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ABSTRACT 

Electromagnetic Compliance is now an essential part of the specification. 

Meeting these complex specifications is now a very challenging task. Most often, EM 

radiation behaviour can only be estimated in the last stages of back end simulation 

followed by EM field solution. In this work, we establish a modelling methodology 

where we first convert the complex geometry of the Transverse Electromagnetic 

Cell(TEM), which is a standard instrument of EM emission measurement for compliance 

testing. The complex geometry of the TEM cell is converted to a simple geometry 

through the Schwartz-Cristoffel transformation, thereby allowing a closed form solution. 

From this closed form expression, we obtain the electrical equivalent circuit of the TEM 

cell. We also demonstrate the methodology of converting the SOC’s geometry and into 

an antenna model, which is followed by conversion of the antenna model to an electrical 

equivalent. Finally, we unify these two models obtained into one electrical model which 

is used to predict the Radiated Emission captured by the TEM cell measurement. The 

model and the tool developed from it allow prediction of EM radiation from a SoC at an 

early stage of design. Finally we made an attempt to calculate the characteristic 

impedance of a GTEM (GIGA HERTZ) cell and computed the electric field, flux lines 

and magnetic fields of an GTEM cell using FEM(Maxwell 2D).   
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1. INTRODUCTION 
 

  Operation of digital integrated circuits (ICs) drive the electromagnetic emissions 

of electronics system, hence ICs like microprocessors and microcontrollers can be 

considered as primary source of electromagnetic emissions (EMEs). Sharp rise/fall of the 

pulsed current flowing through IC package leads/wirebond excites IC direct radiations of 

interfering electromagnetic fields. Furthermore steep current and voltages glitches on the 

IC power supplies which are feeding the input/output(I/O) pad of the IC and the signals 

carried by the I/O pad results in the noise source which drives the traces of the PCB as an 

antenna resulting in what is called as Conducted Emission. IC radiated and conducted 

emissions heavily influence the Electromagnetic Compliance (EMC) features of the 

electronic apparatus, hence the right selections of the ICs, from the EME point of view, 

implies a reduced number of EMI filters at the PCB and system level, necessary to 

compliant with system level EMC requirements . 

 Almost any electrical transitions with sharp edges, such as clocks, data, address 

and control, produce electromagnetic radiation. As performance requirements increase, 

clock speeds have also increased. The transition edge, or in engineering terms, the slew 

rate, has become faster and faster as the need for meeting set up and hold time has 

become harder to meet.  Set up is the time needed for a data pulse to be stable before the 

rising edge of the clock, and hold time is the time for the data pulse to remain stable after 

the edge of the clock 

Clocks are no longer fed to only one or two devices on circuit boards.  Rather, 

they are being distributed all over the circuit board. Also, increased memory 

requirements, and other loads on the clock lines, have significantly contributed to 

electromagnetic radiation. EMI is linearly proportional to current, the area of the current 

loop, and with the square of frequency. EMI is defined as EMI = kIAf2 where I is the 

current, A is the loop area, f is the frequency, and k is the constant depending on PCB 

materials and other factors. There are two types of EMI radiation: Differential Mode and 

Common Mode . Current loops formed between traces and the ground plane on PC add-

in cards and motherboards cause the Differential Mode. These loops act as antennas and 

radiate EMI that may exceed FCC limits. Localized ground noise injected into the PC’s 

I/O traces and cable causes Common Mode radiation. Since these cables and traces are 

long, they act as antennas. For this reason it is now mandatory specifications for the 
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microcontroller and microprocessor designer to compliant with the specification laid 

down by the system level companies. 

The twin standards SAE J1752/3 [14] and IEC 61967-2 [15] has recognizes the 

importance of the IC emissions and describes the procedures for evaluating the 

procedures of Electromagnetic compatibility of the integrated circuits. These procedures 

call for the IC to be mounted on 10cm X 10cm on the printed circuit board with IC being 

evaluated on one side and other component need to exercise the IC on the other side of 

the board. The board is mounted on the opening of the Transverse Electromagnetic Cell 

(TEM) with the IC facing inside the TEM cell. The TEM cell is an apparatus as shown in 

Fig.3.1 which involves the use of trapezoidal metallic box with the center septum as the 

test chamber. The TEM cell is designed which allows the propagation of the 

transmission-line mode in the region between the box and the septum. To avoid 

reflections, the cell is designed to have the nominal characteristics impedance of 50 Ω.  

        In order to interpret the results made in this cell, knowledge of propagating TEM 

mode is required. This thesis contains a theory of the calculating some basics property of 

the TEM model of propagation. In this thesis this particular analysis was heavily 

influenced by [2], [3].[5] Other authors [17], [4], [26] have also tried to do the analysis in 

their own way. But all the work in [2], [3], [5], [17], [26] was not suitable for the 

analysis of the complex geometry of today’s IC at the early stage of design or was asking 

for some laboratory measurement to be inserted in their analysis for the prediction of the 

radiation from the IC. 

Studies the EMC  of various electronic require accurate measurement techniques 

to define their EMI characterstics[27].The primary measurement techniques include 

anechoic chamber , shielded enclosure,Electromagnetic sensors,mode pertubation ,TEM 

cells etc…In general, an anechoic is a large shielded room. The anechoic chamber 

provides the uniformity of the EM fields and the shield environment. It is mainly used 

for the radiated emission and the immunity measurement. In the case of the emission, it 

is able to generate the real signals, so there is no need to consider the ambient signals. In 

the case of immunity testing, the anechoic chamber can provide the uniform EM fields, 

so it will prevent any potential interferences or field distributions. The use of large test 

areas for measurements and conducting experiments such as an anechoic chamber or 

open area test site (OATS) are not efficient when the biological samples are very small. 

For smaller samples a defined area with minimum interference and reflection of the EM 
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signal area is required and large test chambers do not meet this requirement. On the other 

hand, a transverse electromagnetic (TEM) cell, which consists of a rectangular coaxial 

transmission section tapered with coaxial connectors on both ends, is a better choice and 

provides a uniform EM field in a shielded environment . The usable area of the TEM cell 

is one-third of volume between the inner and the outer conductors. It is used generally 

for radiated immunity and emission tests of electronic devices, and biological 

applications and there are different Numerical techniques to analysize the Differential 

and integral equations with boundaries involved in calculating  EMI/EMC like 

Separation of variables,Conformal mapping[1] ,Method of moments[23](4Nec2 tool) 

,Finite difference method,Finite element method[1](Maxwell 2D), etc.. but we have used 

conformal mapping to analyise the TEM cell , MoM for modelling DUT, FEM for 

analysing GTEM cell. 

In this work we tried to create one single model suitable for complex geometry of 

today’s IC and presently available measuring instrument and adopted this model for easy 

computer based simulation. Using this model we can do accurate prediction to certain 

level even at very early stage of the design. 

This thesis is organised into broadly six sections. 

In chapter II, we have given the basic fundamental theory required to understand 

transmission lines and basic knowledge about waveguide , How TE or TM waves 

develops from TEM wave and TEM waves developed in TEM cell. 

In chapter III, we  review the existed literature about the TEM cell, the basic properties 

like electric and magnetic field distribution in a TEM cell, characteristic impedance of a 

TEM cell, finally higher order modes in a TEM cell.  

In chapter IV, we explained detailed modelling of a DUT in different orientations 

which contributes or doesn’t contributes in a TEM cell. the inductance and resistance 

equivalence of a loop is computed using MoM(4Nec2 tool) , finally analytical expression 

is formed in a simple way to model DUT. 

In chapter V , we explained the flow of a tool and the unified model of a TEM cell 

loaded with a DUT including simulation results and a few techniques to reduce radiated 

emission. 

In chapter VI , we have given a  basic idea about GTEM cell and its characteristic 

impedance along with the electric and magnetic field using FEM . 
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2. THEORITICAL BACKGROUND 
 

2.1  Transmission Lines 
In this study, understanding of the transmission line theory is required. The TEM 

cell is fed through a transmission line and one needs to have an understanding of the 

reflection, transmission of the voltage and current wave on the feed line. A transmission 

line can be defined in many ways. In general a transmission line is a medium that can be 

transfer useful energy from one place to another. The transmission line, such as a wire, a 

coaxial cable, or a waveguide, is used generally as the meaning of the material medium 

or the structure path for transmitting the energy, such as the EM waves, the cellular 

phone signals, or the radio signals. However, in this thesis, we would like to use the 

definition of the transmission line, which is referred from the “Networks and Devices 

Using Planar Transmission Lines” by Franco Di Paolo, which defines a transmission line 

as the distributed-parameter network, where voltages and currents can vary in magnitude 

and phase over their length [28] and analysis of enclosed micro-strip line [28,ch-2]. 

 

Figure 2.1 The transmission line schematics; (left) voltage and current definition, and (right) lumped 
element equivalent circuit. 

The schematics of a transmission line are shown in Fig. 2.1. The left schematic in Fig. 

2.1 shows a two-wire line as two conductors for the TEM wave propagation. This can be 

drawn as a lumped-element circuit, as shown in the right schematic in Fig 2.1, where R, 

whose unit is Ohm (Ω)/m, is the series resistance per unit length of both conductors, L, 

whose unit is Henry (H)/m, is the series inductance per unit length of both conductors. G, 

whose unit is Siemens (S)/m, is the shunt conductance per unit length, and C, whose unit 

is Farads (F)/m, is the shunt capacitance per unit length.  
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2.2 Waveguides: 

Since the TEM cell is one kind of waveguides, the theory of the waveguides is 

also needed to understand the working of the cell. Waveguides are hollow tubes, such as 

metal tubes, coaxial cables, or strand of glass fibers, used as a conductor or directional 

transmitter for the electromagnetic waves. They are the EM feed line, and they are 

commonly used in microwave communications, broadcasting, and radar installations. 

There are two main types of the waveguide; a rectangular waveguide and a cylindrical 

waveguide. 

The dimensions of the waveguides are related to the wavelength. If the 

dimensions are very large, the operating frequency will decreased. Therefore, to operate 

properly, the waveguides need to have a certain minimum diameter relative to the 

wavelength of the signal. If the waveguide is too narrow or the frequency is too low, 

which means that the wavelength is too long, the EM fields are not able to propagate. In 

the waveguide, the EM fields are propagating in various directions. There are two 

common modes in the waveguide transverse-magnetic (TM) and transverse-electric 

(TE). 

In TM mode, the magnetic lines of flux are perpendicular to the axis of the 

waveguide. In TE mode, the electric lines of flux are perpendicular to the axis of the 

waveguide. At the frequencies above the cutoff frequency, which is the lowest frequency 

at which the waveguide is large enough, the waveguides will function well. Since the 

TEM cell acts similar to the rectangular waveguide, a brief description of the rectangular 

waveguide is described here. The rectangular waveguide, which is one of the earliest 

transmission lines, is used to transport the microwave signal for many past decades, and 

people still use it today. It is used for many purposes, such as couplers, detectors, 

isolators, attenuators, and slotted lines. The operating frequencies of the rectangular 

waveguide are from 1 GHz to over 220 GHz. The rectangular waveguide can be used for 

high-power systems, millimeter wave systems, and in some precision test applications. 

The rectangular waveguide is able to propagate TE and TM modes, but not TEM 

modes as the TEM cell, since only one conductor is present. The geometry of the 

rectangular waveguide is shown in Fig. 2.2. We assume that the waveguide is filled with 

a material of permittivity (ε) and permeability (µ). It is standard convention to have the 

longest side of the waveguide along the x-axis, so that a is greater than b, where a is the 

inside width, and b is the inside height. 
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Figure 2.2 : Rectangular Wave Guide 

The velocity of propagation for a TEM wave (plane wave or transmission line 

wave) is referred to as the phase velocity (the velocity at which a point of constant phase 

moves).  The phase velocity of a TEM wave is equal to the velocity of energy transport.  

The phase velocity of a TEM wave travelling in a lossless medium characterized by (µ, 

ε) is given by 

�� = �� = 1√�	              (TEM phase velocity) 

The phase velocity of TE or TM mode in a waveguide is defined in the same 

manner as that of a TEM wave (the velocity at which a point of constant phase moves).  

We will find, however, that the waveguide phase velocity is not equal to the velocity of 

energy transport along the waveguide.  The velocity at which energy is transported down 

the length of the waveguide is defined as the group velocity. 

The differences between the waveguide phase velocity and group velocity can be 

illustrated using the field equations of the TE or TM rectangular waveguide modes.  It 

can be shown that the field components of general TE and TM waveguide modes can be 

written as sums and differences of TEM waves.  Consider the equation for the y-

component of the TE mode electric field in a rectangular waveguide. 

���� !" = − $��%& '()*+ &,% -./0!"1 

By applying the trigonometric identity: 

)*+ &,% = 12$ 3-/456 − -./456 7 
this component of the waveguide electric field can be written as 
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���� !" = ��%& '8-./(0!"1945 6⁄ ) − -./(0!"1.45 6⁄ );( 

�<( = =>1 − ?@A!"@ BC
 

The two terms in the TE field equation above represent TEM waves moving in 

the directions shown below. 

 

Figure 2.3: TEM waves directions leads to TE wave 

Thus, the TE wave in the rectangular waveguide can be represented as the 

superposition of two TEM waves reflecting from the upper and lower waveguide walls 

as they travel down the waveguide. 

 

Figure 2.4: TE Waves in the rectangular waveguide can be represented as the superposition of two 
TEM waves 

For the general TE mn of TM mn waves, the phase velocity of the TEM component 

is given by 

��DE = ��DE 

F = GHI.J K LMJNHO 
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Inserting the equation for the waveguide phase constant �DE gives 

��DE = ��DE = �
=>1 − K@APQ@ OC = ��′

>1 − K@APQ@ OC 

The waveguide phase velocity represents the speed at which points of constant phase of 

the component TEM waves travel down the waveguide. The waveguide phase velocity is 

larger than the TEM wave phase velocity given that the square root in the denominator of 

the waveguide phase velocity equation is less than unity.  The relationship between the 

waveguide phase velocity, waveguide group velocity, and the TEM component wave 

velocity is shown below. 

��′ = ��PQRS)T    
RS)T = >1 − ?@APQ@ BC

 

�UPQ = ��′ >1 − ?@APQ@ BC
 

�UPQ��PQ = ��′V 

The waveguide group velocity (the velocity of energy transport) is always smaller 

than the TEM wave phase velocity given the square root term in the numerator of the 

group velocity equation. 

As TEM cell seems to be two rectangular wave guides coupled with an aperture , 

but in rectangular waveguides TEM waves doesn’t propagate ,because of the aperture 

coupling ,gap is present between septum and outer conductor , due to the gap 

perturbation TEM waves can propagate in TEM cell ,it was clearly explained in [11] . 
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3. TRANSVERSE ELECTROMAGNETIC CELL 
 

3.1 TEM Cell: 

Transverse electromagnetic (TEM) transmission line cells are devices used to 
establish standard electromagnetic (EM) fields in a shielded environment. They are 
triplet transmission lines with the sides closed to prevent radiation of RF energy into the 
environment and to provide electrical isolation. The cell consists of a section of 
rectangular coaxial transmission line tapered at each end to adapt to standard coaxial 
connectors. A uniform TEM field is established inside a cell at any frequency of interest 
below that for which higher order modes begin to propagate.  

 

Figure 3.1 : TEM cell  

The TEM Cell was designed based on the concept of an expanded planar 

transmission line operated in a TEM mode to simulate a free space planar wave for 

susceptibility testing. The TEM cell is mainly a section of a rectangular coaxial 

transmission line with a flat and wide center conductor and tapered ends acting as 

transitions to adapt to standard 50Ω coaxial connectors as shown in the figure3.1[26] 

In susceptibility tests the power is fed through one input of the TEM cell .From 

there electromagnetic waves propagate spherically in the tapered part of the cell where in 

the main volume of the cell the wavefront changes to a planar one. Therefore in the 

middle part where the DUT (Device under Test) will be situated the field strength is 

constant along the longitudinal extension unless the presence of a DUT alters the field 

e.g. with possible conductive or dielectric components. The electromagnetic waves as 

well as the current in the center conductor are terminated by matched load impedance at 

the second input of the cell as shown in figure3.2. An advantage over anechoic rooms is 

the elimination of antennas for establishing the EM fields. In order to reach certain field 
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strength at the position of the DUT the necessary input power is much lower for a TEM 

cell than the power of antennas in an anechoic room. 

 

Figure 3.2: Schematic diagram of the TEM cell with the center conductor and the tapered ends. 

∆∆∆∆s denotes the difference in length of the conductors which limits the usable frequency. The 
maximum height of the DUT is typically one third of distance h.  

To minimize reflections and thus also the standing-wave ratio the cell usually has 

a characteristic impedance of 50Ω along its length. The size of a DUT is typically 

restricted to one third of the height h because the EM field is sufficiently uniform only 

within that region. Furthermore, for larger equipment the effect of the equipment itself 

on the field strength would be too large as to get reliable results. The well isolated TEM 

cell neither contributes to nor is affected by any external interference. 

As the TEM cell serves as its own transducer it can very well be used for 

emission tests, again the elimination of antennas is an advantage over OATSs and 

anechoic rooms. When carrying out emission measurements one or both inputs of the 

cell are used for monitoring the output power as a result of emissions from the tested 

equipment. When using both ends one obtains relative phase information which is useful 

if there is directivity in the emissions. As the emission measurements are performed by 

monitoring the output Voltage across the input(s) of the cell and not determining the 

radiated fields directly with the help of antennas, methods have been set up to correlate 

the data obtained from the TEM cell measurements to the standard OATS measurements 

as for meaningfully comparison  results. 

A clear drawback of the TEM cell is the limited useful frequency range due to the 

cell consisting of three differently shaped parts. Due to the corners of the transitions the 

length of the inner and outer conductor differs by ∆s (see figure3.2). So along the outer 
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conductor the travel time for a wave is longer by ∆X = ∆YZ". These field distortions give 

rise to higher mode propagation and thus affect the uniformity of the field inside the cell 

increasingly at higher frequencies. The highest frequency to use the cell depends mainly 

on the angle at the transition from the middle part to the tapered ends and thus on the 

openings angle of the two tapered parts. 

The size of the cell is another limiting factor as the cell shows cavity effects like 

resonances at frequencies at which the dimensions of the cell are about half the 

wavelength. To increase the Upper frequency limit of the TEM cell   with respect to the 

cavity effects absorbing material can be placed on the walls in order to minimize 

resonances and reflections. Thereby the useful frequency range can be extended. 

The TEM dimensions we have used throughout this thesis are shown in the 

figure3.3, all the calculations done on the basis of this dimensions. (TEM cell in ST Lab: 

FCC-TEM-JM1 by Fischer) 

 

Figure 3.3 : TEM cell Dimensions (TEM cell in ST Lab: FCC-TEM-JM1 by Fischer) 

3.2 TEM MODE ANALYSIS : 

The TEM cell is basically a rectangular coaxial transmission line. In order to 

understand how an electromagnetic wave can be guided by this structure [2], a brief 

review of the results from standard transmission line theory is presented. Any multi 

conductor system, of which the TEM cell is, one, can propagate at least one TEM mode. 

This mode has many unique properties, not the least of which is that it has no lower cut-

off frequency; that is, the TEM mode can propagate through the guide at frequencies all 

the way down to dc. Another characteristic property of the TEM mode (as its name 

implies) is that the electric and magnetic field components of this mode lie totally in the 

transverse plane (i.e., Ez = Hz = 0). In the transverse plane, the electric field satisfies 

Laplace's equation: ∇\C	̅^ = 0. This means that the transverse field distribution can be 
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obtained from the solution of a related static problem. The magnetic field is easily 

obtained from the electric field as 

'ab± =  ± %1ddd  × �df±
g(                                                                        (3.1) 

Where                                            'ab± = ℋab (,, k)-/(lm∓�1)  
 

�df± = ℰ̅^(,, k)-/(lm∓�1) 
g( = >�(	(  

Where: 

�( is the magnetic permeability 

	(    is the dielectric permittivity 

p    is the propagation constant 

%d1  is a unit vector in the z direction 

Many times, it is desirable to characterize TEM waves in terms of the Voltage 

and current on the line instead of the field quantities, �d and 'a. The Voltage and current 

are given by the following equations 3.2 

qf(r) = qfD9-.s1 +  qfD.-.s1                                                       (3.2) 

û(r) = ûD9-.s1 +  ûD.-.s1                                                        (3.3) 

Where:      qfD± = − v ℰ̅^±� . wxa  and 

                     ûD± =  ∮ ℋab ±z . wxa   

Where p is any path connecting the two conductors in a constant cross-sectional plane 

and ℓ is a closed path encircling the inner conductor. qfDand ûD are related by a constant 

which is called the characteristic impedance, ZO of the line, and is given by equation 3.3 

{( = ± qfD±
ûD± .                                                                                (3.4) 

If one measures the amplitudes of the forward and backward voltage waves, qfD±
 

then, with a. knowledge of the characteristic impedance, using equ. (3.2) determine the 

voltage and current anywhere on the line. 
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The characteristic impedance, ZO, can also be expressed in terms of the 

distributed capacitance per unit length of the transmission line, CO, as follows: 

{( = 1}~(                                                                                   (3.5) 

Where   } = <��"�" is the phase velocity 

Thus knowledge of the distributed capacitance, CO, completely determines the 

characteristic impedance. In addition to the characteristic impedance. 

3.3 Electric Field Distribution in a TEM cell: 

The distribution of the electric field of the TEM mode becomes important when 

one considers source related problems, e.g., the most efficient excitation of the TEM 

mode will occur when the source current is aligned along the lines of maximum electric 

field. The electric field distribution as well as the characteristic impedance of the TEM 

mode can be obtained using the method of conformal transformation to map the cross 

section of the TEM cell shown in Fig. 3.4 with a symmetrical x-y coordinate system 

superimposed. 

 

 

 

 

 

Figure 3.4  Cross section of TEM cell. 

into a region for which the solution to Laplace's equation is known. The center septum of 

width 2w is located symmetrically inside the cell of width 2a and height 2b, and is 

assumed to have negligible thickness. In addition, the septum is located a distance g from 

each vertical side wall. For convenience, some key points in the cell have been labelled 

A through F. The region A-D-E-F may be mapped into the upper half of a complex         

t-plane via the Schwarz-Christoffel transformation [1] which, due to symmetry, can be 

expressed in terms of Jacobian elliptic functions [31, pp. 7-15 and 1,ch-9]. The 

 E 
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transformation is given by 

                      �r = � wX′8�1 − X′C��1 − =CX′C�;
m

(                                        (3.6) 

  or alternatively by                                X = )+(�r, =) 

where sn is a Jacobian elliptic function of modulus, k, 

� = �(= ′)�  

And       Z=x+iy 

with x and y indicating the location of the field point as measured from the center of the 

TEM cell in the transverse plane. Here K(k) and K(k') are complete elliptic integrals of 

the first kind of moduli k and k', respectively [1], and 

= ′ = �1 − =C�< C�                                                                          (3.7) 

The modulus k can be determined from the requirement that 

�(=)�(= ′) = %� 

 

 

Figure 3.5. Complex t-plane 

Under the transformation given by (3.6), the region, A-D-E-F, in the z-plane is 

mapped into the upper half of the t-plane as shown in Fig. 3.5. Using (3.6), a in Fig.3.5 

can be calculated 

as                                              � = )+(��, =).                                                                       (3.8) 

For convenience, we now make an intermediate transformation from the t-plane to a 

complex u-plane defined by 

� = X/�                                                                               (3.9) 

The u-plane is shown in Fig.3.6. 

 

 

Figure 3.6. Complex u-plane. 
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Finally, we map the upper-half of the u-plane into a complex Z-plane defined by 

                       � = )+(�, �)                                                                 (3.10) 

The Z-plane is shown in Fig.3.7 and α’ is defined analogously to k'. In order to calculate 

the electric field, we must find the complex potential, F, which is given by 

 

 

 

 

Figure 3.7. Complex χ-plane. 

                                               � = �(�) + *�(�)                                                           (3.11)                                 

Where 

 �(�) is the potential function 

ψ(χ) is the stream function 

F satisfies the Cauchy-Riemann equations. 

In addition, the potential, �(�) ,must satisfy the following boundary conditions 

  �(�) =0 on BC and 

�(�) =V on AD. 

It is easily verified that the following solution satisfies all of the above requirements 

�(�) = q���(� ′)                                                                          (3.12) 

                �(�) = ������′�                                                                          (3.13)                                          

Where    � = �� + *��. 
The electric field, E, is defined by 

� = ℰ̂5 + *ℰ̂� = − K ��, � + * ��,O�    
                                                  = − K ��, � + * ���,O = − ww, �∗                                           (3.14) 

χr 

χi 

C 

D 
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A 

K(α’) 

2K(α) 
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The real part of E gives the x component of the electric field, and the imaginary part of E 

gives the y component of the electric field. dF/dz may be calculated as follows: 

                    w�w, = w�w� w�w� w�wX wXwr                                                                 (3.15) 

Using (3.7).(3.8) and (3.10) through (3.15), dF/dz may be evaluated as w�w� = *q��(� ′)                                                                           (3.16) 

                                        
¡¢¡� = R+(�). w+(�)                                                                (3.17) 

w�wX = 1�                                                                                   (3.18) 

 wXwr = R+(�r). w+(�r)                                                             (3.19) 

 by substituting  the above equations 

      
 ¡¥¡5 = ��D���′� . <AE(�).¡E(�) . <� . R+(�r)w+(�r)                            (3.20) 

X = �. )+(χ, α)                                                                   (3.21) 

From the elliptic integral properties 

     )+(�r, =) = )+(χ, α))+(��, �)                                                      (3.22) 

w+(χ, k) = �1 − αCsnC(χ, α)                                                  (3.23)         

R+(χ, k) = �1 − snC(χ, α)                                                    (3.24) 

by substituting  the equations (3.22),(3.23) and (3.24) in (3.20)                                                    w�wr = *q��(� ′) . w+(�r)
¨1 − snC(mz, k)snC(mw, k) . sn(mw, k)                                            (3.25) 

         

w�wr = −*q�w+(�r)
�(� ′)�¬((r)�< C�                                                                 (3.26) 

  Where     PO(z) = [sn2(mw) - sn2(mz)] 

and dn is another Jacobian elliptic function all of which have mod k. Thus the magnitude 

squared of the electric field, Eo
2, is given by 

�­C = ® qD�(� ′)¯C ° w+C(�r))+C(��) − )+C(�r)°                                                              (3.27) 
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It is easy to see from (3.27) that for z = +w, Eo
2 goes to infinity as expected from 

the edge condition. Equation (3.27) was evaluated numerically for a typical TEM cell 

geometry shown in figure 3.3 and used to calculate the x and y components of the 

electric field, as well as the magnitude and polarization angle of the electric field defined 

by 

T = %±RX%+ K���5O                                                                                              (3.28) 

         The modulus k for the dimensions shown in figure 3.3 is 0.99977≈1 then the 

electric field E has been reduced by applying sn(mz)=tanh(mz) , cn(mz)=sech(mz) , 

dn(mz)=sqrt(1-k2sn2(mz)), in final transformation  the modulus α has also been 

computed as 0.99987≈1 then �(� ′) = & 2�  then the electric field E can be computed by 

applying one volt to the empty TEM cell, the  electric field magnitude is plotted in 

Fig.3.8  

� = >® 1& 2⁄ ¯C ² �1 − =CX%+ℎC(�r)X%+ℎC(��) − X%+ℎC(�r)²                                                       (3.29) 

 

Figure 3.8: Electric Field distribution of an empty TEM cell 

Since it is well known that capacitance is invariant under a conformal- 

transformation, we may use the geometry of Fig 3.7.  to also calculate the capacitance of 

the TEM cell. From that figure 3.7, it is evident that the capacitance is just given by the 

ordinary parallel plate capacitor formula, that is            

~	( = 2 �(�)�(� ′)                                                                             (3.30) 

TEM cell in ST Lab:FCC-TEM-JM1 by Fischer  
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Therefore, the total capacitance, CO, of the TEM cell transmission line per unit length is 

just twice that given by 

~	( = 4 �(�)�(� ′).                                                                          (3.31) 

3.4 Magnetic Field Distribution of the TEM cell: 

For either the forward or reflected wave the magnetic field is given by the TEM 

requirement from the electric field. If the electric field is normalized with q ��   ,then 

actual electric field  is �́µ(,, k). q ��  , and the magnetic field without reflections is 

    '́́µ(,, k) = ±¶·. �́µ(,, k). q ��                                                      (3.32) 
The expression with reflections is     

'́́µ(,, k) = ±¶·. �́µ(,, k). {(u ��                                                (3.33) 

where ¶· is the dyadic wave admittance 

¶· = ¶(¸̂º̂ − º̂¸̂)   and ¶ = ¨�"�" = <»¼¼Ω 

the above expression illustrates that without reflections the magnetic field is transverse to 

the electric field and has the magnitude given by the electric field magnitude divided by 

the impedance of free space . 

3.5  Characteristic Impedance: 

Characteristic Impedance is derived that exhibits the dimensions of the TEM cell 

explicitly, thus facilitating the design of a cell with given characteristic impedance. The 

approximate form is derived in appendix-1 [32]and is given by  

~	( = 4 ®�� + 2& x+ ½1 + RSXℎ &¾2�¿¯                                          (3.34) 

where g, b, and w are defined in Fig.3.3. Equation (3.34) is a good approximation of the 

more complicated but exact expression under the following conditions:
6À ≥ 1 and 

ÂÀ ≥ <C 

Using (3.5) and (3.31), the characteristic impedance of the TEM cell is found to be 

{­ = g(4 �(� ′)�(�)                                                                        (3.35) 
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and the approximate form using (3.34) is then 

{­ = g(
4 3�� + 2& x+ ½1 + RSXℎ &¾2�¿7                                                        (3.36) 

Using the above equation we can calculate the characteristic Impedance of a TEM cell 

Assuming the TEM cell as pure transmission line ,replacing with the inductance and 

capacitance. i.e calculated from {­ = ¨ÃZ   capacitance is calculated using equ(3.34) 

Substituting the Zo and C we can get L. 

 

3.6  Mode Excitation: 

When the electric or magnetic current source, such as a monopole antenna, is 

inserted in the waveguide, we need to consider the electric current source (Ä)̅, whose 

location is between two transverse planes at z1 and z2, as shown in Fig. 3.5. The E±  , and 

H±+ fields are then generated. As we can see in Fig. 3.5, the E+ , and H++ fields are 

travelling in the +z direction, and the E − , and H − fields are travelling in the –z direction. 

The E and H fields [5] can be formulated in terms of the waveguide modes as given 

below 

 

 

 

 

Figure 3.9: E and H fields when a electric current source located in between transverse  

planes z1 and z2 . �9 = ∑ ~E9(-E + -1E)-./0Q1E       z > z2               

'9 = ∑ ~E9(ℎE + ℎ1E)-./0Q1E           z > z2 

�. = ∑ ~E.(-E − -1E)-/0Q1E          z <  z1 

'. = ∑ ~E.(ℎE − ℎ1E)-/0Q1E          z < z1 

                 In above equations n is a general summation index and implies a summation 

over all possible TE and TM modes .The unknown amplitudes Cn may be determined by 
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an application of the Lorentz reciprocity formula . For the  volume V ,choose that 

bounded by the waveguide walls and cross-sectional planes located at z1 and z2 in figure. 

Let the field E1, H1 to be used in the Lorentz reciprocity formula, be the field radiated by 

the current source .This field is given by above equations. For the field E2 ,H2 ,choose 

the nth waveguide mode En
- ,Hn

-; that is,                   

�C = �E. = (-E + -1E)-/0Q1 

'C = 'E. = (−ℎE + ℎ1E)-/0Q1 

From Lorentz reciprocity formula [10] 

Æ(�< × 'E. − �E. × '<) ∙ +wÈ = � �E. ∙ Äwq�É                                              (3.37) 

Since the field E2 ,H2 is a source –free solution (J2=0) within V. The surface integral is 

zero over the waveguide walls by virtue of the boundary condition + × �< = + × �E. =
0. since this modes are orthogonal ,i.e., 

 v �D±É" × 'E± ∙ +wÈ = 0      + ≠ �                                                                      (3.38) 

All the terms except the nth in the expansion of E1,H1 vanish when integrated over the 

waveguide cross section S0. Thus we have  

v ~E9�(-E + -1E) × (−ℎE + ℎ1E) − (-E − -1E) × (ℎE + ℎ1E)�. %1wÈ −ËV v ~E.�(-E −Ë!-1E) × (−ℎE + ℎ1E) − (-E − -1E) × (−ℎE + ℎ1E)�. %1wÈ = −2~E9 v -E × ℎE ∙ %1wÈ =1Vv �E. ∙ Äwq�                                                       (3.39)  

Since the integral over the cross section at z1 vanishes identically. Hence Cn
+ is given by 

~E9 = − 1¬E � �E. ∙ Äwq =� − 1¬E � (-E − -1E) ∙ Ä-/0Q1wq                      (3.40)�  

If En
+,Hn

+ is chosen for the field E2 ,H2 we obtain 

~E9 = − 1¬E � �E9 ∙ Äwq =� − 1¬E � (-E + -1E) ∙ Ä-./0Q1wq                       (3.41)�  

Where                                

¬E = 2 � -E × ℎEÉ"
∙ %1wÈ 
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And S0 is a cross-sectional surface of the waveguide . the normalization constant Pn 

depends on the choice of expressions used for en and hn , the later being arbitrary. 

¬Ì = |Î9|CqC
2 {(                                                                        (3.42) 

where A+ Is the excitation factor       

Î9 = − {(2qC ��E. ∙ ÄwÏ′Ð                                                  (3.42.1) 

 V is the voltage between the inner and outer conductors  

  Z0 is the Characteristic impedance  

  Ñ is the volume enclosing all sources  

  E(-) is the electric field of the negative –z propagating wave 

  J is the source current density 

 considering an electric dipole , the volume integral in above equation (3.42.1)reduces to     

�Ä. �E.wÏ ′ =Ð �((,(, k(, r()uxÌÒÒRS)T b                               (3.43) 

where  

(,(, k(, r() is the source point 

Tf is the angle between the dipole and the electric field at the source point  

xÌÒÒ is the effective dipole length 

�( is the magnitude of the electric field at the source point 

I is the magnitude of the dipole current  

Using (3.42) , (3.43) and (3.44) 

The power carried by the TEM mode of a transmission line that is exited by an 

elementary electric dipole is given by  

¬Ì = {(2 ?xÌÒÒ �(uRS)Tf2q BC                                                        (3.44) 

Tf places a major role in DUT orientation i.e if the dipole is placed horizontal to the 

septum then the angle made by the dipole with electric field emitting from the septum is 

900 , then RS)Tf is 0 which means the power carried by the TEM mode of a transmission 

line is zero. In the same way it carries maximum power when the dipole is perpendicular 

to septum i.e then Tf=00 
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            If instead of an electric dipole , source were a magnetic dipole , then the radiated 

power is given by              

¬D = {(2 ?2&ÎÓ(
�(uDRS)�f2q BC                                           (3.45) 

where  

 Ó( is the wavelength 

Î = &±C is the area of the loop representing the magnetic dipole  

uD is the equivalent magnetic current 

�f is the angle between the loop normal and the magnetic field at the source point. 

              When analysing magnetic loops �f places a role in DUT orientation i.e if the 

magnetic loop is placed horizontal to the septum , the normal to the loop makes an angle 

900 with the magnetic field produced by the septum . Then the power carried by the TEM 

wave is zero. moving towards magnetic loop placed vertically , there are again two cases 

i.e normal of the loop makes 900  with the magnetic field and normal of the loop can 

make 00 with the magnetic field produced by the septum (is clearly explained in DUT 

orientation). 

3.7  Higher order modes: 

Ideally a transmission line should subject equipment under test to an electric field 

waveform similar to that it would have experienced in free space illumination. This 

means that the pulse incident on the equipment under test should be a pure TEM wave 

with a near planar or spherical wavefront, as in free space propagation. However, 

multiple scattering of the transmission line structure and equipment under test, and 

reflections from the termination, produce features in the resulting waveform which are 

markedly different from the free-space case  

         Transmission lines with open waveguide like structure do not possess a 

denumerable infinite set of discrete modes as do closed waveguides. In general, the 

normal modes consist of a finite set of bound modes together with a continuous modal 

spectrum bounded at infinity. When line is operated at low frequencies, the leaky mode 

component is not present and the field consists only of the bound and residual waves. So 

the TEM mode is predominant in this case. As the frequency is increased, leaky wave 

modes contained within the non-physical spectral gap region are able to make their 
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presence felt indirectly by influencing a now much stronger residual wave. At higher 

frequencies still, the leaky waves become physical, directly influencing the behavior of 

the line no longer operates as a TEM mode transmission line . However TEM mode 

propagates at all frequencies. 

           With increasing frequency, higher order modes ( HOM ) can propagate above 

their cutoff frequency[24]. These cutoff frequencies depend on the cross-sectional 

geometry of the transmission line. In the case of a TEM cell, both the dimensions of the 

outer conductor and the location and dimensions of the equipment under test determine 

HOM propagation. As the cross-sectional geometry changes along the direction of 

propagation, the cutoff frequencies of HOM also changes. This behavior can be termed 

local cutoff frequency . 

3.7.1 Propagation Modes 

The fundamental of all modes is the TEM mode which propagates from zero 

frequency, but at higher frequencies higher order TE ( or H-modes ) and TM ( or E-

modes ) modes starts appearing. In TE mode Ez = 0;Hz ≠ 0 and in TM mode Hz = 0;Ez ≠ 

0 . The lowest order members of these two families are the TE01 and TM01 modes which 

is first to appear depends on the aspect ratio of the cross-section. For a > b it will be the 

TE01 and for the converse, the TM01; when a = b, both appear together as a degenerate 

pair of modes . The transverse inhomogeneity of the transmission line causes coupling 

between the TE and TM modes such that neither can exist separately. The resultant 

hybrid models need at least two scalar variables for their representation. 

3.7.2 Higher Order Modes 

Higher order modes are excited by changes of the cross section or by the finite 

conductivity of realistic transmission line conductor. The amplitude of a higher order 

modes depends on the excitation as well as on the capability for propagation. Modes 

which are excited by the TEM modes and inevitable for geometrical reasons are called 

essential modes. Others, excited by disturbances in the geometry or little discontinuities 

and reaching only small amplitudes are called non- essential modes . 

  TEM (Transverse Electro Magnetic ) waves are characterized by the fact that 

both the electric vector(E-field) and the magnetic vector(H-Field) are perpendicular to 

each other and to the direction of propagation. A TEM cell will not only propagate a 

single TEM mode at all frequencies, but also a set of Transverse Electric and Transverse 
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Magnetic higher order modes TEmn and TMmn at frequencies above their respective cut-

off frequencies fc(mn). The TEM mode propagates through the tapered ends of the cell 

without significant alteration. Each higher-order mode, however, is always reflected at 

some point within the taper where it becomes too small to propagate the mode. This is 

the point where the cross-section of the taper has narrowed to that of a waveguide whose 

cut-off frequency is lower than the field frequency. The propagating energy in the 

higher-order mode undergoes multiple reflections, end to end, with in the cell, until it is 

dissipated. 

With TEM cell, higher order modes cannot propagate in the tapered region of the 

cell. This means that higher order modes can exist only in the working volume range of 

transmission line. The higher order modes appear in TEM cell at sharply defined 

frequencies. These sharp cutoff frequencies excite one or more resonant frequencies 

which ultimately destroys the uniform field distribution inside the cells. As the size of 

TEM cell is increased to accommodate higher frequency and huge size of equipment 

under test the higher order modes starts to appear at low frequencies compared to the 

frequency range of usage. 

Working out the forms of the higher order mode in open structure like ours is 

nontrivial task. To obtain the proper boundary condition we discretised the field 

expression that satisfies Helmholtz equation rather than Laplace's equation and take more 

number of higher order modes into account. By doing this we can properly characterize 

the wave behavior of the field near the edge with higher order accuracy and stable 

results. Also any spatial derivative of the longitudinal field becomes infinite as a sharp 

edge is approached; the accuracy of the field solution near the edge is very sensitive to 

any sources of error . 

The 2-D equation governing the transmission line, to study higher order modes, is 

Helmholtz equation                                     

(∇C + =C)q(,, k) = 0                                                         (3.46) 

with Dirichlet boundary condition ( i.e. fixed boundary values ) for transverse electric  

field component given by Eq. 3.2 and Eq. 3.3, 

                                               q(,, �) = q(  ;        −% ≤ , ≤ %                                        (3.47) 
                                                         q(,, 0) = 0;         −∞ ≤ , ≤ ∞                                      (3.48) 
and with Neumann boundary condition for longitudinal magnetic field component given 
by Eq. 3.49, 
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Ö�(5,�)ÖE = 0;                                                             (3.49) 

                                          
over the cross-section contour. Here =C = �C�(	( and V = Ez or Hz for TEmn or TMmn 
modes respectively. Ez and Hz are the longitudinal components of electric and magnetic 
fields . 

The useful frequency range of the TEM cell for electromagnetic interference 

measurements is limited by the cutoff frequencies of the higher order transverse electric 

(TE) and transverse magnetic (TM) modes and the appearance of resonances due to 

reflections at taper sections. The higher order mode resonances appear at sharply defined 

frequencies. Resonances of higher order modes determine the usable bandwidth of a 

TEM cell. Thus, there may exist frequency windows between resonances where field 

variations become predictable and TEM cell usage is still quite valid. The cutoff 

frequencies may be used to predict the frequencies of higher order TEM cell resonances 

and measures may be selected to suppress resonances of higher order modes and the 

bandwidth of the transmission line can be expanded without affecting the transverse 

electromagnetic (TEM) mode. The cutoff frequencies of the higher order modes of a 

TEM cell are derived from the eigenvalue k2 of the governing equation Eq. 3.46 

Knowing normalized cutoff frequency of transmission line is important in 

calculating the resonant length of the transmission line. However, determining them is 

non-trivial since the tapered section affects each higher order mode differently . The 

structure and properties of transmission line modes are determined by solving the two 

dimensional eigenvalue problems formed by Eq. 3.46. To each eigenvalue k2 and 

corresponding eigenfunction represents a different mode, the cutoff frequency of which 

is given by Eq. 3.50. 

 @A = =2&×� = R=2&                                                                                (3.50) 

c is velocity of light in free air. 

The variational principle explains the significance of eigenvalue problem 

concerning waveguide or cavity modes, independent of its explicit or implicit usage. It 

allows much more accurate determination of field eigenvalue than field distributions 

with the same amount of numerical efforts, owing to the stationary property of the 

solutions. In other words, the computed eigenvalue are not sensitive to the errors in the 

field distributions. On the other hand, even if the eigenvalue are calculated with 

sufficient accuracy, the field distributions may still be of poor accuracy. 
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At certain frequencies a resonance condition is satisfied, in which the cell’s 

effective length for the mode is ‘p’ half guide wavelengths long (p=1, 2, 3…….). at these 

resonant frequencies fR(mnp) a TEmnp resonant field pattern exists. Thus the TEmn mode in 

a given TEM cell has one cutoff frequency fc(mn) and an infinite set of resonant 

frequencies, fR(mnp) with p=1,2,3…..The same is true for the TMmn higher –order modes, 

although these only occur at higher frequencies. The resonant frequencies fR(mnp) are 

calculated from the values of fc(mn) and the cell’s length and taper dimensions , 

@Ø(DE�)C = @A(DE)C + K ÙR2ÚDEOC                                                (3.51) 

ÚDE = ÚA + ÛDEÚ  

Lc is the length of the uniform –cross-section center part of the cell ,LE is the length 

(along the center line ) of the two tapered ends, and Xmn Is the fraction of the two ends 

included in the value of Lmn ,fraction Xmn is empirically determined and is different for 

each cell as well as each mode .It can change 0.8 for TE01 mode to 0.5 for the TE10 and 

TE11 modes The TE01 mode in a small gap TEM cell has a strong gap-fringing fields, 

while not exhibiting significant fields in the central test area,   Therefore although the 

TE01 causes the first possible resonance , it is usually not exited unless a large test object 

or some other perturbation is present . 

 

 

Figure 3.10: The length of the cell is L=Lc+LE 

 

 

 

 



27 | P a g e  

 

4. DUT MODELLING 
 

4.1 Introduction  
IC emissions affect both the internal workings and the total external emissions of 

the system in which the device is placed. Internal to a system, the near-field emissions 

from the IC, its package, and its immediately-connected traces can couple to nearby, 

noise-sensitive circuits, causing degraded system performance or even system 

malfunction. External to a system, the total emissions receive contributions from the IC 

emissions via several mechanisms, such as radiation from apertures, which are coupled 

to the IC via direct or indirect excitation of cavity resonances, and radiation from 

external connecting cables, which are coupled to the IC via cavity resonances or 

unintentional PCB conduction paths. As clock frequencies increase and electronic 

systems proliferate, the impact of package and IC-level EMC on system-level EMC 

performance will rise. 

The time-varying signals on the IC, the chip-to-package bond wires, and the 

package lead frame are the sources of radiation into the stripline section of the TEM cell. 

The stripline waveguide supports an infinite number of modes, which can be propagating 

or evanescent depending on the frequency. At the frequencies of interest, only the 

dominant TEM mode propagates power, and the coupling from the source to the TEM 

mode determines how much power exits the TEM cell to the measurement equipment. 

Since an arbitrary source in this waveguide will excite an infinite number of modes, the 

signals on the IC and its package are also capable of coupling to higher order modes. The 

coupling from an arbitrary current source to the TEM cell’s coaxial waveguide modes 

can be calculated by combining a field-match. 

The contributions of various parts of the IC to the total IC emissions can be 

calculated using the electromagnetic model of the signal path's radiation resistance. First, 

the geometry of the signal path is identified. Then, the radiation resistance is calculated. 

A SPICE model of the portion of the IC which is under investigation determines the 

time-domain currents on the signal paths, and a Fourier transform yields the frequency 

domain excitation of the TEM cell. As an example, the emissions due to the switching of 

an output port of a microcontroller is modelled and compared to the overall measured 

emissions of the chip and its package by Andy Engel from Motorola [4]. 
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Figure 4.1:  Actual (left) and simplified (right) paths for IC currents caused by switching an output 
port. 

The figures 4.1 are viewed from above the package, looking down at the IC and 

the package lead frame. I1 is the current on the output pin and I2 is the shoot-through 

current. When the output driver switches, two currents are introduced to the IC and its 

package: the current which is needed to charge or discharge the load capacitance and the 

shoot-through current which occurs in the short interval when the n- and p-channel 

device in the driver are simultaneously turned on. The IC and package paths over which 

the currents travel are shown in figure 4.1.  

The electromagnetic model for the radiation resistance uses two separate 

simplified current paths, also shown in figure 4.1. The output port current I1 travels on 

VDD and the output pin when the output changes from low to high and the output port 

current travels on VSS and the output pin when the output changes from high to low. 

Since the VDD and VSS pins are adjacent, the path of I1, is simplified by assuming that 

the physical path is the same for both types of transitions. The path of the shoot-through 

current I2 is greatly reduced because the on- chip path of this current consists of two 

opposing currents which are physically very close together, and the net contribution of 

the on-chip path to the radiation resistance is negligible. The radiation resistance 

calculation also takes into account the vertical feeds from the outer shell of the TEM cell. 

The vertical height was assumed to be the height of the package legs plus the chip 

height; the effects of the bond wires which connect the lead frame and the chip were 

taken into account to some extent by connecting the package legs with the shortest 

possible distance. 

 

In the TEM cell, the package and IC are placed inside the TEM cell using a 

special PCB (figure 4.2). On the interior side, the IC is centered on the PCB. The rest of 



29 | P a g e  

 

the interior side of the PCB is mostly ground plane so as to preserve the electromagnetic 

wave guiding properties of the TEM cell. Via holes connect the package leads to the bias 

and terminating circuitry, which are on the outside of the TEM cell. The view shown in 

figure 4.1 is parallel to the center conductor and above the outer shell of the TEM cell by 

the height of the package legs.   

              

Figure 4.2: Placement of a DUT(IC) on PCB for EMC measurement. 

The PCB kept on TEM cell using side locks of the TEM cell as shown in the 

figure 4.3. Facing IC interior to the TEM cell. 

 

Figure 4.3: Mounting DUT in TEM cell 

The Picture shown in the figure 4.4 gives the basic structure of an Integrated 

Circuit with package.  the legs of a package (VDD and VSS) i.e forming a loop, along 

with boding wires  shown seperately. The major concentration on  analysis of orientation 

of loop which formed with the package legs as discussed and  calculation of loop 

Inductance which represents the stored energy in the form of Magnetic Field , and the 

radiated energy in the form of radiation resistance.The loop inductance and radiation 

resistance are calculated using Method of Moments(MoM) and finally analytical 

expression for loop inductance is formulated using simple approach. 

locks to hold DUT  
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Figure 4.4: Detailed View of DUT 

Loop oreintation in TEM cell places a major role in estimating EMI . From the 
crowford the radiated fied of a magnetic dipole  in a TEM cell is given by  
                           

 ¬D = {(2 ?2&ÎÓ(
�(uDRS)�f2q BC                                                      (4.1) 

 
where  �f is the angle between the loop normal and the magnetic field at the source point. 

From the Lorentz-reciprocity theorem[10 ch-1], to make the analysis on 

orientation of loop simpler ,we are applying supply to septum instead of DUT. Consider 

an empty TEM cell, the electric and magnetic fields looks like as shown in the figure 4.5 

 

Figure 4.5 : Electric and Magnetic fields of an empty TEM cell 

WireBond 

Y(Electric field ) 

X(Magnetic field ) 
Z(Direction Of Propogation) 



 

by correlating with the figure 4.4 Detailed view of the DUT ,different orientations of 

loop in a TEM cell as shown in figure 

Figure 4.6: Different loop orientations with respect to the Magnetic Field Produced in empty TEM 

Consider a loop on yz

in magnetic field (which is produced in an empty cell) direction therefore the angle  

�f = 0(,which leads to the maximum power carried by the TEM wave. coming to the 

case  surface(S2 in figure

the H-field i.e. �f � 90( means the power carried by the TEM wave is very less and is 

the same situation with S3 surface which is placed in XY

To model the equivalent circuit of the loop we require to calculate the loop 

inductance and radiation resistance, by neglecting the

loops. Firstly calculation is done by using Method of Moments (4Nec2 tool) and then by 

analytical expression for computing inductance and resistance of a loop or multiple 

loops. 

The loop shown in Fig 4.7 represents two 

supply lead(VDD(dc source)), in EMI point of view acts as a ground and one ground pin 

i.e. return path) ,along with the bonding wires represents horizontally in  which the circle 

symbol represents  current consumption  dep

 

by correlating with the figure 4.4 Detailed view of the DUT ,different orientations of 

loop in a TEM cell as shown in figure 4.6 

loop orientations with respect to the Magnetic Field Produced in empty TEM 
Cell 

Consider a loop on yz-plane i.e. S1 surface in figure 4.6. the normal of the loop is 

in magnetic field (which is produced in an empty cell) direction therefore the angle  

,which leads to the maximum power carried by the TEM wave. coming to the 

figure4.6) on XZ-plane ,the normal of the surface is  perpendicular to 

means the power carried by the TEM wave is very less and is 

the same situation with S3 surface which is placed in XY-plane. 

To model the equivalent circuit of the loop we require to calculate the loop 

inductance and radiation resistance, by neglecting the capacitance which is very small for 

loops. Firstly calculation is done by using Method of Moments (4Nec2 tool) and then by 

analytical expression for computing inductance and resistance of a loop or multiple 

The loop shown in Fig 4.7 represents two leads representing vertically(one 

supply lead(VDD(dc source)), in EMI point of view acts as a ground and one ground pin 

i.e. return path) ,along with the bonding wires represents horizontally in  which the circle 

symbol represents  current consumption  depends on the circuitry connected to IOpad.
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by correlating with the figure 4.4 Detailed view of the DUT ,different orientations of 

 

loop orientations with respect to the Magnetic Field Produced in empty TEM 

. the normal of the loop is 

in magnetic field (which is produced in an empty cell) direction therefore the angle  

,which leads to the maximum power carried by the TEM wave. coming to the 

plane ,the normal of the surface is  perpendicular to 

means the power carried by the TEM wave is very less and is 

To model the equivalent circuit of the loop we require to calculate the loop 

capacitance which is very small for 

loops. Firstly calculation is done by using Method of Moments (4Nec2 tool) and then by 

analytical expression for computing inductance and resistance of a loop or multiple 

leads representing vertically(one 

supply lead(VDD(dc source)), in EMI point of view acts as a ground and one ground pin 

i.e. return path) ,along with the bonding wires represents horizontally in  which the circle 

ends on the circuitry connected to IOpad. 



 

Figure 4.7 Simplified structure of a loop in which the effect of bond wires are replaced by shorting 

The normal of vertical loop is making an angle 

so this loop contributes more

loop i.e. formed by means of bonding wires makes an angle 90

septum so this loop induces less amount of voltage in the septum. Therefore we have 

neglected the horizontal loop by short circuiting the vertical loop with the shortest 

possible path. The problem reduces to a simple rectangular loop

inductance and resistance is simple. Firstly we have done using Method of Moments 

(4Nec2 tool) ,but using this tool have some restrictions ,computation time is more when i 

feed more number of frequency components ,to eliminate this eff

analytical expression.  

4.2 Method of Moments

The task of determining the inductance and resistance is computed by estimating 

the current distribution in a loop .The task of determining the current distribution on a 

wire antenna resulting from an arbitrary excitation may be readily stated in terms of an 

integral equation problem [

integral expression which defines the electric 

distribution on the wire. This integral expression will employ a Green’s function which 

relates the electric field at an arbitrary observation point to the current at an arbitrary 

source point. The integral equation problem then 

known electric field boundary conditions to an unknown current distribution on the wire.

Simplified structure of a loop in which the effect of bond wires are replaced by shorting 
the two leads. 

The normal of vertical loop is making an angle 00 with the H-

contributes more amount of voltage in the septum; the normal of horizontal 

loop i.e. formed by means of bonding wires makes an angle 900 to the H

septum so this loop induces less amount of voltage in the septum. Therefore we have 

neglected the horizontal loop by short circuiting the vertical loop with the shortest 

possible path. The problem reduces to a simple rectangular loop, the calculation of 

inductance and resistance is simple. Firstly we have done using Method of Moments 

(4Nec2 tool) ,but using this tool have some restrictions ,computation time is more when i 

feed more number of frequency components ,to eliminate this effect  we have used the 

of Moments 

The task of determining the inductance and resistance is computed by estimating 

the current distribution in a loop .The task of determining the current distribution on a 

ting from an arbitrary excitation may be readily stated in terms of an 

problem [23]. The formulation begins with the development of an 

integral expression which defines the electric field resulting from an arbitrary current 

distribution on the wire. This integral expression will employ a Green’s function which 

relates the electric field at an arbitrary observation point to the current at an arbitrary 

source point. The integral equation problem then employs the integral expression to relate 

known electric field boundary conditions to an unknown current distribution on the wire.
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Simplified structure of a loop in which the effect of bond wires are replaced by shorting 

-field of the septum 

normal of horizontal 

to the H-field of the 

septum so this loop induces less amount of voltage in the septum. Therefore we have 

neglected the horizontal loop by short circuiting the vertical loop with the shortest 

, the calculation of 

inductance and resistance is simple. Firstly we have done using Method of Moments 

(4Nec2 tool) ,but using this tool have some restrictions ,computation time is more when i 

ect  we have used the 

The task of determining the inductance and resistance is computed by estimating 

the current distribution in a loop .The task of determining the current distribution on a 

ting from an arbitrary excitation may be readily stated in terms of an 

. The formulation begins with the development of an 

from an arbitrary current 

distribution on the wire. This integral expression will employ a Green’s function which 

relates the electric field at an arbitrary observation point to the current at an arbitrary 

employs the integral expression to relate 

known electric field boundary conditions to an unknown current distribution on the wire. 
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The MoM applies orthogonal expansions to translate the integral equation 

statement into a system of circuit-like simultaneous linear equations. Basis functions are 

used to expand the current distribution. Testing functions are used to invoke the electric 

field boundary conditions. Matrix methods are then used to solve for the expansion 

coefficients associated with the basis functions. The current distribution solution is then 

constructed from the expansion coefficients. The antenna’s radiation characteristics and 

feed point impedance are then derived from the calculated current distribution. 

4.2.1 Pocklington’s Integral Equation 
A well-known formulation for simple wire antennas is Pocklington’s integral 

equation.  Figure 4.8 depicts a representative geometry from which Pocklington’s 

equation can be derived. A simple wire antenna is positioned along the z axis in a 

Cartesian coordinate system. The current is restricted to the centerline of the wire and 

directed along the z axis. Elemental current segments are located at coordinate z′. Field 

observation points are located at coordinates z. A feedgap is positioned at z = 0. The 

electric field along the surface of the wire and in the feedgap, which establishes the 

boundary conditions for the problem, is defined as follows: Ez = 0 on the surface of the 

wire, �1 = qU ∆r⁄     at the feedgap. Vg, the antenna excitation, is normally set to 1.0 volts 

for input impedance calculations. ∆z is commonly set equal the diameter of the wire. 

However, it is possible to study the impact of feedgap dimensions on antenna input 

impedance by varying the value of ∆z. With the conditions presented in Figure 4.8, 

Pocklington’s equation may be written as Equation 4.2. 

� u(r ′)zC
.zC

Ü �C
�rC + =CÝ -./ÞØ

4&ß wr ′ = $�	�1(r)                                           (4.2) 

where ß = �àC + (r − r′)C 

The variable R represents the distance between the current source and field 

observation points. The variable ρ specifies the radius of the wire. The current 

distribution Iz(z′) is defined along the length of the wire from z′ = l/2 to z′ = –l/2. The 

kernel [∂2/∂z2 + k2] denotes the wave equation differential operator on the free space 

Green’s function e-jkR/4πR. The constant k specifies the free space wave number. Ez(z) 

represents the electric field generated by the current on the wire. With a specific 

excitation applied, as modeled through the appropriate boundary conditions, radiation 

characteristics and feedpoint impedances are determined from knowledge of the 
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antenna’s current distribution Iz(z′). Of  the many techniques available to solve such 

integral equation problems, the Method of Moments is one of the industry’s more 

popular approaches. 

 

Figure 4.8 : Integral equation formulation 

4.2.2 The Method of Moments 
The fundamental concept behind the MoM employs orthogonal expansions and 

linear algebra to reduce the integral equation problem to a system of simultaneous linear 

equations. This is accomplished by defining the unknown current distribution Iz(z′) in 

terms of an orthogonal set of “basis” functions and invoking the boundary conditions—

the values of the electric field on the surface of the wire and in the feedgap—through the 

use of an inner product formulation. This inner product operation employs an orthogonal 

set of “testing” functions to enforce the boundary conditions, in an average sense, along 

the surface of the wire and in the feed gap. Moving the current’s expansion coefficients 

to the outside of the integro-differential Operator permits the evaluation of known 

functions, yielding values which are loosely defined as impedances. The current’s 

expansion coefficients, the orthogonal projections of the electric field boundary 

conditions, and these so-called impedances are gathered into a system of simultaneous 

linear equations. This system of equations is solved to yield the current’s expansion 

coefficients. The original current distribution is then determined by introducing these 

coefficients back into the basis function expansion. The solution procedure begins by 

defining the unknown current distribution Iz(z′) in terms of an orthogonal set of basis 

functions. Two categories of basis functions exist. Sub-domain basis functions, 

significantly more popular in industry, subdivide the wire into small segments and model 

the current distribution on each segment by a simple geometrical construct, such as a 
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rectangle, triangle, or sinusoidal arc. The amplitudes of these constructs represent the 

expansion function coefficients. 

These simple constructs, illustrated in Figure 4.9, often overlap to maintain 

continuity of the current distribution along the wire. Entire domain basis functions 

employ a more formal orthogonal expansion, such as a Fourier series, to represent the 

current distribution along the entire wire. Entire domain basis functions tend to yield 

more complicated calculations for the so-called impedances and, therefore, are less 

popular. The introduction of the re-defined current distribution reduces the integral                                             

equation to the form. 

á ~EâE(r)ã
Eä<

= �1(r)                                                                 (4.3) 

Where              

 âE(r) = 1$4&�	 � �E(r ′)zC
.zC

Ü �C
�rC + =CÝ -./ÞØ

ß wr ′ 
~E=current’s expansion coefficient 

�E(r ′)=basis function 

 

Figure 4.9: Typical basis function 

The boundary conditions are now enforced through the use of an inner product 

operator with a set of orthogonal testing functions. Each testing function is applied to 

both sides of the integral equation, the inner product then enforces the boundary 

condition at the location described by the testing function. This operation may be thought 

of as simply enforcing the boundary condition at a single point on the wire. After each 

testing function operation, the integral equation will appear as Equations 4.4 and 4.5. 
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                  ∑ ~EãEä< < 'D(r), âE(r) >=< 'D(r), �1(r) >                                     (4.4) 

                                     

Where < > represents the inner product operator. 

                                    < 'D(r), �1(r) > = v 'D(r)âE(r)çV.çV wr                                    

Where 'D(r) is a testing function which has a non-zero value for only a small segment 

of  wire located at z = zm. There are two common approaches to formulating the 

orthogonal set of testing functions. The first approach, the point matching or co-location 

technique, defines the testing function in terms of Dirac delta functions (Eq. 4.5).                

'D(r) = è(r − rD)                                                                                      (4.5) 

             Where zm are specific points on the wire at which the boundary conditions are 

enforced. The zm are usually selected to correspond with the midpoint of each basis 

function. The second approach, Galerkin’s technique, defines the testing function to be 

the same as the basis Function. Galerkin’s technique, although more complicated from a 

computational perspective, enforces the boundary condition more rigorously than the 

point matching technique. However, this more rigorous approach is seldom required for 

simple wire antenna problems. 

The entire boundary condition is enforced by applying the complete set of testing 

functions. This operation yields a set of integral equations. 

                                   �{DE��uE� = �qD�                                                                                    (4.6)                

where                {DE = v 'D(r)âE(r)çV.çV wr 

                           uE = ~E 

                           qDE = v 'D(r)�E(r)çV.çV wr 

This circuit-like set of simultaneous linear equations will yield the value of Cn.                                                          

                                 �uE� = �{DE�.<�qD�                                                                               (4.7) 

             The validity of the assumptions introduced into MoM type formulations are 

established through empirical means. The codes incorporating these formulations are run 

for a large number of test cases with the results compared to experimental observation. 

Certain topics have received significant attention in the literature: the current distribution 

on the wire (the “thin wire approximation”), the orthogonality and completeness of the 

basis and testing functions, the modeling of the feed point excitation, the numerical 
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evaluation of Zmn, and the solution technique which yields Cn from the set of 

simultaneous linear equations. Although some of the assumptions continue to attract 

attention from a mathematically rigorous perspective, the codes incorporating them have 

been thoroughly exercised and deemed suitable for antenna engineering applications. The 

most well-known of the codes using the MoM is the Numerical Electromagnetics Code 

(NEC), which is widely used to solve problems that can be defined as sets of one or more 

“wires” (linear elements).The procedure to construct the required geometry are discussed 

in appendix-2 and detailed in [7] ,calculate the inductance and resistance. 

For a loop with dimensions of 1mm length and 0.5mm width on the ground plane  

 

(a) 

Its inductance computed in 4nec2 tool is  

 

(b) 

Figure 4.10: (a) loop on ground plane with dimensions of 1mm length and 0.5mm width and (b) loop 
inductance and resistance computed in MoM 
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(a) 

           Its inductance computed for two loops separated at a distance of 5mm , computed 

in tool is  

 

(b) 

Figure 4.11: (a) two loops on ground plane with dimensions of 1mm length and 0.5mm width 
separated with 0.5mm  and (b) loop inductance and resistance computed in MoM 
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4.3 Analytical Expression 

Self inductance of a straight cylindrical wire:  Let AB be a length x of a cylindrical 

wire of radius ρ transverse by current i distributed uniformly over  the cross section of 

the wire as shown in Figure 4.12  . 

 

 

 

 

 

 

 

 

Figure 4.12 : A wire of length ℓ in which dy is a small element ,p is an arbitrary point at a distance R 
from element to calculate force . 

The magnetic force at P nomal to the paper due to the element of the cylinder of length 

dy is calculated using biot-sarvart’s law             

           w' = uwx × ßd4& ß»                                                                              ( 4.8) 

 Where R is the distance between element dy and point of observation P 

                                                  

* wkßC )*+T = *% wk
�%C + (k − �C)�»C                                                             (4.9) 

             It is easy to show that the force at any point outside a right cylinder is the same 

as though the current were concentrated at the axis of the wire . The force at P due to the 

whole length of the cylinder carrying unit current is calculated using integrating through 

out the length l as shown in Equ (4.10) 

                                         

' = 14& � *% wk
�%C + (k − �C)�»C

z
( = 14& Ü x − �%�%C + (x − �)C + �%√%C + �CÝ                   (4.10) 
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The voltage in terms of electric field as Equ (4.11)  

q = � �. wk  = �∇ × �. wÈÉ  

                                                   = v − ÖéÖm . wÈÉ = − ÖÖm v ê. wÈ É                                (4.11) 

Voltage across an Inductor is 

q = Ú w*wX = wwX (Ú*)                                                                   (4.12) 

From (4.11) and (4.12)  

                    Ú* = �ê. wÈÉ                                                                      (4.13) 

Ú = �* �'. wÈÉ = �* �'. w,wkÉ                                                       (4.14) 

 Where L is the Inductance and ‘i’ is the current flowing through the inductance 

The number of lines of magnetic force dN, with in the strip CD .of breadth dx , is found 

by integrating the expression for H along the strip. 

Thus,   

                                           wë = ¡56 v <ì4 ® z.À6�6V9(z.À)V + À6√6V9ÀV¯ wkz(                                   

                       

                                                   = C¡5ì46 8√%C + xC − %;                                               (4.15)                                              

The Whole number of lines of force N outside the wire which will collapse upon the wire 

when the current ceases is found by integrating dN with respect to x from x=ρ to 

x=∞.Thus Replacing a by x in  

                         ë = 2 � 14& Ü√,C + xC
, − uÝ∞

í w,   
= 24& Ü�,C + xC − , − x xS¾ √,C + xC + x, Ýí

∞                                          (4.16) 

                       

Or                  ë = Cì4 ®x xS¾ �íV9zV9zí − �àC + xC + à¯ 
                                     

= 2x4& ®xS¾ 2xà − u¯  %ÙÙ±S,*�%X-xk                                                    (4.17) 
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This is the number of lines of force outside the wire due to unit current in the 

wire is given by Equ (4.17), and is therefore that part of its self-inductance L1 due to the 

external-field.                                  

 Ú< = 2�4& îx xS¾ �àC + xC + xà − �àC + xC + àï                                                           (4.18) 

  We must now find L2 due to the field within wire . 

  The strength of field at the point P within the wire is 
C�5íV . The number of lines of 

force in the length l with in the element dx is there fore 

                                                                            

wë = 2*x,w,àC                                    ( 4.19) 

     

Figure 4.13: cross section of a wire 

If we integrate this expression (4.19) from 0 to ρ we have the whole number of lines of 

force within the conductor. Therefore                                              

ë = x*àC � 2,w, = x*í
(                                                             (4.20) 

                                                        

Thus there are i lines or tubes per unit of length within any cylindrical conductor 

carrying a current I , or one tube per cm for unit current. 

The lines within conductor do not cut the whole cross section of the conductor, as 

do those without. We must weight them, in estimating their effect on the self-inductance, 

in proportion to the area of the section of the conductor cut by each elementary-tube.                                                                    

*ÚC = x � 2*,àC . ,C
àC w,í

( = x Ü*2 . ,ì
àìÝ(

¡ = x*2                                                ( 4.21) 

             *ÚC = zC                                                                                                             (4.22) 

Thus the l lines or tubes within the conductor contribute only half as much 

toward the self inductance of the conductor as an equal number of lines outside the 

conductor would do .If the permeability of the wire is µ the part of the self-inductance 

due to the internal field is                                                                       

ÚC = �4& ∗ x2                                                                        (4.23) 

dx 

x 

ρ 
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  The field at P is    

' = 2*,àC                                                                       (4.24) 

The total self inductance of the length l of straight wire is therefore the sum  

of L1 and L2 .  

                Ú = 2 �ì4 ® x xS¾ �íV9zV9zí − �àC + xC + à + zì¯                            (4.25) 

The mutual inductance of two parallel wires of length l, radius ρ and 

distance apart d will be the number of lines of force due to unit current in 

 one which cut  the other when the current disappears . This will be the value 

of N given by (2A) when the limits of integration are d and ∞ instead of ρ 

 and  ∞ as before  

Figure 4.14: Two parallel wires separated by d distance 

ð = 2 �4& � Ü√,C + xC
, − uÝ∞

¡ w, = 2 �4& Ü�,C + xC − , − x xS¾ √,C + xC + x, Ý¡
∞

 

     ð = 2 �ì4 ® x xS¾ √¡V9zV9z¡ − √wC + xC + w¯                                                       (4.26) 

                                            

Equation 4.26 which is an exact expression when the wires have no appreciable cross 

section , is not an exact expression for the mutual inductance of two parallel cylindrical 

wires, but is not appreciably in error even when the section is large and d is small if x is 

great compared with d .  

 

The force in that case due to A at all points outside A is exactly the same as 

though the current were concentrated at the center O1 of A; and the geometrical mean 

distance from O1 to the cross section of B is exactly the distance d between O1 and O2. 

The mean distance from O1 to all the points in the section of B is not , however ,quiet the 

A B 

C D d 
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same as d , although the mean of the log of these distances is logd .Hence there is a very 

slight difference in the last term of (12) depending upon the section of the wires and a 

still smaller difference in the other terms. This is however , too small to be appreciable in 

any ordinary case, being a small quantity of the second order when l is large compared 

with d. 

Self Inductance of a Rectangle:   

 The self-inductance of the rectangle of length a and breadth b as shown in Fig:4.15   

 

 

 

 

 

 

Figure 4.15: Rectangular loop with dimensions a and b. Ú = 2(Ú6 + ÚÀ − ð6 − ðÀ)                                                                     (4.27)          

where Ú6 and ÚÀ are the self-inductances of the two sides of length a and b taken alone 

, ð6  and ðÀ  are the mutual inductances of the two opposite pairs of length a and b 

,respectively. 

From (4.25) and (4.26) we therefore have ,The Inductance of the Rectangle is computed 

by  

Ú6 = 2 �4& î % xS¾ �àC + %C + %à − �àC + %C + à + %4ï                                    ( 4.28) 

ÚÀ = 2 �4& î � xS¾ �àC + �C + �à − �àC + �C + à + �4ï                                    (4.29) 

ð6 = 2 �4& Ü% xS¾ √�C + %C + %� − ��C + %C + �Ý                                       (4.30) 

ðÀ = 2 �4& Ü� xS¾ √�C + %C + �% − ��C + %C + %Ý                                     ( 4.31) 

 

By substuting (4.28),(4.29),(4.30) and (4.31) in (4.27) 

 

a 

b 
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Ú = 4 �4& î % xS¾ �àC + %C + %à − �àC + %C + à + %4 +  � xS¾ �àC + �C + �à
− �àC + �C + à + �4 −  ?% xS¾ √�C + %C + %� − ��C + %C + �B
− ?� xS¾ √�C + %C + �% − ��C + %C + %BÝ                                      (4.32) 

Inductance on a ground plane: 

 

 

 

 

Figure 4.16: Loop located on a ground plane 

Now to calculate the inductance on a ground plane. which can be done by using 

Method Of Images, The Method of Images is closely akin to the reflection principle 

except that here we are concerned with replacing a source within a given boundary by a 

system of sources, which are images of the original source in the boundary .replicating 

the loop and changing the direction of current, can remove the ground. now the problem 

has become a simple loop. 

 

 

 

 

 

 

 

 

Figure 4.17: Equivalent loop by replicating to remove ground using image theory 

Now the loop vertical length has increased by two times by applying method of 

images. Using the above stated formulae calculate the inductance and finally reducing to 

half gives the equivalent inductance of  loop on ground plane.  

 

b 

a 

b 

a 

b 
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Inductance of Multiple Loops: 

Considering the multiple loops, in which a1, b1 are dimensions of first loop and 

a2,b2 are dimensions of second loop, d is the distance between two loops.  

 

 

 

 

 

 

 

Figure 4.18: Multiple loops with distance between loops as d. 

 

1,2,3,4 are the segments of first loop and 5,6,7,8 are the segments of second loop, then 

the inductance of loop1 is inductance of segment 1   Ú< = (Ú<< − ð<» + ð<ñ − ð<¼) 

where L11 is the self inductance of segment 1 ,M13 is the mutual inductance between 

segment 1 and 3 , the current direction in both segments are opposite that is why, the 

mutual inductance is deducted from L11 , M15 is the mutual inductance between segment 

1 and 5 , the current direction in both segments are same that is why the mutual 

inductance is added to L11 in the same way all the segments are calculated. 

 inductance of segment 2    ÚC = (ÚCC − ðCì)  

 inductance of segment 3    Ú» = (Ú»» − ð»< − ð»ñ + ð»¼)  

 inductance of segment 4    Úì = (Úìì − ðìC)  

Total inductance of first loop is  òJ = òJ + òó + òô + òõ 

The inductance of the second loop is 

inductance of segment 5 is Úñ = (Úññ − ðñ¼ − ðñ» + ðñ<) 

inductance of segment 6 is Úö = (Úöö − ðö÷) 

inductance of segment 7 is Ú¼ = (Ú¼¼ − ð¼ñ + ð¼» − ð¼<) 

inductance of segment 8    Ú÷ = (Ú÷÷ − ð÷ö) 

Total inductance of second loop is òó = òø + òù + òú + òû 

 

Total inductance is L1+L2. 

This procedure can be used to calculate the inductance of multiple loops. 

a1 

b1 

a2 

b2 

d 

1 2 1 

2 

3 5 

6 

7 

8 4 
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The inductance of a loop computed using analytical expression for one loop shown in the 

figure 4.19, the plot shown is by eliminating the self inductance due to internal field . 

 

 

(a) 

 

For two loops : 

 

(b) 

Figure 4.19 (a) inductance of one loop computed using analytical expression (b) inductance of two 
loops computed using analytical expression. 

Radiation Resistance : 

The radiation resistance of a loop is a well known expression (4.33) [] 

ß = 320 &ì ?ÈC
ÓìB                                                              (4.33) 

Where S is a surface area i.e. S=a×b 

           λ is a wave length 

The loop on ground is calculated by applying image theory as done for inductance  

Then the area S is 2a×b, finally the R is made half then 
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ß = 160 &ì ?(2% × �)C
Óì B                                                              (4.34) 

  

Figure 4.20 : resistance of the loop computed using the analytical expression. 

The above results are in good correlation with the results computed using MoM(4Nec2 

tool). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

5. UNIFIED ELECTROMAGNETIC MODEL
 

5.1 Unified Model of a TEM Cell with Loaded DUT

Using (3.36), (3.5

the circuit parameter. Fig.

terminated with the characteristic impedance along with the DUT as excitation source 

the excitation source of the TEM cell is the IC’s package pins and b

chapter 4, the excitation source which is the package pins and bond wire, can be 

modelled and coupled to the TEM cell.

 

 

Figure 5.1: Complete model of TEM cell terminated with the characteristic impedance coup

Where IDut is the current profile either in Time Domain 

loop impedance simulated using MoM

and Capacitance resp. of the TEM cell calculated using Conformal Mapping multiple 

times the effective length of the TEM cell. Z

cell. ZD is made half because as the 

characteristic impedance, i.e. one side is directly terminated and other with a coaxial line, 

so half the voltage induced flows to the termination and only half is measured in 

Spectrum analyser . 

 

 

UNIFIED ELECTROMAGNETIC MODEL

Unified Model of a TEM Cell with Loaded DUT : 

3.5), ({­ = ¨ÃZ), the TEM cell can be equivalently replaced with 

circuit parameter. Fig.5.1 is illustrating the TEM cell equivalent circuit model 

terminated with the characteristic impedance along with the DUT as excitation source 

the excitation source of the TEM cell is the IC’s package pins and bonding wire. Using 

, the excitation source which is the package pins and bond wire, can be 

modelled and coupled to the TEM cell. 

Complete model of TEM cell terminated with the characteristic impedance coup
the DUT model as excitation source. 

is the current profile either in Time Domain or Frequency 

loop impedance simulated using MoM or analytical expression ,  L and C are inductance 

and Capacitance resp. of the TEM cell calculated using Conformal Mapping multiple 

times the effective length of the TEM cell. Zt is the Terminating impedance of a TEM 

is made half because as the TEM cell is terminated on both sides with its 

characteristic impedance, i.e. one side is directly terminated and other with a coaxial line, 

so half the voltage induced flows to the termination and only half is measured in 
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UNIFIED ELECTROMAGNETIC MODEL  

), the TEM cell can be equivalently replaced with 

is illustrating the TEM cell equivalent circuit model 

terminated with the characteristic impedance along with the DUT as excitation source 

onding wire. Using 

, the excitation source which is the package pins and bond wire, can be 

 

Complete model of TEM cell terminated with the characteristic impedance coupled with 

 Domain , ZD is the 

or analytical expression ,  L and C are inductance 

and Capacitance resp. of the TEM cell calculated using Conformal Mapping multiple 

is the Terminating impedance of a TEM 

TEM cell is terminated on both sides with its 

characteristic impedance, i.e. one side is directly terminated and other with a coaxial line, 

so half the voltage induced flows to the termination and only half is measured in 
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5.2 Tool Flow: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2:Complete flow of the tool. 

5.2 Simulation Results : 
Computed using MoM: Here MoM is used for analysis of different structures, in 

order to reduce the radiated emission. using MoM we have started the frequency from 

10MHz because of the limitation of 4Nec2 tool . 

Load the Current profile IDut  

Consuming by the circuit 

connected to IOPad in time 

or frequency domain 

Is IDut 

in 

freq 

or not 

Yes 
No 

FFT 

equivalent circuit of DUT 
by computing ZD by 

using MoM or analytical 
expression 

Equivalent circuit of TEM 

Cell by computing L and C 

in equivalence with the 

effective length of TEM 

cell 

Coupled together and 
terminated with the 

terminating 
impedance 

Evaluate the circuit and 

calculate the induced 

voltage in DBmicroVolts 

,plot on semi log 
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first loop of dimension 1mm length ,1mm width with a separation between them 0.5mm 

(normal dimensions of IC package)   

 

(a) loop 1mm-0.5mm-1mm                   (b) TEM cell Transfer Function

 

(c)  Current profile in frequency domain    (d) plot of ratio of current through termination to input current

 

(e) Induced voltage of loop 1mm-0.5mm-1mm 
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(f) Induced voltage of loop 1mm -1mm-1mm 

Figure 5.3:Analysis of loop having dimensions 1mm length ,1mm width with a separation between 
them 0.5mm using MoM 

Secondly it is done by reducing the ground plane to half 

 

(a) loop formed by reducing length of ground to half 

 

(b) induced voltage of loop formed by reducing ground length 

Figure 5.4: Analysis of loop in which ground leg is reduced to half ,in which DUT is modelled using 
MoM 

If two loops are present in same direction  

0.5mm 
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(a)Two loops separated with 0.5mm 

 

(b) induced voltage formed for two loops separated with 0.5mm , 

Figure 5.5: Analysis of Two loop separated with 0.5mm ,DUT modelled using MoM 

By using Analytical Expression : First to correlate with the above results inductance is 

computed by excluding the self-inductance caused due to internal field.(all loops are of 

dimensions 1mm length , separated by 0.5mm width) 

 

(a) Induced voltage computed by excluding the self-inductance caused due to 

internal field. 

induced voltage computed by including the self-inductance caused by internal field: 

1mm 

0.5mm 
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(b) Induced voltage computed by including the self-inductance caused due to internal 

field.

 

(c) Induced voltage of two loops separated with distance 0.5mm 

 

(d) Induced voltage of two loops separated with distance 0.3mm 

Figure 5.6: Induced Voltage computed by modelling DUT using analytical expression. 
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In silicon results the maximum induced voltage is 12DBµV but using these tool we got 

10DBµV . 

 It is very evident that the peak current plays a vital role in the radiated emission. 

Clock gating is one of the known techniques to reduce the peak current demand of the IC.  

 

Some EMI reduction techniques are proposed in  [25], Based on the simulation results 

we laid down the following design guideline for reducing the radiated emission of the IC. 

 

1) Reduce the Peak current 

a. Clock Gating 

b. Skew 

2) Lower value of the pulsed current from the package pins 

a. On-Chip Decoupling capacitor 

       3) Closest possible placement of the power supply pair 
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6. GTEM CELL 
 

6.1 GTEM Cell: 

The development of the GTEM cell in 1987 made EMC measurements possible 

at frequencies from dc up to several GHz which was a large progress against the limited 

usable frequency range of the TEM cell[21]. The new idea behind the GTEM cell was to 

avoid the corners that are the main reason for the limitation of the frequency range of the 

TEM cell .Therefore the main volume of the GTEM cell is only one section of a flattered 

rectangular transmission line. That means the length of inner and outer conductor is 

equal and thus the travel time along each conductor is equal. This property is also 

important factor for pulse type measurements, as the dispersion of the pulse is 

minimized. 

 

Figure 6.1: Schematic diagram of a GTEM cell . 

Usually resonances arise in a closed cavity. Due to the flared shape this is not the 

case in a GTEM cell. The GTEM cell is like a former TEM cell well isolated and 

therefore neither contributes to nor is affected by any external interference. The cell 

typically has detachable input section, a so called apex. In the tip a standard 50Ω coaxial 

connector is mounted .In the input section then the transition from the standard 50Ω 

coaxial connector to the asymmetric rectangular waveguide with a flat center conductor 

is done. 

The cell opens with an angle of 200 in the vertical plane and 300 in the horizontal 

plane respectively. Hence, the cross-sectional dimensions of the rectangular waveguide 

are a height to width ratio 2 to 3. The center conductor is vertically offset to increase the 
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usable test volume as opposed to a symmetric configuration .It is typically situated at 

three quarters of the cell height. The effect of this asymmetry an the field uniformity 

inside the volume below the center conductor is negligible against the advantage from 

the increased test volume. 

For susceptibility testing an electronic device is placed in the testing volume and 

a CW to pulse generator is connected to the input of the cell according to the 

requirements. The propagation mode is TEM again but the waves are in the case slightly 

spherical. Due to the small opening angle they are very close to free space planar waves. 

Therefore the measurement procedure with a GTEM cell can be very well compared with 

the standard measurements like in anechoic rooms. The field uniformity inside the 

testing volume depends much on a low level reflections from the rare end of the cell. In 

order to absorb most of the energy that reaches the rear end a wideband matched 

termination is assembled at the rear wall.  

For emission measurements the input of the GTEM cell is connected to the 

measuring equipment to monitor the output voltage as a result of emissions from the 

tested equipment inside the cell. It can be assumed that only the power directed towards 

the input along the longitudinal axis of the cell will be measured at the input. In any 

other direction than the input the waves arising from the DUT cannot propagate or are 

terminated by the hybrid termination in the rear end.  In the reference environment for 

radiated emission measurements, which is typically free space or an OATS,. The actual 

electric and magnetic field strength in every direction is obtained through antennas at a 

certain direction. The results from a GTEM emission measurement consisting of output 

voltage data can be correlated with these environments. 

Hence the GTEM cell can be used for susceptibility testing as well as for 

emission measurements for frequencies from dc up to several gigahertz due to broadband 

hybrid termination and the fact that there are no frequency limitations from mechanical 

dimensions as for the conventional TEM cell. 

6.2 Characteristic Impedance: 
The exact determination of the capacitance by the method of conformal 

transformation involves hyper geometric functions and four variable parameters; the 

process of obtaining numerical results would be so laborious that it has not been 

attempted. If the sides of the conductors are large compared with their spacing’s, the 
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distorted fields at the two ends along the same side of the inner conductor do not interact, 

and only one quarter of the cross section needs to be transformed. The inter-conductor 

capacitance can then be calculated as a combination of parallel-plate condensers formed 

by the walls of the conductors, plus excess capacitance caused by the disturbances of 

flux lines close to the corners. In fact, this method is valid whenever the short side of the 

inner conductor exceeds the spacing distances, as evidenced by the negligible amount of 

flux distortion at points not far away from the bend  

When the sides of the conductors are large compared with the spacing’s between 

them, one quarter of the cross section is to be considered. This portion of the cross-

section then contributes a right-angled bend as shown in the figure 6.2. and forms the 

polygon in the z-plane bounded by the lines  ABC and DEF, which are maintained at 

potential V and zero, respectively. It can be assumed that t=-∞ at a distant point on AB , 

t=-a at B, t=0 at a distant point on BC , and t=1 at E. The internal angles of the polygon 

are π/2 at B , zero at C and 3π/2 at E. The quantity a has to be determined from the 

geometry of the system . The Schwarz-Christoffel transformation which turns the 

boundary of the polygon into real axis in the t-plane shown in the figure 6.3 is  

wrwX = Î<(X − 1)< C⁄ (X − 0).<(X − %).< C⁄                                      (6.1) 

 

Figure 6.2: Z-plane 

 

Figure 6.3: t-plane 

S 

t=−∞ t=−a t=0 t=1 t=+∞ 

t 

A F 

 C 

D E 

g 

h 

Potential 

Potential 
        B 

t = 1 

t = 0 

t = − ∞ 

t = 0 

t = + ∞ 
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Cf2 
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The diagram in the w plane, shown in Fig.6.4 , consists of the real axis and a line parallel 

to it. The internal angle of the polygon is at t = 0, and is equal to zero. The 

transformation which turns this diagram into the real axis of the t plane is 

w�wX = ê<(X − 1)((X − 0).<(X − %)(                                                         (6.2) 

 

Figure 6.4: w-plane 

which, upon integration and use of the boundary conditions, becomes 

� = � + *Ï =  q& xS¾X                                                       (6.3) 

To integrate let 

 Û = (X − 1)< C� (X − %).< C�                                                  (6.4) 

And obtain 

r = −2Î<�1 %� �< C⁄ %±R X%+�%< C⁄ Û� + Î<xS¾ 1 + Û1 − Û                   (6.5) 

In which point E is chosen as the origin In the z plane Consideration of the values of t 

and X at point B leads to the relations 

¾ = Î<& , ℎ = Î<& �1 %� �< C⁄ , ½ℎ ¾� ¿C = 1 %�                              (6.6) 

Let P be a remote point on the line EF. The total charge on the strip EP per unit length in 

the direction normal to the plane of the paper is given by 

ü ý = Kq&O × Ülog(% + 1) + 2�1 %� �< C⁄ %±R tan %< C⁄ − 2xS¾2 + �¬ddddÎ< Ý            (6.7) 

If the flux lines were not disturbed, the charge on the strip EP would be, �¬dddd× q ¾⁄  which 

the last term in the preceding expression is. The first three terms represent the excess 

charge caused by the flux disturbances. When the excess charge is divided by Iz and the 

relations in (38) are used, the fringing capacitance Cf1 is obtained 

t=−∞ 

t=+∞ t=0 

t=0 

0 V 

V 

u 
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~Ò< = ×& ÜxS¾ ¾C + ℎC
4ℎC + 2 Kℎ¾O %±R X%+ ¾ℎÝ                                 (6.8) 

Similarly, the fringing capacitance associated with the horizontal side Cf2 may be 

obtained from (39) by interchanging g and h. 

~ÒC = ×& ÜxS¾ ¾C + ℎC
4¾C + 2 ½¾ℎ¿ %±R X%+ ℎ¾Ý                                (6.9) 

6.2.1  Line Capacitance  
One corner of the line cross section assumes the shape of a right-angle bend; two 

successive transformations are necessary in this case as discussed in Appendix 1.3 d The 

first process transforms the z-plane polygon into the real axis of the t plane, and another 

transformation from the w plane to the t plane relates the potentials of the two conductors 

to values of t. The capacitance between the conductors is evaluated by letting z as well as 

it take critical values which depend on the particular problem. 

In the L-shaped bend, the excess or fringing capacitance caused by the 

disturbance of flux lines emanating at the vertical side is expressed by        

~Ò< = ×& ÜxS¾ ¾C + ℎC
4ℎC + 2 Kℎ¾O %±R X%+ ¾ℎÝ farads per meter     (6.10) 

where g is the lateral spacing and h the vertical spacing. Similarly, the equation for 

fringing capacitance produced by flux disturbance along half of the horizontal side is 

~ÒC = ×& ÜxS¾ ¾C + ℎC
4¾C + 2 ½¾ℎ¿ %±R X%+ ℎ¾Ý                                  (6.11) 

The capacitance between the vertical walls is  

                                        ~� = × ½Â
�¿                                                                     (6.12) 

                ~� = × ½ÀU¿                                                                      (6.13) 

On the supposition that the conductor sides are large, the fringing capacitance depends 

only on the spacing’s and not on the conductor dimensions. The total capacitance 

between the conductors is  
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Figure 6.5: cross section of GTEM with finite thickness b indicating the capacitances in the half 
section 

C = ϵ Kwh< + whC + 2bg O + 2ϵ
π

Ülog gC + h<C
4h<C + 2 Kh<g O arc tan gh<Ý

+ 2ϵ
π

Ülog gC + hCC
4hCC + 2 KhCg O arc tan ghCÝ

+ 2ϵ
π

Ülog gC + h<C
4gC + 2 K gh<O arc tan h<g Ý

+ 2ϵ
π

Ülog gC + hCC
4gC

+ 2 K ghCO arc tan hCg Ý    farads per meter                                              (6.14)    
6.2.2 Inductance:  

The method of conformal transformation demonstrates that the fringing effect 

caused by charge concentration close to the edges of the inner conductor may be 

accounted for by the addition of correction lengths to the conductor sides. In Fig. 6.5, 

half of the vertical side of inner conductor should be increased by the amount 

Û< = 1& Ü¾xS¾ ¾C + ℎC
4ℎC + 2ℎ%±R X%+ ¾ℎÝ = ¾ ~Ò<×                           (6.15) 

The extension in half of the horizontal side, ,ÛC = ¾ Z	V
   can be obtained from (8) 

by interchanging g and h. When the effective lengths of the sides are used in the formula 

for calculating the inductance of parallel-plate transmission lines, the inductance of the 

rectangular line L is given by 

       Ú = Ã�Ã�Ã�9Ã�     henries per meter                                          (6.16)  

h1 

g b 

h2 

h 

a 
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In this expression, Lv and LH are the inductances corresponding to the vertical 

and horizontal parallel-plate systems and are, respectively, given by 

Ú� = �U
À9V
®Uz­U�V��!V

��!V 9C� 6�A m6E ��!¯ // �U
À9V
®Uz­U�V��VV

��VV 9C� 6�A m6E ��V¯       (6.17) 

and  

                         Ú� = ��!
À9V
®Uz­U�V��!V

��V 9CU 6�A m6E�!� ¯ // ��V
À9V
®Uz­U�V��VV

��V 9CU 6�A m6E�V� ¯       (6.18) 

The capacitance and Inductance of the GTEM with negligible thickness can be computed 

by                                                      ~( = limÀ→( ~ 

and                                                     Ú( = limÀ→( Ú                                                        (6.19) 

After computing the Inductance and Capacitance we can compute characteristic 

impedance by  

{( = >Ú(~(                                                                      (6.20) 

or characteristic impedance can be computed from the capacitance , we know TEM wave 

propagates with a velocity of light , GTEM allows TEM (till higher order modes start 

propagation) by using the formula   

{( = 1}~(                                                                         (6.21) 

The characteristic impedance is computed and tested by computing for the TEM 

cell dimensions as shown in the figure 3.3 it is giving 49.6506. The dimensions used for 

computation of Fields are taken from [34] . 
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6.3 Electric Field and Magnetic Field Distribution in a GTEM cell: 

The electric field distribution of GTEM cell is analysized using FEM in Maxwell 2D  

 

Figure 6.6:Electric Field distribution in  a GTEM cell. 

Flux Distribution :

 

Figure 6.7:Flux lines in a GTEM cell 
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Magnetic Field Distribution: 

The magnetic field distribution looks like 

 

Figure 6.8: Magnetic Field in a GTEM cell. 

From the above electric and magnetic field distributions, the placement of DUT 

in  GTEM cell is at a height of one third from the bottom to the septum, because of 

uniformity of flux line and fields.  

 

 

 

 

 

 

 

 

DUT height is 

nearly 1/3
rd

 of 

the height of 
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CONCLUSION: 
 

In this project a new unified model has been shown which is suitable for the 

computer simulation. A rigorous and detailed analysis of the TEM cell and TEM mode 

of propagation is derived and based on these, parameters of the TEM cell is obtained. 

Based on the analysis of the excitation of the TEM mode of propagation the DUT is 

modelled as the excitation source of the TEM mode. An excellent correlation is found 

between the simulation results and silicon results.. Together with the coupled TEM cell 

and DUT model one can estimate the radiated emission of the IC at very early stage of 

the design . We further demonstrate how the various design parameter effects the 

radiated emission of the design. We laid down certain crucial design guideline which 

directly affects the radiated emission most. Since the model is very fast user can tune the 

various design parameter to obtain within the specs radiated emission. These new design 

specs can then be used further in the design cycle time to have a under the specification 

radiated emission of the IC. As already we have started the analysis on GTEM cell, the 

formulae for characteristic impedance has been done and some analysis on Fields are 

done by using FEM (Maxwell 2D). 

 

FUTURE WORK: 
 

We plan to take this work further and extending the results to GTEM cell which 

is new apparatus for measuring the radiated emission of the IC, and to model the same 

for different packages presently using for reducing EMI. 
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APPENDIX-1 
 

A cross-sectional view of a rectangular-coaxial-strip transmission line is shown 

in figure 3.4 with an x-y coordinate system superimposed.The strip of width 2w is 

located symmetrically inside a shielded enclosure of height 2b and width 2a and is 

assumed to have negligible thickness. In addition, the strip is located at a distance g from 

each vertical side wall and is embedded in a homogeneous dielectric of permittivity ε0. 

The reason for choosing an asymmetrically located coordinate system is to facilitate 

obtaining approximate formulae for the capacitance. To determine the capacitance, the 

method of conformal transformation can be used, whereby the structure in figure 3.4 is 

transformed into a simpler configuration whose capacitance is already known. Since it is 

well known that the capacitance is invariant under a conformal transformation, the 

formulae obtained will also be applicable to the shielded stripline configuration of 

fig.3.4.  Since we have symmetry with respect to the x axis ,we will calculate capacitance 

between the upper plate , A-F-E-D and the strip line ,B-C. the total capacitance is then 

twice this figure 3.4. Since we have effectively two capacitors in parallel. The region A-

D-E-F may be mapped into the upper half of a complex t plane via the Schwartz-

Christoffel transformation which due to symmetry can be used in terms of Jacobian 

elliptic functions The transformation is given by  

            

�r = � wX′�4X′(1 − X′)(1 − =CX′)�< C�  m
(                                                           Î1.1 

 Or alternatively given by                                                

X = )+C(�r, =)                                                                                        Î1.2  
Where sn is a Jacobian elliptic function of modulus k 

                     

� = �(= ′)�                                                                                       Î1. 3 

         and                      

                        r = , + *k                                                                                  Î1.4                                                                               

 

here K(k) and �(= ′) are complete elliptic integrals of the first kind of modulli k and k’ 

,respectively  and                                                  
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 = ′ = �1 − =C�< C⁄                                                                                    Î1. 5  
                                                                 

The modulus k can be determined from the requirement that  

                           

                    
�(Þ)��Þ′� = C6À                                                                                                Î1. 6  

Where the value of k2   is tabulated for a given ratio 
�(Þ)�(Þ′) .Under the transformation given 

by the region A-D-E-F in the z-plane is mapped into the upper half of the t-plane as 

shown in the figure A1.1. 

 

Figure A1.1: t-plane 

Using  (A1.2) and elliptic functions identities , α and β can be calculated as  

          � = )+C�¾ = )+C�                                                           A1.7 

And                                    � = )+C�(2% − ¾) = AEV�¡EV�                                                A1.8 

Where                                                      

                                                   � = �¾                                                                                       Î1.9                                                                             

And cn and dn are also jacobian elliptic functions each of which has modulus k .From 

convience we now make an intermediate transformation from the t-plane to a complex u 

plane  defined by   

  � = �X K X − �� − �O                                                                         Î1.10 

                                         

The u-plane is shown in fig A1.3 can be found using 10 and substituting t=1 .Thus  

 

FigureA1.2:u-plane 

∞ 
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                      1 ÓC = � K1 − �� − �O                                                                           Î1.11 

And substituting for α and β from (A1.7) and (A1.8),we obtain                                     

ÓC = R+C� − )+C�w+C�R+C�(1 − )+C�)                                                                 Î1.12 

 Using elliptic functions identities (A1.12) can be reduces to 

                                       ÓC = 1 − =′C ½YE�AE�¿ì                                                                      Î1.13 

And defining a complementary modulus , λ’ as 

                                        Ó′ = �1 − ÓC�< C⁄                                                                            Î1.14 

We have from equ. (A1.13) and equ(A1.14) 

Ó′ = =′ ½YE�AE�¿C                                                                       A1.15 

In the final transformation, we map the upper half of the u-pale into a rectangular region 

in a complex χ plane .The transformation is given by 

                                 

Figure A1.3:  χ- plane 

� = )+C(�, Ó)                                                                                  A1.16 

And the χ plane is shown in figure A1.4 .from figure A1.4, it I evident that the 

capacitance is just given by the ordinary parallel-plate capacitor formulae . That is  

                                          ~	(Ú �(Ó)�(Ó′)                                                                             Î1.17 

Therefore, the total capacitance C0 of the rectangular –coaxial-strip transmission line per 

unit length L is just that given by equ.(A1.17)                                          

 B 

D 

   B 

 A 

K(α’) 

K(α) 

χi 

χr 
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~	(Ú = 2 �(Ó)�(Ó′)                                                                          Î1.18 

 Since equ(A1.6) and equ(A1.18) both involve ratios of complete elliptic integrals ,the 

following approximation is particularly useful                                 

�(è)�(è ′) ≃ 1& ln ?2 1 + √è1 − √èB ,       KèC > 12O                                   Î1.19 

 Using(A1.19) we can write expressions for (A1.6) and (A1.18) respectively as follows: 

2%� ≃ 1& ln ?2 1 + √=1 − √=B,       K=C > 12O                                              Î1.20 

                          Z�"Ã = C4 ln ½2 <9√�<.√�¿,          ½ÓC > <C¿                                                              Î1.21 

Equations (A1.20) and (A1.21) may be written alternatively as  4%� = 2& ln 32�1 + √=�C(1 + =)7 − 2& ln(1 − =C)                                         Î1.22 

                        
Z"�"Ã ≃ C4 ln 32�1 + √Ó�C(1 + Ó)7 − C4 ln(1 − ÓC)                                      Î1.23 

subtracting (A1.22) from (A1.23) we obtain  

~(	(Ú − 4%� ≃ 2& ln ?=′CÓ′CB + 2& ln �?1 + √Ó1 + √=BC K1 + Ó1 + =O�                             Î1.24 

                                          

and substituting form (A1.15) 

  
Z"   �"Ã ≃ 4 �6À + C4 ln ½AE�YE�¿� + C4 ln �½<9√�<9√Þ¿C ½<9�<9Þ¿�                       Î1.25 

 

in (A1.20) the restriction that k2 >1/2 is equivalent to requiring (b/2a) < 1, since when 

k2=1/2, K(k’)=K(k).If we make the somewhat more stringent requirement that (b/a) <1 , 

which is equivalent to k2 >0.97, then (A1.25) may be further simplified by noting that fro 

k≈1  

 R+� ≃ )-Rℎ� ,)+� ≃ X%+ℎ� and � ≃ (&¾ 2�⁄ ) thus  

                      
Z"�"Ã ≃ 4 �6À − C4 ln ½)*+ℎ 4UCÀ¿� − ∆Z�"Ã                                                          Î1.26 

where 
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∆Z �"Ã = C4 ln �½<9√Þ<9√�¿C ½<9Þ<9�¿�                                                                   Î1.27 

 

 An alternative form of (A1.26) may be obtained by using the following identity  

)*+ℎ ½&¾2�¿ = -�4U CÀ� �
31 + RSXℎ ½&¾2�¿7 

With the result   ~(	(Ú ≃ 4 ��� + 2& ln ½1 + RSXℎ &¾2�¿� − ∆~	(Ú                                        Î1.28 

In this form it is easy to identify the first term in (A1.29) as the plate capacitance 

between the stripline and the horizontal walls, and the second term as the fringing 

capacitance between the edges of the stripline and the side walls. For large gaps , the 

fringing approaches �8 &� � ln 2. 

APPENDIX-2 
The Numerical Electromagnetics Code (NEC-2) is a user-oriented computer code 

for analysis of the electromagnetic response of antennas and other metal structures. It is 

built around the numerical solution of integral equations for the currents induced on the 

structure by sources or incident fields. The code combines an integral equation for 

smooth surfaces with one specialized for wires to provide for convenient and accurate 

modeling of a wide range of structures. 

A wire segment is defined by the coordinates of its two end points and its radius. 

Modeling a wire structure with segments involves both geometrical and electrical 

factors. Geometrically, the segments should follow the paths of conductors as closely as 

possible, using a piece-wise linear fit on curves. 

Example loop construction : 

4Nec2 is written using Fortran it executes in the form of cards ,  

the below example is based on  Fig 4.10.  

CM  
CE 
GW 1 10 0 0 0 0 0 10.e-4 1.e-4 
GW 2 5 0 0 10.e-4 5.e-4 0 10e-4 1.e-4 
GW 3 10 5.e-4 0 10e-4 5.e-4 0 0 1.e-4 
GE 1 
GN 1 
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EK 
EX 6 2 3 0 1 0 0 
FR 0 0 0 0 1000 0 
RP 0 10 4 1001 0. 0. 10. 30.  
XQ  
EN 
 
CM card is used as a comment card and CE is for comment end.i.e. both CM and CE are 

used for comment lines 

GW is used to construct geometry wire with ‘1’ represents the tag number, ‘10’ 

represents the number of segments , three consecutive fields “0 0 0” represents the first 

coordinate of the wire, followed by “0 0 10e-4” represents the second end of the wire. 

1e-4 represents the radius of the wire. 

GE indicates the end of construction of geometry  

GN is used to represent the existance of ground plane  

EX  for exictation  in which ‘6’ represents the which identifies the  position of the segment in a 

set of equal tag numbers,  uniquely defines the source segment following ‘2’ reprsents the tag 

number in which ‘3’ the segment in that tag ,’0’ represents the option number ,then ‘1’ represents 

the real value and followed  ‘0’ represents the imaginary value. 

FR  reprsents the frequency i.e 1000MHz in this example 
 
RP reprsents the Radiation pattern  
 
XQ for intimating the execute command 
 
EN for end of run 
 
For more information refer to the reference manual of 4nec2 tool 
 

 
 

 

 

 

 

 

 


