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CHAPTER-5 

CASE STUDIES AND RESULTS: 

 

To test the convergence of the developed model, a number of case studies were carried out on a 

simple 6-bus system and the 30-bus system. In each of these test systems a TCSC is 

incorporated. In all these case studies, a convergence tolerance of 10
-4

 has been chosen. The case 

studies are elaborated below: 

Case 1: This is a base case without a TCSC for the 6-Bus system. The 6-Bus system (Line & Bus 

Data is attached in Appendix) used for implementing TCSC is shown in Fig 5.1 below. A power 

flow solution yielded results tabulated in 5.1 and voltage versus bus no plot is shown in Fig 5.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 5.1 6-Bus system used for Implementing TCSC 
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Table 5.1 Basecase powerflow solution of 6-Bus system 

Bus No. 
Voltage 

(p.u.) 

Phase angle 

(Degrees) 

1 1.0500   0 

2 1.0500 -3.6712 

3 1.0700 -4.2733 

4 0.9894 -4.1958 

5 0.9854 -5.2764 

6 1.0044 -5.9475 

 

Fig .5.2 Voltage profile for 6-Bus system 
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Case 2: This is a case with TCSC installed between line 2 and Line 5 and power flow in the line 

increased from 0.1502 p.u to 0.2 p.u. A power flow solution yielded results tabulated in 5.2 and 

voltage versus bus no plot is shown in Fig 5.3 

Table 5.2 Powerflow solution of 6-Bus system with TCSC 

Bus No. 
Voltage 

(p.u.) 

Phase angle 

(Degrees) 

Susceptance 

(p.u.) 

Firing Angle 

(Degrees) 

1 1.0500  0 

BTCSC = 1.8913 p.u. 

α = 166.57 
α =167.54 

2 1.0500 -4.3386 

3 1.0700 -4.8825 

4 0.9810 -4.4946 

5 0.9274   -4.3865 

6 0.9932   -6.3944 

P2-5 = 0.2 p.u. 

Fig .5.3 Voltage profile for the 6-Bus system with TCSC in line 2-5 

The complete Powerflow solution for the 6-Bus system after implementing TCSC is tabulated in 

Table 5.5. TCSC is placed in Line between 2&5, the percentage increase in Line is 33.15% and 

the number of iterations is 17 in case of Alfa model and 7 in case of Susceptance model. The 

Btcsc value in both the cases should be the same which is 1.8913 p.u. 
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Case 3: This is a case with TCSC installed between line 3 and Line 5 and power flow in the line 

increased from 0.1802 p.u to 0.25 p.u. A power flow solution yielded results tabulated in 5.3 and 

voltage versus bus no plot is shown in Fig 5.4 

Table 5.3 Powerflow solution of 6-Bus system with TCSC 

Bus No. Voltage  

(p.u.) 

Phase angle 

(Degrees) 

Susceptance 

(p.u.) 

Firing Angle 

(Degrees) 

1 1.0500  0 

BTCSC = 1.8376 p.u. 

α = 171.78 
α =172.06 

2 1.0500 -4.2914 

3 1.0700 -5.4547 

4 0.9799 -4.4687 

5 0.9207   -4.7138 

6 0.9915   -6.7138 

P3-5 = 0.25 p.u. 

Fig .5.4 Voltage profile for the 6-Bus system with TCSC in line 3-5 

The complete Powerflow solution for the 6-Bus system after implementing TCSC is tabulated in 

Table 5.5. TCSC is placed in Line between 3&5, the percentage increase in Line is 38.73% and 

the number of iterations is 19 in case of Alfa model and 12 in case of Susceptance model. The 

Btcsc value in both the cases should be the same which is 1.8376 p.u.
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Table 5.5 Complete Powerflow solution obtained in case of 6- bus system 

From 

Bus. 

no 

To     

Bus. 

no 

Base 

case 

Power 

flow 

(pu) 

Power 

flow 

with 

TCSC 

(pu) 

Percent 

change in 

Power 

flow (%) 

Power Flow Solution 

Alpha Model Susceptance Model 

No. of 

iterations  

„t‟ 

Time 

taken 

(sec) 

Btcsc 

(pu) 

Firing 

angle 

(degree) 

No. of 

iterations  

„t‟ 

Time 

taken 

(sec) 

Btcsc 

(pu) 

Firing 

angle 

(degree) 

6-Bus system 
2 5 0.1502 0.2000 33.15 17 0.1453 1.8913 167.54 7 0.1513 1.8913 166.57 

 

3 5 0.1802 0.2500 38.73 19 0.1390 1.8376 172.06 12 0.1529 1.8376 171.78 
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Case 4: This is a base case without a TCSC for the 30-Bus system. The 30-Bus system (Line & 

Bus Data is attached in Appendix) used for implementing TCSC is shown in Fig 5.5. A power 

flow solution yielded results tabulated in 5.6 and voltage versus bus no plot is shown in Fig 5.6 

 

Fig 5.5 IEEE 30-Bus test system 

Table 5.6 Basecase powerflow solution of 30-Bus system 

Bus No. 
Voltage 

(p.u.) 

Phase angle  

(Degrees) 
Bus No. 

Voltage 

(p.u.) 

Phase angle  

(Degrees) 

1 1.0600  0 16 1.0425 -16.0433 

2 1.0430 -5.3539 17 1.0379 -16.2894 

3 1.0100   -14.1813 18 1.0261 -17.0422 

4 1.0100   -11.8393 19 1.0236 -17.1807 

5 1.0820 -14.4177 20 1.0277 -16.9644 
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Bus No. 
Voltage 

(p.u.) 

Phase angle  

(Degrees) 
Bus No. 

Voltage 

(p.u.) 

Phase angle  

(Degrees) 

6 1.0710 -15.5556 21 1.0307   -16.5359 

7 1.0208 -7.5240 22 1.0312 -16.5233 

8 1.0119   -9.2741 23 1.0250 -16.8178 

9 1.0100 -11.0848 24 1.0193 -16.9140 

10 1.0022   -12.8835 25 1.0154 -16.4418 

11 1.0500 -14.4177 26 0.9977 -16.8631 

12 1.0431 -16.0860 27 1.0216 -15.8888 

13 1.0550 -15.5556 28 1.0065 -11.7151 

14 1.0401 -16.4229 29 1.0017 -17.1229 

15 1.0356 -16.4855 30 0.9902 -18.0088 

Fig .5.6 Voltage profile for 30-Bus system (base case) 

Case 5: This is a case with TCSC installed between line 14 and Line 15 and power flow in the 

line increased from 0.0142 to 0.016 p.u. A power flow solution yielded results tabulated in 5.7 

and voltage versus bus no plot is shown in Fig 5.7 
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Table 5.7 Powerflow solution of 6-Bus system with TCSC (Line 14-15) 

Bus No. 
Voltage 

(p.u.) 

Phase angle  

(Degrees) 
Bus No. 

Voltage 

(p.u.) 

Phase angle  

(Degrees) 

1 1.0600  0 16 1.0222 -15.9474 

2 1.0430 -5.3397 17 1.0184 -16.2475 

3 1.0100   -14.1358 18 1.0039 -16.9451 

4 1.0100   -11.7874 19 1.0022 -17.1256 

5 1.0820 -14.3547 20 1.0069 -16.9192 

6 1.0710 -15.3828 21 1.0109 -16.5174 

7 1.0268 -7.60770 22 1.0112 -16.5015 

8 1.0193 -9.37090 23 1.0019 -16.6949 

9 1.0137 -11.0983 24 0.9970 -16.8551 

10 1.0044 -12.8712 25 0.9902 -16.3539 

11 1.0357   -14.3547 26 0.9720   -16.7973 

12 1.0241 -16.0587 27 0.9948 -15.7714 

13 1.0341 -15.3828 28 1.0098 -11.7088 

14 1.0257   -16.4957 29 0.9743 -17.0742 

15 1.0121 -16.3029 30 0.9625   -18.0112 

P14-15 = 0.016 p.u. 

BTCSC = 1.4235 p.u. ;  α =169.65 

α =171.35 

 

The complete Powerflow solution for the 30-Bus system after implementing TCSC is tabulated 

in Table 5.9. TCSC is placed in Line between 14&15, the percentage increase in Line is 12.67% 

and the number of iterations is 10 in case of Alfa model and 7 in case of Susceptance model. The 

Btcsc value in both the cases should be the same which is 1.4235 pu. 
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Fig .5.7 Voltage profile for the 30-Bus system with TCSC in line 14-15 

Case 6: This is a case with TCSC installed between line 13 and Line 15 and power flow in the 

line increased from 0.169 p.u. to 0.190 p.u . A power flow solution yielded results tabulated in 

5.8 and voltage versus bus no plot is shown in Fig 5.8 

Table 5.8 Powerflow solution of 6-Bus system with TCSC (Line 13-15) 

Bus No. 
Voltage 

(p.u.) 

Phase angle  

(Degrees) 
Bus No. 

Voltage 

(p.u.) 

Phase angle  

(Degrees) 

1 1.0600  0 16 1.0224 -16.3037 

2 1.0430 -5.3960 17 1.0068 -16.3876 

3 1.0100   -14.2199 18 0.9490 -15.5412 

4 1.0100   -11.8897 19 0.9591 -16.2393 

5 1.0820 -14.3680 20 0.9702 -16.2743 

6 1.0710 -15.1018 21 0.9912 -16.4453 

7 1.0267 -7.7330 22 0.9906 -16.3976 

8 1.0192 -9.5267 23 0.9455 -15.1395 

9 1.0123 -11.1785 24 0.9652 -16.2676 

10 1.0036 -12.9536 25 0.9682 -16.1734 

11 1.0272   -14.3680 26 0.9496   -16.6376 
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Bus No. 
Voltage 

(p.u.) 

Phase angle  

(Degrees) 
Bus No. 

Voltage 

(p.u.) 

Phase angle  

(Degrees) 

12 1.0074 -16.0624 27 0.9793 -15.8207 

13 1.0464 -16.1016 28 1.0072 -11.7616 

14 0.9823   -16.0786 29 0.9584 -17.1662 

15 0.9380 -13.9504 30 0.9464   -18.1349 

P13-15 = 0.19 p.u. 

BTCSC = 2.3374 p.u. ;  α =171.52 

α =171.37 

 

The complete Powerflow solution for the 30-Bus system after implementing TCSC is tabulated 

in Table 5.9. TCSC is placed in Line between 13&15, the percentage increase in Line is 12.43% 

and the number of iterations is 39 in case of Alfa model and 11 in case of Susceptance model. 

The Btcsc value in both the cases should be the same which is 2.3374 p.u. 

Fig .5.8 Voltage profile for the 30-Bus system with TCSC in line 13-15 
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Table 5.9 Complete Powerflow solution obtained in case of 30- bus system 

 

 

 

 

From 

Bus. 

no 

To     

Bus. 

no 

Base 

case 

Power 

flow 

(pu) 

Power 

flow 

with 

TCSC 

(pu) 

Percent 

change in 

Power 

flow (%) 

Power Flow Solution 

Alpha Model Susceptance Model 

No. of 

iterations  

„t‟ 

Time 

taken 

(sec) 

Btcsc 

(pu) 

Firing 

angle 

(degree) 

No. of 

iterations  

„t‟ 

Time 

taken 

(sec) 

Btcsc 

(pu) 

Firing 

angle 

(degree) 

30-Bus system 
14  15 0.0142 0.0160 12.67 10 0.162 1.4235 171.35 7 0.140 1.4235 169.65 

 

13 15 0.1690 0.1900 12.43 39 0.256 2.3374 171.37 11 0.185 2.3374 171.52 

 



Page | 59  

 

CHAPTER-6 

CONCLUSION: 

In this work, a Newton power flow model of the Thyristor Controlled Series Capacitor (TCSC) 

was developed. The model was appropriately modified to include both the susceptance and the 

firing angle model of the TCSC. Power flow case studies were carried out with TCSCs installed 

in different lines in a small six bus system and the IEEE 30 bus system. Power flow solutions 

were obtained for both the susceptance and the firing angle models. Solution values displayed a 

close match for both the models. In all the case studies, very good convergence characteristics 

were obtained, which validates the model 
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FUTURE SCOPE OF WORK: 

Multiple TCSCs can be incorporated into the system by making some changes in the jacobian 

matrix of the system. An additional row and column are added in the jacobian matrix to 

incorporate an extra TCSC installed in the system. The susceptance model and firing angle 

model will have the same number of iterative loops but yield individual alpha values of the 

TCSCs.  

The project can also be developed by using Fast decoupled load flow instead of Newton-

Raphson powerflow for fast convergence and computational time. 
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APPENDIX 

Table 6.1 Line Data for the 6-Bus system [3] 

BCAP *= half total line charging susceptance 

Table 6.2 Bus data for the 6-Bus system 

Bus number Bus type Voltage 

schedule(pu 

V) 

Pgen 

(pu MW) 

Pload 

(pu MW) 

Qload 

(pu MVAR) 

1 Swing 1.05    

2 Generator 1.05 0.5 0.0 0.0 

3 Generator 1.07 0.6 0.0 0.0 

4 Load  0.0 0.7 0.7 

5 Load  0.0 0.7 0.7 

6 Load  0.0 0.7 0.7 

The above Table 6.1 &6.2 list the input data for the six-bus system used in the Project [3]. The 

impedances are per unit on a base of 100 MVA. 

From bus To bus R(pu) X(pu) BCAP*(pu) 

1 2 0.10 0.20 0.020 

1 4 0.05 0.20 0.020 

1 5 0.08 0.30 0.030 

2 3 0.05 0.25 0.030 

2 4 0.05 0.10 0.010 

2 5 0.10 0.30 0.020 

2 6 0.07 0.20 0.025 

3 5 0.12 0.26 0.025 

3 6 0.02 0.10 0.010 

4 5 0.20 0.40 0.040 

5 6 0.10 0.30 0.030 



Page | 67  

 

Table 6.3 Line Data for 30-Bus system [30] 

BCAP *= half total line charging susceptance 

 

From 

bus 
To bus R(pu) X(pu) 

BCAP* 

(pu) 

From 

bus 
To bus R(pu) X(pu) 

BCAP* 

(pu) 

1 2 0.0192 0.0575 0.0264 15 18 0.1073 0.2185 0 

1 7 0.0452 0.1652 0.0204 18 19 0.0639 0.1292 0 

2 8 0.0570 0.1737 0.0184 19 20 0.0340 0.0680 0 

7 8 0.0132 0.0379 0.0042 12 20 0.9360 0.2090 0 

2 3 0.0472 0.1983 0.0209 12 17 0.0324 0.0845 0 

2 9 0.0581 0.1763 0.0187 12 21 0.0348 0.0749 0 

8 9 0.0199 0.0414 0.0045 12 22 0.0727 0.1499 0 

3 10 0.0460 0.1160 0.0102 21 22 0.0116 0.0236 0 

9 10 0.0267 0.082 0.0085 15 23 0.1000 0.2020 0 

9 4 0.0120 0.0420 0.0045 22 24 0.1150 0.1790 0 

9 11 0 0.2080 0 23 24 0.1320 0.2700 0 

9 12 0 0.5560 0 24 25 0.1885 0.3292 0 

11 5 0 0.2080 0 25 26 0.2544 0.3800 0 

11 12 0 0.1100 0 25 27 0.1093 0.2087 0 

8 13 0 0.2560 0 28 27 0.3960 0.3960 0 

13 6 0 0.1400 0 27 29 0.2198 0.4153 0 

13 14 0.1231 0.2599 0 27 30 0.3202 0.6027 0 

13 15 0.0662 0.1304 0 29 30 0.2399 0.4533 0 

13 16 0.0945 0.1987 0 4 28 0.0636 0.2000 0.0214 

14 15 0.2210 0.1997 0 9 28 0.0169 0.0599 0.0065 

16 17 0.0524 0.1923 0  
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Table 6.4 Bus Data for 30-Bus system 

Bus no Voltage 

sche-

dule(pu 

V) 

Pgen 

(pu 

MW) 

Pload 

(pu 

MW) 

Qload 

(pu 

MVAR) 

Bus no Voltage 

sche-

dule(pu 

V) 

Pgen 

(pu 

MW) 

Pload 

(pu 

MW) 

Qload 

(pu 

MVAR) 

1 1.060 0 0 0 16 1.0 0 0.035 0.018 

2 1.043 0.4 0.217 0.127 17 1.0 0 0.090 0.058 

3 1.010 0.2 0 0.300 18 1.0 0 0.032 0.009 

4 1.010 0 0.300 0 19 1.0 0 0.095 0.034 

5 1.082 0 0.942 0.190 20 1.0 0 0.022 0.007 

6 1.071 0 0 0 21 1.0 0 0.175 0.112 

7 1.0 0 0 0 22 1.0 0 0 0 

8 1.0 0 0.058 0.020 23 1.0 0 0.032 0.016 

9 1.0 0 0.112 0.075 24 1.0 0 0.087 0.067 

10 1.0 0 0 0 25 1.0 0 0 0 

11 1.0 0 0.076 0.016 26 1.0 0 0.035 0.023 

12 1.0 0 0.228 0.109 27 1.0 0 0.024 0 

13 1.0 0 0 0 28 1.0 0 0 0 

14 1.0 0 0.062 0.016 29 1.0 0 0.024 0.009 

15 1.0 0 0.082 0.025 30 1.0 0 0.106 0.019 

Bus no:1- Slack bus, Bus no: 2,3,4,5,6-Generator bus, Rest all are Load busses 

 


