
`

i

`

A DISSERTATION ON

“Improving SMS Based FAQ Retrieval Using Proximity and

Length Score”

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENT

FOR THE AWARD OF DEGREE OF

MASTER OF TECHNOLOGY

IN

COMPUTER TECHNOLOGY AND APPLICATION

Delhi Technological University, Delhi

SUBMITTED BY

MUKUL RAWAT
UNIVERSITY ROLL NO: 27/CTA/2K10

Under the Guidance of:

Mr. Manoj Kumar

Associate Professor

Delhi Technological University

DEPARTMENT OF COMPUTER ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

2010-2012

`

ii

CERTIFICATE

This is to certify that the work contained in this dissertation entitled “Improving SMS Based

FAQ Retrieval Using Proximity and Length Score” submitted in the partial fulfillment, for the

award of the degree of M.Tech in Computer Technology and Applications at DELHI

TECHNOLOGICAL UNIVERSITY by MUKUL RAWAT, University Roll No. 27/CTA/2K10, is carried

out by him under my supervision. The matter and contents embodied in this project work has

not been submitted earlier for the award of any degree or diploma in any University/Institution

to the best of my knowledge and belief.

 (Mr. MANOJ KUMAR)
 Project Guide
 Associate Professor
 Department of Computer Engineering
 Delhi Technological University

`

iii

ACKNOWLEDGEMENT

First of all, let me thank the almighty god and my parents who are the most graceful and

merciful for their blessing that contributed to the successful completion of this project.

I feel privileged to offer sincere thanks and deep sense of gratitude to Mr. MANOJ KUMAR,

project guide for expressing his confidence in me by letting me work on a project of this

magnitude and providing their support, help & encouragement in implementing this project.

I would like to take this opportunity to express the profound sense of gratitude and respect to

all those who helped us throughout the duration of this project. Delhi Technological University,

in particular has been the great source of inspiration. Again, I acknowledge the effort of those

who have contributed significantly to this project.

 MUKUL RAWAT

 University Roll No.: 27/CTA/2K10

`

iv

Abstract

 In the present scenario, we all are looking for a better way to access information. Short

Messaging Service (SMS) is one of the popularly used services that provide information

access to the people having mobile phones. However, there are several challenges in

order to process a SMS query automatically. Humans have the tendency to use

abbreviations and shortcuts in their SMS. We call these inconsistencies as noise in the

SMS. In this paper we present an improved version of SMS based FAQ retrieval system.

We have mainly added three improvements to the previous system. They are (i) proximity

score, (ii) length score and (iii) an answer matching system. This way we noticed the

improvement in the accuracy of the SMS based FAQ retrieval system. We demonstrate

the effectiveness of our algorithm by considering many real-life FAQ-datasets from

different domains (e.g. Agriculture, Bank, Health, Insurance and Telecom etc).

`

v

TABLE OF CONTENTS

Page
No.

Acknowledgement Iii

Abstract Iv

List of figures Vii

List of tables Viii

Chapter 1: Introduction 1

1.1 Motivation 2

1.2 Research Objective 2

13 Related Work 3

1.4 Scope of Work 3

1.5 Organization of thesis 4

Chapter 2: Literature Review 5

2.1 SMS Based Question Answer System Basic Concepts 5

 2.1.1 What is SMS Based Question Answering System? 5

 2.1.2 Introduction to SMS based Question Answering System techniques 5

 2.1.2.1 Natural Language Processing Based 6

 2.1.2.2 Human Intervention Based 6

 2.1.2.3 Frequently Asked Question Based 6

2.2 SMS Based FAQ Retrieval System 7

 2.2.1 Problem Definition 7

 2.2.2 SMS Noise 8

 2.2.3 Combinational Search Problem 9

2.3 Problem Formulation and System Implementation 10

 2.3.1 Steps involved in Preprocessing 10

 2.3.2 Similarity Score 11

 2.3.2.1 Weight Function 12

 2.3.2.2 Similarity Measure 12

`

vi

 2.3.2.3 Inverse Domain Frequency 13

Chapter 3: Proposed Proximity and Length Score Technique 15

3.1 Proximity Score 15

3.2 Length Score 17

3.3 Summary 19

Chapter 4: Implementation and Experimental Results 20

4.1 Environmental Setup 20

 4.1.1 Hardware Configuration 20

 4.1.2 Software Configuration 20

4.2 Datasets 20

4.3 Analysis and Results 22

4.4 Summary 25

Chapter 5: Conclusion and Future Scope 26

5.1 Conclusion 26

5.2 Future Scope 26

 5.2.1 Stemming 26

 5.2.2 Inverse Bigram Frequency 27

 5.2.3 Caching the Results 27

 5.2.4 N-gram Count Based Algorithm 27

Reference 29

Appendix A: Coding 32

Appendix B: Levenshtein Distance 67

`

vii

List of Figures

Figure 2.1 Similarity Score 12

Figure 2.2 Computation of Similarity Measure 12

Figure 2.3 Inverse Domain Frequency 13

Figure 2.4 Weight Function 13

Figure 3.1 Mapping of SMS tokens with FAQ 16

Figure 3.2 Calculation of Proximity Score 17

Figure 4.1 FAQ Format 21

Figure 4.2 SMS Format 22

Figure 4.3 Result of Hindi FAQ retrieval task 24

Figure 4.4 Result of English FAQ retrieval task 24

`

viii

List of Tables

Table 1 Number of FAQ and SMS Queries 22

Table 2 Result of Hindi FAQ Retrieval experiments 23

Table 3 Result of English FAQ Retrieval experiments 23

`

1

Chapter 1: Introduction

In this era of globalization, information retrieval has become an important part of everybody’s

life. Therefore, it has become an interesting area of research that is how to make information

retrieval system convenient. Nowadays, there are several resources through which users can

access information such as internet, telephone lines, mobile phones, etc. With the rapid growth

in mobile communication, mobile phone has become a common part for most people. The

number of mobile users is growing at a very fast rate. In India alone, there are around 893

million mobile subscribers [2]. The popularity of mobile phones is due to its unmatched

portability. This encourages different businesses or information providers to think upon

implementing information services based on mobile phones. SMS information service is one of

the examples of mobile based information services. Existing SMS services such as service to

access CBSE Exam Result requires user to type the message in some specific format. For

example, to get the result of a particular student in CBSE examination, the user has to send a

message CBSE-HS-XXXX (Where XXXX is the Roll number of the student) [3]. These are the

unnecessarily constraints to the users who generally feel it easy and intuitive to type a query in

a “texting” language (i.e. abbreviations and the shortcuts). Some businesses such as “ChaCha”

[4] allow their users to make query through the SMSs without using any specific format. These

queries, on the other hand, are handled by the human experts. However this approach provides

users a kind of independence in writing the query yet this is not an efficient way because the

system is limited to handle a small number of queries proportional to the number of human

experts on the business side. This approach can be efficient if we have some sort of

automatically handling of query at the business side. L. Venkata Subramaniam et al., August

2009, IBM India Research Lab, presented a SMS-based question answering system over a SMS

interface [1]. This system enabled user to type his/her question in SMS texting language. Such

questions might contain short forms, abbreviations, spelling mistakes, phonetic spellings,

transliterations etc. The system handled the noise by formulating the SMS query similarity over

the FAQ database. This FAQ database was already provided to the system in the pre-processing

stage.

`

2

1.1 Motivation

India is on the brink of a mobile revolution, there are around 893 million mobile subscribers [2]

here and the number is just growing. Technology is increasing day by day and new mobile

phones are being introduced into the market. These days we can get many smart phones with

high-end graphic, fast processors and capable of 3G internet connectivity. But still a large

percentage of the mobile subscribers are using cheap phones. SMS is the major mode of

communication on these phones, thanks to the low cost of these SMSs. SMS is a very economic

and convenient mode of communication these days. Due to the popularity of communication

based on SMS, network operators have been encouraged to base a lot of their services on the

SMS technology. Most important applications of SMS are:

 Enquiry System for organizations such as schools, colleges and hospitals.

 Customer Support for telecom companies.

 Automatic FAQ support for various applications such as applications, registrations for an

event etc.

 Selling advertisements.

 Search Engine for small domain.

The near availability of a mobile network in any part of the country has also fueled the growth

of these services and the network operators are looking for more ways where this can be

utilized. There is a very high scope for optimization in the field of SMS based information

services in terms of accuracy.

1.2 Research Objective

The FAQ Retrieval System involved finding the best possible match from a given set of FAQs for

a query written in texting language. Now the problem with texting language is that often there

are misspellings, non-standard abbreviations, transliterations, phonetic substitutions and

omissions making it difficult to build an accurate FAQ Retrieval System.

`

3

In this thesis my objective is to present two score based techniques, namely the proximity score

and the length score, which takes into consideration the proximity of the tokens in the SMS and

a FAQ question and length of matched token from SMS to the FAQ question under

consideration. I will be explaining these concepts in the coming chapters and will show the

experimental results and analysis which will show how these two techniques can be used to

improve the accuracy of a FAQ Retrieval System.

1.3 Related Work

There has been growing interest in providing access to applications on mobile devices using

SMS. A lot of SMS-based FAQ retrieval services were formed, but they used human experts to

answer questions. L. Venkata Subramaniam et al., August 2009 [1], proposed an approach

named SMS based FAQ retrieval. They were the first to handle issues relating to SMS based

question-answering. Their method is unsupervised and does not require aligned corpus or

explicit SMS normalization to handle noise. They proposed an efficient algorithm that handles

noisy lexical and semantic variations.

The problem of FAQ Retrieval has been studied by Harksoo Kim [8], and he presented a way of

recovering FAQs by using a clustering of previous query logs. He further improved this

approach by employing latent semantic analysis [9], and by using latent term weights [10]. In

[10], the use of machine translation techniques are proposed for alignment of questions and

answers of FAQ corpus, aiming towards the construction of a bilingual statistical dictionary

which is further used for expanding the queries which are used in the information retrieval

system. In [11], an approach for domain specific FAQ retrieval is presented based on the

concept of “independent aspect”.

1.4 Scope of the Work

There has been little work done to handle the issues relating to SMS based automatic question-

answering. Most of the prior work related to SMS based FAQ retrieval services used human

experts to answer questions. There has been a big growth in the number of mobile users

throughout the world and this number is only going to increase in the future. Since most of

`

4

these users use low end mobile phones with SMS being the primary mode of communication,

lots of services are being developed based around this technology. To develop any service

based on the SMS technology related to information retrieval one cannot totally rely on human

experts, since there are lots of mobile users. There is a great need for an automated SMS based

information retrieval system which is very accurate.

In this thesis I have presented an automated SMS based FAQ retrieval system which is used

across two different languages and tested on different domains. I found that by applying two

new techniques namely the length score and proximity score, one can easily increase the

accuracy of the system without adding much complexity to it. There is a huge scope to improve

the accuracy of the system so that it can answer the user’s query correctly, as well as to

improve the performance of the system so that it can be used to answer the queries in real

time.

1.5 Organization of the thesis

In this chapter, I have highlighted the introduction to the SMS Based FAQ Retrieval System,

motivation to do this thesis, my objective, prior work in this field, and scope to do the work in

the same field. Also, this chapter includes various difficulties that are associated to the SMS

processing and various techniques that have been proposed to counter these difficulties.

Chapter 2 provides an overview to the SMS Based Question Answering System; various

strategies to implement SMS based Question Answering system. This chapter also describes the

importance and benefits of choosing FAQ based Question Answering System. Then it describes

the challenges in processing SMS queries and the strategy used to implement the system. This

chapter also includes the problem formulation and system implementation details. In chapter 3,

I presented the proposed techniques, the proximity score and the length score. I also presented

the formulas and equations that I have derived while deducing the algorithm. Chapter 4

includes the implementation details and the experimental setup. Here, I defined the datasets

that I have taken into the consideration while driving the experimental results. Also, there is a

comparative analysis of the results as concluded through different techniques. Finally, Chapter

5 concludes the thesis and gives some suggestions for future work.

`

5

Chapter 2: Literature Review

2.1 SMS Based Question Answer System Basic Concepts

2.1.1 What is SMS Based Question Answering System?

In this age of the internet where all sorts of information is just a click away, information

retrieval has become an important part of everybody’s life. As a consequence of this, methods

to improve information retrieval systems have become a major area of research. Today

everyone is looking for a better and an easy way to access information. Users can access

information using several resources such as internet, telephone lines, mobile phones, etc.

There has been a rapid growth in mobile communication and mobile phone are becoming more

and more common in our daily life A majority of the users still use cheaper models that have

limited screen space and a basic keyboard. On such devices SMS is the only mode of test

communication. This has encouraged service providers to build information based services

around SMS technology. In India alone, there are 811 million mobile subscribers and the

number is still growing rapidly. The SMS based Question Answering (QA) services can be one of

the cheapest and easiest ways to provide information access to the mobile users on move. This

popularity and ease of use encourages the information providers to provide the access to

information through mobile phones. The cost of sending SMS and the easy access to the

purchase of mobile phones have made instant messaging emerge as the preferred

communication medium just after spoken media and e-mails. The number of SMS messages

sent in 2010 was 6.9 trillion and for 2011 this number would reach over 8 trillion [6]. SMS

messaging is now used not only for personal communication but also for inquiry, advertising,

marketing, polling, bill payment, banking, etc. Thus, we can define SMS based question

answering system as a way to access information in the form of questions and answers sing

SMS service of the mobile phones.

2.1.2 Introduction to SMS based Question Answering System techniques

The most important such techniques are as follows:

`

6

2.1.2.1 Natural Language Processing Based

In these types of systems the user sends the queries to the system via a SMS and such queries

are written in natural language which mostly in these cases means texting language. The system

on receiving the query analyzes it using Natural Language Processing methods and generates an

answer to it. This answer is then sent to the user via a SMS. The main disadvantage of such

systems is the complexity of the natural language processing algorithms used. Its pretty hard to

decompose and analyze a query and its hard to generate accurate answers. The nature of

texting language is such that there is always a chance of misspellings, phonetic substitutions

and omissions, non-standard abbreviations and transliterations making it difficult to analyze the

query properly.

2.1.2.2 Human Intervention Based

In these systems the users can send the query written in natural language. Such system does

not have an automated response, instead there are real human agents who read and

understand the query and reply to the user. Human Intervention based systems uses humans to

answer the questions. These systems are interesting as they suggest similar questions resolved

in the past. Systems like ChaCha and Askme use qualified human experts to answer the

question in timely fashion.

Some businesses have recently allowed users to formulate queries in natural language using

SMS technology. Many contact centers now allow customers to text their complaints and

requests for information over SMS. This mode of communication not only makes economic

sense but also saves the customer from the hassle of waiting in a call queue.

2.1.2.3 Frequently Asked Question Based

Unlike other automatic question answering systems that focus on generating or searching

answers, in a FAQ database the questions and answers are already provided by an expert. The

goal is to identify the best matching question-answer prayer for a given query. A database for

possible query along with their answers is maintained in the system. When a user makes a

query over the SMS interface, the query is analyzed by the system and searched over the

`

7

database for the closest match with a query. The answer to the closest matching query is

returned the user.

2.2 SMS Based FAQ Retrieval System

2.2.1 Problem Definition

The input SMS S is considered as a sequence of tokens S=s1, s2, …….sn. Let Q denote the set of

questions in the FAQ corpus. Now each questions Q belonging to the set Q is also considered as

a sequence of terms. The goal of our task is to find the question Q* from the corpus Q such

that it best matches the SMS S. The SMS query is written in texting language. The problem with

questions asked in texting language is that such text has a lot of noise such as short forms,

abbreviations, spelling mistakes, phonetic spellings, transliterations etc. This makes SMS

processing a tedious task. The aim of the system is to find Q* which is as close to the input SMS

S. The techniques that we apply on this system are only used to increase this accuracy i.e. find

the best possible matching question Q* for the input query S.

The task of SMS based FAQ retrieval can be categorized into three categories:

1. Mono-lingual FAQ Retrieval: In this task, we are required to find the best matching

FAQ for a given SMS query where the FAQ corpus and SMS queries are expressed in the

same language.

2. Cross-lingual: In this task, we are required to find the matching FAQs in a language

different from the SMS queries language. For example, FAQs are written in Hindi and

SMS queries are coming in English.

3. Multi-Lingual: In this task, we are required to find matching FAQs for SMS queries

where both FAQs as well as SMSs can be in any language. For example, FAQs are written

in any one of these languages like English, Hindi Malyalam, etc and SMSs are coming

may also belong to any one of these languages like English, Hindi, Malyalam, etc.

`

8

In this thesis, I have taken Mono-lingual and Multi-Lingual SMS based FAQ retrieval as my

question answering system and proposed the algorithm for this system only.

2.2.2 SMS Noise

The millions of users of instant messaging (IM) services and short message service (SMS)

generate electronic content in a dialect that does not adhere to conventional grammar,

punctuation and spelling standards. This is commonly referred to as the texting language.

Words are intentionally compressed by non-standard spellings, abbreviations and phonetic

transliteration is used. These short forms, abbreviations, spelling mistakes, phonetic spellings,

transliterations inconsistencies in SMS query are known as noise in the SMS. SMS corpus

collected from FIRE SMS task has following observations for English.

1. The commonly observed patterns include deletion of vowels, addition of repeated

character and truncation. For example, “abt” written after removing the vowels in the

word about, “sooo” after repeating characters and “col” after truncating.

2. The SMS data provided belongs to different domains like telecommunication,

railways, insurance, etc. Some of the frequently used abbreviations in these areas have

been written directly like IRCTC in railways, BSNL in telecommunication, etc.

3. Substitution of spoken words with the actual spelling of the words popularly known

as phonetic substitution. For example, usage of “bookin” for booking in tourism domain,

etc.

4. Informal usage of different words is common in SMS text. Often multiple words are

combined into a single token. For example, “wrt” for with respect to or “asap” for as

soon as possible etc.

`

9

5. Missing words in sentences due to the limitation of text message. SMS query

sometimes give keywords and miss the conjunctions, prepositions and other words

which connect the key words. For example, “sms packs” used instead of sms packs

available for recharge, etc.

Above problems pertaining in the SMS text make it very noisy. This makes SMS processing a

tedious task.

2.2.3 Combinational Search Problem

In computer science and artificial intelligence, combinatorial search studies search algorithms

for solving instances of problems that are believed to be hard in general, by efficiently exploring

the usually large solution space of these instances. Combinatorial search algorithms achieve

this efficiency by reducing the effective size of the search space or by employing heuristics.

Some algorithms are guaranteed to find the optimal solution, while others may only return the

best solution found in the part of the state space that was explored. Classic combinatorial

search problems include solving the eight queens‟ puzzle or evaluating moves in games with a

large game tree, such chess. A study of computational complexity theory helps to motivate

combinatorial search. Combinatorial search algorithms are typically concerned with problems

that are NP-hard. Such problems are not believed to be efficiently solvable in general. However,

the various approximations of complexity theory suggest that some instances (e.g. "small"

instances) of these problems could be efficiently solved. This is indeed the case, and such

instances often have important practical ramifications. Combinatorial search algorithms are

normally implemented in an efficient imperative programming language, in an expressive

declarative programming language such as Prolog, or some compromise, perhaps a functional

programming language such as Haskell, or a multi-paradigm language such as LISP. In this work,

combinatorial search was implemented as the search space for matching the SMS query to a

query in the FAQ database is large. As we shall see in subsequent chapters, the combinatorial

search technique used employs Naive algorithm to reduce the search space of finding the

maximum scoring question.

`

10

2.3 Problem Formulation and System Implementation

The aim of this chapter is to define various phases and functions used in the system. The

purpose of the preprocessing stage is to preprocess the database in order to make the system

work fast at the time of actual computation. In later stages, various scoring functions are

defined that improves the system accuracy by considering different techniques from NLP and

pattern matching.

 2.3.1 Preprocessing involves the following steps:

1. Indexing: This is one of the important steps in preprocessing. We create a hash table

of words W that contains all the words occurring in all the questions in Q with the keys

being characters a-z and numbers 0-9. Example: “I” contains all the words in the set Q

that start with “I”, “like”, “insurance”, “improve”, and so on. The purpose of storing an

index is to optimize speed and performance in finding relevant documents for a search

query. Without an index, the search engine would scan every document in the corpus,

which would require considerable time and computing power. For indexing the FAQ

corpus we have used LUCENE [9].

2. Creating Domain Dictionary: In the preprocessing stage, we develop a Domain

dictionary D consisting of all the terms that appear in the corpus Q.

3. Removing Stop words: Stop words are words which are filtered out prior to, or after,

processing FAQ corpus. The stop words are removed from the SMS query S. We now call

it processed SMS query. The list of stop words that we have used includes the most

common short function words such as the, is, at, which, on, etc. and common lexical

words as well. Stop words are removed as they almost never contain the relevant or the

keywords.

`

11

4. Disemvoweling: The process of removing vowels from a string is known as

disemvowelling and the string from which vowels are removed is said to me

disemvoweled. We apply this process of disemvowelling to the SMS query.

5. Replacing digits occurring in the SMS with words: Digits occurring in SMS token are

replaced by a string based on a manually designed digit-to-string mapping

(“8”→“eight”).

6. Removing single character words: Single character words in the SMS query are

removed.

2.3.2 Similarity Score

The system views the SMS as a sequence of tokens. Each question in the FAQ corpus views as a

list of terms. The goal is to find a question from the FAQ corpus that best matches with the SMS

query and return the answer of the selected FAQ as a response of the user query (SMS). SMS

string is bound to have misspellings and other distortions, which needed to be taken care of

while performing the match. A domain dictionary is created containing all the terms that are

present in the FAQ corpus in the developed system. For each term t in the dictionary and each

token si in the SMS query, a similarity measure α(t, si) is defined that measures how closely the

term t matches with the SMS token si. It is believed that the term t was a variant of si, if α(t, si)

> 0. A weight function ω(t, si) is defined by combining the similarity measure and the inverse

document frequency (idf) of t in the corpus, Based on the weight function, a scoring function is

defined for assigning a score to each question in the corpus Ǫ with respect to given SMS query.

The score measures how closely the FAQ matches the SMS string S. FAQ having the highest

score is believed to be best matches with SMS query. The equation is given as:-

`

12

Figure 2.1: Similarity Score

Consider a question Q Ǫ. For each token si in SMS string S, the scoring function chooses the

term having the maximum weight from Q. Summation of the weight of n chosen terms results

in score of question Q. The goal was to find the question Q+ having the maximum score.

2.3.2.1 Weight Function

The weight for a term t in the dictionary w.r.t. a given SMS token si is calculated. The weight

function is a combination of Similarity Measure between t and si and Inverse Document

Frequency (idf) of t. The next two subsections explain the calculation of the similarity measure

and the idf in detail.

2.3.2.2 Similarity Measure

 Let D be the dictionary of all the terms in the corpus Q. For term t 2 D and token si of the SMS,

the similarity measure α(t, si) between them is:-

Figure 2.2: Computation of Similarity Measure

 Where

 and LCS(t,si) stands for largest common

subsequence between t and si. The Longest Common Subsequence Ratio (LCSR) of two strings

is the ratio of the length of their LCS and the length of the longer string. Since in SMS text, the

`

13

dictionary term will always be longer than the SMS token, the denominator of LCSR is taken as

the length of the dictionary term. We call this modified LCSR as the LCS Ratio.

The Edit Distance shown in above equation compares the Consonant Skeleton of the dictionary

term and the SMS token. If the consonant keys are similar, i.e. the Levenshtein distance

between them is less; the similarity measure defined in Equation will be high. We explain the

rationale behind using the EditDistance in the similarity measure α(t, si) through an example.

For the SMS token “gud” the most likely correct form is “good”. The two dictionary terms

“good” and “guided” have the same LCSRatio of 0.5 w.r.t “gud”, but the EditDistance of “good”

is 1 which is less than that of “guided”, which has EditDistance of 2 w.r.t “gud”. As a result the

similarity measure between “gud” and “good” will be higher than that of “gud” and “guided”.

2.3.2.3 Inverse Domain Frequency

The Inverse Document Frequency is a measure of whether the term is common or rare across

all documents. It is obtained by dividing the total number of documents by the number of

documents containing the term, and then taking the logarithm of that quotient. If f number of

documents in corpus Q containing a term t and the total number of documents in Q is N, then

the Inverse Document Frequency (idf) of t is:

 Figure 2.3: Inverse Domain frequency

Mathematically the base of the log function does not matter and constitutes a constant

multiplicative factor towards the overall result. Combining the similarity measure and the idf of

t in the corpus, they define the weight function ω(t, si) as:

 Figure 2.4: Weight Function

`

14

The objective behind the weight function is

1. It is preferred that terms having high similarity measure i.e. terms that are similar to

the SMS token. Higher the LCSRatio and lower the EditDistance, higher will be the

similarity measure. Thus for example, for a given SMS token “byk”, similarity measure of

word “bike“ is higher than that of “break”.

2. It is preferred that words that are highly discriminative i.e. words with a high idf

score. The rationale for this stems from the fact that queries, in general, are composed

of informative words. Thus for example, for a given SMS token “byk”, idf of “bike” will

be more than that of commonly occurring word “back”. Thus, even though the similarity

measure of “bike” and “back” are same w.r.t. “byk”, “bike” will get a higher weight than

“back” due to its idf.

These two objectives are combined into a single weight function multiplicatively.

`

15

Chapter 3: Proposed Proximity and Length Score Technique

The objective of this chapter is to introduce my approach to compute the score of candidate

FAQ by considering the Proximity and Length Score. These techniques are completely different

from the earlier used technique of Similarity score in [1].

While developing our system I have taken the work [1] as our base and worked my

modifications on this system. In order to increase the accuracy of SMS based FAQ retrieval I

have proposed few enhancements in evaluating the score of FAQ from candidate set. I

proposed that accuracy can be improved by considering proximity of SMS query and FAQ

tokens as well as by considering length of the matched tokens from the SMS query to the FAQ

question under consideration. Thus formalizing that:

Where Q is the FAQ question under consideration and S = {s1, s2, …, sn} is the SMS query. W1, W2

and W3 are real valued weights. Their values determine the portion of Similarity Score,

Proximity Score and Length Score from the overall score of the FAQ question. W1 and W2 are

adjusted such that their sum is 1.0 (or 100%). We have given more than half weightage to

Similarity score. W3 is assigned comparatively less value, as it tries to reduce the overall score if

there are variations in the length of SMS and FAQ text. To calculate Similarity Score I have

employed the methods proposed in paper by (Kothari et al., 2009). While calculating the Score

of the FAQ question in my experiment, I have considered data from domains such as

Agriculture, Banking, Railways, Health Care, Insurance and General Knowledge in two languages

(Hindi and English).

3.1 Proximity Score

To improve the accuracy of the system proposed in [1] I have introduced the concept of

proximity search. I have explained the working of our proximity search technique with an

example given in figure 3.1 and figure 3.2.

`

16

Fig 3.1 Mapping of SMS tokens with FAQ

Relative position of words in a sentence plays an important role; it allows us to

differentiate this sentence with various other possible sentences – which have same words but

in different order. So while finding a best match, we must consider the proximity of words. In

the proposed solution we do not check proximity of a token with all remaining tokens, but we

only consider two consequent words. In proximity search process, we store the positions of the

matched SMS tokens and FAQ tokens, stop words are removed before storing position of

tokens. Based on the distance between two consecutive tokens in SMS text and FAQ the

calculation of Proximity Score is done. The proximity score can be calculated as:

Where totalFaqTokens = number of tokens in FAQ

 matchedToken = number of matched token of SMS in FAQ

 Where n = number of matched adjacent pairs in SMS.

`

17

Figure 3.2 describes the calculation of Proximity Score with an example SMS and FAQ question.

For calculating the value of distance we have taken only absolute value of distance as we

believe that if two tokens were swapped their positions than in most of the cases the meaning

of the SMS and FAQ question is unchanged. Unlike the Length Score, Proximity Score is always

positive.

Fig 3.2 Calculation of Proximity Score

3.2 Length Score

We can further improved the accuracy of the system by considering the length of the matched

tokens from SMS query to the FAQ question under consideration. Length Score is defined as

follows:

`

18

Where totalFAQToken = total number of Tokens in FAQ question

 totalSMSToken = total number of Tokens in SMS

 matchedToken =number of SMS which matched from tokens of FAQ question

Since the Length Score is negative score (i.e. this score is subtracted from the overall

score), so best Length Score is achieved when all the tokens of the FAQ question were matched

from the all tokens in the SMS query. So in the best case Length Score is Zero (i.e nothing to be

subtracted from the overall score). There is a drawback of using Length Score when a question

having more number of tokens would always have less overall score because there are more

number of unmatched FAQ tokens. We provide two possible solutions to the above problem.

The first solution is applicable when very few FAQ questions in FAQ database have more

number of tokens. Solution to this problem is that rewrite the big FAQ question into the FAQ

question having less number of tokens. For e.g.

Original FAQ Question: “DTU offers various Tech courses. What are the Internship opportunities

for M Tech students at DTU?Do all M Tech students get the Internship offer?”

Corresponding Small Question: “What are Internship opportunities for M Tech students at

DTU?”

The second solution is applicable when there are many big questions in FAQ database and

rewriting them is not possible. In this case instead of subtracting the Length Score (i.e. adding

negative score) we add the Length Score (i.e. adding positive score) in the overall score. In this

particular case we have modified our Length Score a bit. The new formula for Length Score in

this case is as follows:

`

19

Where totalFAQToken=total number of Tokens in FAQ question

totalSMSToken =total number of Tokens in SMS

 matchedToken =number of SMS which matched from tokens of FAQ question

In the best case Length Score would be 1 when all the tokens in FAQ were matched by all

tokens in SMS.

3.3 Summary

In this chapter I have explained two new techniques to improve the efficiency of the FAQ based

Question Answering System. These two techniques: Proximity Score and Length Score can be

used on the original system discussed in [1]. If we combine these two scores along with the

Similarity Score discussed in [1] we can further improve the efficiency of the system. The

combined scores can be formulized as :

Where Q is the FAQ for which we are calculating the score. W1, W2 and W3 are real valued

weights. Their values determine the weights of Similarity Score, Proximity Score and Length

Score from the overall score of the FAQ question. W1, W2 and W3 are adjusted such that their

sum is 1.0 (or 100%). More than half weightage is given to Similarity score. W3 is assigned

comparatively less value, as it tries to reduce the overall score if there are variations in the

length of SMS and FAQ text.

`

20

Chapter 4: Implementation and Experimental Results

4.1 Environmental Setup

The following configuration has been used while conducting the experiments

4.1.1 Hardware Configuration

Processor : Intel Core 2 Duo

Processor Speed : 2.20GHz

Main Storage : 4GB RAM

Hard Disk Capacity : 80GB

 Monitor : Dell 17”5‟ Color

4.1.2 Software Configuration

 Operating System : Windows 7

Front end : Java

Back end : Datasets (explained in 4.2)

4.2 Datasets

Dataset used for evaluation was taken from FIRE [6] (Forum for Information Retrieval

Evaluation), it contains data from many domains viz. - Agriculture, Banking, Career, General

Knowledge, Health, Insurance, Online railway reservation, Sports, Telecom, Tourism. The SMS

queries were also provided by FIRE in order to test the system accuracy. SMS queries were

categorized as In-Domain and Out- Domain. SMS Queries for which there is a matching question

in the FAQ corpus then its In-Domain SMS Query, other SMS Queries are called Out-Domain

SMS Queries.

`

21

Experiments were conducted for two different languages Hindi and English. In our experiments

we have used 200 In-Domain and 124 Out-Domain SMS for Hindi language, and 728 In-Domain

and 2677 Out-Domain SMS for English Language.

Dataset Format :

The data is in an XML-based format. FAQs are placed in the input FAQ xml file and SMS queries

are placed in SMS query xml file. The two formats are:

<FAQ>

<FAQID>ENG_CAREER_1</FAQID>

<DOMAIN>CAREER</DOMAIN>

<QUESTION>What is career counseling?</QUESTION>

<ANSWER> Career counseling is a process designed to help clients discover their passion,

choose satisfying careers, build career management skills, and improve their ability to market

and sell themselves in the job market. We utilize a holistic approach to career counseling and

are interested in helping you achieve greater satisfaction in your life and align your career goals

to match your personal goals. Career counseling is not a job placement or recruitment service

although we can help you find one depending on the career path you select.

 </ANSWER>

</FAQ>

 Figure 4.1: FAQ Format

`

22

<SMS>

 <SMS_QUERY_ID>ENG_SMS_QUERY_I1</SMS_QUERY_ID>

<SMS_TEXT>whats need 2 change name on pport after a marriage</SMS_TEXT>

<MATCHES>

 <ENGLISH>ENG_VISA_47</ENGLISH>

 </MATCHES>

 </SMS>

Figure 4.2: SMS Format

4.3 Analysis and Results

Experiments were conducted for two different languages Hindi and English. The FAQ dataset

was provided by Forum for Information Retrieval Evaluation (FIRE) [ref-link]. This dataset

contained data from various domains – Agriculture, Banking, Career, General Knowledge,

Health, Insurance, Online railway reservation, Sports, Telecom and Tourism. Table 1 show the

number of FAQs and the In domain and Out domain SMS queries used in the experiments. SMS

queries for which there is a matching question in the FAQ corpus then its In-Domain SMS query,

other queries are called Out-Domain SMS queries.

Table 1. Number of FAQs and SMS Queries

Language FAQs Indomain

SMS

Outdomain

SMS

Total SMS

Hindi 1994 200 124 324

English 7251 728 2677 3405

As explained above, the matching between FAQ and SMS is performed based on three

factors- Similarity, proximity and length. I have conducted experiments to evaluate the

`

23

correctness of the systems based on these three factors in four different possible ways. As the

similarity score is the base of the matching process, I have considered similarity score in all

experiments. In first experiments only Similarity alone is considered for matching, in second –

Similarity along with Proximity is considered, in third experiment Similarity and Length are

considered and in fourth experiment all three factors are considered for matching. Table 2 and

table 3 shows the result of experiments conducted for Hindi language and English language

respectively. MRR indicates mean reciprocal rank. Those questions, which had score greater

than a particular threshold, were considered for matching. The experiments were conducted

with the same threshold for all experiments.

Table 2. Results of Hindi FAQ retrieval experiments

 Indomain

Correct

Outdomain

Correct

MRR

Similarity 197 6 0.9905

Similarity & Proximity 197 22 0.9905

Similarity & Length 197 97 0.9916

Similarity & Length &

Proximity

198 118 0.9949

Table 3. Results of English FAQ retrieval experiments

 Indomain

Correct

Outdomain

Correct

MRR

Similarity 519 234 0.7529

Similarity & Proximity 520 393 0.7568

Similarity & Length 538 1981 0.8877

Similarity & Length &

Proximity 521 2281 0.9041

`

24

These results are shown in the form of graph in Figure 4.3 and 4.4:

Figure 4.3 Result of Hindi FAQ retrieval task.

Figure 4.4 Result of English FAQ retrieval task.

`

25

4.4 Summary

In this chapter I have introduce and explained the experimental setup used to conduct the

experiments. I have also explained the various typed of datasets used and have explained them

in detail. Various experiments were conducted to test the accuracy of the proposed techniques.

The results show that the Proximity factor does not improve the in domain result but improved

the out domain result. Length factor improved the result by a large extent as compared to the

result obtained by considering Proximity factor. And after combining the effect of Similarity,

Length and proximity the results are better as compared to the previous experiments.

`

26

Chapter 5: Conclusion and Future Scope

5.1 Conclusion

There has been little work done on an automated SMS-FAQ Answering System. Most of the

prior work done included some form of human intervention. With the growing mobile

revolution that we are at present witnessing, the number of mobile users is only going to

increase. A large majority of these mobile users still use cheap mobile phones and SMS is the

primary mode of text communication in such phones. Therefore to monetize this fact a large

number of service providers are creating applications based around the SMS technology. To

make such applications a success we can see that lots of work needs to be done in the field of

automated SMS based services.

In this thesis I have presented an automated SMS-FAQ Answering system based upon the work

of [1]. I have discussed in detail the two new techniques which can be used to further improve

the accuracy of such a system. These techniques the proximity score and the length score are

both easy to implement and do not add any complexity in the existing system.

I have shown with my experiments how by applying both the proximity score and length score

in combination with the similarity score we can improve the accuracy of the system to around

90% whereas earlier using only the similarity score the system only gave 75% accuracy. There

are many more NLP techniques that can be applied to this system to further improve its

accuracy, this work of mine only serves as an introduction to a wide practical research domain.

5.2 Future Scope

5.2.1 Stemming

In most cases, morphological variants of words have similar semantic interpretations and can

be considered as equivalent for the purpose of IR applications. For this reason, a number of so-

called stemming Algorithms, or stemmers, have been developed, which attempt to reduce a

word to its stem or root form. Thus, the key terms of a query or document are represented by

stems rather than by the original words. This not only means that different variants of a term

`

27

can be conflated to a single representative form – it also reduces the dictionary size, that is, the

number of distinct terms needed for representing a set of documents. A smaller dictionary size

results in a saving of storage space and processing time. For IR purposes, it doesn't usually

matter whether the stems generated are genuine words or not – thus, "computation" might be

stemmed to "compute" – provided that (a) different words with the same 'base meaning' are

conflated to the same form, and (b) words with distinct meanings are kept separate. An

algorithm which attempts to convert a word to its linguistically correct root ("compute" in this

case) is sometimes called a lemmatizer.

Examples of products using stemming algorithms would be search engines such as Lycos and

Google, and also thesauruses and other products using NLP for the purpose ` 47

of IR. Stemmers and lemmatizers also have applications more widely within the field of

Computational Linguistics.

5.2.2 Inverse Bigram Frequency

Like Inverse domain frequency, we can measure inverse bigram frequency in the preprocessing

stage. I believe this will improve the N-Gram score of the question hence improve the accuracy

of the system.

5.2.3 Caching the Results

Caching the results would help the system in answering the repetitive queries. In this case,

system needs not to search the FAQ in the full corpus every time instead it can first check the

question similarity the cache if not found then go to the corpus. In general, it is the common to

have a particular set of queries at particular time. For example, during admission time in a

university, most of the queries would be related to the admission only.

5.2.4 N-Gram count based algorithm

N-Gram is a contiguous sequence of n items from a given sequence of text or speech. The items

in question can be phonemes, syllables, letters, words or base pairs according to the

application. N-Grams are collected from a text or speech corpus. An n-gram of size 1 is referred

to as a "unigram"; size 2 is a "bigram" (or, less commonly, a "digram"); size 3 is a "trigram".

`

28

Larger sizes are sometimes referred to by the value of n, e.g., "four-gram", "five-gram", and so

on. N-Grams can be used for efficient approximate matching. By converting a sequence of items

to a set of N-Grams, it can be embedded in a vector space, thus allowing the sequence to be

compared to other sequences in an efficient manner. We know empirically that if two strings of

real text have a similar vector representation (as measured by cosine distance) then they are

likely to be similar.

`

29

REFERNCES

[1] GovindKothar, SumitNegi, Tanveer A. Faruquie, Venkatesan T. Chakaravarthy, L. Venkata,

“SMS based interface for FAQ retrieval,” Proceedings of the 47th Annual Meeting of the ACL

and the 4th IJCNLP of the AFNLP, pages 852–860, Suntec, Singapore, 2-7 August 2009.

[2] TRAI Annual report - http://www.trai.gov.in/annualreport/English_Front_Page.pdf.

[3] SMS service- http://results.icbse.com/cbse-result-class-10/

[4] ChaCha - http://www.chacha.com/

[5] FIRE - http://www.isical.ac.in/~clia/

[6] Global mobile statistics 2012 - http://mobithinking.com/mobile-marketing-tools/latest-

mobile-stats

[7] Kim H., Seo J., High-Performance FAQ retrieval using an automatic clustering method of

query logs. Inf. Process. Manage. 42, 2006, 650-661

[8] Kim H., Lee H., Seo J., A reliable FAQ retrieval system using a query log classification

technique based on latent semantic analysis, Inf. Process. Manage. 43, 2007, 420-430.

[9] Kim H., Seo J., Cluster-based FAQ retrieval using latent term weights. IEEE Intelligent

Systems 23, 2008, 58-65.

[10] Riezler S., Vasserman A., Tsochabtaridis I., Mittal V., Liu Y., Statistical machine

translation for query expansion in answer retrieval. In proceedings pf 45th Annual Meeting of

the Association of Computational Linguistic, 2007, 464-471.

`

30

[11] Wu C. H., Yeh J. F., Chen M. J., Domain Specific FAQ retrieval using independent aspects,

ACM Transactions on Asian Language Information Proceeding (TALIP) 4, 2005, 1-17.

[12] Sreangsu Acharya, Sumit Negi, L. V. Subramaniam, Shourya Roy. 2008. Unsupervised

learning of multilingual short message service (SMS) dialect from

noisy examples, In Proceedings of the second workshop on Analytics for noisy unstructured text

data.

[13] E. Prochasson, Christian Viard-Gaudin, Emmanuel Morin. 2007. Language Models for

Handwritten Short Message Services, In Proceedings of the 9th International Conference on

Document Analysis and Recognition.

[14] Jeunghyun Byun, Seung-Wook Lee, Young-In Song, Hae-Chang Rim. 2008. Two Phase

Model for SMS Text Messages Refinement, Association for the Advancement of Artificial

Intelligence. AAAI Workshop on Enhanced Messaging.

[15] Aiti Aw, Min Zhang, Juan Xiao, and Jian Su. 2006. A phrase-based statistical model for

SMS text normalization, In Proceedings of COLING/ACL, pages 33−40.

[16] W. Song, M. Feng, N. Gu, and L. Wenyin. 2007. Question similarity calculation for FAQ

answering, In Proceeding of SKG 07, pages 298−301.

[17] E. Sneiders. 1999. Automated FAQ Answering: Continued Experience with Shallow

Language Understanding,Question Answering Systems. Papers from the 1999 AAAI Fall

Symposium. Technical Report FS-99−02, November 5−7, North Falmouth, Massachusetts, USA,

AAAI Press, pp.97−107.

[18] Monojit Choudhury, Rahul Saraf, Sudeshna Sarkar, Vijit Jain, and Anupam Basu. 2007.

Investigation and Modeling of the Structure of Texting Language, In Proceedings of IJCAI-2007

Workshop on Analytics for Noisy Unstructured Text Data, Hyderabad.

`

31

[19] Sunil Kumar Kopparapu, Akhilesh Srivastava and Arun Pande. 2007. SMS based Natural

Language Interface to Yellow Pages Directory, In Proceedings of the 4th International

conference on mobile technology, applications, and systems and the 1st International symposium

on Computer human interaction in mobile technology, Singapore.

`

32

Appendix A: Coding

FAQ_INDEXER.java

package faqIndexing;

import java.io.File;

import java.io.IOException;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.analysis.SimpleAnalyzer;

import org.apache.lucene.analysis.WhitespaceAnalyzer;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.*;

import org.apache.lucene.document.Field.Index;

import org.apache.lucene.document.Field.Store;

import org.apache.lucene.index.CorruptIndexException;

import org.apache.lucene.index.IndexReader;

import org.apache.lucene.index.IndexWriter;

import org.apache.lucene.index.Term;

import org.apache.lucene.index.IndexWriter.MaxFieldLength;

import org.apache.lucene.queryParser.ParseException;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.Query;

import org.apache.lucene.search.ScoreDoc;

import org.apache.lucene.store.Directory;

import org.apache.lucene.store.FSDirectory;

import org.apache.lucene.store.LockObtainFailedException;

import org.apache.lucene.util.Version;

`

33

public class FAQ_INDEXER

{

 IndexWriter indexWriter;

 public FAQ_INDEXER(String index_dir) throws CorruptIndexException,

LockObtainFailedException, IOException

 {

 File indexDir = new File(index_dir);

 Directory fsDir = FSDirectory.open(indexDir);

 //Analyzer an = new StandardAnalyzer(Version.LUCENE_30);

 Analyzer an = new WhitespaceAnalyzer();

 indexWriter= new IndexWriter(fsDir,an,MaxFieldLength.UNLIMITED);

 }

 public void add_question(String faq_id,String domain,String question,String answer)

throws IOException

 {

 // question=question.replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', '

').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 question=question.replace('"',' ').replace("""," ").toLowerCase().trim();

 answer=answer.replace('"',' ').replace("""," ").toLowerCase().trim();

 // answer=answer.replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', '

').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 //create document for question

 Document doc=new Document();

 doc.add(new Field("faq_id",faq_id,Store.YES,Index.ANALYZED));

 doc.add(new Field("domain",domain,Store.YES,Index.ANALYZED));

 doc.add(new Field("question",question,Store.YES,Index.ANALYZED));

 doc.add(new Field("answer",answer,Store.YES,Index.ANALYZED));

`

34

 //add document to index

 indexWriter.addDocument(doc);

 }

 public void add_domain_term(String term,String synset) throws CorruptIndexException,

IOException

 {

 //create document for question

 Document doc=new Document();

 term = term.replace('"',' ').replace('(', ' ').replace('.', ' ').replace(')', '

').replace(',', ' ').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 synset= synset.replace('"',' ').replace('(', ' ').replace('.', ' ').replace(')', '

').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 if(term.length()>0)

 {

 doc.add(new Field("term",term,Store.YES,Index.ANALYZED));

 doc.add(new Field("synset",synset,Store.YES,Index.ANALYZED));

 //add document to index

 indexWriter.addDocument(doc);

 }

 }

 public void destructor() throws CorruptIndexException, IOException

 {

 //print the number of documents in index

 int numDocs = indexWriter.numDocs();

 System.out.println("Number of Documents INDEXED = "+numDocs);

 //optimize it

 indexWriter.optimize();

`

35

 indexWriter.close();

 }

 public void removeDuplicates() throws ParseException, IOException

 {

 File tempIndex = new File("D:\\Documents\\M tech\\IBM-SMS based

FAQ retrieval\\Lucene\\INDEX\\DomainIndex - Copy\\");

 Directory fsDir = FSDirectory.open(tempIndex);

 //Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);

 IndexReader tmpReader = IndexReader.open(fsDir);

 IndexSearcher tmpSearcher = new IndexSearcher(tmpReader);

 for(int i=0;i<tmpSearcher.maxDoc();i++)

 {

 String domainTerm,synSet;

 domainTerm=tmpSearcher.doc(i).get("term");

 synSet=tmpSearcher.doc(i).get("synset");

 //delete all similar

 indexWriter.deleteDocuments(new Term("term",domainTerm));

 System.out.println(domainTerm);

 add_domain_term(domainTerm,synSet);

 }

 destructor();

 }

}

`

36

FAQ_Search.java

package faqIndexing;

import java.io.File;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.lucene.analysis.Analyzer;

import org.apache.lucene.analysis.SimpleAnalyzer;

import org.apache.lucene.analysis.WhitespaceAnalyzer;

import org.apache.lucene.analysis.standard.StandardAnalyzer;

import org.apache.lucene.document.Document;

import org.apache.lucene.index.CorruptIndexException;

import org.apache.lucene.index.IndexReader;

import org.apache.lucene.queryParser.ParseException;

import org.apache.lucene.queryParser.QueryParser;

import org.apache.lucene.search.IndexSearcher;

import org.apache.lucene.search.Query;

import org.apache.lucene.search.ScoreDoc;

import org.apache.lucene.search.TopDocs;

import org.apache.lucene.store.Directory;

import org.apache.lucene.store.FSDirectory;

import org.apache.lucene.store.LockObtainFailedException;

import org.apache.lucene.util.Version;

import similarity.similarity;

public class FAQ_Search {

`

37

 private static final double WEIGHT_THRESHOLD = 0.75;

 IndexSearcher searcher;

 QueryParser parser;

 int maxHits=3000;

 double numDocs;

 boolean debug=false;

 public FAQ_Search(String directory_path) throws CorruptIndexException,

LockObtainFailedException, IOException

 {

 File indexDir = new File(directory_path);

 Directory fsDir = FSDirectory.open(indexDir);

 //Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);

 Analyzer analyzer = new WhitespaceAnalyzer();

 IndexReader reader = IndexReader.open(fsDir);

 searcher = new IndexSearcher(reader);

 String defaultField = "question";

 parser = new QueryParser(Version.LUCENE_30,defaultField,analyzer);

 numDocs = reader.numDocs();

 System.out.println("Total Docs="+numDocs);

 }

 public DictionarySearchResult searchDomainDictionary(String token) throws

ParseException, IOException

 {

 if(debug)

 System.out.println("Searching DOmain dictionary for : "+token);

`

38

 token=token.replace('?',' ').replace('$',' ').replace('<',' ').replace('>',' ').replace('%','

').replace('&', ' ').replace(';',' ').replace('-',' ').replace("'"," ").replace('[',' ').replace('{',' ').replace(']','

').replace('}',' ').replace('!',' ').replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '

').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 //search DOmain dictionary

 Query q = parser.parse("term:"+token.trim().charAt(0)+"*");//search for similar

first character

 TopDocs hits = searcher.search(q,maxHits);

 ScoreDoc[] scoreDocs = hits.scoreDocs;

 if(debug)

 System.out.println("number of mtching terms:"+scoreDocs.length);

 DictionarySearchResult result= new

DictionarySearchResult(token,scoreDocs.length);

 //loop over all the searched document

 for (int n = 0; n < scoreDocs.length; ++n)

 {

 ScoreDoc sd = scoreDocs[n];

 int docId = sd.doc;

 Document d = searcher.doc(docId);

 String domainTerm = d.get("term");

 if(debug)

 System.out.println(n+"] "+domainTerm);

 if(similarity.lcs(token,domainTerm)>1)

 {

 //calculate weight

 double weight=calcWeight(token,domainTerm);

 if(weight>WEIGHT_THRESHOLD)

`

39

 result.addNewTerm(domainTerm, weight);

 }

 }

 return result;

 }

 public SynonymSearchResult searchSynonymDictionary(String token) throws

ParseException, IOException

 {

 if(debug)

 System.out.println("Searching Synonym dictionary for : "+token);

 //search DOmain dictionary

 //Query q = parser.parse("synset:"+token.charAt(0)+"*");//search for similar first

character

 token= token.replace('?',' ').replace('$',' ').replace('<',' ').replace('>',' ').replace('%','

').replace('&', ' ').replace(';',' ').replace('-',' ').replace("'"," ").replace('[',' ').replace('{',' ').replace(']','

').replace('}',' ').replace('!',' ').replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '

').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 //FUZZZY match of the synonym of the SMS token

 Query q = parser.parse("synset:"+token+"~");

 TopDocs hits = searcher.search(q,maxHits);

 ScoreDoc[] scoreDocs = hits.scoreDocs;

 if(debug)

 System.out.println("number of mtching terms:"+scoreDocs.length);

 SynonymSearchResult result= new

SynonymSearchResult(token,scoreDocs.length*2);//CHECK IT

`

40

 //loop over all the searched document

 for (int n = 0; n < scoreDocs.length; ++n)

 {

 ScoreDoc sd = scoreDocs[n];

 int docId = sd.doc;

 Document d = searcher.doc(docId);

 String domainTerm = d.get("term");

 String synset = d.get("synset");

 //check if the DOmain term is already processed or not

 if(result.isProcessed(domainTerm)==true)

 continue;

 if(debug)

 System.out.println(n+"] "+domainTerm+"-->"+synset);

 //get synset tokens separated by Comma

 StringTokenizer que_tok = new StringTokenizer(synset,",");

 int total=que_tok.countTokens();

 for(int i=0;i<total;i++)

 {

 String synonym=que_tok.nextToken();

 if(debug)

 System.out.println(token+"="+synonym);

 //separate out the tokens

 if(synonym!=domainTerm && similarity.lcs(token,synonym)>1)

`

41

 {

 //calculate weight

 double

weight=calcSynonymWeight(token,domainTerm,synonym);

 if(weight>WEIGHT_THRESHOLD)

 result.addNewTerm(domainTerm,

weight,synonym);

 }

 }

 }

 return result;

 }

 public double calcWeight(String smsToken,String domainTerm) throws

ParseException, IOException

 {

 double alpha;

 double weight;

 alpha=similarity.similarityMeasure(domainTerm,smsToken);

 weight=alpha*getIDF(domainTerm.replace("!", ""));

 if(debug)

 System.out.println("ALpha="+alpha);

 return weight;

 }

 public double calcSynonymWeight(String smsToken,String domainTerm,String

synTerm) throws ParseException, IOException

`

42

 {

 double alpha;

 double weight;

 alpha=similarity.similarityMeasure(synTerm,smsToken);

 weight=alpha*getIDF(domainTerm);

 return weight;

 }

 public QuestionSearchResult searchQuestionAnswer(String query) throws IOException,

ParseException

 {

 query= query.replace('?',' ').replace('$',' ').replace('<',' ').replace('>',' ').replace('%','

').replace('&', ' ').replace(';',' ').replace('-',' ').replace("'"," ").replace('[',' ').replace('{',' ').replace(']','

').replace('}',' ').replace('!',' ').replace('(', ' ').replace('.', ' ').replace(')', ' ').replace(',', ' ').replace('/', '

').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 Query q = parser.parse("question:"+query+" OR answer:"+query);

 TopDocs hits = searcher.search(q,maxHits);

 ScoreDoc[] scoreDocs = hits.scoreDocs;

 //calculate IDF

 int docFreq = scoreDocs.length;

 double idf = 1+ Math.log10(numDocs/(docFreq+1));

 if(debug)

 {

 System.out.println("Query = "+query+" Found ="+docFreq+" IDF ="+idf);

 }

`

43

 //variable to return the results

 QuestionSearchResult result=new QuestionSearchResult(scoreDocs.length);

 //result.faqID=new String[scoreDocs.length];

 //result.count=scoreDocs.length;

 //loop over all the searched document

 for (int n = 0; n < scoreDocs.length; ++n)

 {

 ScoreDoc sd = scoreDocs[n];

 float score = sd.score;

 int docId = sd.doc;

 Document d = searcher.doc(docId);

 String faq_id = d.get("faq_id");

 /* store faqid in results */

 //result.faqID[n] = faq_id;

 result.addResult(faq_id);

 if(debug)

 {

 String question= d.get("question");

 //String answer = d.get("answer");

 String domain = d.get("domain");

 System.out.println("-----------------FAQ_ID="+faq_id+"

Domain="+domain+" Score="+score+"--------------------------");

 System.out.println("Question="+question);

 //System.out.println("ANswer="+answer);

 }

`

44

 }

 return result;

 }

// public double getIDF(String query) throws ParseException, IOException

// {

//

// //IDF is calculated over the questions

// Query q = parser.parse(query);

// TopDocs hits = searcher.search(q,maxHits);

// ScoreDoc[] scoreDocs = hits.scoreDocs;

//

// double docFreq = scoreDocs.length;

//

// double IDF= 1+Math.log10(numDocs/(docFreq+1));

//

// if(debug)System.out.println("Query = "+query);

// if(debug)System.out.println("IDF ="+IDF);

//

// return IDF;

// }

 public double getIDF(String query) throws ParseException, IOException

 {

 IndexSearcher searcher;

 QueryParser parser;

 query = query.replace('?',' ').replace('$',' ').replace('<',' ').replace('>','

').replace('%',' ').replace('&', ' ').replace(';',' ').replace('-',' ').replace("'"," ").replace('[','

').replace('{',' ').replace(']',' ').replace('}',' ').replace('!',' ').replace('(', ' ').replace('.', ' ').replace(')', '

').replace(',', ' ').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 File indexDir = new File("D:\\Documents\\M tech\\IBM-SMS based FAQ

retrieval\\Lucene\\INDEX\\FAQIndex\\");

`

45

 Directory fsDir = FSDirectory.open(indexDir);

 //Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);

 Analyzer analyzer = new WhitespaceAnalyzer();

 IndexReader reader = IndexReader.open(fsDir);

 searcher = new IndexSearcher(reader);

 String defaultField = "question";

 parser = new QueryParser(Version.LUCENE_30,defaultField,analyzer);

 double numDocs = reader.numDocs();

 //IDF is calculated over the questions

 Query q = parser.parse("question:"+query);

 TopDocs hits = searcher.search(q,maxHits);

 ScoreDoc[] scoreDocs = hits.scoreDocs;

 double docFreq = scoreDocs.length;

 double IDF;

 if(docFreq==0)

 IDF=0;

 else

 IDF= Math.log10(numDocs/(docFreq+1));

 if(debug)System.out.println("***Query = "+query+"\tTotal

Docs="+numDocs+"\tMatching Docs="+docFreq+"\tIDF ="+IDF);

 return IDF;

`

46

 }

 public String getQuestionByFaqID(String faqID) throws IOException, ParseException

 {

 /** NOTE: the ANALYZER is CHANGED **/

 IndexSearcher searcher;

 QueryParser parser;

 File indexDir = new File("D:\\Documents\\M tech\\IBM-SMS based FAQ

retrieval\\Lucene\\INDEX\\FAQIndex\\");

 Directory fsDir = FSDirectory.open(indexDir);

 //Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_30);

 Analyzer analyzer = new WhitespaceAnalyzer();

 IndexReader reader = IndexReader.open(fsDir);

 searcher = new IndexSearcher(reader);

 String defaultField = "question";

 parser = new QueryParser(Version.LUCENE_30,defaultField,analyzer);

 /** END NOTE **/

 Query q = parser.parse("faq_id:"+faqID);

 TopDocs hits = searcher.search(q,maxHits);

 ScoreDoc[] scoreDocs = hits.scoreDocs;

 int docFreq = scoreDocs.length;

 if(debug)

 {

 System.out.println("Query = "+faqID);

`

47

 System.out.println("Found ="+docFreq);

 }

 ScoreDoc sd = scoreDocs[0]; //get first doc as there is only one matching

question;

 int docId = sd.doc;

 Document d = searcher.doc(docId);

 String question = d.get("question");

 return question;

 }

 public static void main(String[] args)

 {

 System.out.println(""test"".replace(""", ""));

 try {

 FAQ_Search a = new FAQ_Search("D:\\Documents\\M tech\\IBM-SMS

based FAQ retrieval\\Lucene\\INDEX\\FAQIndex\\");

 a.getIDF("terminator");

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

`

48

smsparser.java

package parsing;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.Attributes;

import org.xml.sax.InputSource;

import org.xml.sax.SAXException;

import org.xml.sax.helpers.DefaultHandler;

import org.xml.sax.XMLReader;

import smsProcessing.faqRetrieval;

import java.util.StringTokenizer;

public class smsparser extends DefaultHandler{

 static String queryid;

 static String text;

 static String matchenglish;

 static int score;

 static int sum=0;

 static int totalSMScount=0;

 boolean queryFlag = false;

 boolean textFlag = false;

 boolean matchenglishFlag = false;

 boolean test = false;

`

49

 /* The main class smsparser. This class parses an XML file consisting of all the sms.

 * The sms queryid , the text and the resulting answers are extracted. Then the queryid and text

 * are sent to the naive algorithm. The resulting answers are matched with the expected

answers

 * and the score is calculated.

 */

 public smsparser(){

 System.out.println(" Object Created ");

 }

/*

 * This event marks the start of the XML document

 */

 public void startDocument() throws SAXException {

 System.out.println("SMS XML BEGINS HERE ");

 }

 /*

 * This event marks the start of an element in the XML document,

 * we match out required elements here

 */

 public void startElement(String uri, String localName,

 String qName, Attributes attributes)

 throws SAXException {

`

50

 if (qName.equalsIgnoreCase("SMS_QUERY_ID")) {

 queryFlag = true;

 }

 if (qName.equalsIgnoreCase("SMS_TEXT")) {

 textFlag = true;

 }

 if (qName.equalsIgnoreCase("ENGLISH")) {

 matchenglishFlag = true;

 }

 }

 /*

 * This marks the end of element in the XML document.

 */

 public void endElement(String uri, String localName,

 String qName)

 throws SAXException {

 // Here we check wether the SMS element has ended or not.

 if(qName == "SMS"){

 //We are here checking for the start of

`

51

 test=queryid.startsWith("ENG");

 if(test == true){

 String result = "";

 //Here we are calling the naive algorithm

 try {

 result = faqRetrieval.getMatchingQuestion(text);

 } catch (Exception e){}

 //result=dummy(queryid,text);

 //The compute score algorithm is called here

 score=computescore(result,matchenglish);

 totalSMScount++;

 System.out.println("\n"+queryid+" "+text+"\tScore is "+score);

 }

 }

 }

 //For each required element, the string is stored here

 public void characters(char ch[], int start, int length)

`

52

 throws SAXException {

 if (queryFlag) {

 queryid=new String(ch, start, length);

 queryFlag = false;

 }

 if (textFlag) {

 text=new String(ch, start, length);

 textFlag = false;

 }

 if (matchenglishFlag) {

 matchenglish=new String(ch, start, length);

 matchenglishFlag = false;

 }

 }

 /* The compute score algorithm. Here we match the returned result with the

 * stored answers. For exact matches a 1 is returned otherwise a 0 is returned.

 */

 int computescore(String result, String matchenglish){

 boolean check;

 int a,b,i,n;

 String x,y;

`

53

 if(result==null)

 return 0;

 StringTokenizer st = new StringTokenizer(result,",");

 StringTokenizer st1 = new StringTokenizer(matchenglish,",");

 a = st.countTokens();

 b = st1.countTokens();

 if(a!=b){

 sum=sum+0;

 return(0);

 }

 for(i=0;i<a;i++){

 x=st.nextToken();

 y=st1.nextToken();

 x=x.trim();

 y=y.trim();

 if(!x.equals(y)){

 sum=sum+0;

 return(0);

 }

 }

`

54

 System.out.println("Match");

 System.out.println(result);

 System.out.println(matchenglish);

 System.out.println();

 sum=sum+1;

 return(1);

 }

/*

 * Marks the end of the document. Here we print the final sum of scores.

 */

 public void endDocument(){

 System.out.println("Total SMS queires "+ totalSMScount);

 System.out.println(" The Final score is "+ sum);

 }

 public static void main(String args[]){

 smsparser f1= new smsparser();

 XMLReader xmlReader = null;

 try {

 SAXParserFactory spfactory = SAXParserFactory.newInstance();

`

55

 spfactory.setValidating(false);

 SAXParser saxParser = spfactory.newSAXParser();

 xmlReader = saxParser.getXMLReader();

 xmlReader.setContentHandler(new smsparser());

 xmlReader.setErrorHandler(new smsparser());

 // InputSource source = new InputSource("D:\\Documents\\M tech\\IBM-SMS based

FAQ

retrieval\\FIRE_PREVIEW_DATA_ok\\FIRE_TRAINING_DATA\\FIRE_TRAINING_DATA\\

SMS_Queries\\Monolingual Task\\English\\eng-mono.xml");

 //InputSource source = new InputSource("D:\\Documents\\M tech\\IBM-SMS based

FAQ retrieval\\Sample SMS queries\\SMS Queries\\agricultureSMS.xml");

 InputSource source = new InputSource("D:\\Documents\\M tech\\IBM-SMS based

FAQ

retrieval\\FIRE_PREVIEW_DATA_ok\\FIRE_TRAINING_DATA\\FIRE_TRAINING_DATA\\

SMS_Queries\\training.xml");

 xmlReader.parse(source);

 } catch (Exception e) {

 System.err.println(e);

 System.exit(1);

 }

 }

}

`

56

candidateset.java

package smsProcessing;

import java.io.IOException;

import java.util.StringTokenizer;

import org.apache.lucene.index.CorruptIndexException;

import org.apache.lucene.queryParser.ParseException;

import org.apache.lucene.store.LockObtainFailedException;

import similarity.similarity;

import faqIndexing.DictionarySearchResult;

import faqIndexing.FAQ_Search;

import faqIndexing.QuestionSearchResult;

public class CandidateSet {

 private static final double SCORE_THRESHOLD = 46;

 private static final double SIMILARITY_THRESHOLD = 0.16;

 String[] faq_id;

 double[] score;

 String[] smsTokens;

 int totalSmsTokens;

 int count;

 static int MAXQUESTIONS = 5000;

 FAQ_Search srch;

 //Constructor to initialize strings

`

57

 public CandidateSet(String smsText) throws CorruptIndexException,

LockObtainFailedException, IOException

 {

 faq_id=new String[MAXQUESTIONS];

 count=0;

 srch=new FAQ_Search("D:\\Documents\\M tech\\IBM-SMS based FAQ

retrieval\\Lucene\\INDEX\\FAQIndex\\");

 //separate out question tokens

 StringTokenizer que_tok = new StringTokenizer(smsText," ");

 totalSmsTokens=que_tok.countTokens();

 smsTokens=new String[totalSmsTokens];

 for(int i=0;i<totalSmsTokens;i++)

 {

 smsTokens[i]=que_tok.nextToken();

 }

 }

 void addCandidate(String que_id)

 {

 if(count>=MAXQUESTIONS)

 {

 System.err.println("Candidate set exceeds maximum number of

questiosn");

 return;

 }

 //check if que is repeated

`

58

 for(int i=0;i<count;i++)

 {

 if(faq_id[i].equals(que_id))

 return;

 }

 faq_id[count]=que_id;

 count++;

 }

 public void generateCandidateSet(DictionarySearchResult LIST) throws

CorruptIndexException, LockObtainFailedException, IOException, ParseException

 {

 //for dictionary lookup

 QuestionSearchResult srchResult;

 //for each term in question - find out the corresponding question

 for(int i=0;i<LIST.getCount();i++)

 {

 srchResult=srch.searchQuestionAnswer(LIST.getTermAt(i));

 // add all search results to the Candidate set

 for(int j=0;j<srchResult.getCount();j++)

 {

 addCandidate(srchResult.getFaqIdAt(j));

 }

 }

 }

 double calculateScore(String faqID) throws IOException, ParseException

 {

 String faq=srch.getQuestionByFaqID(faqID);

`

59

 StringTokenizer faq_tok = new StringTokenizer(faq," ");

 int totalFaqTokens=faq_tok.countTokens();

 String[] faq_tokens=new String[totalFaqTokens];

 //copy the FAQ tokens

 for(int i=0;i<totalFaqTokens;i++)

 {

 faq_tokens[i]=faq_tok.nextToken().replace('(', ' ').replace('!',' ').replace('.', '

').replace(')', ' ').replace(',', ' ').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ');

 }

 double score=0;

 String smsToken;

 String faqToken;

 //1.For each sms token

 for(int i=0;i<totalSmsTokens;i++)

 {

 smsToken = smsTokens[i];

 smsToken = smsToken.replace('(', ' ').replace('.', ' ').replace(')', '

').replace(',', ' ').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 if(faqID.equals("ENG_AGRICULTURE_83")||faqID.equals("ENG_AGRICULTURE_7

6")||faqID.equals("ENG_AGRICULTURE_78"))

 System.out.println("---------------------------------SMS

token:"+smsToken+"----------------------------------");

 double maxWeight=0;

`

60

 double weight = 0;

 //2. compare it with each Term present in the question.

 // get the maximum weight of the term and smsToken

 for(int j=0;j<totalFaqTokens;j++)

 {

 faqToken=faq_tokens[j];

 faqToken = faqToken.replace('(', ' ').replace('.', ' ').replace(')', '

').replace(',', ' ').replace('/', ' ').replace('#', ' ').replace(':', ' ').replace('"', ' ').trim().toLowerCase();

 double alpha=similarity.similarityMeasure(faqToken,smsToken);

 double IDF = 0;

 if(alpha>SIMILARITY_THRESHOLD)

 {

 //TODO - change this formula

 IDF=srch.getIDF(faqToken);

 weight=alpha*IDF;

 //weight=alpha;

 if(weight>maxWeight)

 maxWeight=weight;

 }

 if(faqID.equals("ENG_AGRICULTURE_83")||faqID.equals("ENG_AGRICULTURE_7

6")||faqID.equals("ENG_AGRICULTURE_78"))

 System.out.println("#FAQ ID:"+faqID+"

Token:"+faqToken+" Alpha="+alpha+" IDF="+IDF+" weight="+weight+"

maxWeight="+maxWeight);

`

61

 }

 score=score+maxWeight;

 }

 //convert the score into scale of 100 .

 // 3 is assumed as 100%

 double NormalizedScore = score*33.33 / totalSmsTokens;

 return NormalizedScore;

 }

 void sortByScore()

 {

 double tempScore;

 String tempFaqID;

 for(int i=0;i<count;i++)

 for(int j=i+1;j<count;j++)

 {

 if(score[i]<score[j])

 {

 tempScore=score[i];

 score[i]=score[j];

 score[j]=tempScore;

 tempFaqID=faq_id[i];

 faq_id[i]=faq_id[j];

 faq_id[j]=tempFaqID;

 }

 }

 }

 public void printCandidateSet()

 {

`

62

 System.out.println("Candidate set of questions ="+count);

 for(int i=0;i<count;i++)

 {

 if(i%5==0)

 System.out.println();

 System.out.print("\t"+faq_id[i]);

 }

 }

 String NaiveAlgorithm() throws IOException, ParseException

 {

 //initialize score variable

 score=new double[count];

 //calculate score of all candidate questions

 for(int i=0;i<count;i++)

 {

 score[i]=this.calculateScore(faq_id[i]);

 }

 //sort the questions

 this.sortByScore();

 String result=null;

 boolean start=false;

 if(count>0)

 result=faq_id[0];

// for(int i=0;i<count;i++)

`

63

// {

// if(score[i]>SCORE_THRESHOLD){

// if(start)

// {

// result = result + ","+ faq_id[i];

// }

// else

// {

// result= faq_id[i];

// start=true;

// }

// }

// }

 //show the matching questions

 this.showMatchingQuestions();

 return result;

 }

 private void showMatchingQuestions() throws IOException, ParseException

 {

 System.out.println();

 System.out.println("--

-------------------");

 int top=10;

 if(count<10)

 top=count;

`

64

 for(int i=0;i<top;i++)

 {

 System.out.println(i+"."+faq_id[i]+" "+score[i]+"%

"+srch.getQuestionByFaqID(faq_id[i]));

 }

 }

}

`

65

faqretrieval.java

package smsProcessing;

import java.io.IOException;

import org.apache.lucene.index.CorruptIndexException;

import org.apache.lucene.queryParser.ParseException;

import org.apache.lucene.store.LockObtainFailedException;

import faqIndexing.FAQ_Search;

public class faqRetrieval

{

 static boolean debug=false;

 public static String getMatchingQuestion(String sms) throws CorruptIndexException,

LockObtainFailedException, IOException, ParseException

 {

 System.out.println("SMS Query:"+sms);

 //for dictionary lookup

 FAQ_Search srch=new FAQ_Search("D:\\Documents\\M tech\\IBM-SMS based

FAQ retrieval\\Lucene\\INDEX\\DomainIndex\\");

 String question = null;

 //remove single characters

 String smsText=listcreation.removeSingleLetters(sms);

 if(debug)

 System.out.println("Single Char removed :"+smsText);

 //replace number by string

 smsText = listcreation.replaceNumByWord(smsText.toLowerCase());

 if(debug)

`

66

 System.out.println("Number Replacement :"+smsText);

 //create list of tokens

 question=listcreation.createList(smsText,srch);

 //retrieve matching questions

 return question;

 }

 public static void main(String[] args)

 {

 try {

 //getMatchingQuestion("How do I reduce financial risk to my farm from

natural disasters like floods or drought");

 //getMatchingQuestion("What topics will I Study for online agriculture

programs");

 //getMatchingQuestion("wts composing");

 getMatchingQuestion("are the carier conselling sessionss confidensial");

 //getMatchingQuestion("What products will no longer be provided when

the agriculture weather service program is eliminated");

 //getMatchingQuestion("if due dat is gon whr to submit form");

 //getMatchingQuestion("whr can i find info abt pesticide estb reg and

rep");

 //getMatchingQuestion("can you gimme info abt bulk repakaging

pesticides");

 } catch (Exception e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

 }

 }

}

`

67

APPENDIX B: LEVENSHTEIN DISTANCE

The Levenshtein distance between two strings is defined as the minimum number of edits

needed to transform one string into the other, with the allowable edit operations being

insertion, deletion, or substitution of a single character. For example, the Levenshtein distance

between "kitten" and "sitting" is 3, since the following three edits change one into the other,

and there is no way to do it with fewer than three edits:

1. kitten → sitten (substitution of 's' for 'k')

2. sitten → sittin (substitution of 'i' for 'e')

3. sittin → sitting (insertion of 'g' at the end).

APPLICATIONS

In approximate string matching, the objective is to find matches for short strings, for instance,

strings from a dictionary, in many longer texts, in situations where a small number of

differences is to be expected. Here, one of the strings is typically short, while the other is

arbitrarily long. This has a wide range of applications; for instance, spell checkers, correction

systems for optical character recognition, and software to assist natural language translation

based on translation memory.

The Levenshtein distance can also be computed between two longer strings, but the cost to

compute it, which is roughly proportional to the product of the two string lengths, makes this

impractical. Thus, when used to aid in fuzzy string searching in applications such as record

linkage, the compared strings are usually short to help improve speed of comparisons.

Levenshtein distance is not the only popular notion of edit distance. Variations can be obtained

by changing the set of allowable edit operations: for instance,

 Length of the longest common subsequence is the metric obtained by allowing

only addition and deletion, not substitution;

`

68

 The Damerau–Levenshtein distance allows addition, deletion, substitution, and

the transposition of two adjacent characters;

 The Hamming distance only allows substitution (and hence, only applies to

strings of the same length).

Edit distance in general is usually defined as a parametrizable metric in which a repertoire of

edit operations is available, and each operation is assigned a cost (possibly infinite). This is

further generalized by DNA sequence alignment algorithms such as the Smith–Waterman

algorithm, which make an operation's cost depend on where it is applied.

COMPUTING LEVENSHTEIN DISTANCE

Computing the Levenshtein distance is based on the observation that if we reserve a matrix to

hold the Levenshtein distances between all prefixes of the first string and all prefixes of the

second, then we can compute the values in the matrix by flood filling the matrix, and thus find

the distance between the two full strings as the last value computed. A straightforward

implementation, as pseudo code for a

function LevenshteinDistance that takes two strings, s of length m, and t of length n, and

returns the Levenshtein distance between them:

`

69

 intLevenshteinDistance(char s[1..m], char t[1..n]) {

// for all i and j, d[i,j] will hold the Levenshtein distance between

// the first i characters of s and the first j characters of t;

// note that d has (m+1)x(n+1) values

 declareint d[0..m, 0..n]

 for i from 0 to m d[i, 0] := i // the distance of any first string to an empty second string

 for j from 0 to n d[0, j] := j // the distance of any second string to an empty first string

 for j from 1 to n

{

 for i from 1 to m

{

 if s[i] = t[j]

then d[i, j] := d[i-1, j-1] // no operation required

 else

 d[i, j] := minimum

 (

 d[i-1, j] + 1, // a deletion

d[i, j-1] + 1, // an insertion

d[i-1, j-1] + 1 // a substitution

)

 }

 }

 return d[m,n]

`

70

}

