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ABSTRACT 

 

Mining Frequent pattern is one of the major activities in Data Mining field to extract the useful 

information from large databases. Today is era of big shopping complexes, mega stores, super-

markets. Shopping using e-commerce portals like flipkart, amazon, snapdeal etc is increasing 

day by day. As a result databases of all these mega stores, shopping complexes and e-commerce 

portals are increasing many folds every year. Frequent patterns are used by the big corporate 

houses to know the interest and purchasing trend of their customers and accordingly they plan 

their sales or marketing strategies. This lead to need for faster algorithm to mine frequent 

patterns from these large databases. 
 

 This research work presents a novel idea for mining frequent patterns from very large 

database. Proposed new algorithms i.e. Magic Number Algorithm is based on the converting the 

database items to Numeric equivalents. Once we have all items represented by numerals then we 

can apply mathematics and logic on them in easier and faster way as compared to operations on 

strings. 

  

Using same experimental setup and environment conditions, proposed new algorithm proves 

superior to Apriori Algorithm by approximate 70% performance improvement. 

 

At Minimum Support level = 4 and transaction count= 1000,000 

Time taken by Magic Number Algorithm -  105 milli seconds 

Time taken by Apriori Algoritm -  345 milli seconds 
 

Development Environment Detail: 

OS:  Android 5.0 (Lollypop) 

SDK: ADT Build: v21.1.0-569685 

CPU:  ARM, 1.9GHz Quad Core 

RAM: 3 GB 

API:  Level 17 
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Chapter 1 

1. INTRODUCTION 

 

Proposed new algorithm deals with Data Mining from large databases. Active work on mining 

useful knowledge and information from very large database started in 90’s [1] [2]. Frequent 

patterns are set of data items which occur more than a given threshold value in given large 

database set.  Mining of frequent patterns is considered one of the most critical & important 

concepts in data mining because this tells about the trend of occurrence of data items. For 

example in large grocery stores this can tell about liking of customer for one data item as 

compared to other. By mining frequent patterns business houses can predict what kind of items 

needs to be presented to customer to increase the sale volume. Similarly in other areas also like 

scientific research, Universities data frequent patterns can be used to mine various useful facts 

for future strategy design.  

 

Very large databases have millions of records and it is not possible to read all that information 

and extract the useful information. When strategists from various domains sit to analyze the 

available information, he need to know the trend of customers and users to design his strategy to 

increase the volume of  sales etc. Frequent Patterns are most useful tool to help strategists to 

design their strategy. Frequent patters gives direct insight about users preferences and purchase 

habits in a particular domain of business like grocery store, electronics mega stores, e-commerce 

etc. 

 

1.1  Existing Popular Algorithm 
Some of existing algorithms for frequent pattern mining are: 

 

Apriori: 

Apriori Algorithm [3] is based on making larger and larger Item sets. It works by identifying the 

frequently occurring individual items in the database and making larger sets from them which are 

as long as those item sets that appear in the database more than required threshold. Such frequent 

item sets detected by Apriori are further used to define rules of association to know the ongoing  

trend. 

 

FP Growth: 

FP growth approach [4] is based on data structure FP-Tree for storing crucial but compressed 

information regarding frequent patterns. This approach smartly avoids costly candidate 

generation of Ariori. This was further elaborated in journal “Data Mining and Knowledge 

Discovery” [5]. It executes in multi passes. While in very first pass this counts occurrence 
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frequency of items (attribute-value pairs) in the dataset, and use ‘header table’ to store them. In 

next pass, FP-tree structure is built by inserting instances. Items in each instance are sorted by 

descending order of their occurrence count in the dataset to process tree quickly. Items are 

discarded in each instance on not meeting minimum coverage threshold. FP-tree provides high 

compression near to root of tree If many instances share most frequent item. Final dataset is 

mined after recursive processing of this compressed growth tree. 

 

1.2  Goal of the thesis 

The goal of the work in this thesis is summarized below: 

 Go through about existing/past work in Frequent patterns mining area 

 Explanation of new algorithm using Pseudo code, Flow Chart, real life example 

 Checking Algorithm accuracy and performance using experimental setup 

 Comparison with well-known and  widely used Apriori algorithm 

1.3  Organization of the Thesis 

The thesis is organized as follows: 

Chapter   2 gives overview regarding work done in past related to frequent patterns. 

Chapter   3 explain most basic and popular algorithm in detail 

Chapter 4 discusses about new proposed algorithm. Its pseudo code, flow chart and 

explanation using real life example.  

Chapter  5 checks about accuracy of proposed algorithm using experimental setup. Description 

of experimental setup’s hardware & software detail. Comparison of execution performance with 

well-known widely used algorithm i.e. Apriori Algorithm 

Chapter  6 presents the conclusions of the thesis and future work.  
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Chapter 2 

2. RELATED WORK 

  

R. Agrawal and R. Srikant et al. [3] in 1993, in their paper “Fast Algorithms for Mining 

Association Rules”, described the Apriori and AprioriTid Algorithm. Apriori is based on keep 

making the larger Item sets. It identifies the frequent individual items in the database. Further it 

extends them to larger item sets as till those item-sets appear in the database more than set 

threshold. The frequent item sets detected using Apriori are utilized to determine association 

rules. These rules give indication about ongoing general trends in the database.  

 

H. Maurice and A. Swami, et al. [6] described Method of mining frequent patterns using Sets 

where mining was performed on sets of various transactions. 

 

J. Han, J. Pei and Y. Yin, et al. [4] described Mining Frequent Patterns without Candidate 

Generation. This had advantage over Apriori Algorithm which require repeated candidate set 

generation for frequent patterns generation. 

 

J. Han, J. Pei and Y. Yin, et al. [5] in 2004 described frequent-pattern tree (FP-tree) structure, as  

an extended prefix-tree structure for storing compressed but crucial information related to 

frequent patterns and further designing an efficient FP-tree based method of mining ie FP-

growth, for mining the complete set of frequent patterns by pattern fragment growth. 
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 A. Raorane, R. Kulkarni and B. Jitkar et al. [7] explained to mine frquqent patterns using Market 

Basket Analysis 

 

T. Patel, M. Panchal, D. Ladumor, J. Kapadia, P. Desai, A. Prajapati and R. Prajapati et al. [8]  

did survey of various methods to mine frequent patterns  and provided analystical study result. 

 

L. Wang, D. Cheung, R. Cheng, S. D. Lee and X. S. Yang, et al. [9] explained Mining of 

frequent item sets on uncertain databases. In uncertain databases, the support of an itemset is a 

random variable instead of a fixed occurrence counting of this itemset. Recently, with many new 

applications, such as sensor network monitoring, moving object search and network analysis 

uncertain data mining has become a hot topic in data mining. 

 

R. K. Ahir and M. B. Ahir, et al. [10] provided comparattive study of various Frequent Patterns 

techniques with advantage and disadvantages with each other.  

 

S. Zhang, Z. Du and J. Wang, et al. [11] explained Techniques for Mining Frequent Patterns in 

Unordered Trees aiming to discover restrictedly embedded sub tree patterns from a set of rooted 

labeled unordered trees. 
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Chapter 3 

3. POPULAR ALGORITHMS DETAIL 

 

Several researches have been done in past especially since 1990’s for mining frequent patterns 

and association rules from VLDB.  

R. Agrawal and R. Srikant et al. [3], in their paper “Fast Algorithms for Mining Association 

Rules”, described the Apriori and AprioriTid Algorithm. Apriori is based on keep making the 

larger Item sets. It identifies the frequent individual items in the database. Further it extend them 

to larger item sets as till those item-sets appear in the database more than set threshold. The 

frequent item sets detected using Apriori are utilized to determine association rules. These rules 

give indication about ongoing general trends in the database.  

 

The AprioriTid algorithm differs from classical Apriori that the database is not used at all for 

counting the support of candidate itemsets after the first pass. Rather, an encoding of the 

candidate itemsets used in the previous pass is employed for this purpose. In later passes, the size 

of this encoding can become much smaller than the database, thus saving much reading effort as 

compared to Apriori Algorithm 
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3.1  Apriori Algorithm 

 

Apriori pruning principle:  

If any itemset which is not frequent, its superset should not be generated/tested! R. 

Agrawal and R. Srikant et al. [3] described algorithm as below: 

 

Method:  

 Initially, one time scan of DB to fetch frequent 1-itemset 

 Generate length (k+1) candidate itemsets from length k frequent itemsets 

 Test the candidates against DB 

 Terminate when no frequent or candidate set can be generated 

 

Pseudo-code: 

Ck: Candidate itemset of size k 

Lk : frequent itemset of size k 

L1 = {frequent items}; 

for (k = 1; Lk !=; k++) do begin 

      Ck+1 = candidates generated from Lk; 

     for each transaction t in database do 

         increment the count of all candidates in Ck+1                             

that are contained in t 

     Lk+1  = candidates in Ck+1 with min_support 

     end 

return k Lk; 
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Example of Candidate-generation 

 

 

Example: 

 
min_support  = 2 

 

Tid Items 

10 A, C, D 

20 B, C, E 

30 A, B, C, E 

40 B, E 

 

 

 

 

 

 

 

 

Table 3.1 Apriori Transactional Database    
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3.2  AprioriTid 
 

R. Agrawal and R. Srikant et al. [3], in their paper “Fast Algorithms for Mining Association 

Rules”, described the AprioriTid Algorithm. The best feature of this algorithm is 

that the database D is not used for counting support after the first pass. Rather, the set Ck is used 

for this purpose. Each member of the set Ck is of the form < TID, { Xk } >, where each Xk is a 

Potentially large k-item & present in the transaction with identifier TID. For k = 1, C1 

corresponds to the database D. 

 

Deficiencies of Apriori Algorithm: 

o Very big  number of candidates 

o Lot many scans of transaction database 

o Too much workload of support counting for generated candidates  
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3.3  FP Growth Tree  
FP tree is Mining Frequent Patterns technique without Candidate Generation. 

 

 

J. Han, J. Pei and Y. Yin, et al. [4] , described frequent-pattern tree (FP-tree) structure, as  an 

extended prefix-tree structure for storing compressed but crucial information related to frequent 

patterns and further designing an efficient FP-tree based method of mining ie FP-growth, for 

mining the complete set of frequent patterns by pattern fragment growth. 

 

Efficiency of mining is achieved with three techniques:  

1. Compression of large database into a smaller data structure ie. FP-tree which avoids 

costly and repeated scans of database. 

2. It prefer a pattern-fragment method of growth to avoid the costly generation of a large 

number of candidate sets 

3. a divide-and-conquer method based on partitioning is used to decompose the mining task 

in set of various smaller tasks for mining confined patterns in conditional databases, This 

result in reducing reduces the search space to large extent.  

 

Various researches work shows that this method is efficient and scalable for mining both long 

and short frequent patterns, and is faster than the Apriori algorithm. It is claimed that it is faster 

than other frequent-pattern mining methods. 
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3.4  FP Growth Tree Example: 

min-sup=2 

TID Items TID Items TID Items 

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3 

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5 

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3 

 

Table 3.2 FP Tree Transactional Database  

 The first scan of data is the same as Apriori 

 Derive the set of frequent 1-itemsets 

 Generate a set of ordered items  

Item ID Support count 

I2 7 

I1 6 

I3 6 

I4 2 

I5 2 

Table 3.3 FP Tree Database With Support Count  
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Construct the FP-Tree 

 

o Create a branch for each transaction 

o Items in each transaction are processed in order  

o Item having maximum support need to be nearest to root 

 

Order the items and create below branch for transaction T100: {I2,I1,I5} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I1:1 

 

null 

 I2:1 

 

 I5:1 
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Order the items and create below branch for transaction T200: {I2,I4} 

    

      

 

 

 

 

 

 

 

 

Order the items and create below branch for transaction T300: {I2,I3} 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 I1:1 

 

I5:1 

 I4:1 

 
I2:2 

 null 

 

 I1:1 

 
I5:1 

 I4:1 

 I3:1 

I2:3 
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Order the items and create below branch for transaction T400: {I2,I1,I4} 

 

  

 

 

 

 

 

 

 

 

Order the items and create below branch for transaction T500: {I1,I3} 

 

 

 

 

 

 

 

 

 

 

 null 

 

 

 
I5:1 

 I4:1 

 

 

 

I4:1 

I1:2 

I2:4 

 
null 

 

 

 

 

 

 

 

 I3:1 

I2:4 

  

 I1:1 

 I3:1 
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Order the items and create below branches for all remaining transactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 null 

 

 I1:4 

 
I5:1 

 I4:1 

 I3:2 

I2:7 

 

I4:1 

 I1:2 

 I3:2 

 I3:2 

 I5:1 
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Final constructed tree with mapping to transaction table 

 

 

 

 

 

 

 

 

 

 

 

The problem of mining frequent patterns in databases is transformed to that of mining the FP-tree 

 

Create frequent patterns consisting I5 

 

Occurrences of I5: <I2,I1,I5> and <I2,I1,I3,I5> 

Two prefix Paths <I2, I1: 1> and <I2,I1,I3: 1> 

Conditional FP tree contains only  <I2: 2, I1: 2>, I3 is not considered because its support count 

of 1 is less than the minimum support count. 

Frequent patterns {I2,I5:2}, {I1,I5:2},{I2,I1,I5:2} 

 

 

 null 
 

 I1:4 

 

I5:1 

 I4:1 

 I3:2 

I2:7 

 

I4:1 

 I1:2 

 I3:2 

 I3:2 

 I5:1 
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Create Frequent Patters for whole database 

TID Conditional Pattern Base Conditional FP-tree 

I5 {{I2,I1:1},{I2,I1,I3:1}} <I2:2,I1:2> 

I4 {{I2,I1:1},{I2,1}} <I2:2> 

I3 {{I2,I1:2},{I2:2}, {I1:2}} <I2:4,I1:2>,<I1:2> 

I1 {I2,4} <I2:4> 

Table 3.4 FP Tree Conditional Pattern Base  

 

 

TID Conditional FP-tree Frequent Patterns Generated 

I5 <I2:2,I1:2> {I2,I5:2}, {I1,I5:2},{I2,I1,I5:2} 

I4 <I2:2> {I2,I4:2} 

I3 <I2:4,I1:2>,<I1:2> {I2,I3:4},{I1,I3:4},{I2,I1,I3:2} 

I1 <I2:4> {I2,I1:4} 

Table 3.5 FP Tree Frequent Patterns 
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Chapter 4 

4. ALGORITHM OVERVIEW 

 

4.1  Introduction 
 

Proposed new algorithm is based on fact that numbers can be processed faster than strings. But 

often our most of data is in String form like if we talk about grocery store then name of objects 

will be name of vegetables, fruits, or food items. But in new proposed algorithm we will first 

converts these names of objects into numbers as per certain rule. These numbers are called magic 

number. Due to these particular magic numbers, this algorithm is called magic number 

algorithm. Once all objects or data items are represented by those numbers (or magic numbers) 

then this algorithm is applied and patterns can be mined in faster manner than the existing 

algorithms. Below is pseudo code for algorithm. Before pseudo code, below is description of 

various notation used. 

  

TL Transaction List: List of transaction where value of each item indicates sum 

magic number of items purchased in that transaction 

MS Magic Sum: Sum of magic number of all items purchased in a transaction 

MTL Magic Transaction List: Each item index in list represents magic sum and each 

item value indicates count of transactions having that magic sum 

Table 4.1  Magic Number Notation 

Assign numeric value to each item such that sum of numeric values of 2 sets will be equal only if 

purchased items in both transactions are same. Let’s call these numeric values a magic numbers. 

Calculate sum of magic numbers of all transactions and prepare TL. 
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4.2  Pseudo Code 

magic_number(TL) 

{ 

MTL = reduceDB(TL);   /* scan once and reduce the data base */ 

for each item in MTL  

  if (MTL[count] >= min_support) 

  { 

Fetch subsets from Magic sum represented by ‘count’ and all subsets      

having 2 or more members are frequent patterns. 

} 

} 

 

List reduceDB(TL) 

{ 

for each item in TL with magic sum MS 

{ 

MTL[MS] =  MTL[MS]  + 1; 

  for each subset MSS of MS 

 MTL[MSS] =  MTL[MSS]  + 1; 

} 

return MTL; 

} 

 

Answer: All subsets generated by magic_number(); 
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4.3  Flow Diagram 
Figure 4.1 Flow Diagram 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yes 

STOP 

n >= min_sup 

Index of item in new list indicates magic sum of magic 

numbers assigned to each purchased item. Fetch subsets of all 

these items using their magic numbers. Show sub sets having 

2 or more items and these will be frequent patterns.  

No 

No 

Reached end of 

list MTL 

Start 

Assign magic number Numeric value to each Data Items such that 

sum of magic numbers of 2 transactions is same only when 

purchased items in both transactions are exactly same 

Scan whole transaction list TL once and prepare new list magic list 

MTL where each item in list indicates count of transactions having 

magic sum equal to index of item in new list. 

Calculate SUM of all magic numbers of all transaction and now each 

transaction is denoted by magic sum of magic  

Check value ‘n’ represented by next item in new list 
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4.4  Algorithm Illustration With Example 
 

 Let’s assume a retail store chain like Wal-Mart , Big Bazar, Home-Plus etc, where they 

have various products like daily need things , cosmetic products , Stationary, Vegetables 

& Fruits. 

 Owner company of these stores target is to mine the frequent patterns to know user 

preference and increase sales in future 

 Below are 5 Transactions made at stationary section in a Retail store. 

 Let’s apply Magic Number Algorithm to mine frequent patterns on below transaction 

table.  Min support level for FP= 3 

 

T1 Eraser Notebook Pencil Stapler 

T2 Stapler Pencil Notebook  

T3 Eraser Notebook Sharpener  

T4 Notebook Sharpener Pencil Stapler 

T5 Pencil    

 

Table – 4.2 Magic Number Original Transaction Table 
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 After Applying Magic Number Algorithm, Table with occurrence count will become like 

as follow. 

# Eraser Notebook Pencil Sharpener Stapler MAGIC 

SUM 

T1 1 2 4 0 16 23 

T2 0 2 4 0 16 22 

T3 1 2 0 8 0 11 

T4 0 2 4 8 16 30 

T5 0 0 4 0 0 4 

Occurrence 

Frequency 

2 4 4 2 3  

 

Table – 4.3 Transaction Table with Magic Sum 

 

 Each Item is represented by its assigned magic number. 

  Magic Sum of each transaction is shown in last column          
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 After applying magic number new Magic transaction list will be as below  

Transaction Count Transaction Count 

T[0] 0 T[17] 1 

T[1] 2 T[18] 3 

T[2] 4 T[19] 2 

T[3] 2 T[20] 3 

T[4] 4 T[21] 1 

T[5] 1 T[22] 3 

T[6] 3 T[23] 1 

T[7] 1 T[24] 1 

T[8] 2 T[25] 0 

T[9] 1 T[26] 1 

T[10] 2 T[27] 0 

T[11] 1 T[28] 1 

T[12] 1 T[29] 0 

T[13] 0 T[30] 1 

T[14] 1 T[31] 0 

T[15] 0   

T[16] 3   

Table – 4.4 Transaction Table after applying Magic Number 
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 Now we can mine frequent pattern using Magic Number algorithm as follows. 

 Magic sum that have Occurrence more than min support 3 are 2,4,6,16,18,20,22 

 2,4,16 are single items so not pair so we discard these numbers 

 6,18,20,22 are composite numbers, so these are 4  Frequent Patterns 

 6 =  <Notebook, Pencil> 

 18 =  < Notebook,Stapler> 

 20 =  <Pencil, Stapler> 

 22 =  <Notebook, Pencil,Stapler> 
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Chapter 5 

5. ALGORITHM SIMULATION 

 

Simulation of algorithm is done using Android application programming on Android Lollypop 

version 5.0. Implementation can be verified on any Android Mobile Device running on Android 

Lollypop version 5.0 

 

5.1  Development Environment 
 

OS Android 5.0 (Lollypop) 

SDK ADT Build: v21.1.0-569685 

CPU Capacity ARM, 1.9GHz Quad Core 

RAM 3 GB 

API Level 17 

 

Table 5.1 Development Environment 
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5.2  Software Program Structure 

 

Simulation of algorithm is done using Android application programming on Android 

Lollipop version 5.0. Implementation can be verified on any Android Mobile Device 

running on Android Lollipop version 5.0 

 

 Apriori algorithm Android Implementation majorly has 3 parts 

 - src/MainActivity.java 

 - res/activity_main.xml 

 - AndroidManifest.xml 

 

 MainActivity.java: This is main activity for implementation defines all data structures 

and data population in them, loading of GUI in application layout, logic related with 

mining of frequent patterns, defines all callback action on user interaction on various GUI 

components such as button etc. 

 

 Activity_main.xml: This XML file defines all layouts, buttons, controls used in 

application like checkbox, buttons, textbox and their relative positioning, their color, 

paddings, text size etc 

 

 AndroidManifest.xml: This XML define the meta data of applications like its version, 

Its name, Representing icon, priority, permission required, security parameters etc. it 

defines the launch mode in which application should be launched. Also application name 

and application icon are also defined here. 
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5.3  IDE Overview 
 

Eclipse Integrated Development Environment is used for Software Development Purpose using Android 

SDK plugin in IDE. 
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5.4  Input to Simulation Program 
 

  In Simulation program below was 10 transaction made.  

Transaction # Transaction Detail 

T1 < Pencil, Eraser,Colors,Cutter> 

T2 < Pencil, Eraser,Colors,Cutter> 

T3 < Pencil, Eraser,Colors,Cutter> 

T4 < Pencil, Eraser,Colors,Cutter> 

T5 < Pencil, Eraser,Colors,Cutter> 

T6 < Sharpener,Scale,Colors> 

T7 <Sharpener,Notebook,Inkpot> 

T8 <Colors,Cutter,Notebook> 

T9 <Cutter,Inkpot> 

T10 < Pencil, Cutter> 

 

Table 5.2 Input Transaction Table 
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5.5  GUI Introduction 

 

Figure 5.1 GUI Inroduction 
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5.6  Input Screens Of Program 
 

 

 

 
min_support = 3, Transaction Count = 10 
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5.7  Output From Program 
min_support = 2, Transaction Count = 10 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (192+195+199)/3= 195 µSeconds  

Time taken by Magic Number Algorithm- (201+212+186)/3=199 µSeconds 
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min_support = 2, Transaction Count = 100 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (348+206+288)/3= 280 µSeconds  

Time taken by Magic Number Algorithm- (183+263+247)/3=231 µSeconds 
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min_support = 2, Transaction Count = 1000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (642+642+6663)/3= 649 µSeconds  

Time taken by Magic Number Algorithm- (381+443+294)/3=372 µSeconds 
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min_support = 2, Transaction Count = 10,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (5542+5495+5382)/3= 5473 µSeconds  

Time taken by Magic Number Algorithm- (1366+1615+1333)/3=1438 µSeconds 
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min_support = 2, Transaction Count = 100,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (49692+57232+52035)/3= 52986 µSeconds  

Time taken by Magic Number Algorithm- (11351+11495+11651)/3=11499 µSeconds 
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min_support = 2, Transaction Count = 1000,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (454517+450308+452459)/3= 452428 µSeconds  

Time taken by Magic Number Algorithm- (100886+102090+102330)/3=101768 µSeconds 
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Execution Performance Comparison In Tabular Form 

Min_support = 2 

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec) 

10 195 199 

100 280 231 

1000 649 372 

10000 5473 1438 

100000 52986 11496 

1000000 452428 101768 

Table 5.3 Output Table with Min Support 2 

 

Execution Performance Comparision by  Graph 
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min_support = 3, Transaction Count = 10 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (299+194+232)/3= 241 µSeconds  

Time taken by Magic Number Algorithm- (259+184+224)/3=222 µSeconds 
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min_support = 3, Transaction Count = 100 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (206+252+219)/3= 225 µSeconds  

Time taken by Magic Number Algorithm- (207+202+236)/3=215 µSeconds 
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min_support = 3, Transaction Count = 1000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (833+429+629)/3= 630 µSeconds  

Time taken by Magic Number Algorithm- (232+433+330)/3=331 µSeconds 
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min_support = 3, Transaction Count = 10,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (3851+3813+3948)/3= 3870 µSeconds  

Time taken by Magic Number Algorithm- (1366+1554+1293)/3=1404 µSeconds 
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min_support = 3, Transaction Count = 100,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (36431+36908+39520)/3= 37620 µSeconds  

Time taken by Magic Number Algorithm- (10889+11673+11363)/3=11308 µSeconds 
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min_support = 3, Transaction Count = 1000,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (320036+338307+321632)/3= 326658 µSeconds  

Time taken by Magic Number Algorithm- (99458+114378+101647)/3=105161 µSeconds 

 

 

Apriori 

Algo 

Magic 

Algo 



[53] 

 

Execution Performance Comparison In Tabular Form 

Min_support = 3 

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec) 

10 241 222 

100 225 215 

1000 630 331 

10000 3870 1404 

100000 37620 11308 

1000000 326658 105161 

Table 5.4 Output Table with Min Support 3 

 

 

Execution Performance Comparision by  Graph 
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min_support = 4, Transaction Count = 10 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (255+329+188)/3= 257 µSeconds  

Time taken by Magic Number Algorithm- (188+231+264)/3=227 µSeconds 
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min_support = 4, Transaction Count = 100 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (238+225+244)/3= 235 µSeconds  

Time taken by Magic Number Algorithm- (269+317+202)/3=262 µSeconds 
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min_support = 4, Transaction Count = 1000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (533+611+546)/3= 563 µSeconds  

Time taken by Magic Number Algorithm- (244+484+155)/3=295 µSeconds 
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min_support = 4, Transaction Count = 10,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (4005+4021+3907)/3= 3977 µSeconds  

Time taken by Magic Number Algorithm- (1251+1268+1372)/3=1297 µSeconds 
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min_support = 4, Transaction Count = 100,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (38736+38620+36689)/3= 38015 µSeconds  

Time taken by Magic Number Algorithm- (11619+11429+11335)/3=11461 µSeconds 
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min_support = 4, Transaction Count = 1000,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (319057+363683+353748)/3= 345496 µSeconds  

Time taken by Magic Number Algorithm- (102163+112663+101554)/3=105460 µSeconds 
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Execution Comparison In Tabular Form 

Min_support = 4 

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec) 

10 257 227 

100 235 252 

1000 563 295 

10000 3977 1297 

100000 38015 11461 

1000000 345496 105460 

Table 5.5 Output Table with Min Support 4 

 

  

Execution Performance Comparision by  Graph 
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min_support = 5, Transaction Count = 10 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (152+277+254)/3= 228 µSeconds  

Time taken by Magic Number Algorithm- (181+228+237)/3=215 µSeconds 
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min_support = 5, Transaction Count = 100 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (290+285+227)/3= 268 µSeconds  

Time taken by Magic Number Algorithm- (248+242+249)/3=246 µSeconds 
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min_support = 5, Transaction Count = 1000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (633+581+554)/3= 589 µSeconds  

Time taken by Magic Number Algorithm- (230+213+231)/3=225 µSeconds 
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min_support = 5, Transaction Count = 10,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (3790+3911+3896)/3= 3866 µSeconds  

Time taken by Magic Number Algorithm- (1253+1300+1200)/3=1251 µSeconds 

 
 

Apriori 

Algo 

Magic 

Algo 



[65] 

 

min_support = 5, Transaction Count = 100,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (37625+39353+36983)/3= 37987 µSeconds  

Time taken by Magic Number Algorithm- (11926+10794+10932)/3=11217 µSeconds 
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min_support = 5, Transaction Count = 1000,000 

 

       
            

 

 

 

 

            

 

 

 

 

 

 

 

 

 

Time taken by Apriori Algorithm- (330401+345432+348789)/3= 341540 µSeconds  

Time taken by Magic Number Algorithm- (115623+101995+122387)/3=113335 µSeconds 
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Execution Comparison In Tabular Form 

Min_support = 5 

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec) 

10 228 225 

100 268 246 

1000 589 225 

10000 3866 1251 

100000 37987 11217 

1000000 341540 113335 

Table 5.6 Output Table with Min Support 5 

 

 

Execution Performance Comparision by  Graph 
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Chapter 6 

 

6. CONCLUSION & FUTURE WORK 

 

Conclusion: 

Proposed Magic Number algorithm is verified by programming simulation using Android 

Mobile Programming and is able to extract the correct information of frequent patterns. 

Performance of Magic number algorithm is comparable with Apriori when there are less number 

of Transactions. When there is high count of transactions then Magic Number Algorithm 

performs better than Apriori Algorithm. 

 

Limitation: 

Our simulation for Magic Number algorithm is done with purchasable items count = 8. Magic 

number algorithm gives better performance as compared to Apriori because it limits the size of 

operational database upto range of magic sum. Magic sum range is determined by count of 

purchasable items. Therefore if purchasable items count is increased Magic Number algorithm 

may prove inferior than Apriori Algorithm in context of execution time. 

 

Future scope : 

o Determine Space complexity of this algorithm wrt Apriori 

o Time & Space complexity of this algorithm wrt to other algorithm like FP Growth 

o Further improvement in algorithm performance 
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