
A Numeric Approach to Mine Frequent

Patterns From Very Large Database

A dissertation submitted in the partial fulfillment for the award of Degree of

Master of Technology

In

Software Engineering

Submitted by

Sachin Mittal (2K12/SWT/17)

COMPUTER ENGINEERING DEPARTMENT

DELHI TECHNOLOGICAL UNIVERSITY

BAWANA ROAD, DELHI

July 2015

[2]

DECLARATION

I hereby declare that the thesis entitled “A numeric approach to mine frequent patterns from

very large database” which is being submitted to the Delhi Technological University, in partial

fulfillment of the requirements for the award of degree of Master of Technology in Software

Technology is an authentic work carried out by me. The material contained in this thesis has not

been submitted to any university or institution for the award of any degree.

Sachin Mittal

2K12/SWT/17

Master of Technology (Software Technology)

Delhi Technological University

Bawana road, Delhi - 110042

[3]

CERTIFICATE

Date: __________

This is to certify that the Major Project entitled “A numeric approach to mine frequent

patterns from very large database” submitted by SACHIN MITTAL, Roll Number:

2K12/SWT/17; in partial fulfillment of the requirement for the award of degree Master of

Technology in Software Technology to Delhi Technological University, Bawana Road Delhi; is

a record of the candidate’s own work carried out by him under my supervision. The matter

embodied in this thesis is original and has not been submitted for the award of any other Degree.

Dr. Kapil Sharma

Asst. Professor, Computer Engineering Dept.

Delhi Technological University

Bawana road, Delhi – 110042

[4]

ACKNOWLEDGEMENT

July 2015

I would like to take this opportunity to thank my project guide Dr. KAPIL SHARMA for his

invaluable time and consistent guidance during this whole research work. I am very thankful to

him for giving me the opportunity and motivation to complete this challenge. I am very

appreciative of his generosity with his time, advice, data, and references, to name a few of his

contributions. Under his able guidance I was enabled to achieve the objectives of this work.

Lastly, I would like to thank all the people who were involved directly or indirectly in

successfully completion of this project.

Sachin Mittal

2K12/SWT/17

Master of Technology (Software Technology)

Delhi Technological University

Bawana road, Delhi – 110042

[5]

CONTENT TABLE

TABLE LIST .. 7

FIGURE LIST ... 8

ABSTRACT ... 9

1. INTRODUCTION .. 10

1.1 Existing Popular Algorithm .. 10

1.2 Goal of the thesis .. 11

1.3 Organization of the Thesis .. 11

2. RELATED WORK ... 12

3. POPULAR ALGORITHMS DETAIL .. 14

3.1 Apriori Algorithm ... 15

3.2 AprioriTid ... 18

3.3 FP Growth Tree ... 19

3.4 FP Growth Tree Example ... 20

4. ALGORITHM OVERVIEW ... 27

4.1 Introduction ... 27

4.2 Pseudo Code .. 28

4.3 Flow Diagram ... 29

4.4 Algorithm Illustration With Example ... 30

5. ALGORITHM SIMULATION .. 34

5.1 Development Environment ... 34

5.2 Software Program Structure .. 35

5.3 IDE Overview ... 36

[6]

5.4 Input to Simulation Program ... 37

5.5 GUI Introduction ... 38

5.6 Input Screens Of Program ... 39

5.7 Output From Program ... 40

6. CONCLUSION & FUTURE WORK ... 68

REFERENCES .. 69

[7]

TABLE LIST

Table 3.1 Apriori Transactional Database ………………………………………………………13

Table 3.2 FP Tree Transactional Database ……………………………………………………...17

Table 3.3 FP Tree Database With Support Count ..……………………………………………..17

Table 3.4 FP Tree Conditional Pattern Base ……………………………………………………23

Table 3.5 FP Tree Frequent Patterns ……………………………………………………………23

Table 4.1 Magic Number Notation ……………………………………………………………..24

Table 4.2 Magic Number Original Transaction Table ...………………………………………..27

Table 4.3 Transaction Table with Magic Sum………....………………………………………..28

Table 4.4 Transaction Table after applying Magic Number...…………………………………..29

Table 5.1 Development Environment………………………..…………………………………..31

Table 5.2 Input Transaction Table….………………………..…………………………………..34

Table 5.3 Output Table with Minimum Support 2.…...……..…………………………………..43

Table 5.4 Output Table with Minimum Support 3.…...……..…………………………………..50

Table 5.5 Output Table with Minimum Support 4.…...……..…………………………………..57

Table 5.6 Output Table with Minimum Support 5.…...……..…………………………………..64

[8]

FIGURE LIST

Figure 4.1 Flow Diagram………………………………………………………………………28

Figure 5.1 GUI Introduction…………...……………….……………………………………...37

[9]

ABSTRACT

Mining Frequent pattern is one of the major activities in Data Mining field to extract the useful

information from large databases. Today is era of big shopping complexes, mega stores, super-

markets. Shopping using e-commerce portals like flipkart, amazon, snapdeal etc is increasing

day by day. As a result databases of all these mega stores, shopping complexes and e-commerce

portals are increasing many folds every year. Frequent patterns are used by the big corporate

houses to know the interest and purchasing trend of their customers and accordingly they plan

their sales or marketing strategies. This lead to need for faster algorithm to mine frequent

patterns from these large databases.

 This research work presents a novel idea for mining frequent patterns from very large

database. Proposed new algorithms i.e. Magic Number Algorithm is based on the converting the

database items to Numeric equivalents. Once we have all items represented by numerals then we

can apply mathematics and logic on them in easier and faster way as compared to operations on

strings.

Using same experimental setup and environment conditions, proposed new algorithm proves

superior to Apriori Algorithm by approximate 70% performance improvement.

At Minimum Support level = 4 and transaction count= 1000,000

Time taken by Magic Number Algorithm - 105 milli seconds

Time taken by Apriori Algoritm - 345 milli seconds

Development Environment Detail:

OS: Android 5.0 (Lollypop)

SDK: ADT Build: v21.1.0-569685

CPU: ARM, 1.9GHz Quad Core

RAM: 3 GB

API: Level 17

[10]

Chapter 1

1. INTRODUCTION

Proposed new algorithm deals with Data Mining from large databases. Active work on mining

useful knowledge and information from very large database started in 90’s [1] [2]. Frequent

patterns are set of data items which occur more than a given threshold value in given large

database set. Mining of frequent patterns is considered one of the most critical & important

concepts in data mining because this tells about the trend of occurrence of data items. For

example in large grocery stores this can tell about liking of customer for one data item as

compared to other. By mining frequent patterns business houses can predict what kind of items

needs to be presented to customer to increase the sale volume. Similarly in other areas also like

scientific research, Universities data frequent patterns can be used to mine various useful facts

for future strategy design.

Very large databases have millions of records and it is not possible to read all that information

and extract the useful information. When strategists from various domains sit to analyze the

available information, he need to know the trend of customers and users to design his strategy to

increase the volume of sales etc. Frequent Patterns are most useful tool to help strategists to

design their strategy. Frequent patters gives direct insight about users preferences and purchase

habits in a particular domain of business like grocery store, electronics mega stores, e-commerce

etc.

1.1 Existing Popular Algorithm
Some of existing algorithms for frequent pattern mining are:

Apriori:

Apriori Algorithm [3] is based on making larger and larger Item sets. It works by identifying the

frequently occurring individual items in the database and making larger sets from them which are

as long as those item sets that appear in the database more than required threshold. Such frequent

item sets detected by Apriori are further used to define rules of association to know the ongoing

trend.

FP Growth:

FP growth approach [4] is based on data structure FP-Tree for storing crucial but compressed

information regarding frequent patterns. This approach smartly avoids costly candidate

generation of Ariori. This was further elaborated in journal “Data Mining and Knowledge

Discovery” [5]. It executes in multi passes. While in very first pass this counts occurrence

[11]

frequency of items (attribute-value pairs) in the dataset, and use ‘header table’ to store them. In

next pass, FP-tree structure is built by inserting instances. Items in each instance are sorted by

descending order of their occurrence count in the dataset to process tree quickly. Items are

discarded in each instance on not meeting minimum coverage threshold. FP-tree provides high

compression near to root of tree If many instances share most frequent item. Final dataset is

mined after recursive processing of this compressed growth tree.

1.2 Goal of the thesis

The goal of the work in this thesis is summarized below:

 Go through about existing/past work in Frequent patterns mining area

 Explanation of new algorithm using Pseudo code, Flow Chart, real life example

 Checking Algorithm accuracy and performance using experimental setup

 Comparison with well-known and widely used Apriori algorithm

1.3 Organization of the Thesis

The thesis is organized as follows:

Chapter 2 gives overview regarding work done in past related to frequent patterns.

Chapter 3 explain most basic and popular algorithm in detail

Chapter 4 discusses about new proposed algorithm. Its pseudo code, flow chart and

explanation using real life example.

Chapter 5 checks about accuracy of proposed algorithm using experimental setup. Description

of experimental setup’s hardware & software detail. Comparison of execution performance with

well-known widely used algorithm i.e. Apriori Algorithm

Chapter 6 presents the conclusions of the thesis and future work.

[12]

Chapter 2

2. RELATED WORK

R. Agrawal and R. Srikant et al. [3] in 1993, in their paper “Fast Algorithms for Mining

Association Rules”, described the Apriori and AprioriTid Algorithm. Apriori is based on keep

making the larger Item sets. It identifies the frequent individual items in the database. Further it

extends them to larger item sets as till those item-sets appear in the database more than set

threshold. The frequent item sets detected using Apriori are utilized to determine association

rules. These rules give indication about ongoing general trends in the database.

H. Maurice and A. Swami, et al. [6] described Method of mining frequent patterns using Sets

where mining was performed on sets of various transactions.

J. Han, J. Pei and Y. Yin, et al. [4] described Mining Frequent Patterns without Candidate

Generation. This had advantage over Apriori Algorithm which require repeated candidate set

generation for frequent patterns generation.

J. Han, J. Pei and Y. Yin, et al. [5] in 2004 described frequent-pattern tree (FP-tree) structure, as

an extended prefix-tree structure for storing compressed but crucial information related to

frequent patterns and further designing an efficient FP-tree based method of mining ie FP-

growth, for mining the complete set of frequent patterns by pattern fragment growth.

[13]

 A. Raorane, R. Kulkarni and B. Jitkar et al. [7] explained to mine frquqent patterns using Market

Basket Analysis

T. Patel, M. Panchal, D. Ladumor, J. Kapadia, P. Desai, A. Prajapati and R. Prajapati et al. [8]

did survey of various methods to mine frequent patterns and provided analystical study result.

L. Wang, D. Cheung, R. Cheng, S. D. Lee and X. S. Yang, et al. [9] explained Mining of

frequent item sets on uncertain databases. In uncertain databases, the support of an itemset is a

random variable instead of a fixed occurrence counting of this itemset. Recently, with many new

applications, such as sensor network monitoring, moving object search and network analysis

uncertain data mining has become a hot topic in data mining.

R. K. Ahir and M. B. Ahir, et al. [10] provided comparattive study of various Frequent Patterns

techniques with advantage and disadvantages with each other.

S. Zhang, Z. Du and J. Wang, et al. [11] explained Techniques for Mining Frequent Patterns in

Unordered Trees aiming to discover restrictedly embedded sub tree patterns from a set of rooted

labeled unordered trees.

[14]

Chapter 3

3. POPULAR ALGORITHMS DETAIL

Several researches have been done in past especially since 1990’s for mining frequent patterns

and association rules from VLDB.

R. Agrawal and R. Srikant et al. [3], in their paper “Fast Algorithms for Mining Association

Rules”, described the Apriori and AprioriTid Algorithm. Apriori is based on keep making the

larger Item sets. It identifies the frequent individual items in the database. Further it extend them

to larger item sets as till those item-sets appear in the database more than set threshold. The

frequent item sets detected using Apriori are utilized to determine association rules. These rules

give indication about ongoing general trends in the database.

The AprioriTid algorithm differs from classical Apriori that the database is not used at all for

counting the support of candidate itemsets after the first pass. Rather, an encoding of the

candidate itemsets used in the previous pass is employed for this purpose. In later passes, the size

of this encoding can become much smaller than the database, thus saving much reading effort as

compared to Apriori Algorithm

[15]

3.1 Apriori Algorithm

Apriori pruning principle:

If any itemset which is not frequent, its superset should not be generated/tested! R.

Agrawal and R. Srikant et al. [3] described algorithm as below:

Method:

 Initially, one time scan of DB to fetch frequent 1-itemset

 Generate length (k+1) candidate itemsets from length k frequent itemsets

 Test the candidates against DB

 Terminate when no frequent or candidate set can be generated

Pseudo-code:

Ck: Candidate itemset of size k

Lk : frequent itemset of size k

L1 = {frequent items};

for (k = 1; Lk !=; k++) do begin

 Ck+1 = candidates generated from Lk;

 for each transaction t in database do

 increment the count of all candidates in Ck+1

that are contained in t

 Lk+1 = candidates in Ck+1 with min_support

 end

return k Lk;

[16]

Example of Candidate-generation

Example:

min_support = 2

Tid Items

10 A, C, D

20 B, C, E

30 A, B, C, E

40 B, E

Table 3.1 Apriori Transactional Database

[17]

21

1
st

 scan

C
1
 L

1

L
2

C
2
 C

2

2
nd

 scan

C
3

L
3

3
rd

 scan

Sup
min

 = 2

Database TDB

[18]

3.2 AprioriTid

R. Agrawal and R. Srikant et al. [3], in their paper “Fast Algorithms for Mining Association

Rules”, described the AprioriTid Algorithm. The best feature of this algorithm is

that the database D is not used for counting support after the first pass. Rather, the set Ck is used

for this purpose. Each member of the set Ck is of the form < TID, { Xk } >, where each Xk is a

Potentially large k-item & present in the transaction with identifier TID. For k = 1, C1

corresponds to the database D.

Deficiencies of Apriori Algorithm:

o Very big number of candidates

o Lot many scans of transaction database

o Too much workload of support counting for generated candidates

[19]

3.3 FP Growth Tree
FP tree is Mining Frequent Patterns technique without Candidate Generation.

J. Han, J. Pei and Y. Yin, et al. [4] , described frequent-pattern tree (FP-tree) structure, as an

extended prefix-tree structure for storing compressed but crucial information related to frequent

patterns and further designing an efficient FP-tree based method of mining ie FP-growth, for

mining the complete set of frequent patterns by pattern fragment growth.

Efficiency of mining is achieved with three techniques:

1. Compression of large database into a smaller data structure ie. FP-tree which avoids

costly and repeated scans of database.

2. It prefer a pattern-fragment method of growth to avoid the costly generation of a large

number of candidate sets

3. a divide-and-conquer method based on partitioning is used to decompose the mining task

in set of various smaller tasks for mining confined patterns in conditional databases, This

result in reducing reduces the search space to large extent.

Various researches work shows that this method is efficient and scalable for mining both long

and short frequent patterns, and is faster than the Apriori algorithm. It is claimed that it is faster

than other frequent-pattern mining methods.

[20]

3.4 FP Growth Tree Example:

min-sup=2

TID Items TID Items TID Items

T100 I1,I2,I5 T400 I1,I2,I4 T700 I1,I3

T200 I2,I4 T500 I1,I3 T800 I1,I2,I3,I5

T300 I2,I3 T600 I2,I3 T900 I1,I2,I3

Table 3.2 FP Tree Transactional Database

 The first scan of data is the same as Apriori

 Derive the set of frequent 1-itemsets

 Generate a set of ordered items

Item ID Support count

I2 7

I1 6

I3 6

I4 2

I5 2

Table 3.3 FP Tree Database With Support Count

[21]

Construct the FP-Tree

o Create a branch for each transaction

o Items in each transaction are processed in order

o Item having maximum support need to be nearest to root

Order the items and create below branch for transaction T100: {I2,I1,I5}

I1:1

null

 I2:1

 I5:1

[22]

Order the items and create below branch for transaction T200: {I2,I4}

Order the items and create below branch for transaction T300: {I2,I3}

 I1:1

I5:1

 I4:1

I2:2

 null

 I1:1

I5:1

 I4:1

 I3:1

I2:3

[23]

Order the items and create below branch for transaction T400: {I2,I1,I4}

Order the items and create below branch for transaction T500: {I1,I3}

 null

I5:1

 I4:1

I4:1

I1:2

I2:4

null

 I3:1

I2:4

 I1:1

 I3:1

[24]

Order the items and create below branches for all remaining transactions

 null

 I1:4

I5:1

 I4:1

 I3:2

I2:7

I4:1

 I1:2

 I3:2

 I3:2

 I5:1

[25]

Final constructed tree with mapping to transaction table

The problem of mining frequent patterns in databases is transformed to that of mining the FP-tree

Create frequent patterns consisting I5

Occurrences of I5: <I2,I1,I5> and <I2,I1,I3,I5>

Two prefix Paths <I2, I1: 1> and <I2,I1,I3: 1>

Conditional FP tree contains only <I2: 2, I1: 2>, I3 is not considered because its support count

of 1 is less than the minimum support count.

Frequent patterns {I2,I5:2}, {I1,I5:2},{I2,I1,I5:2}

 null

 I1:4

I5:1

 I4:1

 I3:2

I2:7

I4:1

 I1:2

 I3:2

 I3:2

 I5:1

[26]

Create Frequent Patters for whole database

TID Conditional Pattern Base Conditional FP-tree

I5 {{I2,I1:1},{I2,I1,I3:1}} <I2:2,I1:2>

I4 {{I2,I1:1},{I2,1}} <I2:2>

I3 {{I2,I1:2},{I2:2}, {I1:2}} <I2:4,I1:2>,<I1:2>

I1 {I2,4} <I2:4>

Table 3.4 FP Tree Conditional Pattern Base

TID Conditional FP-tree Frequent Patterns Generated

I5 <I2:2,I1:2> {I2,I5:2}, {I1,I5:2},{I2,I1,I5:2}

I4 <I2:2> {I2,I4:2}

I3 <I2:4,I1:2>,<I1:2> {I2,I3:4},{I1,I3:4},{I2,I1,I3:2}

I1 <I2:4> {I2,I1:4}

Table 3.5 FP Tree Frequent Patterns

[27]

Chapter 4

4. ALGORITHM OVERVIEW

4.1 Introduction

Proposed new algorithm is based on fact that numbers can be processed faster than strings. But

often our most of data is in String form like if we talk about grocery store then name of objects

will be name of vegetables, fruits, or food items. But in new proposed algorithm we will first

converts these names of objects into numbers as per certain rule. These numbers are called magic

number. Due to these particular magic numbers, this algorithm is called magic number

algorithm. Once all objects or data items are represented by those numbers (or magic numbers)

then this algorithm is applied and patterns can be mined in faster manner than the existing

algorithms. Below is pseudo code for algorithm. Before pseudo code, below is description of

various notation used.

TL Transaction List: List of transaction where value of each item indicates sum

magic number of items purchased in that transaction

MS Magic Sum: Sum of magic number of all items purchased in a transaction

MTL Magic Transaction List: Each item index in list represents magic sum and each

item value indicates count of transactions having that magic sum

Table 4.1 Magic Number Notation

Assign numeric value to each item such that sum of numeric values of 2 sets will be equal only if

purchased items in both transactions are same. Let’s call these numeric values a magic numbers.

Calculate sum of magic numbers of all transactions and prepare TL.

[28]

4.2 Pseudo Code

magic_number(TL)

{

MTL = reduceDB(TL); /* scan once and reduce the data base */

for each item in MTL

 if (MTL[count] >= min_support)

 {

Fetch subsets from Magic sum represented by ‘count’ and all subsets

having 2 or more members are frequent patterns.

}

}

List reduceDB(TL)

{

for each item in TL with magic sum MS

{

MTL[MS] = MTL[MS] + 1;

 for each subset MSS of MS

 MTL[MSS] = MTL[MSS] + 1;

}

return MTL;

}

Answer: All subsets generated by magic_number();

[29]

4.3 Flow Diagram
Figure 4.1 Flow Diagram

Yes

STOP

n >= min_sup

Index of item in new list indicates magic sum of magic

numbers assigned to each purchased item. Fetch subsets of all

these items using their magic numbers. Show sub sets having

2 or more items and these will be frequent patterns.

No

No

Reached end of

list MTL

Start

Assign magic number Numeric value to each Data Items such that

sum of magic numbers of 2 transactions is same only when

purchased items in both transactions are exactly same

Scan whole transaction list TL once and prepare new list magic list

MTL where each item in list indicates count of transactions having

magic sum equal to index of item in new list.

Calculate SUM of all magic numbers of all transaction and now each

transaction is denoted by magic sum of magic

Check value ‘n’ represented by next item in new list

[30]

4.4 Algorithm Illustration With Example

 Let’s assume a retail store chain like Wal-Mart , Big Bazar, Home-Plus etc, where they

have various products like daily need things , cosmetic products , Stationary, Vegetables

& Fruits.

 Owner company of these stores target is to mine the frequent patterns to know user

preference and increase sales in future

 Below are 5 Transactions made at stationary section in a Retail store.

 Let’s apply Magic Number Algorithm to mine frequent patterns on below transaction

table. Min support level for FP= 3

T1 Eraser Notebook Pencil Stapler

T2 Stapler Pencil Notebook

T3 Eraser Notebook Sharpener

T4 Notebook Sharpener Pencil Stapler

T5 Pencil

Table – 4.2 Magic Number Original Transaction Table

[31]

 After Applying Magic Number Algorithm, Table with occurrence count will become like

as follow.

Eraser Notebook Pencil Sharpener Stapler MAGIC

SUM

T1 1 2 4 0 16 23

T2 0 2 4 0 16 22

T3 1 2 0 8 0 11

T4 0 2 4 8 16 30

T5 0 0 4 0 0 4

Occurrence

Frequency

2 4 4 2 3

Table – 4.3 Transaction Table with Magic Sum

 Each Item is represented by its assigned magic number.

 Magic Sum of each transaction is shown in last column

[32]

 After applying magic number new Magic transaction list will be as below

Transaction Count Transaction Count

T[0] 0 T[17] 1

T[1] 2 T[18] 3

T[2] 4 T[19] 2

T[3] 2 T[20] 3

T[4] 4 T[21] 1

T[5] 1 T[22] 3

T[6] 3 T[23] 1

T[7] 1 T[24] 1

T[8] 2 T[25] 0

T[9] 1 T[26] 1

T[10] 2 T[27] 0

T[11] 1 T[28] 1

T[12] 1 T[29] 0

T[13] 0 T[30] 1

T[14] 1 T[31] 0

T[15] 0

T[16] 3

Table – 4.4 Transaction Table after applying Magic Number

[33]

 Now we can mine frequent pattern using Magic Number algorithm as follows.

 Magic sum that have Occurrence more than min support 3 are 2,4,6,16,18,20,22

 2,4,16 are single items so not pair so we discard these numbers

 6,18,20,22 are composite numbers, so these are 4 Frequent Patterns

 6 = <Notebook, Pencil>

 18 = < Notebook,Stapler>

 20 = <Pencil, Stapler>

 22 = <Notebook, Pencil,Stapler>

[34]

Chapter 5

5. ALGORITHM SIMULATION

Simulation of algorithm is done using Android application programming on Android Lollypop

version 5.0. Implementation can be verified on any Android Mobile Device running on Android

Lollypop version 5.0

5.1 Development Environment

OS Android 5.0 (Lollypop)

SDK ADT Build: v21.1.0-569685

CPU Capacity ARM, 1.9GHz Quad Core

RAM 3 GB

API Level 17

Table 5.1 Development Environment

[35]

5.2 Software Program Structure

Simulation of algorithm is done using Android application programming on Android

Lollipop version 5.0. Implementation can be verified on any Android Mobile Device

running on Android Lollipop version 5.0

 Apriori algorithm Android Implementation majorly has 3 parts

 - src/MainActivity.java

 - res/activity_main.xml

 - AndroidManifest.xml

 MainActivity.java: This is main activity for implementation defines all data structures

and data population in them, loading of GUI in application layout, logic related with

mining of frequent patterns, defines all callback action on user interaction on various GUI

components such as button etc.

 Activity_main.xml: This XML file defines all layouts, buttons, controls used in

application like checkbox, buttons, textbox and their relative positioning, their color,

paddings, text size etc

 AndroidManifest.xml: This XML define the meta data of applications like its version,

Its name, Representing icon, priority, permission required, security parameters etc. it

defines the launch mode in which application should be launched. Also application name

and application icon are also defined here.

[36]

5.3 IDE Overview

Eclipse Integrated Development Environment is used for Software Development Purpose using Android

SDK plugin in IDE.

[37]

5.4 Input to Simulation Program

 In Simulation program below was 10 transaction made.

Transaction # Transaction Detail

T1 < Pencil, Eraser,Colors,Cutter>

T2 < Pencil, Eraser,Colors,Cutter>

T3 < Pencil, Eraser,Colors,Cutter>

T4 < Pencil, Eraser,Colors,Cutter>

T5 < Pencil, Eraser,Colors,Cutter>

T6 < Sharpener,Scale,Colors>

T7 <Sharpener,Notebook,Inkpot>

T8 <Colors,Cutter,Notebook>

T9 <Cutter,Inkpot>

T10 < Pencil, Cutter>

Table 5.2 Input Transaction Table

[38]

5.5 GUI Introduction

Figure 5.1 GUI Inroduction

Transaction

Input Section.

User can

choose Items

and can submit

User can

submit each

transaction by

clicking this

button

Click this

button to Mine

Frequent

patterns once

10 Transactions

are submitted

Button to clear

all the input

content from

the form and

database

After “Apriori

Algo” button is

pressed, then

output will be

displayed in

this section

Enter here to

mention what

should be the

Minimum

Support for 10

transaction set

Enter here to

mention how

many times set

of 10

transactions to

be repeated

[39]

5.6 Input Screens Of Program

min_support = 3, Transaction Count = 10

Apriori

Algo

Magic

Algo

[40]

5.7 Output From Program
min_support = 2, Transaction Count = 10

Time taken by Apriori Algorithm- (192+195+199)/3= 195 µSeconds

Time taken by Magic Number Algorithm- (201+212+186)/3=199 µSeconds

Apriori

Algo

Magic

Algo

[41]

min_support = 2, Transaction Count = 100

Time taken by Apriori Algorithm- (348+206+288)/3= 280 µSeconds

Time taken by Magic Number Algorithm- (183+263+247)/3=231 µSeconds

Apriori

Algo

Magic

Algo

[42]

min_support = 2, Transaction Count = 1000

Time taken by Apriori Algorithm- (642+642+6663)/3= 649 µSeconds

Time taken by Magic Number Algorithm- (381+443+294)/3=372 µSeconds

Apriori

Algo

Magic

Algo

[43]

min_support = 2, Transaction Count = 10,000

Time taken by Apriori Algorithm- (5542+5495+5382)/3= 5473 µSeconds

Time taken by Magic Number Algorithm- (1366+1615+1333)/3=1438 µSeconds

Apriori

Algo

Magic

Algo

[44]

min_support = 2, Transaction Count = 100,000

Time taken by Apriori Algorithm- (49692+57232+52035)/3= 52986 µSeconds

Time taken by Magic Number Algorithm- (11351+11495+11651)/3=11499 µSeconds

Apriori

Algo

Magic

Algo

[45]

min_support = 2, Transaction Count = 1000,000

Time taken by Apriori Algorithm- (454517+450308+452459)/3= 452428 µSeconds

Time taken by Magic Number Algorithm- (100886+102090+102330)/3=101768 µSeconds

Apriori

Algo

Magic

Algo

[46]

Execution Performance Comparison In Tabular Form

Min_support = 2

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec)

10 195 199

100 280 231

1000 649 372

10000 5473 1438

100000 52986 11496

1000000 452428 101768

Table 5.3 Output Table with Min Support 2

Execution Performance Comparision by Graph

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

10 100 1000 10000 100000 1000000

Apriori Algo

Magic Number Algo

Minimum Support = 2

Transaction Count
Time(µSec)

[47]

min_support = 3, Transaction Count = 10

Time taken by Apriori Algorithm- (299+194+232)/3= 241 µSeconds

Time taken by Magic Number Algorithm- (259+184+224)/3=222 µSeconds

Apriori

Algo

Magic

Algo

[48]

min_support = 3, Transaction Count = 100

Time taken by Apriori Algorithm- (206+252+219)/3= 225 µSeconds

Time taken by Magic Number Algorithm- (207+202+236)/3=215 µSeconds

Apriori

Algo

Magic

Algo

[49]

min_support = 3, Transaction Count = 1000

Time taken by Apriori Algorithm- (833+429+629)/3= 630 µSeconds

Time taken by Magic Number Algorithm- (232+433+330)/3=331 µSeconds

Apriori

Algo

Magic

Algo

[50]

min_support = 3, Transaction Count = 10,000

Time taken by Apriori Algorithm- (3851+3813+3948)/3= 3870 µSeconds

Time taken by Magic Number Algorithm- (1366+1554+1293)/3=1404 µSeconds

Apriori

Algo

Magic

Algo

[51]

min_support = 3, Transaction Count = 100,000

Time taken by Apriori Algorithm- (36431+36908+39520)/3= 37620 µSeconds

Time taken by Magic Number Algorithm- (10889+11673+11363)/3=11308 µSeconds

Apriori

Algo

Magic

Algo

[52]

min_support = 3, Transaction Count = 1000,000

Time taken by Apriori Algorithm- (320036+338307+321632)/3= 326658 µSeconds

Time taken by Magic Number Algorithm- (99458+114378+101647)/3=105161 µSeconds

Apriori

Algo

Magic

Algo

[53]

Execution Performance Comparison In Tabular Form

Min_support = 3

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec)

10 241 222

100 225 215

1000 630 331

10000 3870 1404

100000 37620 11308

1000000 326658 105161

Table 5.4 Output Table with Min Support 3

Execution Performance Comparision by Graph

0

50000

100000

150000

200000

250000

300000

350000

10 100 1000 10000 100000 1000000

Apriori Algo

Magic Number Algo

Minimum Support = 3

Transaction Count
Time(µSec)

[54]

min_support = 4, Transaction Count = 10

Time taken by Apriori Algorithm- (255+329+188)/3= 257 µSeconds

Time taken by Magic Number Algorithm- (188+231+264)/3=227 µSeconds

Apriori

Algo

Magic

Algo

[55]

min_support = 4, Transaction Count = 100

Time taken by Apriori Algorithm- (238+225+244)/3= 235 µSeconds

Time taken by Magic Number Algorithm- (269+317+202)/3=262 µSeconds

Apriori

Algo

Magic

Algo

[56]

min_support = 4, Transaction Count = 1000

Time taken by Apriori Algorithm- (533+611+546)/3= 563 µSeconds

Time taken by Magic Number Algorithm- (244+484+155)/3=295 µSeconds

Apriori

Algo

Magic

Algo

[57]

min_support = 4, Transaction Count = 10,000

Time taken by Apriori Algorithm- (4005+4021+3907)/3= 3977 µSeconds

Time taken by Magic Number Algorithm- (1251+1268+1372)/3=1297 µSeconds

Apriori

Algo

Magic

Algo

[58]

min_support = 4, Transaction Count = 100,000

Time taken by Apriori Algorithm- (38736+38620+36689)/3= 38015 µSeconds

Time taken by Magic Number Algorithm- (11619+11429+11335)/3=11461 µSeconds

Apriori

Algo

Magic

Algo

[59]

min_support = 4, Transaction Count = 1000,000

Time taken by Apriori Algorithm- (319057+363683+353748)/3= 345496 µSeconds

Time taken by Magic Number Algorithm- (102163+112663+101554)/3=105460 µSeconds

Apriori

Algo

Magic

Algo

[60]

Execution Comparison In Tabular Form

Min_support = 4

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec)

10 257 227

100 235 252

1000 563 295

10000 3977 1297

100000 38015 11461

1000000 345496 105460

Table 5.5 Output Table with Min Support 4

Execution Performance Comparision by Graph

0

50000

100000

150000

200000

250000

300000

350000

400000

10 100 1000 10000 100000 1000000

Apriori Algo

Magic Number Algo

Minimum Support = 4

Transaction Count
Time(µSec)

[61]

min_support = 5, Transaction Count = 10

Time taken by Apriori Algorithm- (152+277+254)/3= 228 µSeconds

Time taken by Magic Number Algorithm- (181+228+237)/3=215 µSeconds

Apriori

Algo

Magic

Algo

[62]

min_support = 5, Transaction Count = 100

Time taken by Apriori Algorithm- (290+285+227)/3= 268 µSeconds

Time taken by Magic Number Algorithm- (248+242+249)/3=246 µSeconds

Apriori

Algo

Magic

Algo

[63]

min_support = 5, Transaction Count = 1000

Time taken by Apriori Algorithm- (633+581+554)/3= 589 µSeconds

Time taken by Magic Number Algorithm- (230+213+231)/3=225 µSeconds

Apriori

Algo

Magic

Algo

[64]

min_support = 5, Transaction Count = 10,000

Time taken by Apriori Algorithm- (3790+3911+3896)/3= 3866 µSeconds

Time taken by Magic Number Algorithm- (1253+1300+1200)/3=1251 µSeconds

Apriori

Algo

Magic

Algo

[65]

min_support = 5, Transaction Count = 100,000

Time taken by Apriori Algorithm- (37625+39353+36983)/3= 37987 µSeconds

Time taken by Magic Number Algorithm- (11926+10794+10932)/3=11217 µSeconds

Apriori

Algo

Magic

Algo

[66]

min_support = 5, Transaction Count = 1000,000

Time taken by Apriori Algorithm- (330401+345432+348789)/3= 341540 µSeconds

Time taken by Magic Number Algorithm- (115623+101995+122387)/3=113335 µSeconds

Apriori

Algo

Magic

Algo

[67]

Execution Comparison In Tabular Form

Min_support = 5

Transaction Count Time By Apriori(µSec) Time by Magic Number(µSec)

10 228 225

100 268 246

1000 589 225

10000 3866 1251

100000 37987 11217

1000000 341540 113335

Table 5.6 Output Table with Min Support 5

Execution Performance Comparision by Graph

0

50000

100000

150000

200000

250000

300000

350000

400000

10 100 1000 10000 100000 1000000

Apriori Algo

Magic Number Algo

Minimum Support = 5

Transaction Count
Time(µSec)

[68]

Chapter 6

6. CONCLUSION & FUTURE WORK

Conclusion:

Proposed Magic Number algorithm is verified by programming simulation using Android

Mobile Programming and is able to extract the correct information of frequent patterns.

Performance of Magic number algorithm is comparable with Apriori when there are less number

of Transactions. When there is high count of transactions then Magic Number Algorithm

performs better than Apriori Algorithm.

Limitation:

Our simulation for Magic Number algorithm is done with purchasable items count = 8. Magic

number algorithm gives better performance as compared to Apriori because it limits the size of

operational database upto range of magic sum. Magic sum range is determined by count of

purchasable items. Therefore if purchasable items count is increased Magic Number algorithm

may prove inferior than Apriori Algorithm in context of execution time.

Future scope :

o Determine Space complexity of this algorithm wrt Apriori

o Time & Space complexity of this algorithm wrt to other algorithm like FP Growth

o Further improvement in algorithm performance

[69]

REFERENCES

[1] R. Agrawal, T. Imielinski and A. Swami, “Mining Association Rules between Sets of Items in Large

Databases,” in ACM SIGMOD International Conference on management of data, Washington DC, 1993.

[2] R. Agrawal, C. Faloutsos and A. Swami, “Efficient similarity search in sequence databases,” in Fourth

International Conference, Chicago, October 1993.

[3] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” in 20th International Conference

on Very Large Data Bases, Santiago, Chile, September 1994.

[4] J. Han, J. Pei and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” in ACM SIGMOD

international conference on management of data, Dallas, 2000.

[5] J. Han, J. Pei, Y. Yin and R. Mao, “Mining Frequent Patterns without Candidate Generation:A Frequent-Pattern

Tree Approach,” Data Mining and Knowledge Discovery, vol. 8, no. 1, pp. 53-87, 2004.

[6] H. Maurice and A. Swami, “Set-Oriented Mining for Association Rules in Relational Databases,” in Eleventh

International Conference on Data Engineering, Taipei, 1995.

[7] S. Zhang, Z. Du and J. Wang, “New Techniques for Mining Frequent Patterns in Unordered Trees,”

Cybernetics, IEEE Transactions on, vol. 45, no. 6, pp. 1113 - 1125, 2014.

[8] Y. Xu, J. X. Yu, G. Liu and H. Lu, “From Path Tree To Frequent Patterns: A Framework for Mining Frequent

Patterns,” in Conference on Data Mining (ICDM 2002), Maebashi City, Japan, 2002.

[9] T. Patel, M. Panchal, D. Ladumor, J. Kapadia, P. Desai, A. Prajapati and R. Prajapati, “An Analytical Study of

Various Frequent Itemset Mining Algorithms,” Research Journal of Computer and Information Technology

Sciences, vol. 1, no. 2, pp. 6-9, 2013.

[10] A. Raorane, R. Kulkarni and B. Jitkar, “Association Rule – Extracting Knowledge Using Market Basket

Analysis,” Research Journal of Recent Sciences, vol. 1(2), no. 2, pp. 19-27, 2012.

[11] R. K. Ahir and M. B. Ahir, “ALGORITHMS FOR MINING FREQUENT: A COMPARATIVE STUDY,”

International Journal of Advanced Research in Computer and Communication Engineering, vol. 2, no. 12,

2013.

[12] C. Borgelt, “Frequent item set mining,” Data Mining and Knowledge Discovery, vol. 2, no. 6, pp. 437-456,

2012.

[13] T. S. Patel and K. R. Amin, “A New Approach to Mine Frequent Itemsets,” ISCA Journal of Engineering

Sciences, vol. 1, no. July, pp. 14-18, 2012.

[14] S. Pramod and O. Vyas, “Frequent Item set Mining Algorithm,” International Journal of Computer

Applications, vol. 1, no. 15, pp. 86-91, 2010.

[15] L. Wang, D. Cheung, R. Cheng, S. D. Lee and X. S. Yang, “Efficient Mining Of Frequent Item Sets On Large

Uncertain Databases,” Knowledge And Data Engineering, vol. 24, no. 12, pp. 2170-2183, 2012.

[16] R. R. Naik and J. Mankar, “Mining Frequent Itemsets from Uncertain,” International Journal of Engineering

Trends & Technology in Computer Science, vol. 2, no. 2, 2013.

