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Abstract 
 
 
 
 
 

The most fundamental problem of wireless sensor networks is localization (finding the 

geographical location of the sensors). Most of the localization algorithms proposed for 

sensor networks are based on Sequential Monte Carlo (SMC) method. To achieve high 

accuracy in localization it requires high seed node density and it also suffers from low 

sampling efficiency. There are some papers which solve this problems but they are not 

energy efficient. Another approach the Bounding Box method was used to reduce the 

scope of searching the candidate samples and thus reduces the time for finding the set 

of valid samples. In this thesis we propose an energy efficient approach which will 

further reduce the scope of searching the candidate samples, so now we can remove 

the invalid samples from the sample space and we can introduce more valid samples to 

improve the localization accuracy. We will consider the direction of movement of the 

valid samples, so that we can predict the next position of the samples more accurately, 

hence we can achieve high localization accuracy. Further we can also add the 

information about the speed of movement of the node so that we can measure the 

actual acceleration of the node.  

 

 Now as we have information about the direction and speed of movement of the 

node we can locate a sensor node more accurately and faster.  
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Chapter: 1 
Introduction 

 
 
 
 
 

1.1 Objective 
 
 
 
 
 

The objective of this thesis is to design a new localization algorithm that can work 

effectively and accurately to locate the position of the sensor node. Our algorithm 

can provide an efficient range free solution for the localization problem of the sensor 

node. 

 

The fundamental problem in designing sensor network is localization- determining 

the location of sensors. Traditional methods for obtaining the node’s location 

information include attaching a GPS receiver in each node or manually configure 

each node’s position. As the scale of sensor networks becomes larger and larger, 

these methods are becoming unfeasible for their high cost and inconvenience. Many 

localization algorithms for sensor networks have been proposed in 

[8],[7],[12],[15],[16],[13],[14],[17],[10],[11],[18],[9]. These algorithms use some special 

nodes, called anchor or seed nodes, which know their positions to facilitate the 

determination of the positions of the other nodes (called common nodes). However, 

these algorithms are designed for static sensor networks and are not applicable to 

mobile sensor networks. Most of these algorithms also require special costly 

hardware as they depend upon measuring ranging information from signal strength, 

time of arrival, time difference of arrival or angle of arrival. Adding the required 

hardware increases the cost and size of the nodes. 
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We are interested in performing localization in a more general network environment 

where the prior deployment of the seed node is unknown, node distribution is 

irregular, the seed density is low and where seeds and nodes can move 

uncontrollably. Although mobility makes other localization techniques increasingly less 

accurate, our technique takes advantage of mobility to improve accuracy and reduce 

the number of seeds required. 

 

We consider a sensor network composed of seeds that know their locations and 

nodes with unknown locations. We are interested in following three scenarios: 

 

1) Nodes are static, seeds are moving: For example, a military application where 

nodes are dropped from plane onto land and transmitters attached to soldiers in 

the area are used as moving seeds. Each node receives information from seeds 

and estimates its location more accurately. 

 

2) Nodes are moving, seeds are static: For example, nodes are moving along the 

river and seeds are placed at fixed locations on the river banks. In this scenario 

the nodes location will change as the time passes, old location will become 

inaccurate since the node has moved. So the seed information is required to 

revise the location estimate. 

 

3) Both nodes and seeds are moving: This scenario is most general in nature. It is 

applicable to any application where the nodes and seeds are deployed in an ad 

hoc way.  

 

Some localization algorithms specially designed for mobile sensor networks have 

also been proposed [1],[19],[2],[20],[4]. They all use the Sequential Monte Carlo 

(SMC) method. In mobile sensor networks the SMC methods are preferred as they 

are easy to implement and can exploit nodes mobility to improve localization 

accuracy. But, the SMC methods need to keep sampling and filtering until obtaining 

enough valid samples. This is very time consuming and not suitable where nodes 

have limited computation capability.  
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1.2 Problem Statement 
 
 
 
 
 

The objective of this research work is to provide an energy efficient range-free 

localization algorithm which can achieve high localization accuracy in various scenarios. 

So that, this algorithm can be used in place of expensive GPS (Global Positioning 

System) 

 
 
 
 

The  desired  algorithm  must  be  generic  and  can  be  customized  for  any  

application. It must also be adaptable with the changing needs and requirements of 

the application. 

 
 
 
 

1.3 Motivating Factor 
 
 
 
 
 

Wireless Sensor Networks (WSNs) are composed of large number of sensors that are 

equipped with a processor, wireless communication capabilities, sensor capabilities, 

memory and a power source (Battery). WSNs have been used in many fields including 

environmental monitoring and habitat monitoring, precision agriculture, animal tracking 

and disaster rescue. In many applications, it is essential for nodes to know their 

position. In the most existing sensor networks, sensors are static but some modern 

applications have sensors that are mobile. For example, in habitat monitoring 

applications like Zebra Net [5] sensors are attached to zebras and collect information 

about their behavior and migration patterns [6]. In other applications sensors are 

deployed on cellular phones to measure reception quality [6]. 
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The localization problem is even more important in wireless sensor networks for the 

following reasons: 

1. Many WSN protocols and applications simply assume that all nodes in the system are 

location-aware. 

2. If a sensor is reporting a critical event or data, we must know the location of that 

sensor. 

3. If a WSN is using a geographical routing technique, all of the nodes must be aware of 

their location. 

 

Traditional methods for obtaining the node’s location information include attaching a GPS 

receiver in each node or manually configure each node’s position. As the scale of sensor 

networks becomes larger and larger, these methods are becoming unfeasible for their 

high cost and inconvenience. Many localization algorithms for sensor networks have 

been proposed [8],[7],[12],[15],[16],[13],[14],[17],[10],[11],[18],[9]. These algorithms use 

some special nodes, called anchor or seed nodes, which know their positions to facilitate 

the determination of the positions of the other nodes (called common nodes). However 

these algorithms are designed for static sensor networks and are not applicable to mobile 

sensor networks. 

 
 

Some localization algorithms specially designed for mobile sensor networks have also 

been proposed [1],[19],[2],[20],[4]. They all use the Sequential Monte Carlo (SMC) 

method. In mobile sensor networks the SMC methods are preferred as they are easy to 

implement and can exploit nodes mobility to improve localization accuracy. But, the SMC 

methods need to keep sampling and filtering until obtaining enough valid samples. This is 

very time consuming and not suitable where nodes have limited computation capability. 

 
 
In this thesis we will consider all above challenging aspects of localization problem, and 

we will propose a localization algorithm which will outperform the existing algorithms in 

terms of localization accuracy. 
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1.4 Organization of the Dissertation 
 
 
 
This thesis work is organized as follows 

 

 

Chapter  1  deals  with  providing  the  objective,  problem  statement,  motivation  of 

undertaking this research work as well as organization of this dissertation. 

 
 
 
 

Chapter 2 deals with the concept of Wireless Sensor Networks. It also provides the 

basic knowledge of various challenges associated with Wireless Sensor 

Networks. The localization problem is also explained to  helps us in better 

understanding of needs and requirement of an accurate localization algorithm. 

 
 
 
 

Chapter 3 provides introduction to the network model and basic overview of the 

localization strategies, which are basis for our approach. It also provides knowledge 

about various steps involved in localization algorithm. 

 
 
 
 

Chapter 4 begins with description of our research work. It describes the basic design of 

our approach. We have explained various steps involved in our approach in detail with 

an example. 

 
 

 

Chapter 5 gives the basic overview of the simulation parameters used in our 

experiment. It also explains the outcomes of the experiments with the help of graphs for 

different iterations. We have calculated average localization error and standard 

deviation for each iteration. In the end all the iterations are compared with the help of a 

graph. 
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Chapter 6 gives the final findings and outcomes of the research. It lists the problems 

that we have solved and those that still remain to be tackled. It also lays the ground 

to the future work in this direction. 
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Chapter: 2 
 

 
 

Literature Review 
 
 
 
 
 
 

2.1 Wireless Sensor Network 
 

A WSN is typically formed by deploying many sensor nodes in an ad hoc manner. 

These nodes sense physical characteristics of the world. The sensors could be 

measuring a variety of properties, including temperature, acoustics, light, and pollution. 

Base stations are responsible for sending queries to and collecting data from the sensor 

nodes. 

 

Some of the main characteristics of a networked sensor include:  

 

(1) Small physical size,  

(2) Low power consumption,  

(3) Limited processing power, 

(4) Short-range communications, and  

(5) A small amount of storage. 

 

Individually, these resource-constrained devices appear to be of little value. Deploying 

these sensors in large scale across an area of interest, however, is when they can be 

most effective. Placing sensors in hostile or inaccessible regions may allow for data 

collection which was previously impossible. Spatial and temporal processing as well as 

dense monitoring is now feasible. The sensors must be able to form an ad hoc network, 

and use collaborative techniques to monitor environment and respond to users 

whenever required. 
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Wireless sensor networks provide the means to link the physical world to the digital 

world. The mass production of integrated, low-cost sensor nodes will allow the 

technology to cross over into a myriad of domains. In the future, applications of wireless 

sensor networks will appear in areas we never dreamed. Listed below are just a few 

places where sensor networks can and will be deployed. 

 

 Earthquake monitoring 

 Environmental monitoring 

 Factory automation 

 Home and office controls 

 Inventory monitoring 

 Medicine 

 Security 

 

 

2.2 WSN Challenges 

 

Although some applications have shown promise, the field of wireless sensor networks 

still provides many challenges to researchers: 

 

Data storage – Sensors are sampling the environment continuously. With the limited 

storage capacity of the networked sensors, volumes of data cannot be stored 

permanently. Data has to be compressed, filtered and aggregated with data from other 

nodes, and stale data must be purged. Should the data be stored in the network or 

should it be routed offline to a central server? 

 

Energy efficiency – Some form of battery typically powers networked sensors. When 

large networks of sensors are deployed, they are expected to run unattended for long 

periods of time. Writing energy-efficient algorithms that conserve the battery could extend 

the lifetime of an application by months. Energy conservation techniques are to be 

designed at all of the networking layers, from the physical layer to the application layer, 

and for various applications. 
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Fault tolerance – In early generations of networked sensors, there are high malfunction 

and failure rates. In most sensor applications, it is not feasible for a human to physically 

traverse a region to repair and replace nodes. A significant percentage of sensor nodes 

may fail when deployed in hostile environments. Therefore, techniques must be provided 

by the system, so that the application continues running without interruption when nodes 

become faulty or die. 

 

Localization – Using wireless sensor networks to locate or track things is an application 

that is attracting much attention lately. There are many sensor network protocols and 

applications that assume every node knows its location. How is this possible? If every 

node were equipped with a GPS component, both the financial and energy cost of a large 

sensor network would become exorbitant. If a small fraction of the nodes are aware of 

their location, is it possible for the remaining nodes to discover their location? 

 

Scalability – The applications that are envisioned for sensor networks in the near future 

will use thousands of sensors. How do you get thousands of nodes to self-organize and 

work together? Centralized algorithms must sometimes give way to distributed 

algorithms, when applications are being considered for networks of this scale. The 

deployment and management of thousands of tiny devices are issues that must be 

addressed. 

 

Security – Any network application that uses a wireless medium inherently assumes a 

security risk. Eavesdropping to obtain information and jamming to deny service are a 

couple of ways that a sensor network system may be attacked. What can be done to 

make sure a wireless sensor network provides important features such as availability, 

reliability, freshness, and privacy? 
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2.3 Localization Problem 
 

‘The procedure through which the nodes obtain their positions is called localization’ 

In many applications of wireless sensor networks, precise location information of sensor 

nodes is critical to the success of the applications. Most data collected from sensors are 

only meaningful when they are coupled with the location information of the 

corresponding sensors. Consider an application of habitat monitoring; thousands of 

sensors are dropped in the targeted region of a tropical rain-forest by an aeroplane. 

Nodes are equipped with sensing devices to monitor the changes of temperature and 

humidity of the environment. To make every measurement useful to scientists, the 

location where measurements are taken has to be known. 

 

Localization in wireless sensor networks is to determine the geographical positions of 

sensors in a wireless sensor network. 

 

The most trivial solution is manual configuration. The location of each sensor is 

predetermined before deployment. Sensors are installed to the assigned locations by 

human. Obviously, this solution is inscalable as much labour is required for the 

installation. Furthermore, it is sometimes infeasible to have manual configuration as the 

location information of sensors is unknown before actual deployment. Recalled the 

previous example of habitat monitoring, sensors are dropped from an aeroplane, in 

which exact locations are only known when sensors land on the forest. 

 

Another solution for localization is equipping every sensor with a GPS receiver. Sensors 

can locate themselves individually using the GPS signals. However, installing a GPS 

receiver for every sensor node greatly increases the total cost of the sensor network. In 

addition, the introduction of GPS receiver increases the energy consumption of a node 

and hence shortens its life time. Lastly, the location obtained from GPS-receiver may not 

be precise enough for certain applications and the accuracy of GPS is affected by 

various environmental factors. Accuracy can be of tenths of meters for general GPS. 

The error can be lowered to less than ten meters for GPS augmentation systems like 

Differential GPS (DGPS) but with a higher cost. 
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Realizing the challenges for network localization, this dissertation aims to study the 

localization problem in sensor networks. We try to study the practical problem to find the 

tradeoff between the accuracy and energy cost for achieving excellent localization accuracy in 

sensor networks. 
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Chapter: 3 
 

 
 

Research Background 
 

 
 
 
 

  

 

3.1 Network Model 
 
 
 
 

      We have two kinds of nodes, one is seed node who knows their exact position at any 

time and second is common nodes who needs to determine their position in each time 

unit. Both the seed node and common node only have limited knowledge of their 

mobility. We assume that a node is unaware of its moving speed and direction, other 

than knowing its maximum speed is vmax. Which means in each time unit a node can 

move in any direction with speed v where 0 < v ≤ vmax , but the exact value of v is 

unknown. 

 

     Initially nodes are deployed randomly over the network area. Two nodes can 

communicate with each other only if they are within the communication range defined by 

the radius r. The 1-hop neighbors of sensor p are those sensors that can communicate 

with it directly i.e. the sensors which are present within radius r. The 2-hop neighbors of 

sensor p are those who can communicate with the 1-hop neighbors of p directly but not 

with p. Let suppose a node q is there which can directly communicate with node p, If q is 

a seed node then we can say that q is p’s 1-hop seed node and if q is a common node 

then we can say that q is p’s 1-hop common node. Similarly if there is another node r 

which cannot communicate with p but can communicate with q directly, then we say r is 

2-hop neighbor of p.  
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3.2 Sequential Monte Carlo Localization 
 
 
     The Sequential Monte Carlo (SMC) method [21] provides simulation based solutions 

to estimate the posterior distribution of non-linear discrete time dynamic models. The 

posterior distribution is represented using a set of weighted samples, and the samples 

are updated gradually as the time goes. In each time unit samples are updated using the 

previous samples and this updated samples are then validated using the observed seed 

nodes in current time unit. 

 

     The Sequential Monte Carlo Localization (SMCL) algorithm [1], is the first algorithm 

using SMC methods for localization in mobile sensor networks.  

 

 

Location Estimation Algorithm [1]: 

 

Initialization: Initially the node has no knowledge of its location. N is the constant that 

denotes the number of samples to maintain 

 

LO = {set of N  random locations in the deployment area} 

 

Steps: Compute a new possible location set Lt based on Lt-1 the possible location set 

from the previous time step, and the new observations, ot 

 

Lt = {  } 

while (size(Lt) < N) do 

R = {lt
i | lt

i is selected from p(lt|l
i
t-1), l

i
t-1 ∈  Lt-1 for all 1≤ i ≤N}     Prediction  

Rfiltered = { lit | l
i
t where lit ∈  R and p(ot|l

i
t) > 0}                          Filtering  

Lt = choose (Lt ∪ Rfiltered , N) 
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The mobile localization problem can be stated in a state space form as follows. Let t be 

the discrete time, lt denote the position distribution of the node at time t, and ot denote 

the observations from seed nodes received between time t-1 and time t. A transition 

equation p(lt | lt-1) describes the  prediction of node’s current position based on previous 

position, and an observation equation p(lt | ot) describes the likelihood of the node being 

at the location in the given observations. We are interested in estimating recursively in 

time the filtering distribution p(lt | o0, o1, …, ot). A set of N samples Lt is used to 

represent the distribution lt, and our algorithm recursively computes the set of samples 

at each time step. Since Lt-1 reflects all previous observations, we can compute lt using 

only Lt-1 and ot. 

 

Initially we assume the node has no knowledge about its position, so the initial samples 

are selected randomly from all possible locations. At each time step, the location set is 

updated based on possible movements and new observations. We estimate the location 

of the node by computing the average location of all possible locations in L t. we assume 

locations are (x, y) positions in two dimensional Cartesian space, but the technique 

could be used equivalently for three dimensions or other location representations. 

 

We can consider SMCL as a 3 step operation for each common node: 

 

Initialization: Node has no knowledge about its location in the deployment area. N 

initial samples are selected randomly to represent p’s possible positions.   

     

               L0 = {l0
1
,l0

2
, …….. ,l0

N
}  

 

  Here N is a constant which represents the number of minimum samples to maintain.   

 

Prediction: A node starts from the set of possible locations computed in previous step, 

Lt-1 and computes a set of n new samples, Lt using the transition equation. The 

Transition equation p(lt
i | lt-1

i) is determined by the mobility model or other constraints. It 

is assumed that the node has no information about its speed and direction, but it knows  
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its speed is less than vmax. So if  lt-1
i  is one possible location of a node in previous step, 

then the possible current positions are contained in the circular region with origin lt-1
i  

and radius vmax. The Transition equation p(lt
i | lt-1

i) is determined by the mobility model or 

other constraints. 

In SMCL[1] the Transition equation is given by: 

 

P (lt | lt-1) = 1/πv2
max                    if d(lt , lt-1) < vmax 

                          0                       if d(lt , lt-1) ≥ vmax                             (1) 

 

            Where d(lt , lt-1) is the distance between two samples lt and lt-1. So the set of n 

new samples computed in prediction step contains one location selected randomly from 

the circle of radius vmax around every point in lt-1. The uncertainty about the node’s 

location is very high because of unknown motion of the node. In case where some 

information is known about the node’s motion like it is moving with some known speed 

or it is likely to move in a certain direction, then the probability distribution can be 

adjusted accordingly to make better predictions.  

 
 

 

Filtering: 

 In filtering, we remove the invalid locations on the basis of the new observations. 

Here we assume that the time is discrete and all messages are received instantly. 

Hence a location announcement by a seed will be heard by every node within the radio 

range of the seed. In a realistic environment, we have to deal with network collisions and 

account for missed messages. Weights of the new samples found in previous step are 

computed as p(lt
i|ot), where ot is the newly observed seed node in the current time unit. 

Samples with 0 weight are dropped and if the number of samples after filtering is less 

that N, then go to prediction step. 

 

There are four types of seeds to consider: 

a) Outsiders: The seeds that were not heard in either the current or the previous 

time quanta. 
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Fig.3.1. Seed Movement 

 

b) Arrivers: The seeds that were not heard in previous time quanta but heard in the 

current one. 

c) Leavers: The seeds that were not heard in current time quanta but heard in 

previous one. 

d) Insiders: The seeds that were heard in both time quanta.  

 

In fig 3.1 the seed moves from l0 at time 0 to position l1 on time 1. The seed is an 

arriver for nodes in region II, an insider for nodes in region III, an outsider for all other 

nodes, and a leaver for nodes in region I. Arrivers and Leavers provide the most 

useful information that the node was within distance r of l0 at time t0, but not within 

distance r of l1 at time t1. 

       

Let S denotes the set of all 1-hop seed neighbors of N  and T denotes set of all 2-hop 

seed neighbors of N, then the filtering condition of lt is:  

 

filter(lt) = sS,d(l, s)rsT,rd(l,s)2r                                          (2) 
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The probability distribution is zero, if the filter condition is false and evenly distributed 

otherwise. Thus, we eliminate the inconsistent locations from possible locations. After 

filtering, if the possible locations are less than N then prediction and filtering process 

repeats till we obtain N valid samples. After obtaining N valid samples, p calculates its 

position as the weighted average of all the samples.  
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3.3 Monte Carlo Localization Boxed 
 

 
 
Despite being quite accurate, especially in low-anchor configurations, MCL’s efficiency 

can be improved. Drawing samples is a long and tedious process that could easily drain 

a lot of energy from a sensor node. Furthermore, the way MCL makes use of anchor 

information leaves room for improvement. This version of the Sequential Monte Carlo 

Localization called Monte Carlo Localization Boxed (MCB) uses steps similar to those of 

MCL. The major differences lie in the way we use anchor information and the method 

we use for drawing new samples. 

 

 

The Monte Carlo Localization Boxed(MCB)[2] is another version of Sequential Monte 

Carlo Localization(SMCL). The steps in MCB are similar to those in MCL with difference 

in the use of seed information and in method for drawing new samples. The MCL 

algorithm uses 1-hop and 2-hop neighbor information for rejection of impossible samples 

in filtering step only. In MCB the seed information is used to constrain the sample area, 

so this method is easy and fast as compared to MCL as the samples are less likely to be 

filtered in the filtering step. Thus it reduces the number of iterations the algorithm needs 

to fill the sample set entirely. 

 

 

In SMCL we have two areas, Candidate sample area and Valid sample area (fig 3.2). 

The Candidate sample area is used to draw new candidate samples into the deployment 

area whereas the Valid sample area is used to filter out the invalid candidate samples 

drawn in the prediction step. If the Candidate sample area is large and the Valid sample 

area is small, the candidate samples drawn in prediction phase have high probability to 

be filtered out in the filtering phase.  Now from the transition equation (1) and filtering 

condition (2) we know that the candidate samples area will be large when vmax is large 

and the valid samples area will be small when sd is large. So SMCL will be very time-

consuming when vmax and sd is large. 
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Fig.3.2 How SMCL[1] works 

 

 

To overcome above problem, we can use a Bounding Box Method [2] to reduce the 

candidate sample area. The main idea of this method is to constrain samples into much 

smaller area. The perfect solution is to draw candidate samples from the valid samples 

area only. However, the valid sample area is very hard to obtain but we can construct an 

approximation of that area using bounding box. 

 

   

Building the Bounding Box: The bounding box is the region of the deployment area 

where the node is localized. A node that has seed nodes as its 1-hop or 2-hop 

neighbors, builds a bounding box that covers the region where the neighboring seeds 

radio range overlaps. We can also call the bounding box as the region of the 

deployment area where the node is localized.  
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Fig.3.3. MCB[2] shaded region is the valid sample area. 
 

 
      The bounding box reduces the candidate samples area. It constraints candidate 

samples into much smaller area called as valid sample area, and the valid samples are 

drawn in this valid sample area only. Fig 3.3 shows an example of a bounding box, 

where three one-hop sees were heard. A node builds a square of size 2r centered at the 

seed position for each one-hop anchor heard and r being the radio range.  Building the 

bounding box simply consists of calculating coordinates (xmin, xmax) and (ymin , ymax) as 

follows: 

  

xmin  = maxn
i =1 {xi - r} , 

xmax = minn
i =1 {xi + r}, 

ymin  = maxn
i =1 {yi - r} , 

          ymax =  minn
i = 1 {yi + r}                                (3) 
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     where (xi , yi) is the coordinate of the ith 1-hop seed neighbor. 2-hop seed neighbor 

can be used to reduce the bounding-box further. When using 2-hop seed nodes, we 

should replace r with 2r in the above formula. 

 

 Once the bounding box is built a node simply has to draw samples within the region it 

covers. MCB tries to make best possible use of all information a node has received. 

Using this method, the probability for a candidate sample to be reserved in the final set 

increases very much, so the computation cost is reduced. During the initialization, if the 

sample set is empty then it allows a node to use 2-hop seed neighbor information even if 

it has no 1-hop seed. This means that a node that heard only 2-hop seed neighbor can 

still draw samples using these and produce a location estimate, which is not possible in 

case of SMCL. MCB can also obtain enough samples where SMCL is not able to obtain 

enough samples, thus achieves higher location accuracy than SMCL.  

 

 

 

 

Fig.3.4. Reducing size of Bounding Box 
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We can further reduce the size of bounding box as follows:  Suppose that a bounding 

box (xmin, xmax, ymin, ymax) has been built as above. We can reduce the size of bounding 

box by using two-hop beacon’s negative effect (Fig.3.4.). Assuming q is p’s two-hop 

beacon neighbor, then the shadowed region doesn’t contain p otherwise q  will be p’s 

one-hop neighbor. So we can eliminate the shadowed region without any loss of valid 

samples.  
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Chapter: 4 
 

 
 

Proposed Approach 
 

 
 
 
 
 
 
 
 

    In this section, we will present our approach which is based on MCB and will reduce 

the computation cost and increases location accuracy. Our approach utilizes the 

information about the direction of movement of the common node with the help of 

navigational instrument compass. The information about direction of movement of 

common node provided by compass will be used in prediction step of MCL to predict N 

new samples more accurately, hence it will improve localization accuracy. 

 

4.1 Compass 
 
 A compass is a navigational instrument that measures directions in a frame of 

reference that is stationary relative to the surface of the earth. The frame of reference 

defines the four cardinal directions (or points) – north, south, east, and west. 

Intermediate directions are also defined. Usually, a diagram called a compass rose, 

which shows the directions (with their names usually abbreviated to initials), is marked 

on the compass. When the compass is in use, the rose is aligned with the real 

directions in the frame of reference, for example, the "N" mark on the rose really points 

to the north. Frequently, in addition to the rose or sometimes instead of it, angle 

markings in degrees are shown on the compass. North corresponds to zero degrees, 

and the angles increase clockwise, so east is 90 degrees, south is 180, and west is 

270. These numbers allow the compass to show azimuths or bearings, which are 

commonly stated in this notation. 
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Fig.4.1.: A HTC Desire S showing a compass app 

 

There are two widely used and radically different types of compass. The magnetic 

compass contains a magnet that interacts with the earth's magnetic field and aligns 

itself to point to the magnetic poles. The gyro compass (sometimes spelled with a 

hyphen, or as one word) contains a rapidly spinning wheel whose rotation interacts 

dynamically with the rotation of the earth so as to make the wheel process, losing 

energy to friction, until its axis of rotation is parallel with the earth's. 

 

We will attach this navigational device compass with each sensor node. So that it will 

have information about its direction of movement. Now as the direction information is 

available, the next position of the sensor node can be predicted more accurately. In 

MCL and MCB both we don’t have any information about the direction, so there is a lot 

of inaccuracy while predicting the current location based on the previous location. This 

inaccuracy in prediction affects the localization results badly for both MCL and MCB. 

 

In our approach we will remove this inaccuracy in prediction of the current location by 

using the direction of movement information provided by the compass. Hence we can 

achieve high localization accuracy. 
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4.2 Our Approach 
 
Our approach is based on MCB, all the steps for localization calculations is same as 

MCB. The difference come in the prediction phase where a node starts from the set of 

possible locations computed in the previous step, Lt-1, and applies the mobility model to 

each sample to get a set of new samples Lt . The set of new samples obtained in the 

prediction phase are more accurate as compared to MCB as we have information about 

the direction of movement of the node. In MCB we do not have any information about 

the direction of movement, so MCB takes any random direction for the samples. Hence 

it gives less accurate localization results as compared to our approach. 

 

Steps for localization: 

As mentioned above the steps for localization are same as MCB, but the difference 

comes in the prediction phase. The detailed steps are as follows: 

1. Initialization: Node has no knowledge about its location in the deployment area. 

N initial samples are selected randomly to represent p’s possible positions.   

     

               L0 = {l0
1
,l0

2
, …….. ,l0

N
}  

 

   Here N is a constant which represents the number of minimum samples to 

maintain.   

 

2. Prediction: A node starts from the set of possible locations computed in previous 

step, Lt-1 and computes a set of n new samples, Lt using the transition equation. 

The Transition equation p(lt
i | lt-1

i) is determined by the mobility model or other 

constraints. The node has no information about its speed but it knows that its 

speed is less than vmax and also the direction of its movement. So, if  lt-1
i  is one 

possible location of a node in previous step, then the possible current positions 

will be in the same direction as information provided by the navigational device 

compass attached with the node and it must be contained in the circular region 

with origin lt-1
i  and radius vmax.  
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The uncertainty about the node’s location is very less as we have direction 

of node’s motion. Now we can predict node’s current position in its actual direction 

of movement, which is not possible in case of MCL or MCB. 

 

 
Fig.4.2. Prediction Example 

 

In fig 4.2, current position of node p is shown, now to predict next position 

we have information about its direction of motion. So we will predict its next 

position in that direction only. 

Here we will have two possible scenarios about node N’s next position: 

a) Node p is not in radio range of Seed node q: If in the next position Node 

N is not in radio-range of q then we can predict p’s next position outside 

the radio range of q in its direction of motion. 

b) Node p is in radio-range of Seed node q: In this case as node p is in 

radio-range of q we will predict p’s next position inside the radio-range of 

q in its direction of motion. 

 

3. Filtering: In filtering, we remove the invalid samples which are inconsistent with 

the current observation. In our approach as we will have information about the 

direction of motion, we will remove all those samples which are not in the same 

direction as provided by the navigational device compass. Thus, we eliminate the 

inconsistent locations from possible locations. 
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 After filtering, if the possible locations are less than N then prediction and filtering 

process repeats till we obtain N valid samples. After obtaining N valid samples, p 

calculates its position as the weighted average of all the samples.  
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Chapter: 5 
Experimental Results 

 
 
 
 
 

In this section, we will evaluate the performance of proposed approach through extensive 

simulations by measuring how its estimated location errors vary with various network and 

algorithm parameters. The key metric for evaluating a localization approach is the 

location estimation accuracy versus the deployment and communication cost. The 

location accuracy can be improved by increasing the density of the seeds or the 

frequency of the location announcements, but to determine appropriate deployment 

parameters the tradeoffs need to be understood. 

 

5.1 Simulation Parameters 
 
In our experiments, we vary parameters of both the sensor network and sensor nodes. 

The various simulation parameters are as follows: 

 

1) The terrain area: 

 

For all our experiments, the deployment area is of 500m x 500m 

rectangular region. The sensor nodes are randomly distributed in this rectangular 

region. 

 

2) The node information: 

 

Node Density (nd) - Node density is the average number of nodes including 

both nodes and seeds in one hop transmission range. For our experiments, we 

have taken Node Density nd = 10. 
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Sees Density (sd) – The average number of seed nodes in one hop transmission 

range is called as Seed Density. We have taken Seed Density sd = 1 

 

In our experiments, as per the above Node and Sees density we have 

taken 320 Nodes which includes both the common node and the seed nodes, so 

we have 32 seed nodes. 

 

3) The Mobility Model: 

 

         We have implemented the movement of sensors using the modifies 

version of random waypoint mobility model[23] used by Hu and Evans[1]. This 

model prevents nodes from pausing at way-points. 

 

Speed of Nodes and Seeds (vmax , vmin , smax , smin) : 

  We have represented speed as the moving distance per time unit. We 

have taken minimum speed for both nodes and seed as 0 and the maximum 

speed is taken as 10. A nodes speed is randomly chosen from [ vmax , vmin ] and 

the seeds speed is randomly chosen from [ smax , smin ]. 

 

4) The Radio Model: 

 

We have set the communication range as 50 for both nodes and seeds for 

our experiments. We have assumed that a node can judge that it is in radio range 

r of seed node or not, but it cannot more precise distance information like 

measuring distance from received radio signal strength. We have also assumed 

that the radio range of nodes and seeds as a perfect circle, however it is not 

realistic. 
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5.2 Simulation Results 
 

  

To analyze the simulation results, we will analyze the localization error. The 

localization error is calculated by measuring the distance between the estimated 

location of the node and the actual location of the node. As we have used the 

random waypoint mobility model for our experiments the movement of the nodes 

is random in the deployment area, hence the results of our experiments is also 

random. So we have taken results for 5 iterations, in which each iteration is of 

100 steps. In each iteration we have considered result for 100 steps of the node, 

we have calculated error in each step, and after 100 steps we have calculated 

average of all 100 steps for each iteration and considered it as the average 

localization error for that iteration. Now when all the 5 iterations are finished then 

we have calculated average error for all the iteration, and considered it as the 

average localization error for our algorithm. 

 

In order to show the simulation results we have plot a graph for each 

iteration. The graph is plotted between localization error and the steps for each 

iteration. In the end of this section we have shown results in tabular form.  In 

which we have shown result of each step for different iterations. 
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1) Iteration 1 

 
 
 

 
 

Fig.5.1 Simulation Result: Iteration 1 

 
 

In iteration 1, the average estimation error in Modified MCB algorithm is: 25.61311861092864 

And, the standard deviation in modified MCB algorithm is: 16.12  
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2) Iteration 2 

 

 

 

 
 

 

Fig.5.2 Simulation Result: Iteration 2 

 

In iteration 2, the average estimation error in Modified MCB algorithm is: 27.626264805403828 

And, the standard deviation in modified MCB algorithm is: 17.63  
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3) Iteration 3 

 

 

 
 

Fig.5.3 Simulation Result: Iteration 3 

 

 

In iteration 3, the average estimation error in Modified MCB algorithm is: 21.197533907504333 

And, the standard deviation in modified MCB algorithm is: 18.26  
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4) Iteration 4 

 

 

 
 

Fig.5.4 Simulation Result: Iteration 4 

 

 

In iteration 4, the average estimation error in Modified MCB algorithm is: 25.3396640168027 

And, the standard deviation in modified MCB algorithm is: 16.34  
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5) Iteration 5 

 

 

 
 

Fig.5.5 Simulation Result: Iteration 5 

 

 

In iteration 5, the average estimation error in Modified MCB algorithm is: 25.601242017568072 

And, the standard deviation in modified MCB algorithm is: 17.08  
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6) Average for all 5 Iteration 

 

 

 

 
 

Fig.5.6 Simulation Result: Average for all Iterations 

 

 

Average estimation error in Modified MCB algorithm is: 25.075564671641512 
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We can show our simulation results in the tabular form as follows: 
 

 

 

 

 

 

 

 

 

 

 

 

Table 5.1. Estimated error for all Iterations  

 

Serial No Iteration Number Standard Deviation 

1 Iteration 1 16.12 

2 Iteration 2 17.63 

3 Iteration 3 18.26 

4 Iteration 4 16.34 

5 Iteration 5 17.08 

 

Table 5.2. Standard Deviation for all Iterations  
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Serial No Iteration Number Estimated Error 

1 Iteration 1 25.61311861092864 

2 Iteration 2 27.626264805403828 

3 Iteration 3 21.197533907504333 

4 Iteration 4 25.3396640168027 

5 Iteration 5 25.601242017568072 

6 Average for all 5  Iteration 25.075564671641512 



Chapter: 6 
Conclusion and 
Future Work 

 
 
 
 

6.1 Conclusion 

 
Localization in wireless network has received much interest in the past 

years. In this thesis, we have presented an efficient and accurate range-free 

localization algorithm for wireless sensor networks which works well in both static 

and mobile wireless sensor networks. The main drawback of the existing 

localization algorithms for localization is there high computation cost and poor 

localization accuracy. 

 

The proposed algorithm improves the performance of existing Monte Carlo 

Boxed (MCB) Localization algorithm. In our algorithm we have used information 

about direction of the movement of the node, so that we are able to predict the 

next position of the node more accurately and faster as compared to existing 

Monte Carlo Boxed Localization algorithm. We have attached a device called 

Compass to each node so that, we can easily get this information about direction 

of the movement of every node. Our algorithm outperforms existing Sequential 

Monte Carlo (SMC) based algorithms in terms of location accuracy. Our algorithm 

can produce more accurate localization results under high node density. Also, 

even when there are a very few seed nodes, most nodes still get accurate position 

estimations.  
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6.2 Future Work 
 

 

 In the future, we are planning to further enhance the performance of 

our algorithm. We will try to include some more information about the node’s 

movement like speed using some additional equipment like accelerometer which 

will further improve the performance of our algorithm. But we need to understand 

the tradeoff between the accuracy and energy cost for proposing excellent 

localization algorithms for sensor networks.  

 

 We can also try to improve the performance of our algorithm by 

considering the information of the sensors mobility patterns. If we know the 

mobility pattern, then it will help us a lot in the prediction phase. This will make our 

prediction more accurate, hence we can achieve high localization accuracy.  

 

 We have to think of a solution which will produce accurate 

localization results and it must be energy and cost efficient as well. 
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