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CHAPTER-4 

TCSC Powerflow model: 

 

Load flow studies are one of the most important aspects of power system planning 

and operation. The load flow gives us the sinusoidal steady state of the entire system  

voltages, real and reactive power generated and absorbed and line losses. Since the load is a 

static quantity and it is the power that flows through transmission lines, the purists prefer to 

call this Power Flow studies rather than load flow studies. We shall however stick to the 

original nomenclature of load flow. 

 

Through the load flow studies we can obtain the voltage magnitudes and angles at 

each bus in the steady state. This is rather important as the magnitudes of the bus voltages are 

required to be held within a specified limit. Once the bus voltage magnitudes and their angles 

are computed using the load flow, the real and reactive power flow through each line can be 

computed. Also based on the difference between power flow in the sending and receiving 

ends, the losses in a particular line can also be computed. Furthermore, from the line flow we 

can also determine the over and under load conditions. 

 

The steady state power and reactive powers supplied by a bus in a power network are 

expressed in terms of nonlinear algebraic equations. We therefore would require iterative 

methods for solving these equations. In this chapter we shall discuss two of the load flow 

methods. We shall also delineate how to interpret the load flow results. 

 

4.1 REAL AND REACTIVE POWER INJECTED IN A BUS 

For the formulation of the real and reactive power entering a bus, we need to define the 

following quantities. Let the voltage at the i
th

 bus be denoted by 

 

 iiiiii jVVV  sincos                                                                                      (4.1) 

Also let us define the self admittance at bus-i as 
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  iiiiiiiiiiiiiiii jBGjYYY   sincos                              (4.2) 

 

Similarly the mutual admittance between the buses i and j can be written as 

 

  ijijijijijijijij jBGjYYY   sincos                              (4.3) 

 

Let the power system contains a total number of n buses. The current injected at bus-i is 

given as 
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It is to be noted we shall assume the current entering a bus to be positive and that leaving the 

bus to be negative. As a consequence the active power and reactive power entering a bus will 

also be assumed to be positive. The complex power at bus-i is then given by 
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Note that 
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Therefore substituting in (4.5) we get the real and reactive power as 
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cos                              (4.6) 
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k
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sin                                 (4.7) 

 

4.2 CLASSIFICATION OF BUSES 

For load flow studies it is assumed that the loads are constant and they are defined 

by their real and reactive power consumption. It is further assumed that the generator 

terminal voltages are tightly regulated and therefore are constant. The main objective of the 

load flow is to find the voltage magnitude of each bus and its angle when the powers 

generated and loads are pre-specified. To facilitate this we classify the different buses of the 

power system as listed below. 

1. Load Buses: In these buses no generators are connected and hence the generated real 

power PGi and reactive power QGi are taken as zero. The load drawn by these buses are 

defined by real power  PLi and reactive power  QLi in which the negative sign 

accommodates for the power flowing out of the bus. This is why these buses are 

sometimes referred to as P-Q bus. The objective of the load flow is to find the bus 

voltage magnitude Vi and its angle i. 

 

2. Voltage Controlled Buses: These are the buses where generators are connected. 

Therefore the power generation in such buses is controlled through a prime mover while 

the terminal voltage is controlled through the generator excitation. Keeping the input 

power constant through turbine-governor control and keeping the bus voltage constant 

using automatic voltage regulator, we can specify constant PGi and Vi for these buses. 

This is why such buses are also referred to as P-V buses. It is to be noted that the 

reactive power supplied by the generator QGi depends on the system configuration and 

cannot be specified in advance. Furthermore we have to find the unknown angle i of 

the bus voltage. 

 

3. Slack or Swing Bus: Usually this bus is numbered 1 for the load flow studies. This bus 

sets the angular reference for all the other buses. Since it is the angle difference between 
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two voltage sources that dictates the real and reactive power flow between them, the 

particular angle of the slack bus is not important. However it sets the reference against 

which angles of all the other bus voltages are measured. For this reason the angle of this 

bus is usually chosen as 0. Furthermore it is assumed that the magnitude of the voltage 

of this bus is known. 

 

Now consider a typical load flow problem in which all the load demands are known. 

Even if the generation matches the sum total of these demands exactly, the mismatch 

between generation and load will persist because of the line I
2
R losses. Since the I

2
R 

loss of a line depends on the line current which, in turn, depends on the magnitudes and 

angles of voltages of the two buses connected to the line, it is rather difficult to estimate 

the loss without calculating the voltages and angles. For this reason a generator bus is 

usually chosen as the slack bus without specifying its real power. It is assumed that the 

generator connected to this bus will supply the balance of the real power required and 

the line losses. 

There three methods for load flow studies mainly 

 

#Gauss siedel method  

# Newton-Raphson method 

# Fast decoupled method.  

 

In this thesis we are implementing and using the Newton raphson method to solve the 

network equations before and after incorporating TCSC. 

 

4.3 NEWTON-RAPHSON METHOD 

This method is used to solve a set of nonlinear equations through an iterative process. Let us 

consider that we have a set of n nonlinear equations of a total number of n variables x1, x2, 

, xn. Let these equations be given by 
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where f1, , fn are functions of the variables x1, x2, , xn. We can then define another set of 

functions g1, , gn as given below 
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Let us assume that the initial estimates of the n variables are x1
(0)

, x2
(0)

, , xn
(0)

. Let us 

add corrections x1
(0)

, x2
(0)

, , xn
(0)

 to these variables such that we get the correct solution 

of these variables defined by 
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The functions in (4.9) then can be written in terms of the variables given in (4.10) as 

 

           nkxxxxgxxg nnknk ,,1,,,,,
000

1
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11               (4.11) 

 

We can then expand the above equation in Taylor‟s series around the nominal values of x1
(0)

, 

x2
(0)

, , xn
(0)

. Neglecting the second and higher order terms of the series, the expansion of gk, 

k = 1, , n is given as 
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where 
 0

ik xg   is the partial derivative of gk evaluated at x2(0), , xn(0). 

 

Equation (4.12) can be written in vector-matrix form as 
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The square matrix of partial derivatives is called the Jacobian matrix J with J
(0)

 indicating 

that the matrix is evaluated for the initial values of x2
(0)

, , xn
(0)

. We can then write the 

solution of (4.13) as 
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Since the Taylor‟s series is truncated by neglecting the 2
nd

 and higher order terms, we cannot 

expect to find the correct solution at the end of first iteration. We shall then have 
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These are then used to find J
(1)

 and gk
(1)

, k = 1, , n. We can then find x2
(1)

, , xn
(1)

 

from an equation like (4.14) and subsequently calculate x2
(1)

, , xn
(1)

. The process continues 

till gk, k = 1, , n becomes less than a small quantity. 

4.4 LOAD FLOW BY NEWTON-RAPHSON METHOD 

Let us assume that an n-bus power system contains a total number of np P-Q buses 

while the number of P-V (generator) buses be ng such that n = np + ng + 1. Bus-1 is assumed 

to be the slack bus. The approach to Newton-Raphson load flow is similar to that of solving a 

system of nonlinear equations using the Newton-Raphson method: at each iteration we have 

to form a Jacobian matrix and solve for the corrections from an equation of the type given in 

(4.13). For the load flow problem, this equation is of the form 
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where the Jacobian matrix is divided into submatrices as 
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It can be seen that the size of the Jacobian matrix is (n + np  1)  (n + np  1). The 

dimensions of the submatrices are as follows: 

J11: (n  1)  (n  1), J12: (n  1)  np, J21: np  (n  1) and J22: np  np 

The submatrices are 
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4.4.1 Load Flow Algorithm 

The Newton-Raphson procedure is as follows: 

 

Step-1: Choose the initial values of the voltage magnitudes V
(0)

 of all np load buses 

and n  1 angles (0)
 of the voltages of all the buses except the slack bus. 

 

Step-2: Use the estimated V
(0)

 and (0)
 to calculate a total n  1 number of injected 

real power Pcalc
(0)

 and equal number of real power mismatch P
(0)

. 
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Step-3: Use the estimated V
(0)

 and (0)
 to calculate a total np number of injected 

reactive power Qcalc
(0)

 and equal number of reactive power mismatch Q
(0)

. 

 

Step-3: Use the estimated V
(0)

 and (0)
 to formulate the Jacobian matrix J

(0)
. 

 

Step-4: Solve (4.16) for (0)
 and V

(0)
V

(0)
. 

 

Step-5: Obtain the updates from 

 

     001                   (4.22) 
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Step-6: Check if all the mismatches are below a small number. Terminate the process 

if yes. Otherwise go back to step-1 to start the next iteration with the updates given by (4.22) 

and (4.23). 

4.4.2 Formation of the Jacobian Matrix 

We shall now discuss the formation of the submatrices of the Jacobian matrix. To do 

that we shall use the real and reactive power equations of (4.6) and (4.7). Let us rewrite them 

with the help of (4.2) as 
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A. Formation of J11 

 

Let us define J11 as 
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It can be seen from (4.32) that Mik‟s are the partial derivatives of Pi with respect to k. The 

derivative Pi (4.38) with respect to k for i  k is given by 
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Similarly the derivative Pi with respect to k for i = k is given by 
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Comparing the above equation with (4.25) we can write 
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B. Formation of J21 

 

Let us define J21 as 
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From (4.20) it is evident that the elements of J21 are the partial derivative of Q with respect to 

. From (4.25) we can write 
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Similarly for i = k we have 
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The last equality of (4.31) is evident from (4.24). 

C. Formation of J12 

 

Let us define J12 as 
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As evident from (4.19), the elements of J21 involve the derivatives of real power P with 

respect to magnitude of bus voltage V. For i  k, we can write from (4.24) 
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For i = k we have 
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D. Formation of J22 

 

For the formation of J22 let us define 
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For i  k we can write from (4.25) 
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Finally for i = k we have 
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We therefore see that once the submatrices J11 and J21 are computed, the formation of 

the submatrices J12 and J22 is fairly straightforward. For large system this will result in 

considerable saving in the computation time. 
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4.5 CHARACTERISTICS OF NEWTON RAPHSON METHOD 

With sparse programming techniques and optimally ordered factorization, the Newton 

method for solving load flow has become faster than other methods for large systems. The 

number iterations are virtually independent of system size (for a flat voltage start and with no 

automatic adjustments) due to the quadratic characteristic of convergence. Most systems are 

solved in 5-10 iterations without no acceleration factors being necessary. The accuracy of the 

power flow solution is limited only by the round-off error of the direct solution of the system 

of simultaneous equations. 

 

With good programming, the time per iteration rises nearly linearly with the number of 

system buses N. One Iteration is equal to about seven Gauss-Seidel iterations. For a 500-bus 

system, the conventional Gauss-Siedel takes about 500 iterations and the speed advantage of 

the Newton method is then 15:1.Storage requirements of the Newton method are greater, 

however, but increase linearly with system size. It is, therefore, attractive for large systems.  

 

The Newton method is very reliable in system solving, given good starting approximations. 

Heavily loaded systems with phase shifts upto 90‟ can be solved. The methods not troubled 

by ill-conditioned systems and the location of slack bus are not critical. Due to the quadratic 

convergence of bus voltages, high accuracy (near exact solution) is obtained in only a few 

iterations .This is important for the use of load flow in short circuit and stability studies. The 

method is really extended to include tap-changing transformers, variable constraints on bus 

voltages, and reactive, optimal power scheduling. Network modifications are easily made.     

  

4.6 POWER FLOW ANALYSIS WITH TCSC 

TCSC vary the electrical length of the compensated transmission line which enables it to be 

used to provide fast active power flow regulation. It also increases the stability margin of the 

system and has proved very effective in damping Sub Synchronous Resonance (SSR) and 

power oscillations. The simpler TCSC model exploits the concept of a variable series 

reactance. The series reactance is adjusted automatically, within limits, to satisfy a specified 

amount of active power flow through it. The more advanced model uses directly the TCSC 
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reactance–firing angle characteristic, given in the form of a nonlinear relation as in equation 

[25, 28]. The TCSC firing angle is chosen to be the state variable in the Newton–Raphson 

power flow solution. 

 

4.6.1 FIRING ANGLE MODEL OF TCSC 

 

The equivalent circuit of TCSC for firing angle model is shown in Fig. 2, which consists of 

an anti-parallel connection of thyristors and the combination of inductor and capacitor. The 

thyristor combination is fired at various angles to obtain the required power flow in the line. 

The capacitor is used to supply the reactive power during heavy loaded conditions and the 

inductor will take care of the power during light loaded conditions. This is a series connected 

device which can have various roles in power systems such as sheduling power flow , 

reducing unsymmetrical components, reducing net loss, providing voltage support, reducing 

short circuit currents, mitigating SSR, enhancing transient stability. The fundamental 

frequency equivalent reactance XTCSC of the TCSC module shown in Fig. 4.1 is given by 

 

                                 Fig. 4.1.Equivalent circuit for firing angle model 

 CTCSC XX  +C1{2(π-α)+sin[(π-α)]}-C2 cos
2  

(π-α){K tan[K(π-α)]-tan(π-α)}              (4.38) 

Where the constants are  

C1 =
XC + XLC

π
 

C2 =
4XLC

2

πXL
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XLC =
XC ∗ XL

XC − XL
 

 

K =  
XC

XL
 

 

The above mentioned equation can also be written as shown below by eliminating the term 

XL and Substituting the other values as usual.    

𝑋𝑇𝐶𝑆𝐶 = −𝑋𝐶 +
𝐾2𝑋𝐶

𝜋 𝐾2−1 
 2 𝜋 − 𝛼 + 𝑆𝑖𝑛2 𝜋 − 𝛼  +

4𝐾2𝑋𝐶𝐶𝑜𝑠2(𝜋−𝛼)

𝜋(𝐾2−1)2 [𝐾 tan⁡{𝐾 𝜋 − 𝛼 } −

𝑇𝑎𝑛 (𝜋 − 𝛼)]                  (4.39) 

The Selection of K value is of critical importance and is governed by many factors, detailed 

analysis is given in [29], K value is chosen between 2.4-2.75 to avoid multiple resonance 

points and also operating region distribution in my project I have chosen 2.75,[13] gives a 

study of practical installations of the TCSC projects and also emphasizes in the selection of 

K value and how the performance varies by selection of K. 

 

TCSC operating range of firing angle is in between 90
o
 – 180

o
 .The capacitive and inductive 

region of operation depends on the firing angle. It will operate in inductive region when the 

firing angle is from 90
o
 – 140

o
, and in capacitive region for firing angle ranging from 140

o
 to 

180
o
. The maximum and minimum value of firing angles should be selected in such a way as 

to avoid the TCSC operating in high impedance region ( at resonance) which results in high 

voltage drop across the TCSC. 

 

The active and reactive power injections at bus “i” are shown in Fig. 2, where the TCSC is 

connected between bus “i” and bus “j” are given by 

Pi = ViVjBij Sin(θi − θj)                                                                                                   (4.40) 

Qi = Vi
2Bii − ViVjBij Cos(θi − θj)                                                                                    (4.41) 

Pj = ViVjBij Sin(θj − θi)                                                                                                   (4.42) 

Qj = Vj
2Bjj − ViVjBij Cos(θj − θi)                                                                                   (4.43) 
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Where  

Vi &θi are voltage and angle at i
th

 bus and 

Vj &θj are voltage and angle at j
th

 bus 

When TCSC controls the active power from bus “i” to bus “j”, at a specified value, the set of 

linearised power flow equations are given below 
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                                                   (4.44) 

The Jacobian elements for the series reactance as a function of the firing angle αTCSC is given 

by 

∂Pi

∂α  
= PiBTCSC

∂XTCSC

∂α  
                                                                                      (4.45) 

 

∂Q i

∂α
= QiBTCSC

∂XTCSC

∂α  
                                                                                                          (4.46)   

 

∂BTCSC

∂α  
=  BTCSC

2   
∂XTCSC

∂α  
                                                                                                      (4.47) 

 

∂XTCSC

∂α 
= −2C1 1 + Cos 2α  + C2Sin 2α  K Tan K π − α   + C2{K2

Cos2 π − α 

Cos2 K π − α  

− 1} 

 

Δ𝛼𝑇𝐶𝑆𝐶 = 𝛼𝑇𝐶𝑆𝐶
(𝑖−1)

− 𝛼𝑇𝐶𝑆𝐶
(𝑖)

                                                                                                  (4.48) 

 



Page | 47  
 

During each iteration firing angle values are modified using above equation, the Jacobian 

matrix is changed, and the corresponding power mismatches are calculated until it reaches 

the desired tolerance or the maximum number of iterations. From [25] it is clear that the 

reactance of the TCSC is a function of the firing angle, and the jacobian matrix is also made 

firing angle dependent.  

 

4.6.2 Susceptance model of TCSC 

 

In case of the variable impedance model or the Susceptance model the Susceptance is first 

found out after carrying out the load flows and then a separate Newton raphson loop is 

formulated and from that the firing angle is found out, here Newton Raphson method usage is 

justified as the relation between both the parameters listed above is non-linear and method 

with good convergence is Newton raphson method. 

 

For inductive mode of operation 

Bii = Bjj =
1

XTCSC
 

 

Bij = Bji = −
1

XTCSC
 

For capacitive  mode of operation 

 

Bii = Bjj = −
1

XTCSC
 

 

Bij = Bji =
1

XTCSC
 

Where „i‟ and „j‟ are bus numbers. 

 


