FOR TWO AREA SYSTEM  

 

 

A two area system is considered which has the following parameters: 

 

Area                                                1                                            2 

iSpeed regulation                         R1 = 0.05                                  iR2 = 0.0625 

iFrequency sensitive load             D1 = 0.6                                    iD2 = 0.9 

Coefficient 

iInertia constant                            H1 = 5                                      iH2 = 4 

iBase power                                  1000MVA                               i1000MVA 

iGovernor time constant               iTg1 = 0.2 sec                            iTg2 = 0.3 sec 

iTurbine time constant                 iTT1 = 0.5 sec                            iTT2 = 0.6 sec 

Ps = 2.0 p.u 

Load change = 187.5 MW in area 1 

The simulation of the itwo area isystem having only iprimary LFC loop is shown in fig 5.8. 

 

Fig 5.8 Simulation block diagram with only primary LFC loop 
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     Fig 5.9 Plot of active power deviation with time corresponding to step change of load in 

Area1 

 

 

 
Fig 5.10 Plot of active frequency deviation with time corresponding to step change of load in 

Area1 
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5.6 AGC FOR TWO AREA iUSING INTEGRAL CONTROL ACTION 

 

 

System considered is same as given in 5.5 and the integral control constant are adjusted for a 

satisfactory response. The simulation result for Ki1 = Ki2 = 0.3 is shown in fig 5.11 

 

 

 

 
Fig 5.11 Simulation of AGC for two area system using integral control action 
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Fig 5.12 Plot of active power deviation with time for integral control action corresponding to 

step load change in Area1 

 

 

 
 

Fig 5.13 Plot of frequency deviation with time for integral control action corresponding to 

step load change in Area1 
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5.7 OPTIMAL CONTROLLERi FOR TWO AREA iSYSTEM  

 

 

Optimal controller (LQR) is designed for two area system using MATLAB coding. Designed 

A,B,C,Q and R matrices iare given below: 

 

A = [0.05 6 0 -6 0 0 0; 0 -3.33 3.33 0 0 0 0 ;-5.2083 0 -12.5 0 -0.545 0   0;0.545 0 0 0 -0.05 0 

0;0 0 0 6 -0.05 6 0;0 0 0 0 0 -3.33 3.33;0 0 0 0 -   5.2083 0 -12.5]  

B = [0 0;0 0;0 12.5;0 0;0 0;0 0;12.5 0]  

C = [0 0 0 0 0 0 1]  

Q = [1 0 0 0 0 0 0;0 1 0 0 0 0 0;0 0 1 0 0 0 0;0 0 0 1 0 0 0;0 0 0 0 1 0 0;0 0 0 0 0 1 0;0 0 0 0 0 

0 1] 

 

Frequency deviation response of area1 and area2 and tie-line power response using LQR is 

shown in fig. 

 

 

 
 

Fig 5.14 Frequency deviation response of Area 1using LQR 

 

 

 

 
. 

Fig 5.15 Frequency deviation response of Area 2 using LQR 
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Fig 5.16 Tie-line power deviation response using LQR 

 

 

 

5.8 OPTIMAL CONTROLLER FOR THREE AREA SYSTEM 

 

 

Optimal controller (LQR) is designed for three area system using MATLAB coding. Two 

thermal (non reheat) and one hydro system is considered for analysis. Designed A,B,C,Q and 

R matrices are given below.  

 

A = [-0.05 6 0 2 0 0 0 0 0 0 -6 -6 0 0 0 0; 0 -2.5 2.5 0 0 0 0 0 0 0 0 0 0 0 0 0; -5.2083 0 -12.5 

0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 -0.05 6 0 0 0 0 0 6 0 -6 0 0 0;0 0 0 0 -2.5 2.5 0 0 0 0 0 0 0 0 0 

0; 0 0 0 -5.2083 0 -12.5 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 -0.05 6 0 0 0 6 6 0 0 0; 0 0 0 0 0 0 

0.000877 -2 2.2 -0.19789 0 0 0 0 0 0;0 0 0 0 0 0 -0.000438 0 -0.1 0.09894 0 0 0 0 0 0; 0 0 0 0 

0 0 -0.008555 0 0 -0.02053 0 0 0 0 0 0; 0.4442 0 0 -0.4442 0 0 0 0 0 0 0 0 0 0 0 0; 0.4442 0 0 

0 0 0 -0.4442 0 0 0 0 0 0 0 0 0;0 0 0 0.4442 0 0 -0.4442 0 0 0 0 0 0 0 0 0; 0.425 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0; 0 0 0 0.425 0 0 0 0 0 0 -1 0 1 0 0 0; 0 0 0 0 0 0 0.425 0 0 0 0 -1 -1 0 0 0] 

 

B = [0 0 0; 0 0 0; 12.5 0 0; 0 0 0; 0 0 0; 0 12.5 0; 0 0 0; 0 0 -0.002106; 0 0 0.001053; 0 0 

0.20534; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0; 0 0 0] 

 

C = [1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

0 0] 

 

Q = [0.180625 0 0 0 0 0 0 0 0 0 0.425 0.425 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0.180625 0 0 0 0 0 0 -0.425 0 0.425 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0.180625 0 0 0 0 -0.425 -0.425 0 0 0; 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 0.425 0 0 

-0.425 0 0 0 0 0 0 2 1 -1 0 0 0; 0.425 0 0 0 0 0 -0.425 0 0 0 1 2 1 0 0 0; 0 0 0 0.425 0 0 -0.425 

0 0 0 -1 1 2 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0; 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 1] 

 

Frequency deviation response of area1, area2, area 3 and tie-line power response using LQR 

is shown in fig. 
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Fig 5.17 Frequency deviation step response of Area 1 

 

 

 

 
 

Fig 5.18 Frequency deviation step response of Area2 

 

 

 

 
 

Fig 5.19 Frequency deviation step response of Area 3 
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Fig 5.20 Tie-line power (Ptie1-2) deviation response 

 

 

 

 
 

Fig 5.21Tie-line power (Ptie1-3) deviation response 

 

 

 

 
 

Fig 5.22 Tie-line power Ptie2-3 deviation response 
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5.9 AGC WITH INTEGRAL CONTROLLER FOR iTWO AREA 

iSYSTEM IN iDEREGULATED ENVIRONMENT   

 

 

A two iarea system is considered with the following parameters: 

Kp = 41.7 

Tp = 10.42 

Tt1 = Tt3 = 0.5 s 

Tt2 = Tt4 = 0.7 s 

Tg1 = Tg3 = 0.4 s 

Tg2 = Tg4 = 0.6 s 

 R1 = R3 = 2.5 s 

 R2 = R4 = 2.6 s 

Cpf Matrix:                 
0.5 0.25
0.2 0.25

0.2 0.3
0.5 0.3

 

                                  
0 0.25

0.3 0.25
0.2 0.1
0.1 0.3

 

 

AGC for two area system with integral control action Ki1 = Ki3 = 0.084 and Ki2 = Ki4 = 0.042     

is designed. Simulation block idiagram is shown iin fig 5.23. 
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Fig 5.24 Frequency deviation response of Area1 in deregulated environment 

 

 

 

 
   Fig 5.25 Frequency deviation response of Area2 in deregulated environment 
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Fig 5.26 Tie-line power deviation response in deregulated environment 

 

 

 

5.10 OPTIMAL CONTROLLER OF AGC TWO AREA SYSTEM 

INDEREGULATED ENVIRONMENT  

 

 

Optimal controller (LQR) is designed for two area system in deregulated environment using 

MATLAB coding. Two thermal (non reheat) is considered for analysis. Designed A,B,C,Q 

and R matrices are given below: 

 

A = [-0.0959 0 4 4 0 0 0 0 -4; 0 -0.0959 0 0 4 4 0 0 4; -0.0707 0 -1.11 0 0 0 -0.047 0 0; -

0.0489 0 0 -0.769 0 0 -0.0323 0 0; 0 -0.0707 0 0 -1.11 0 0 -0.0233 0;0 -0.0489 0 0 0 -0.769 0 

-0.0161 0; 0.1909 0 0 0 0 0 0 0 1; 0 0.1909 0 0 0 0 0 0 -1; 0.0867 -0.0867 0 0 0 0 0 0 0] 

 

B = [-4 -4 0 0; 0 0 -4 -4; 0.555 0.2777 0.222 0.333; 0.1538 0.1923 0.3846 0.2307; 0 0.2777 

0.222 0.111; 0.230 0.1923 0.0769 0.2307; 0.3 0.5 -0.7 0.6;  -0.3 -0.5 0.7 0.6; 0 0 0 0] 

 

C = [1 0 0 0 0 0 0 0 0; 0 1 0 0 0 0 0 0 0; 0 0 1 0 0 0 0 0 0; 0 0 0 1 0 0 0 0 0; 0 0 0 0 1 0 0 0 0; 

0 0 0 0 0 1 0 0 0; 0 0 0 0 0 0 0 0 1] 

 

Q = [ 5 0 0 0 0 0 0 0 0; 0 5 0 0 0 0 0 0 0; 0 0 5 0 0 0 0 0 0; 0 0 0 5 0 0 0 0 0; 0 0 0 0 5 0 0 0 0; 

0 0 0 0 0 5 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 5] 

 

Frequency deviation response of area1, area2, and tie-line power response using LQR is 

shown in fig. 
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Fig 5.27 Frequency deviation step response with optimal controller for area1 in deregulated 

environment 

 

 

 

 
 

Fig 5.28 Frequency deviation step response with optimal controller of area2 in deregulated 

environment 

 

 

 

 
 

Fig 5.29 Tie-line power deviation step response with optimal controller in deregulated 

environment 
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5.11 DISCUSSIONS 

 

 

 It is observed that the settling time of uncompensated single area system is 

approximately 15 sec and frequency deviation is not going to zero and with PID 

controller is approximately 10 sec and more oscillations are present. Pole placement 

method reduces the settling time of the system to 2.5 sec. but LQR reduces the 

settling time to less than 1 sec and reduces the oscillation of the system as well as and 

frequency deviation is brought down to zero. 

 

 It is also observed that the settling time of two area system with integral control action 

is approximately 25 sec but optimal controller (LQR) reduces the settling time to only 

2 to 3 seconds and frequency deviation is going to zero with minimum oscillations as 

compared to Integral controller. 

 

 

 It is observed that optimal controller (LQR) in three area system is reducing all the 

frequency deviations and tie-line power deviations to zero after 5-6 sec and achieving 

steady state with minimum oscillations.  

 

 It is observed that settling time of two area system with integral control action in 

deregulated environment is approx 80 sec but by using optimal controller in 

deregulated environment settling time reduces to 20 to 30 sec and oscillations are 

reduced. System achieving steady state very fast and all the deviations like tie-line 

power and frequency deviations are going to zero. 
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CONCLUSIONS 

 

 

In this thesis, an approach for LFC based LQR based optimal control is introduced. In this 

approach, the state variable weighting matrix is found analytically to ensure robust and stable 

response of the system in varying power demand. The accomplishments are as follows: 

 

1) Aggregation: By using this method we can divide a system into subsystems and find 

appropriate control input for each of those subsystem to get desired LQR. Overall 

control input and weighting matrices are the combination of the individual 

subsystems. This technique helps to avoid complex calculations of the complete 

order system.  

 

2) Optimal Modal Linear Quadratic Regulator: The main purpose of this controller 

is improving system response in different operating conditions. This is a multi 

objective controller, which minimizes the cost function of the system and places the 

eigenvalues of the system simultaneously. While pole placement tries to restrict the 

transient time of the system response, optimization improves the transient response 

and control effort needed for the control. 

 

3) It is a very good technique for multi input multi output system while pole placement 

is suitable only single input single output system. 

 

4) It reduces oscillations, settling time and system reaches steady state in very less time 

and all the steady state error goes to zero. 
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SCOPE FOR FURTHER WORK 

 

 

Linear Quadratic Regulator Control: The questions regarding LQR are in three areas: 

 

1) The choice of quadratic cost function is selected in this work. However further research 

can be made for other cost functions that ensure a better response for the system. 

 

2) Compensation of the unknown input effects for the control procedure is one other 

necessary objective. Otherwise it may not be possible to compensate for its effect on the 

system and this can cause the deteriorating of the LQR solutions. Further work can be 

done to address this issue. 

 

3) The control input weighting matrix R can be changed to observe its effects on the 

feasibility of the LQR. 

 

4) Artificial intelligence (AI) techniques can be used for optimization of the system 

response. 
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