
A

MAJOR PROJECT REPORT

ON

PSEUDORANDOM BINARY SEQUENCE

GENERATION FOR STREAM CIPHERS

Submitted in the partial fulfillment of the requirements

for the award of the degree of

MASTER OF TECHNOLOGY
(INFORMATION SYSTEM)

Submitted By:

VIJETA RANI
(17/IS/09)

Under the Guidance of

 N. S. RAGHAVA
Associate Professor

Dept. of Information Technology

DELHI TECHNOLOGICAL UNIVERSITY

(DEPARTMENT OF INFORMATION TECHNOLOGY)

BAWANA ROAD, DELHI-110042

SESSION: 2009-2011

 i

CERTIFICATE

This is to certify that Ms. Vijeta Rani (17/IS/09) has carried out

the major project titled “Pseudorandom Binary Key Generation

for Stream Ciphers” as a partial requirement for the award of

Master of Technology degree in Information Systems by Delhi

Technological University.

The major project is an authentic piece of work carried out and

completed under my supervision and guidance during the academic

session 2009-2011 at Delhi Technological University (Formerly

Delhi College of Engineering). The matter contained in this report

has not been submitted elsewhere for the award of any other

degree.

 N. S. Raghava
 (Project Guide)

 Associate Professor

Department of Information Technology

Delhi Technological University

Shahbad Daulatpur, Bawana Road, Delhi-110042

 ii

ACKNOWLEDGEMENT

I express my gratitude to my major project guide, N. S. Raghava,

Associate Professor, for the valuable support and guidance he

provided in making this major project. It is my pleasure to record

my sincere thanks to my respected guide for his constructive

criticism and insight without which the project would not have

shaped as it has.

I humbly extend my words of gratitude to Prof. O. P. Verma,

head of the department, and other faculty members of IT

department for providing their valuable help and time whenever it

was required.

Vijeta Rani

Roll No: 17/IS/09

M. Tech (Information Systems)

Email: vijeta3feb@gmail.com

 iii

ABSTRACT

Pseudorandom binary sequences find their application in diverse fields but

security and cryptography is probably the best known field of their

application. One-Time Pad (OTP) is a simple, fast and the most secure

encryption algorithm. It provides the perfect secrecy. The encryption-

decryption process of the OTP is based on exclusive-or function computed

on the plaintext/ciphertext and the key bits. The requirements for the OTP

key are that: it must be a cryptographically strong truly random or

pseudorandom binary sequence; must be as long as plaintext size; and must

not be reused. The difference between a truly random and a pseudorandom

sequence is that the truly random sequence is generated with the help of non-

deterministic physical phenomenon but the pseudorandom sequence is

generated from some deterministic mechanism and a seed value. In case of

pseudorandom binary sequences, given the same seed the pseudorandom

number generator will always output the same sequence of numbers or bits.

The fundamental difficulty with a truly random sequence is its generation

and distribution. Therefore pseudorandom sequences are a popular choice

for the practical implementation of the OTP scheme.

Many researchers have devoted their time and effort to the family of shift

register based pseudorandom sequence generators. But they could not gain a

key sequence having very large period equal to the plaintext length. They

also tried the complex versions of shift registers but it is yet not very useful

and secure to generate a sequence large enough to encrypt an audio or video

 iv

file. Moreover, these sequences do not satisfy the statistical properties of

random numbers to that great extent.

To find a better alternative to the shift registers and to generate a very long

cryptographically strong pseudorandom binary key at a very low cost is the

main objective behind this research work. A few algorithms are proposed in

this report to generate a long cryptographically strong pseudorandom binary

key for stream ciphers using the multimedia files available on the Internet.

Both the authorized sender and receiver download a file from the Internet

whose link is shared between them through a secure medium. This file can

be in the form of text, audio, video or image and contains huge amount of

redundancy. They use this file as the seed or the input to the proposed

algorithms and generate a cryptographically strong pseudorandom binary

key file from it. The key files obtained from the algorithms’ implementation

are statistically validated for the practical implementation of OTP using the

well known NIST and ENT test suites.

 v

Table of Contents

CERTIFICATE .. i

ACKNOWLEDGEMENT .. ii

ABSTRACT ... iii

CHAPTER 1 .. 1

PSEUDORANDOM BINARY KEY GENERATION .. 1

1.1 Introduction ... 1

1.2 Overview of Existing Methods ... 4

CHAPTER 2 ... 8

INVERSION-COMPRESSION METHOD .. 8

2.1 Introduction ... 8

2.2 Methodology ... 9

2.3 Results .. 13

2.3.1 ENT Tests ... 14

2.3.2 NIST Tests .. 18

2.4 Advantages and Limitations ... 20

CHAPTER 3 ... 22

INVERSION-ENCRYPTION METHOD .. 22

3.1 Introduction ... 22

3.2 Methodology ... 23

3.3 Results .. 26

3.3.1 ENT Tests ... 27

3.3.2 NIST Tests .. 31

3.4 Advantages and Limitations ... 35

CHAPTER 4 ... 37

DUPLICATE BLOCKS REMOVAL- ECB MODE ENCRYPTION METHOD 37

4.1 Introduction ... 37

4.2 Methodology ... 38

4.3 Results .. 40

4.3.1 ENT Tests ... 41

4.3.2 NIST Tests .. 43

4.4 Advantages and Limitations ... 46

 vi

CHAPTER 5 ... 48

DUPLICATE BLOCKS REMOVAL- CHAINING MODE ENCRYPTION

METHOD ... 48

5.1 Introduction ... 48

5.2 Methodology ... 49

5.3 Results .. 51

5.3.1 ENT Tests ... 52

5.3.2 NIST Tests .. 55

5.4 Advantages and Limitations ... 60

CHAPTER 6 ... 62

WITHOUT DUPLICATE BLOCKS REMOVAL- CHAINING MODE

ENCRYPTION METHOD ... 62

6.1 Introduction ... 62

6.2 Methodology ... 63

6.3 Results .. 65

6.3.1 ENT Tests ... 66

6.3.2 NIST Tests .. 68

6.4 Advantages and Limitations ... 71

CHAPTER 7 ... 73

WITHOUT DUPLICATE BLOCKS REMOVAL- NULL REMOVED- CHAINING

MODE ENCRYPTION METHOD .. 73

7.1 Introduction ... 73

7.2 Methodology ... 74

7.3 Results .. 76

7.3.1 ENT Tests ... 77

7.3.2 NIST Tests .. 80

7.4 Advantages and Limitations ... 85

CONCLUSION.. 87

ABBREVIATIONS ... 88

REFERENCES ... 89

 1

CHAPTER 1

PSEUDORANDOM BINARY KEY GENERATION

1.1 Introduction

A strong cryptographic algorithm is a basic requirement for any

cryptosystem. A cryptographic algorithm can be considered strong only if

either it is unconditionally secure or it is computationally secure. A

cryptographic algorithm is said to be unconditionally secure if the

information in the cipher text cannot help in determining the plaintext

uniquely [4]. It is said to be computationally secure if the cost of breaking

the cipher exceeds the value of encrypted information or the time required to

break the cipher exceeds the useful lifetime of the information [4]. Only

One-time Pad, which is a stream cipher algorithm, is unconditionally secure

(or provides perfect secrecy) [3].

In stream cipher algorithms, the plain text bits are XORed with the key bits

to produce cipher text bits, which are again XORed with key bits at the

receiver side to recover the plain text bits. In One-time Pad, a truly random

key is used for only one time whose length is equal to the plaintext. The

practical difficulty of the One-time Pad is that the key, which must be

randomly generated and communicated over a secure channel, must be as

long as the plaintext in order to ensure perfect secrecy [7]. In other words,

the cost of key generation and distribution cannot be ignored. Perfect

secrecy is defined in [5].

 2

There are two ways of generating random bits:

1. Generating truly random bits using physical mechanisms where the

whole bit sequence is securely transmitted.

2. Generating pseudorandom bits using some seed where only the seed is

securely transmitted.

Fig 1.1 Encryption-Decryption Processes of Stream Cipher Algorithms

The generation of truly random bits is difficult, time consuming and

expensive and the distribution of whole of these bits through a secure

channel is not practical especially when the size of the bit sequence is as

large as the plaintext size. The problem identified above can be avoided if a

pseudo-random number (or bit) generator is used instead of truly random

number (or bit) generator.

 3

A pseudorandom number generator (PRNG), also known as deterministic

random bit generator (DRBG), is an algorithm for generating a sequence of

numbers that approximates the properties of random numbers [38]. The

sequence is not truly random in that it is completely determined by a

relatively small set of initial values, called the PRNG’s state [38]. A PRNG

can be started from an arbitrary starting state using a seed state. It will

always produce the same sequence thereafter when initialized with that state

[38]. Careful mathematical analysis is required to have any confidence a

PRNG generates numbers that are sufficiently “random” to suit the intended

use [38].

Fig 1.2 Pseudorandom Binary Key Generation Process

 4

1.2 Overview of Existing Methods

A system named, Vernam Cipher [1, 2], was introduced by an AT&T

engineer named Gilbert Vernam in 1918. His system works on binary data

rather than letters. The ciphertext is generated by performing the bitwise

XOR of the plaintext and the key. Because of the properties of the XOR,

decryption simply involves the same bitwise operation. The essence of this

technique is the means of construction of the key [4].

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement

to the Vernam cipher that yields the ultimate in security. Mauborgne

suggested using a random key that is as long as the message, so that the key

need not be repeated. In addition, the key is to be used to encrypt and

decrypt a single message, and then is discarded. Each new message requires

a new key of the same length as the new message. Such a scheme, known as

a One-time Pad, is unbreakable [3]. It produces random output that bears no

statistical relationship to the plaintext. Because the ciphertext contains no

information whatsoever about the plaintext, there is simply no way to break

the code [3, 4].

There are certain design considerations for stream ciphers [5], which are

given below.

1. The encryption sequence should have a large period

2. The encryption sequence should be unpredictable from its previous

state. To ensure this property, the sequence should have a large

complexity and proper distribution of ones and zeros.

3. There should be large variability of the possible keys.

 5

There are many techniques for generating stream cipher sequences. An

overview of some of them is given in [6]. The text includes the description

of real random and pseudorandom sequence generators.

Real Random-Sequence Generators include RAND Tables, Using Random

Noise, Using the Computer’s Clock, Measuring Keyboard Latency, Biases

and Correlations, Distilling Randomness.

Pseudo-Random Sequence Generators include Linear Congruential

Generators, Linear Feedback Shift Registers (LFSR), Feedback with Carry

Shift Registers, Nonlinear-Feedback Shift Registers, RC4, SEAL, WAKE,

PKZIP, A5, Hughes XPD/KPD, RSA, Shamir’s Pseudo-Random-Number

Generator, Blum-Micali Generator, Blum-Blum-Shub Generator, Nanoteq,

Rambutan, Additive Generators (like Fish, Pike, Mush), Gifford, Algorithm

M, Pless Generator, Cellular Automaton Generator, 1/p Generator, crypt(1),

Rip van Winkle Cipher, Diffie’s Randomized Stream Cipher, Maurer’s

Randomized Stream Cipher.

Stream ciphers that use LFSR are Geffe Generator, Generalized Geffe

Generator, Jennings Generator, Beth-Piper Stop-and-Go Generator,

Alternating Stop-and-Go Generator, Bilateral Stop-and-Go Generator,

Threshold Generators, Self-Decimated Generators, Multispeed Inner-

Product Generator, Summation Generator, DNRSG, Gollmann Cascade,

Shrinking Generator, Self-Shrinking Generator.

 6

Many researchers worked to find new techniques for pseudorandom

sequence generation. Several encryption based pseudorandom sequences

have also been proposed. A few of them are: generating pseudorandom

sequence by encrypting the seed (possibly some memory attribute like

instruction address) [22], Elgamal discrete logarithm pseudorandom

sequence generation [20] and JCA based pseudorandom sequence generation

[23]. Pseudorandom sequence generation from DNA information [24] is

another growing field of interest. Other researchers have contributed some

more techniques for pseudorandom sequence generation [28, 40, 44 – 52]

and their applications [25, 26].

Most practical stream-cipher designs center around LFSRs. The problem

with LFSRs is that they are very inefficient and slow in software [6]. Sparse

feedback polynomials are avoided as they facilitate correlation attacks and

dense feedback polynomials are inefficient [6]. Analyzing stream ciphers is

often easier than analyzing block ciphers [6]. For example, one important

metric used to analyze LFSR-based generators is linear complexity, or linear

span. This is defined as the length, n, of the shortest LFSR that can mimic

the generator output [5, 6]. Any sequence generated by a finite-state machine

over a finite field has a finite linear complexity [6]. Linear complexity is

important because a simple algorithm, called the Berlekamp-Massey

algorithm, can generate this LFSR after examining only 2n bits of the

keystream [5, 6]. Once this LFSR is generated, the stream cipher is broken.

One or more of the internal output sequences, often just outputs of individual

LFSRs, can be correlated with the combined keystream and attacked using

linear algebra. Often this is called a correlation attack or a divide-and-

conquer attack.

 7

There are other general attacks against keystream generators. The linear

consistency test attempts to identify some subset of the encryption key using

matrix techniques. There is also the meet-in the-middle consistency attack

[6]. The linear syndrome algorithm relies on being able to write a fragment

of the output sequence as a linear equation. There is the best affine

approximation attack and the derived sequence attack [6]. The techniques of

differential cryptanalysis have even been applied to stream ciphers, as has

linear cryptanalysis [6].

Some researchers have worked for generating pseudorandom sequences

from microphone input [35]. They have also proposed algorithm for it.

According to their algorithm, the eight bit of each byte is appended to the

sequence and the high 7 bits of every byte are discarded. They have tested

their algorithm using ENT test and the test results show that the sequences

generated from algorithm are random enough. But according to our

observation, this algorithm will not be applicable to files of any type as it

will not generate highly random sequences for all files. For instance, if a file

contains bytes which are actually random and different from each other, but

the eight bit of each byte is zero or one for the whole file, then the sequence

generated from such input will always be a sequence of all zeros or all ones.

Such a sequence has zero randomness. Moreover the truncation of high bits

generates a very small length sequence as compared to the input file.

 8

CHAPTER 2

INVERSION-COMPRESSION METHOD

2.1 Introduction

This is the first proposed algorithm and is a compression based algorithm.

The authorized sender and receiver can share their very large size data over

an unsecure channel at a very low cost using this algorithm. For this, the

authorized sender and the authorized receiver share a link on the Internet

from where a file can be downloaded. This link must be shared using a very

secure form of communication so that an unauthorized receiver is not able to

see it. The authorized sender and receiver also decide the compression

algorithm to be used during the process and share the secret value n between

them through the same secure channel. Then they download the file from the

Internet using this link, which is termed as the source file. Then both the

authorized sender and receiver generate the key file using this source file.

This key file is XORed with the plain data file to generate a cipher data file.

Then this cipher data file is transmitted over the unsecure channel.

The information that goes from the authorized sender to the authorized

receiver through the secure channel or medium includes: the file download

link, the compression algorithm and the secret value n.

 9

The information that goes from the authorized sender to the authorized

receiver through the insecure channel or medium includes: the cipher data

file encrypted using the key file generated from the proposed method.

2.2 Methodology

The key generation algorithm consists of the following steps.

Step 1: Input the source binary file in binary read mode. Open two other

binary files, say X and Y in binary write mode.

Step 2: Segment the source file in one byte segments each.

Step 3: Remove those bytes from the source file whose ASCII value is

either 0 or 255. Store the result in X.

Step 4: Close X.

Step 5: Open X in binary read mode.

Step 6: Remove all those bytes from X, which duplicate to their immediate

predecessor bytes and store the resultant bytes in Y.

Step 7: Close X and Y.

Step 8: Open X in binary write mode and Y in binary read mode.

 10

Step 9: Scan Y, bit by bit, to get a sequence of n consecutive zeros or n

consecutive ones, where 3 ≤ n ≤ 14. Note that there will be no sequence of

15 or more consecutive ones or zeros as the bytes with ASCII values 0 or

255 are already removed from the file. On getting such a sequence, invert

the final bit of the sequence. As a result, there will be no sequence in the file,

which is composed of more than n-1 consecutive zeros or n-1 consecutive

ones. This n is kept secret

Step 10: Store the resultant bytes in X.

Step 11: Open X in binary read mode and Y in binary write mode.

Step 12: Compress X using some standard compression software like Win

RAR or Win Zip. This increases randomness of the file. The standard

compression algorithms like Win RAR or Win ZIP are preferred for the

process as they provide optimum compression of the file. If any other

compression technique provides better results i.e. adds more randomness to

the file then that compression algorithm can be substituted at this step.

Step 13: Store the resultant bytes in Y. The resultant file Y serves as the key

file during encryption.

Step 14: Close all files.

 11

Fig. 2.1 Flowchart of the Inversion-Compression method

The significance of the major steps of the algorithm is given as follows:

Removal of bytes with ASCII values 0 or 255: In this step, the bytes with

ASCII values 0 or 255 are removed from the source file. Bytes with ASCII

values 0 or 255 facilitate the cryptanalyst to attack the ciphertext. The

cryptanalyst will simply apply XOR operation on the ciphertext file and the

file containing all zeros or ones. This will result into the plaintext file

containing original characters at the position of bytes with ASCII values 0 or

255 in the key file. Thus applying this step is essential. Moreover, this step

removes long runs of zeros and ones.

Removal of successive duplicate bytes: In this step, those bytes which are

identical to their immediate predecessor are removed from the source file.

 12

Duplicate bytes increase the redundancy of the source file and hence should

be removed to make it more random. In a way, duplicate bytes reduce the

period of the sub key. Thus removing duplicate bytes is essential. Only

successive duplicate bytes are removed and not the duplicate bytes of the

whole file are removed because on doing so the file size will reduce to a

maximum of 256 bytes. This is because only 256 byte patterns are available.

A file with a maximum size of 256 bytes is not at all random as the attacker

will simply use 256*256 combinations to apply a brute force attack.

Inversion: In this step, the source file is scanned, bit by bit, to get a

sequence of n consecutive zeros or n consecutive ones, where 3 ≤ N ≤ 14.

On getting such a sequence, the final bit of the sequence is inverted. As a

result, there will be no sequence in the file, which is composed of more than

N-1 consecutive zeros or N-1 consecutive ones. This N is kept secret. There

will be no sequence of 15 or more consecutive ones or zeros as the bytes

with ASCII values 0 or 255 are already removed from the file. Inversion for

N<3 is not useful at all. Inversion for N=1 corresponds to the inversion of all

the bits of the file. Inversion for N=2 corresponds to a file having alternate 1

and 0 bits, which has zero randomness.

Compression: In this step, the file is finally compressed using standard

compression algorithms like Win RAR or Win ZIP. This removes the

remaining redundancy from the file. The standard compression algorithms

like Win RAR or Win ZIP are preferred for the process as they provide

optimum compression of the file. If any other compression technique

provides better results i.e. adds more randomness to the file then that

compression algorithm can be substituted at this step.

 13

2.3 Results

The proposed algorithm was implemented in C programming language and

used WIN RAR [37] compression software to generate the pseudorandom

binary key files from various types of source files (i.e. from the text, audio,

video and image files). The change in the size of the files after each step is

given in table 2.1.

We also performed ENT [31] and NIST [32] statistical tests on the source

files and the corresponding output files of the key generation algorithm to

find the amount of randomness in the files. The ENT and the NIST tests are

performed using the standard testing software available online on the official

websites of these tests.

The results of the ENT tests are given in the tables 2.2, 2.3, 2.4 and 2.5 for

text, image, audio and video files respectively. The results of NIST tests for

the text file are given in tables 2.6, 2.7, 2.8 and 2.9.

Table 2.1 Size of the files after each step

File Type Size of SF Size of NRF Size of DRF Size of KF

(Varied

because of

compression)

Text 11.8 KB 11.8 KB 11.6 KB 4.48 KB

Audio 94.7 KB 61.3 KB 61 KB 55 KB

Video 3.97 MB 3.50 MB 3.47 MB 3.41 MB

Image 63.7 KB 61.5 KB 58 KB 44.7 KB

 14

2.3.1 ENT Tests

Table 2.2 Results of ENT tests on Text File

TEXT FILE

File

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

Totally

Random

8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

UCF 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

CF 7.953960 0 3.10 129.2470 3.125964010 0.50 0.007876

Null Bytes Removed File

UCF 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

CF 7.954017 0 3.06 129.3612 3.100257069 1.32 0.007560

Duplicate Bytes Removed File

UCF 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

CF 7.958318 0 25.71 128.2676 3.152941176 0.36 0.022398

File after applying inversion to a sequence of length two

UCF 0.000000 100 0.01 85.000 4.000000000 27.32 UNDEF

CF 4.948120 38 0.01 78.3125 3.750000000 19.37 0.442797

File after applying inversion to a sequence of length three

UCF 4.021938 49 0.01 136.0150 3.379032258 7.56 -0.207247

CF 7.957984 0 65.79 124.4317 3.170243205 0.91 0.000763

File after applying inversion to a sequence of length four

UCF 4.313830 46 0.01 101.0115 3.961693548 26.10 -0.064890

CF 7.960601 0 44.16 127.2657 3.093750000 1.52 0.049017

File after applying inversion to a sequence of length five

UCF 4.511224 43 0.01 97.3783 3.870967742 23.22 0.030595

CF 7.956798 0 9.78 129.1454 3.006435006 4.30 0.048245

File after applying inversion to a sequence of length six

UCF 4.882123 38 0.01 113.4824 3.397177419 8.14 -0.410593

CF 7.959954 0 25.25 125.8664 3.225000000 2.65 -0.006100

File after applying inversion to a sequence of length seven

UCF 4.364658 45 0.01 93.9212 4.000000000 27.32 -0.045451

CF 7.952078 0 2.30 127.3687 3.047120419 3.01 0.005032

File after applying inversion to a sequence of length eight

UCF 4.372235 45 0.01 93.8406 4.000000000 27.32 -0.035130

CF 7.957496 0 21.48 127.4739 3.142483660 0.03 0.002176

File after applying inversion to a sequence of length nine

UCF 4.372949 45 0.01 93.8379 4.000000000 27.32 -0.034668

CF 7.956418 0 19.86 125.8027 3.101827676 1.27 0.005942

File after applying inversion to a sequence of length ten

UCF 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

CF 7.957868 0 21.34 128.2182 3.064052288 2.47 0.022256

File after applying inversion to a sequence of length eleven

UCF 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

CF 7.958183 0 23.32 128.1979 3.064052288 2.47 0.023221

File after applying inversion to a sequence of length twelve

UCF 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

CF 7.958104 0 22.88 128.1511 3.058823529 2.63 0.022072

File after applying inversion to a sequence of length thirteen

 15

UCF 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

CF 7.958293 0 24.35 128.1898 3.064052288 2.47 0.022553

File after applying inversion to a sequence of length fourteen

UCF 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

CF 7.958303 0 24.79 128.1683 3.064052288 2.47 0.022492

Table 2.3 Results of ENT tests on Image File

IMAGE FILE

File type Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

Totally

Random

8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

UCF 7.184481 10 0.01 126.8271 3.504828474 11.56 0.435878

CF 7.994161 0 0.01 128.9419 3.096559114 1.43 0.049624

Null Bytes Removed File

UCF 7.190326 10 0.01 124.0478 3.596536302 14.48 0.573973

CF 7.993797 0 0.01 129.7162 3.092432832 1.56 0.043240

Duplicate Bytes Removed File

UCF 7.213525 9 0.01 123.9359 3.612877182 15.00 0.548074

CF 7.993735 0 0.01 126.3317 3.164069661 0.72 0.044904

File after applying inversion to a sequence of length two

UCF 0.000000 100 0.01 85.0000 4.000000000 27.32 UNDEF

CF 4.683108 41 0.01 64.2540 3.809523810 21.26 0.327583

File after applying inversion to a sequence of length three

UCF 5.660456 29 0.01 126.9927 3.795741245 20.82 0.100742

CF 7.994063 0 3.38 126.8655 3.147127200 0.18 0.005054

File after applying inversion to a sequence of length four

UCF 6.770797 15 0.01 125.7696 3.649207791 16.16 0.381586

CF 7.994082 0 0.01 126.9810 3.147245315 0.18 0.033214

File after applying inversion to a sequence of length five

UCF 7.133488 10 0.01 125.4563 3.603189020 14.69 0.459713

CF 7.994796 0 0.17 127.9209 3.149455800 0.25 0.040455

File after applying inversion to a sequence of length six

UCF 7.251777 9 0.01 123.8837 3.612069836 14.98 0.506082

CF 7.994911 0 0.21 128.4259 3.117962116 0.75 0.035692

File after applying inversion to a sequence of length seven

UCF 7.250141 9 0.01 124.3192 3.624987385 15.39 0.545376

CF 7.995300 0 3.17 126.9261 3.180464873 1.24 0.039492

File after applying inversion to a sequence of length eight

UCF 7.270602 9 0.01 124.0301 3.594711878 14.42 0.538111

CF 7.994054 0 0.01 126.2493 3.182504556 1.30 0.035721

File after applying inversion to a sequence of length nine

UCF 7.233893 9 0.01 123.9347 3.614088203 15.04 0.550350

CF 7.994059 0 0.01 126.3912 3.174271147 1.04 0.041389

File after applying inversion to a sequence of length ten

UCF 7.225757 9 0.01 123.9300 3.613684529 15.03 0.549011

CF 7.994625 0 0.02 126.6920 3.148090005 0.21 0.039094

File after applying inversion to a sequence of length eleven

 16

UCF 7.219178 9 0.01 123.9324 3.613684529 15.03 0.548359

CF 7.994027 0 0.01 126.3366 3.144802304 0.10 0.040151

File after applying inversion to a sequence of length twelve

UCF 7.214809 9 0.01 123.9353 3.612877182 15.00 0.548112

CF 7.994066 0 0.01 126.2537 3.134965310 0.21 0.044771

File after applying inversion to a sequence of length thirteen

UCF 7.213700 9 0.01 123.9358 3.612877182 15.00 0.548083

CF 7.994056 0 0.01 126.3751 3.161560618 0.64 0.042576

File after applying inversion to a sequence of length fourteen

UCF 7.213525 9 0.01 123.9359 3.612877182 15.00 0.548074

CF 7.993722 0 0.01 126.3322 3.147832919 0.20 0.044891

Table 2.4 Results of ENT tests on Audio File

AUDIO FILE

File type Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

Totally

Random

8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

UCF 6.200233 22 0.01 125.2086 2.295751129 26.92 0.174946

CF 7.944631 0 0.01 120.9038 3.231529657 2.86 0.122647

Null Bytes Removed File

UCF 7.580974 5 0.01 125.6436 2.861509074 8.92 0.026084

CF 7.994756 0 0.01 129.3176 3.102113066 1.26 0.016966

Duplicate Bytes Removed File

UCF 7.585443 5 0.01 125.6610 2.866961029 8.74 0.019331

CF 7.995311 0 0.01 129.3084 3.061501423 2.55 0.000428

File after applying inversion to a sequence of length two

UCF 0.000000 100 0.01 85.0000 4.000000000 27.32 UNDEF

CF 4.625971 42 0.01 66.8516 3.809523810 21.26 0.352790

File after applying inversion to a sequence of length three

UCF 5.861390 26 0.01 126.5014 3.444423114 9.64 -0.029396

CF 7.993551 0 0.01 128.5278 3.100490829 1.31 0.004076

File after applying inversion to a sequence of length four

UCF 7.093955 11 0.01 126.1196 3.18525628 1.39 0.03054

CF 7.994442 0 0.01 129.5602 3.113264427 0.90 -0.010121

File after applying inversion to a sequence of length five

UCF 7.501193 6 0.01 125.7701 3.053177193 2.81 0.016942

CF 7.994459 0 0.01 129.4536 3.057069934 2.69 -0.015221

File after applying inversion to a sequence of length six

UCF 7.643370 4 0.01 125.6156 2.982146285 5.08 0.016278

CF 7.994819 0 0.01 129.6460 3.080473610 1.95 -0.013197

File after applying inversion to a sequence of length seven

UCF 7.684987 3 0.01 125.7893 2.927625264 6.81 0.017291

CF 7.995342 0 0.01 128.3935 3.123328067 0.58 0.008629

File after applying inversion to a sequence of length eight

UCF 7.704242 3 0.01 125.7250 2.900364753 7.68 0.017971

CF 7.995339 0 0.01 128.7567 3.085348961 1.79 0.007035

File after applying inversion to a sequence of length nine

UCF 7.652395 4 0.01 125.6860 2.880783260 8.30 0.018829

 17

CF 7.995118 0 0.01 129.3555 3.080315642 1.95 -0.002605

File after applying inversion to a sequence of length ten

UCF 7.619051 4 0.01 125.6742 2.871568439 8.60 0.019166

CF 7.995107 0 0.01 128.5142 3.075650376 2.10 0.000643

File after applying inversion to a sequence of length eleven

UCF 7.601424 4 0.01 125.6672 2.867344980 8.73 0.019284

CF 7.995350 0 0.01 128.9370 3.078602620 2.01 0.001203

File after applying inversion to a sequence of length twelve

UCF 7.592307 5 0.01 125.6633 2.866961029 8.74 0.019326

CF 7.995413 0 0.01 128.6883 3.074231989 2.14 0.001951

File after applying inversion to a sequence of length thirteen

UCF 7.587984 5 0.01 125.6618 2.866961029 8.74 0.019336

CF 7.995095 0 0.01 128.7596 3.115195274 0.84 0.001691

File after applying inversion to a sequence of length fourteen

UCF 7.586127 5 0.01 125.6614 2.866961029 8.74 0.019333

CF 7.994706 0 0.01 128.7746 3.110624795 0.99 -0.003590

Table 2.5 Results of ENT tests on Video File

VIDEO FILE

File type Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

Totally

Random

8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

UCF 7.606804 4 0.01 112.1045 3.271680939 4.14 0.256775

CF 7.999189 0 0.01 128.7441 3.106007096 1.13 0.009228

Null Bytes Removed File

UCF 7.905910 1 0.01 114.2856 3.391006983 7.94 0.034345

CF 7.999110 0 0.01 128.8218 3.105272987 1.16 0.011581

Duplicate Bytes Removed File

UCF 7.908754 1 0.01 114.5160 3.386551745 7.80 0.024494

CF 7.999112 0 0.01 128.8943 3.100440684 1.31 0.005575

File after applying inversion to a sequence of length two

UCF 0.000000 100 0.01 170.0000 4.000000000 27.32 UNDEF

CF 2.750624 65 0.01 55.1647 3.979848866 26.68 0.522141

File after applying inversion to a sequence of length three

UCF 5.867239 26 0.01 122.5914 3.616147915 15.11 -0.039728

CF 7.998999 0 0.01 127.8549 3.126183246 0.49 0.003000

File after applying inversion to a sequence of length four

UCF 7.175432 10 0.01 120.6774 3.481750960 10.83 0.024000

CF 7.998608 0 0.01 129.0290 3.110402920 0.99 0.001690

File after applying inversion to a sequence of length five

UCF 7.632515 4 0.01 117.8010 3.442665157 9.58 0.025247

CF 7.998608 0 0.01 129.1819 3.102134974 1.26 -0.001877

File after applying inversion to a sequence of length six

UCF 7.819440 2 0.01 117.2579 3.405027951 8.39 0.028836

CF 7.998868 0 0.01 129.1311 3.099542992 1.34 0.001101

File after applying inversion to a sequence of length seven

UCF 7.895737 1 0.01 116.7389 3.386051320 7.78 0.029031

CF 7.998979 0 0.01 129.0007 3.102261020 1.25 0.000328

 18

File after applying inversion to a sequence of length eight

UCF 7.927758 0 0.01 116.1917 3.378110370 7.53 0.026195

CF 7.998940 0 0.01 129.0005 3.099738557 1.33 0.000147

File after applying inversion to a sequence of length nine

UCF 7.922218 0 0.01 115.0470 3.388968269 7.87 0.025645

CF 7.998994 0 0.01 128.9252 3.103900566 1.20 0.003272

File after applying inversion to a sequence of length ten

UCF 7.916712 1 0.01 114.6800 3.387829144 7.84 0.024953

CF 7.999123 0 0.01 128.8346 3.106384763 1.12 0.004075

File after applying inversion to a sequence of length eleven

UCF 7.913144 1 0.01 114.5566 3.387019247 7.81 0.024526

CF 7.999157 0 0.01 128.8086 3.106872675 1.11 0.006091

File after applying inversion to a sequence of length twelve

UCF 7.911015 1 0.01 114.5274 3.386643928 7.80 0.024467

CF 7.999143 0 0.01 128.8631 3.101282520 1.28 0.005990

File after applying inversion to a sequence of length thirteen

UCF 7.909797 1 0.01 114.5190 3.386571498 7.80 0.024470

CF 7.999133 0 0.01 128.8448 3.107417541 1.09 0.005895

File after applying inversion to a sequence of length fourteen

UCF 7.909106 1 0.01 114.5168 3.386551745 7.80 0.024484

CF 7.999190 0 0.01 128.8451 3.101381398 1.28 0.005742

2.3.2 NIST Tests

Table 2.6 Results of NIST tests on Text - Uncompressed File

Table 2.7 Results of NIST tests on Text - Uncompressed File

UNCOMPRESSED TEXT FILE

TEST IF

N=7

IF

N=8

IF

N=9

IF

N=10

IF

N=11

IF

N=12

IF

N=13

IF

N=14

Approx. Entropy F F F F F F F F

Block Frequency S S S S S S S S

Cumulative Sum F F F F F F F F

UNCOMPRESSED TEXT FILE

TEST SF NRF DRF IF

N=2

IF

N=3

IF

N=4

IF

N=5

IF

N=6

Approx. Entropy F F F F F F F F

Block Frequency S S S S S S S S

Cumulative Sum F F F S F S F F

FFT F F F F S F F F

Frequency F F F S F S F F

Linear Complexity S S S F S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template F F F F F F F F

Rank F F F F S F F F

Runs F F F F F F F F

Serial1 F F F F F F F F

Serial2 F F F F F F F F

Universal S S S S S S S S

 19

FFT F F F F F F F F

Frequency F F F F F F F F

Linear Complexity S S S S S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template F F F F F F F F

Rank F F F F F F F F

Runs F F F F F F F F

Serial1 F F F F F F F F

Serial2 F F F F F F F F

Universal S S S S S S S S

Table 2.8 Results of NIST tests on Text – Compressed File

Table 2.9 Results of NIST tests on Text - Compressed File

COMPRESSED TEXT FILE

TEST IF

N=7

IF

N=8

IF

N=9

IF

N=10

IF

N=11

IF

N=12

IF

N=13

IF

N=14

Approx. Entropy F F F F F F F F

Block Frequency F F F F F F F F

Cumulative Sum S S S S S S S S

FFT S S S S S S S S

Frequency S S S S S S S S

Linear Complexity S F S S S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template S S S S S S S S

Rank S S S S S S S S

Runs S S S S S S S S

Serial1 F F F F F F F F

Serial2 S S S S S S S S

Universal S S S S S S S S

COMPRESSED TEXT FILE

TEST SF NRF DRF IF

N=2

IF

N=3

IF

N=4

IF

N=5

IF

N=6

Approx. Entropy F F F - F F F F

Block Frequency F F F - F F F F

Cumulative Sum S S S - S S S F

FFT S S S - S S S S

Frequency S S S - S S S F

Linear Complexity S S S - S S S S

Longest Run S S S - S S S S

Non-periodic template S S S - S S S S

Overlapping Template S S S - S S S S

Rank S S S - S S S S

Runs S S S - S S S S

Serial1 F F F - F F F F

Serial2 F F S - F F F F

Universal S S S - S S S S

 20

2.4 Advantages and Limitations

This algorithm is an inexpensive alternative to shift registers and can be used

to generate very long pseudorandom sequences that can be used encrypt

even an audio or video file.

The algorithm mainly reduces the problem of large size key distribution to

the authorized receiver. One just needs to tell the authorized receiver (in a

secure way), the link for source file download (for example) with which the

data file is encrypted and the secret value n. The authorized receiver can

generate the key file at his own site using the same source file and decrypt

the data file from it.

An unauthorized receiver (intruder) cannot generate key file as he has no

knowledge of source file. Moreover the brute force attack on source file

using the file database is not possible as the file database is infinite. Also a

brute force attack for the key file bits is not possible as the size of the key

file is very large.

This algorithm makes use of the standard compression software from

Microsoft Corporation. It provides optimum compression but still the key

file generated from this algorithm does not truly pass the ENT and NIST

tests. Hence some other compression mechanism or some encryption

mechanism should be used to get the better result.

Moreover this algorithm does not make use of secret key; hence if the source

file is compromised in any way then the key file is also not secret any more.

 21

Also, the source files downloaded by the authorized sender and receiver

must be identical. To ensure this, the authorized sender and receiver systems

can be synchronized.

The seed information, i.e. the source file link and the secret value, must be

transmitted to an authorized receiver in a secure way and thus rely on some

other encryption techniques like RSA or AES. Hence the pseudorandom key

based stream ciphers do not work completely independent of other

algorithms and their security may be affected by any attack on the security

of these algorithms.

 22

CHAPTER 3

INVERSION-ENCRYPTION METHOD

3.1 Introduction

This is the second proposed algorithm and is an encryption based algorithm.

The authorized sender and receiver can share their very large size data over

an unsecure channel at a very low cost using this algorithm. For this, the

authorized sender and the authorized receiver share a link on the Internet

from where a file can be downloaded. This link must be shared using a very

secure form of communication so that an unauthorized receiver is not able to

see it. The authorized sender and receiver also decide the cryptographic

symmetric key algorithm to be used during the process and share the secret

key and the secret value n between them through the same secure channel.

Then they download the file from the Internet using this link, which is

termed as the source file. Then both the authorized sender and receiver

generate the key file using this source file. This key file is XORed with the

plain data file to generate a cipher data file. Then this cipher data file is

transmitted over the unsecure channel.

The information that goes from the authorized sender to the authorized

receiver through the secure channel or medium includes: the file download

link, the encryption algorithm, the secret key and the secret value n.

 23

The information that goes from the authorized sender to the authorized

receiver through the insecure channel or medium includes: the cipher data

file encrypted using the key file generated from the proposed method.

3.2 Methodology

The key generation algorithm consists of the following steps.

Step 1: Input the source binary file in binary read mode. Open two other

binary files, say X and Y in binary write mode.

Step 2: Segment the source file in one byte segments each.

Step 3: Remove those bytes from the source file whose ASCII value is

either 0 or 255. Store the result in X.

Step 4: Close X.

Step 5: Open X in binary read mode.

Step 6: Remove all those bytes from X, which duplicate to their immediate

predecessor bytes and store the resultant bytes in Y.

Step 7: Close X and Y.

Step 8: Open X in binary write mode and Y in binary read mode.

 24

Step 9: Scan Y, bit by bit, to get a sequence of n consecutive zeros or n

consecutive ones, where 3 ≤ n ≤ 14. Note that there will be no sequence of

15 or more consecutive ones or zeros as null bytes are already removed from

the file. On getting such a sequence, invert the final bit of the sequence. As a

result, there will be no sequence in the file, which is composed of more than

n-1 consecutive zeros or n-1 consecutive ones.

Step 10: Store the resultant bytes in X.

Step 11: Close X and Y.

Step 12: Open X in binary read mode and Y in binary write mode.

Step 13: Segment X in 64-bit blocks for DES and IDEA or 128-bit blocks

for AES.

Step 14: Encrypt X using some standard secret key encryption algorithm

like IDEA, DES or AES in ECB mode. This increases randomness of the

file. Also the secret key is only available with the authorized sender and

receiver. Hence only the authorized sender and receiver can generate the file.

Step 15: Store the resultant bytes in Y. The resultant file Y serves as the key

file during encryption.

Step 16: Close all files.

 25

Fig. 3.1 Flowchart for the Inversion-Encryption method

The significance of the major steps of the algorithm is given as follows:

Inversion: In this step, the source file is scanned, bit by bit, to get a

sequence of n consecutive zeros or n consecutive ones, where 3 ≤ N ≤ 14.

On getting such a sequence, the final bit of the sequence is inverted. As a

result, there will be no sequence in the file, which is composed of more than

N-1 consecutive zeros or N-1 consecutive ones. This N is kept secret. There

will be no sequence of 15 or more consecutive ones or zeros as the bytes

with ASCII values 0 or 255 are already removed from the file. Inversion for

N<3 is not useful at all. Inversion for N=1 corresponds to the inversion of all

 26

the bits of the file. Inversion for N=2 corresponds to a file having alternate 1

and 0 bits, which has zero randomness.

Encryption: The results of NIST [32] and ENT [31] tests show that after

encryption the randomness of the file increases to a great extent. The

randomness of an encrypted file is close to the randomness of a true random

file. Also the secret key is only available with the authorized sender and

receiver. Hence only the authorized sender and receiver can generate the file.

The encryption is performed in ECB [56] mode because in ECB mode, only

secret key is used and the initial vector is not required. Hence less

information is required to be shared through the secure channel and also the

ECB mode is simpler.

3.3 Results

The proposed algorithm was implemented in C and Java programming

language to generate the pseudorandom binary key files from various types

of source files (i.e. from the text, audio, video and image files). The change

in the size of the files after each step is given in table 3.1. We also performed

ENT [31] and NIST [32] statistical tests on the source files and the

corresponding output files of the key generation algorithm to find the amount

of randomness in the files. The ENT and the NIST tests are performed using

the standard testing software available online on the official websites of these

tests. The results of the ENT tests are given in the tables 3.2, 3.3, 3.4 and 3.5

for text, image, audio and video files respectively. The results of NIST tests

for the text file are given in tables 3.6, 3.7, 3.8 and 3.9. The results of NIST

tests for the audio file are given in tables 3.10, 3.11, 3.12 and 3.13.

 27

Table 3.1 Size of the files after each step

File Type Size of SF Size of NRF Size of DRF Size of KF

Text 11.8 KB 11.8 KB 11.6 KB 11.6 KB

Audio 94.7 KB 61.3 KB 61 KB 61 KB

Video 3.97 MB 3.50 MB 3.47 MB 3.47 MB

Image 63.7 KB 61.5 KB 58 KB 58 KB

3.3.1 ENT Tests

Table 3.2 Results of ENT tests on Text File

TEXT FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

IDEA 7.982407 0 4.94 126.9986 3.181862987 1.28 -0.010872

Null Bytes Removed File

NONE 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

IDEA 7.982651 0 4.45 126.6336 3.152291769 0.34 0.010005

Duplicate Bytes Removed File

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

IDEA 7.983475 0 23.51 126.7933 3.183467742 1.33 -0.028721

File after applying inversion to a sequence of length two

NONE 0.000000 100 0.01 85.000 4.000000000 27.32 UNDEF

IDEA 3.000000 62 0.01 129.2500 4.000000000 27.32 0.271466

File after applying inversion to a sequence of length three

NONE 4.021938 49 0.01 136.0150 3.379032258 7.56 -0.207247

IDEA 7.983521 0 26.42 126.7744 3.141129032 0.01 -0.001412

File after applying inversion to a sequence of length four

NONE 4.313830 46 0.01 101.0115 3.961693548 26.10 -0.064890

IDEA 7.982166 0 4.49 127.1697 3.153225806 0.37 0.019027

File after applying inversion to a sequence of length five

NONE 4.511224 43 0.01 97.3783 3.870967742 23.22 0.030595

IDEA 7.983702 0 29.97 126.6097 3.153225806 0.37 -0.008499

File after applying inversion to a sequence of length six

NONE 4.882123 38 0.01 113.4824 3.397177419 8.14 -0.410593

IDEA 7.980907 0 0.80 128.7487 3.151209677 0.31 -0.014041

File after applying inversion to a sequence of length seven

NONE 4.364658 45 0.01 93.9212 4.000000000 27.32 -0.045451

IDEA 7.983319 0 21.59 126.9124 3.179435484 1.20 -0.028915

File after applying inversion to a sequence of length eight

NONE 4.372235 45 0.01 93.8406 4.000000000 27.32 -0.035130

 28

IDEA 7.983233 0 18.88 126.7508 3.183467742 1.33 -0.029151

File after applying inversion to a sequence of length nine

NONE 4.372949 45 0.01 93.8379 4.000000000 27.32 -0.034668

IDEA 7.983423 0 22.73 126.7556 3.183467742 1.33 -0.029203

File after applying inversion to a sequence of length ten

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

IDEA 7.983475 0 23.51 126.7933 3.183467742 1.33 -0.028721

File after applying inversion to a sequence of length eleven

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

IDEA 7.983475 0 23.51 126.7933 3.183467742 1.33 -0.028721

File after applying inversion to a sequence of length twelve

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

IDEA 7.983475 0 23.51 126.7933 3.183467742 1.33 -0.028721

File after applying inversion to a sequence of length thirteen

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

IDEA 7.983475 0 23.51 126.7933 3.183467742 1.33 -0.028721

File after applying inversion to a sequence of length fourteen

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

IDEA 7.983475 0 23.51 126.7933 3.183467742 1.33 -0.028721

Table 3.3 Results of ENT tests on Image File

IMAGE FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

Totally

Random

8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.184481 10 0.01 126.8271 3.504828474 11.56 0.435878

IDEA 7.997344 0 73.18 127.0432 3.140544518 0.03 0.002336

Null Bytes Removed File

NONE 7.190326 10 0.01 124.0478 3.596536302 14.48 0.573973

IDEA 7.996776 0 12.41 127.2197 3.138941759 0.08 0.001124

Duplicate Bytes Removed File

NONE 7.213525 9 0.01 123.9359 3.612877182 15.00 0.548074

IDEA 7.996417 0 4.32 127.5707 3.116269681 0.81 0.001858

File after applying inversion to a sequence of length two

NONE 0.000000 100 0.01 85.0000 4.000000000 27.32 UNDEF

IDEA 3.000000 62 0.01 129.2500 4.000000000 27.32 0.271466

File after applying inversion to a sequence of length three

NONE 5.660456 29 0.01 126.9927 3.795741245 20.82 0.100742

IDEA 7.996730 0 24.69 127.0205 3.167945095 0.84 0.007903

File after applying inversion to a sequence of length four

NONE 6.770797 15 0.01 125.7696 3.649207791 16.16 0.381586

IDEA 7.997146 0 80.37 127.5064 3.118691966 0.73 0.001749

File after applying inversion to a sequence of length five

NONE 7.133488 10 0.01 125.4563 3.603189020 14.69 0.459713

IDEA 7.996694 0 22.96 127.8550 3.122325394 0.61 0.001791

File after applying inversion to a sequence of length six

NONE 7.251777 9 0.01 123.8837 3.612069836 14.98 0.506082

IDEA 7.996770 0 31.06 127.6003 3.119095680 0.72 -0.001814

 29

File after applying inversion to a sequence of length seven

NONE 7.250141 9 0.01 124.3192 3.624987385 15.39 0.545376

IDEA 7.996820 0 36.69 127.9715 3.111425111 0.96 0.001945

File after applying inversion to a sequence of length eight

NONE 7.270602 9 0.01 124.0301 3.594711878 14.42 0.538111

IDEA 7.996570 0 11.58 127.3089 3.127169964 0.46 0.003827

File after applying inversion to a sequence of length nine

NONE 7.233893 9 0.01 123.9347 3.614088203 15.04 0.550350

IDEA 7.996437 0 4.85 127.5997 3.121114251 0.65 -0.000876

File after applying inversion to a sequence of length ten

NONE 7.225757 9 0.01 123.9300 3.613684529 15.03 0.549011

IDEA 7.996387 0 3.39 127.4927 3.118691966 0.73 -0.001249

File after applying inversion to a sequence of length eleven

NONE 7.219178 9 0.01 123.9324 3.613684529 15.03 0.548359

IDEA 7.996429 0 4.76 127.5651 3.117884538 0.75 0.001042

File after applying inversion to a sequence of length twelve

NONE 7.214809 9 0.01 123.9353 3.612877182 15.00 0.548112

IDEA 7.996468 0 6.11 127.5297 3.116269681 0.81 0.001417

File after applying inversion to a sequence of length thirteen

NONE 7.213700 9 0.01 123.9358 3.612877182 15.00 0.548083

IDEA 7.996416 0 4.30 127.5390 3.117884538 0.75 0.001633

File after applying inversion to a sequence of length fourteen

NONE 7.213525 9 0.01 123.9359 3.612877182 15.00 0.548074

IDEA 7.996417 0 4.32 127.5707 3.116269681 0.81 0.001858

Table 3.4 Results of ENT tests on Audio File

AUDIO FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 6.200233 22 0.01 125.2086 2.295751129 26.92 0.174946

IDEA 7.997502 0 0.04 127.4790 3.142998516 0.04 0.001645

Null Bytes Removed File

NONE 7.580974 5 0.01 125.6436 2.861509074 8.92 0.026084

IDEA 7.996578 0 3.72 127.5801 3.139172796 0.08 -0.005006

Duplicate Bytes Removed File

NONE 7.585443 5 0.01 125.6610 2.866961029 8.74 0.019331

IDEA 7.996756 0 13.60 127.6824 3.144475377 0.09 -0.004740

File after applying inversion to a sequence of length two

NONE 0.000000 100 0.01 85.0000 4.000000000 27.32 UNDEF

IDEA 3.000000 62 0.01 129.2500 4.000000000 27.32 0.271466

File after applying inversion to a sequence of length three

NONE 5.861390 26 0.01 126.5014 3.444423114 9.64 -0.029396

IDEA 7.997054 0 47.15 127.0106 3.140635500 0.03 -0.004090

File after applying inversion to a sequence of length four

NONE 7.093955 11 0.01 126.1196 3.18525628 1.39 0.03054

IDEA 7.996936 0 30.16 127.3891 3.146011328 0.14 0.003265

File after applying inversion to a sequence of length five

 30

NONE 7.501193 6 0.01 125.7701 3.053177193 2.81 0.016942

IDEA 7.997280 0 79.70 127.3381 3.131419795 0.32 -0.000602

File after applying inversion to a sequence of length six

NONE 7.643370 4 0.01 125.6156 2.982146285 5.08 0.016278

IDEA 7.996957 0 35.99 127.2388 3.145627340 0.13 0.005285

File after applying inversion to a sequence of length seven

NONE 7.684987 3 0.01 125.7893 2.927625264 6.81 0.017291

IDEA 7.996723 0 10.49 127.5751 3.120668139 0.67 -0.001743

File after applying inversion to a sequence of length eight

NONE 7.704242 3 0.01 125.7250 2.900364753 7.68 0.017971

IDEA 7.996449 0 1.37 127.7462 3.124508016 0.54 -0.003530

File after applying inversion to a sequence of length nine

NONE 7.652395 4 0.01 125.6860 2.880783260 8.30 0.018829

IDEA 7.997021 0 42.59 127.4060 3.141019487 0.02 -0.004650

File after applying inversion to a sequence of length ten

NONE 7.619051 4 0.01 125.6742 2.871568439 8.60 0.019166

IDEA 7.996839 0 20.02 127.4175 3.151387156 0.31 -0.004831

File after applying inversion to a sequence of length eleven

NONE 7.601424 4 0.01 125.6672 2.867344980 8.73 0.019284

IDEA 7.996848 0 21.15 127.6737 3.137563598 0.13 -0.004927

File after applying inversion to a sequence of length twelve

NONE 7.592307 5 0.01 125.6633 2.866961029 8.74 0.019326

IDEA 7.996782 0 15.93 127.5377 3.145243352 0.12 -0.004949

File after applying inversion to a sequence of length thirteen

NONE 7.587984 5 0.01 125.6618 2.866961029 8.74 0.019336

IDEA 7.996741 0 12.71 127.6942 3.143323414 0.06 -0.005023

File after applying inversion to a sequence of length fourteen

NONE 7.586127 5 0.01 125.6614 2.866961029 8.74 0.019333

IDEA 7.996761 0 14.04 127.6765 3.142171451 0.02 -0.004876

Table 3.5 Results of ENT tests on Video File

VIDEO FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.606804 4 0.01 112.1045 3.271680939 4.14 0.256775

IDEA 7.935663 0 0.01 125.0358 3.176128177 1.10 -0.010936

Null Bytes Removed File

NONE 7.905910 1 0.01 114.2856 3.391006983 7.94 0.034345

IDEA 7.999931 0 0.01 127.5083 3.142984869 0.04 -0.002135

Duplicate Bytes Removed File

NONE 7.908754 1 0.01 114.5160 3.386551745 7.80 0.024494

IDEA 7.999934 0 0.08 127.4725 3.141887332 0.01 0.000433

File after applying inversion to a sequence of length two

NONE 0.000000 100 0.01 170.0000 4.000000000 27.32 UNDEF

IDEA 3.000000 62 0.01 186.3750 1.000003292 68.17 -0.414491

File after applying inversion to a sequence of length three

NONE 5.867239 26 0.01 122.5914 3.616147915 15.11 -0.039728

 31

IDEA 7.999939 0 1.38 127.4885 3.142624802 0.03 -0.000481

File after applying inversion to a sequence of length four

NONE 7.175432 10 0.01 120.6774 3.481750960 10.83 0.024000

IDEA 7.999945 0 14.91 127.5084 3.142657725 0.03 0.001103

File after applying inversion to a sequence of length five

NONE 7.632515 4 0.01 117.8010 3.442665157 9.58 0.025247

IDEA 7.999939 0 1.44 127.5310 3.142572126 0.03 0.000066

File after applying inversion to a sequence of length six

NONE 7.819440 2 0.01 117.2579 3.405027951 8.39 0.028836

IDEA 7.999941 0 3.74 127.4779 3.140425560 0.04 -0.000785

File after applying inversion to a sequence of length seven

NONE 7.895737 1 0.01 116.7389 3.386051320 7.78 0.029031

IDEA 7.999940 0 1.96 127.5087 3.142624802 0.03 -0.001025

File after applying inversion to a sequence of length eight

NONE 7.927758 0 0.01 116.1917 3.378110370 7.53 0.026195

IDEA 7.999937 0 0.36 127.5299 3.141288137 0.01 0.000371

File after applying inversion to a sequence of length nine

NONE 7.922218 0 0.01 115.0470 3.388968269 7.87 0.025645

IDEA 7.999942 0 4.98 127.5018 3.141558104 0.00 0.000032

File after applying inversion to a sequence of length ten

NONE 7.916712 1 0.01 114.6800 3.387829144 7.84 0.024953

IDEA 7.999942 0 4.25 127.4749 3.142177052 0.02 0.000416

File after applying inversion to a sequence of length eleven

NONE 7.913144 1 0.01 114.5566 3.387019247 7.81 0.024526

IDEA 7.999936 0 0.27 127.4640 3.141801732 0.01 0.000324

File after applying inversion to a sequence of length twelve

NONE 7.911015 1 0.01 114.5274 3.386643928 7.80 0.024467

IDEA 7.999935 0 0.17 127.4758 3.141274968 0.01 0.000109

File after applying inversion to a sequence of length thirteen

NONE 7.909797 1 0.01 114.5190 3.386571498 7.80 0.024470

IDEA 7.999934 0 0.06 127.4795 3.141834655 0.01 0.000466

File after applying inversion to a sequence of length fourteen

NONE 7.909106 1 0.01 114.5168 3.386551745 7.80 0.024484

IDEA 7.999934 0 0.09 127.4736 3.142078284 0.02 0.000433

3.3.2 NIST Tests

Table 3.6 Results of NIST tests on Text - Unencrypted File

UNENCRYPTED TEXT FILE

TEST SF NRF DRF IF

N=2

IF

N=3

IF

N=4

IF

N=5

IF

N=6

Approx. Entropy F F F F F F F F

Block Frequency S S S S S S S S

Cumulative Sum F F F S F S F F

FFT F F F F S F F F

Frequency F F F S F S F F

Linear Complexity S S S F S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template F F F F F F F F

 32

Table 3.7 Results of NIST tests on Text - Unencrypted File

UNENCRYPTED TEXT FILE

TEST IF

N=7

IF

N=8

IF

N=9

IF

N=10

IF

N=11

IF

N=12

IF

N=13

IF

N=14

Approx. Entropy F F F F F F F F

Block Frequency S S S S S S S S

Cumulative Sum F F F F F F F F

FFT F F F F F F F F

Frequency F F F F F F F F

Linear Complexity S S S S S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template F F F F F F F F

Rank F F F F F F F F

Runs F F F F F F F F

Serial1 F F F F F F F F

Serial2 F F F F F F F F

Universal S S S S S S S S

Table 3.8 Results of NIST tests on Text - Encrypted File

Rank F F F F S F F F

Runs F F F F F F F F

Serial1 F F F F F F F F

Serial2 F F F F F F F F

Universal S S S S S S S S

IDEA ENCRYPTED TEXT FILE

TEST SF NRF DRF IF

N=2

IF

N=3

IF

N=4

IF

N=5

IF

N=6

Approx. Entropy S S S F S S S S

Block Frequency S S S S S S S S

Cumulative Sum S S S F S S S S

FFT S S S F S S S S

Frequency S S S F S S S S

Linear Complexity S F S F S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template S S S F S S S S

Rank S S S F S S S S

Runs S S S F S S S S

Serial1 S S S F S S S S

Serial2 S S S F S S S S

Universal S S S S S S S S

 33

Table 3.9 Results of NIST tests on Text - Encrypted File

IDEA ENCRYPTED TEXT FILE

TEST IF

N=7

IF

N=8

IF

N=9

IF

N=10

IF

N=11

IF

N=12

IF

N=13

IF

N=14

Approx. Entropy S S S S S S S S

Block Frequency S S S S S S S S

Cumulative Sum S S S S S S S S

FFT S S S S S S S S

Frequency S S S S S S S S

Linear Complexity S S S S S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template S S S S S S S S

Rank S S S S S S S S

Runs S S S S S S S S

Serial1 S S S S S S S S

Serial2 S S S S S S S S

Universal S S S S S S S S

Table 3.10 Results of NIST tests on Audio - Unencrypted File

Table 3.11 Results of NIST tests on Audio - Unencrypted File

UNENCRYPTED AUDIO FILE

TEST IF

N=7

IF

N=8

IF

N=9

IF

N=10

IF

N=11

IF

N=12

IF

N=13

IF

N=14

Approx. Entropy F F F F F F F F

Block Frequency F F F F F F F F

Cumulative Sum F F F F F F F F

FFT S S S S S S S S

UNENCRYPTED AUDIO FILE

TEST SF NRF DRF IF

N=2

IF

N=3

IF

N=4

IF

N=5

IF

N=6

Approx. Entropy F F F F F F F F

Block Frequency F F F S S F F F

Cumulative Sum F F F S S S F F

FFT F S S F F F S S

Frequency F F F S S S S S

Linear Complexity S S F F S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template F S S F F F F F

Rank F S S F S S S S

Runs F F F F F F S F

Serial1 F F F F F F F F

Serial2 F F S F F F F F

Universal S S S S S S S S

 34

Frequency F S F F F F F F

Linear Complexity S S S F S F F F

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template F F F S S S S S

Rank S S S S S S S S

Runs F F F F F F F F

Serial1 F F F F F F F F

Serial2 F F S S S S S S

Universal S S S S S S S S

Table 3.12 Results of NIST tests on Audio - Encrypted File

Table 3.13 Results of NIST tests on Audio - Encrypted File

IDEA ENCRYPTED AUDIO FILE

TEST IF

N=7

IF

N=8

IF

N=9

IF

N=10

IF

N=11

IF

N=12

IF

N=13

IF

N=14

Approx. Entropy S S S S S S S S

Block Frequency S S S S S S S S

Cumulative Sum S S S S S S S S

FFT S S S S S S S S

Frequency S S S S S S S S

Linear Complexity S S S S S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template S S S S S S S S

Rank S S S S S S S S

Runs S S S S S S S S

Serial1 S S S S S S S S

Serial2 S S S S S S S S

Universal S S S S S S S S

IDEA ENCRYPTED AUDIO FILE

TEST SF NRF DRF IF

N=2

IF

N=3

IF

N=4

IF

N=5

IF

N=6

Approx. Entropy S S S F S S S S

Block Frequency S S S S S S S S

Cumulative Sum S S S F S S S S

FFT S S S F S S S S

Frequency S S S F S S S S

Linear Complexity S S S F S S S S

Longest Run S S S S S S S S

Non-periodic template S S S S S S S S

Overlapping Template S S S F S S S S

Rank S S S F S S S S

Runs S S S F S S S S

Serial1 S S S F S S S S

Serial2 S S S F S S S S

Universal S S S S S S S S

 35

3.4 Advantages and Limitations

The algorithm mainly reduces the problem of large size key distribution to

the authorized receiver. One just needs to tell the authorized receiver (in a

secure way), the song or movie name (for example) with which the data file

is encrypted, the value of n, the encryption algorithm and the secret key. The

authorized receiver can generate the key file at his own site using the same

popular song or movie file and decrypt the data file from it. An unauthorized

receiver (intruder) does not have the knowledge of which song or movie file

is used as key or even the extension of the file used for key generation and

hence cannot generate key file. Even if the unauthorized receiver knows the

source file from which the key file is generated, he cannot generate the key

file as he does not know the secret key used at the encryption stage.

Moreover the brute force attack on source file using the file database is not

possible as the file database is infinite. Also a brute force attack on the

source file bits is not possible as the size of the source file is very large.

This algorithm can be used to generate key file from a source file having any

kind of file extension and can be used to encrypt a file of type of extension.

The algorithm is simple and executes faster as it can be implemented in C

programming language. The algorithm attempts to reduce the redundancy in

the source file to a much greater extent.

This algorithm does not use initial vector and hence only one security

weapon is with the authorized sender and receiver i.e. the secret key.

 36

Also, the source files downloaded by the authorized sender and receiver

must be identical. To ensure this, the authorized sender and receiver systems

can be synchronized.

The seed information, i.e. the source file link, the secret key and the secret

value, must be transmitted to an authorized receiver in a secure way and thus

rely on some other encryption techniques like RSA or AES. Hence the

pseudorandom key based stream ciphers do not work completely

independent of other algorithms and their security may be affected by any

attack on the security of these algorithms.

 37

CHAPTER 4

DUPLICATE BLOCKS REMOVAL-

ECB MODE ENCRYPTION METHOD

4.1 Introduction

This is the third proposed algorithm and is an encryption based algorithm.

The authorized sender and receiver can share their very large size data over

an unsecure channel at a very low cost using this algorithm. For this, the

authorized sender and the authorized receiver share a link on the Internet

from where a file can be downloaded. This link must be shared using a very

secure form of communication so that an unauthorized receiver is not able to

see it. The authorized sender and receiver also decide the cryptographic

symmetric key algorithm to be used during the process and share the secret

key between them through the same secure channel. Then they download the

file from the Internet using this link, which is termed as the source file. Then

both the authorized sender and receiver generate the key file using this

source file. This key file is XORed with the plain data file to generate a

cipher data file. Then this cipher data file is transmitted over the unsecure

channel.

The information that goes from the authorized sender to the authorized

receiver through the secure channel or medium includes: the file download

link, the encryption algorithm and the secret key.

 38

The information that goes from the authorized sender to the authorized

receiver through the insecure channel or medium includes: the cipher data

file encrypted using the key file generated from the proposed method.

4.2 Methodology

The key generation algorithm consists of the following steps.

Step 1: Open the source file in binary read mode. Open two other binary

files, say X and Y in binary write mode.

Step 2: Remove the header from the source file. Store the result in X. Also,

instead of generating the key from the whole file, we can also generate the

key from a segment of the source file. This will be useful when the size of

key is required to be very small as compared to the size of source file. This

will speed up the process.

Step 3: Close all X.

Step 4: Open X in binary read mode.

Step 5: Segment X in 64-bit blocks for DES and IDEA or 128-bit blocks for

AES.

Step 6: Encrypt X using some standard secret key encryption algorithm like

IDEA, DES or AES in ECB mode. Remove all successive duplicate blocks

 39

from the file or alternatively remove all duplicate bytes which occur eight

times in a sequence from the file. This increases randomness of the file. Also

the secret key is only available with the authorized sender and receiver.

Hence only the authorized sender and receiver can generate the file.

Step 7: Store the resultant bytes in Y. The resultant file Y serves as the key

file during encryption.

Step 8: Close all files.

The significance of the major steps of the algorithm is given as follows:

Header Removal: The header is removed as the header of all files with

same extension will be almost similar. Thus, if not removed, a cryptanalyst

can easily predict the first few bytes of the key sequence. Also, instead of

generating the key from the whole file, we can also generate the key from a

segment of the source file. This will be useful when the size of key is

required to be very small as compared to the size of source file. This will

speed up the process.

Encryption: The results of NIST [32] and ENT [31] tests show that after

encryption the randomness of the file increases to a great extent. The

randomness of an encrypted file is close to the randomness of a true random

file. Also the secret key is only available with the authorized sender and

receiver. Hence only the authorized sender and receiver can generate the file.

The encryption is performed in ECB [56] mode because in ECB mode, only

secret key is used and the initial vector is not required. Hence less

 40

information is required to be shared through the secure channel and also the

ECB mode is simpler.

4.3 Results

The proposed algorithm was implemented in C and Java programming

language to generate the pseudorandom binary key files from various types

of source files (i.e. from the text, audio, video and image files). The change

in the size of the files after each step is given in table 4.1. We also performed

ENT [31] and NIST [32] statistical tests on the source files and the

corresponding output files of the key generation algorithm to find the amount

of randomness in the files. The ENT and the NIST tests are performed using

the standard testing software available online on the official websites of these

tests. The results of the ENT tests are given in the tables 4.2, 4.3, 4.4 and 4.5

for text, image, audio and video files respectively. The results of NIST tests

for the text file are given in tables 4.6 and 4.7. The results of NIST tests for

the image file are given in tables 4.8 and 4.9. The results of NIST tests for the

audio file are given in tables 4.10 and 4.11. The results of NIST tests for the

video file are given in tables 4.12 and 4.13.

Table 4.1 Size of the files after each step

File Type Size of SF Size of DRF Size of DBRF Size of KF

Text 11.8 KB 11.6 KB 11.1 KB 11.1 KB

Audio 94.7 KB 93.6 KB 93.6 KB 93.6 KB

Video 3.97 MB 3.56 MB 3.54 MB 3.54 MB

Image 63.7 KB 60.1 KB 60.1 KB 60.1 KB

 41

4.3.1 ENT Tests

Table 4.2 Results of ENT tests on Text File

TEXT FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

DES 7.981000 0 0.21 127.4446 3.116141732 0.81 0.003129

AES 7.981411 0 0.66 126.8760 3.125984252 0.50 -0.003826

IDEA 7.982407 0 4.94 126.9986 3.181862987 1.28 -0.010872

Duplicate Bytes Removed File

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

DES 7.984920 0 63.14 127.5600 3.125440806 0.51 -0.001218

AES 7.986449 0 92.84 127.9104 3.198388721 1.81 -0.001904

IDEA 7.983475 0 23.51 126.7933 3.183467742 1.33 -0.028721

Duplicate Blocks Removed File

NONE 4.374020 45 0.01 93.6546 4.000000000 27.32 -0.038895

DES 7.985385 0 87.59 127.7695 3.107368421 1.09 -0.003982

AES 7.984903 0 75.08 127.5565 3.093108890 1.54 0.006160

IDEA 7.983946 0 55.42 126.9711 3.226146547 2.69 -0.026677

Table 4.3 Results of ENT tests on Image File

IMAGE FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.184481 10 0.01 126.8271 3.504828474 11.56 0.435878

DES 7.996706 0 3.91 127.5251 3.163877138 0.71 0.006217

AES 7.996834 0 8.19 126.9396 3.165348538 0.76 -0.002723

IDEA 7.997344 0 73.18 127.0432 3.140544518 0.03 0.002336

Duplicate Bytes Removed File

NONE 7.203551 9 0.01 127.0198 3.497174040 11.32 0.403755

DES 7.997040 0 51.53 127.8566 3.129994153 0.37 -0.002361

AES 7.996831 0 23.06 127.2630 3.157053780 0.49 0.001480

IDEA 7.996900 0 32.83 127.9457 3.141604132 0.00 -0.002083

Duplicate Blocks Removed File

NONE 7.203451 9 0.01 127.0309 3.497125037 11.32 0.403595

DES 7.997046 0 52.44 127.8644 3.129994153 0.37 -0.002380

AES 7.996817 0 21.41 127.2652 3.157833203 0.52 0.001500

IDEA 7.996902 0 33.22 127.9447 3.141520468 0.00 -0.002100

 42

Table 4.4 Results of ENT tests on Audio File

AUDIO FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 6.200233 22 0.01 125.2086 2.295751129 26.92 0.174946

DES 7.997638 0 0.30 127.6035 3.126035869 0.50 -0.005894

AES 7.998136 0 55.02 127.1001 3.152504638 0.35 -0.000312

IDEA 7.997502 0 0.04 127.4790 3.142998516 0.04 0.001645

Duplicate Bytes Removed File

NONE 6.238276 22 0.01 125.9610 2.267692885 27.82 0.160875

DES 7.997572 0 0.25 127.8322 3.130772119 0.34 -0.003679

AES 7.998031 0 37.94 127.8142 3.132632633 0.29 0.001870

IDEA 7.998041 0 38.71 127.4127 3.126712972 0.47 0.001975

Duplicate Blocks Removed File

NONE 6.238962 22 0.01 125.9726 2.267651477 27.82 0.160845

DES 7.997562 0 0.22 127.8418 3.130500094 0.35 -0.003575

AES 7.997994 0 30.91 127.8323 3.131555889 0.32 0.001347

IDEA 7.998058 0 42.78 127.4100 3.128583949 0.41 0.002027

Table 4.5 Results of ENT tests on Video File

VIDEO FILE

Encryption

type

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.606804 4 0.01 112.1045 3.271680939 4.14 0.256775

DES 7.941794 0 0.01 127.4130 3.101435687 1.28 -0.015874

AES 7.967535 0 0.01 126.9710 3.167071221 0.81 -0.006830

IDEA 7.935663 0 0.01 125.0358 3.176128177 1.10 -0.010936

Duplicate Bytes Removed File

NONE 7.892749 1 0.01 112.4897 3.389071855 7.88 0.031485

DES 7.999929 0 0.01 127.5550 3.141130972 0.01 0.000594

AES 7.999955 0 85.58 127.5571 3.137745981 0.12 -0.000750

IDEA 7.999928 0 0.01 127.4735 3.142140192 0.02 -0.000731

Duplicate Blocks Removed File

NONE 7.897290 1 0.01 112.7841 3.388054407 7.85 0.030452

DES 7.999948 0 26.10 127.5312 3.137057753 0.14 0.000482

AES 7.999950 0 43.56 127.4952 3.141353051 0.01 0.000415

IDEA 7.999948 0 29.81 127.5053 3.145908644 0.14 -0.000751

 43

4.3.2 NIST Tests

Table 4.6 Results of NIST tests on Text – unencrypted and DES encrypted Files

Table 4.7 Results of NIST tests on Text – AES and IDEA encrypted Files

Table 4.8 Results of NIST tests on Image – unencrypted and DES encrypted Files

TEXT FILE

TEST UNENCRYPTED DES ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy F F F S S S

Block Frequency S S S S S S

Cumulative Sum F F F S S S

FFT F F F S S S

Frequency F F F S S S

Linear Complexity S S S S S S

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template F F F S S S

Rank F F F S S S

Runs F F F S S S

Serial1 F F F F S S

Serial2 F F F S S S

Universal S S S S S S

TEXT FILE

TEST AES ENCRYPTED IDEA ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy S S S S S S

Block Frequency F S S S S S

Cumulative Sum S S S S S S

FFT S F S S S S

Frequency S S S S S S

Linear Complexity S S S S S S

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template S S S S S S

Rank S F S S S S

Runs S S S S S S

Serial1 S S S S S S

Serial2 S S S S S S

Universal S S S S S S

IMAGE FILE

TEST UNENCRYPTED DES ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy F F F S S S

Block Frequency F F F S S S

Cumulative Sum F F F S S S

FFT F F F S S S

 44

Table 4.9 Results of NIST tests on Image – AES and IDEA encrypted Files

Table 4.10 Results of NIST tests on Audio – unencrypted and DES encrypted Files

Frequency F F F S S S

Linear Complexity S S S S S S

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template F F F S S S

Rank F F F S S S

Runs F F F S S S

Serial1 F F F S S S

Serial2 F F F S S S

Universal S S S S S S

IMAGE FILE

TEST AES ENCRYPTED IDEA ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy S S S S S S

Block Frequency S S S S S S

Cumulative Sum S S S S S S

FFT S S S S S S

Frequency S S S S S S

Linear Complexity S S S S S S

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template S S S S S S

Rank S S S S S S

Runs S S S S S S

Serial1 S S S S S S

Serial2 S S S S S S

Universal S S S S S S

AUDIO FILE

TEST UNENCRYPTED DES ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy F F F S S S

Block Frequency F F F S S S

Cumulative Sum F F F S S S

FFT F F F S S S

Frequency F F F S S S

Linear Complexity S S S S S S

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template F F F S S S

Rank F F F S S S

Runs F F F S S S

Serial1 F F F S S S

Serial2 F F F S S S

Universal S S S S S S

 45

Table 4.11 Results of NIST tests on Audio – AES and IDEA encrypted Files

Table 4.12 Results of NIST tests on Video – unencrypted and DES encrypted Files

Table 4.13 Results of NIST tests on Video – AES and IDEA Files

AUDIO FILE

TEST AES ENCRYPTED IDEA ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy S S S S S S

Block Frequency S S S S S S

Cumulative Sum S S S S S S

FFT S S S S S S

Frequency S S S S S S

Linear Complexity S S S S S S

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template S S S S S S

Rank S S S S S S

Runs S S S S S S

Serial1 S S S S S S

Serial2 S S S S S S

Universal S S S S S S

VIDEO FILE

TEST UNENCRYPTED AES ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy F F F F S S

Block Frequency F F F S S S

Cumulative Sum F F F F S S

FFT F F F F S S

Frequency F F F F S S

Linear Complexity F S S F S S

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template S S S S S S

Rank F F F F S S

Runs F F F F S S

Serial1 F F F F S S

Serial2 F F F F S S

Universal S S S S S S

VIDEO FILE

TEST DES ENCRYPTED IDEA ENCRYPTED

SF DRF DBRF SF DRF DBRF

Approx. Entropy F F S F F S

Block Frequency S S S S S S

Cumulative Sum F S S F S S

FFT F S S F F S

Frequency F S S F S S

Linear Complexity F S S F S S

 46

4.4 Advantages and Limitations

The algorithm mainly reduces the problem of large size key distribution to

the authorized receiver. One just requires to tell the authorized receiver (in a

secure way), the song or movie name or link (for example) with which the

data file is encrypted, the encryption algorithm and the secret key. The

authorized receiver can generate the key file at his own site using the same

popular song or movie file and decrypt the data file from it. An unauthorized

receiver (intruder) does not have the knowledge of which song or movie file

is used as key or even the extension of the file used for key generation and

hence cannot generate key file. Even if the unauthorized receiver knows the

source file from which the key file is generated, he cannot generate the key

file as he does not know the secret key used at the encryption stage.

Moreover the brute force attack on source file using the file database is not

possible as the file database on the Internet is infinite. Also a brute force

attack on the source file bits is not possible as the size of the source file is

very large.

This algorithm can be used to generate key file from a source file having any

kind of file extension and can be used to encrypt a file of type of extension.

Longest Run S S S S S S

Non-periodic template S S S S S S

Overlapping Template S F S S S S

Rank F S S F F S

Runs F F S F S S

Serial1 F F S F F S

Serial2 F F S F F S

Universal S S S S S S

 47

The algorithm attempts to reduce the redundancy in the source file to a much

greater extent.

This algorithm also does not use initial vector and hence only one weapon

for security is with the authorized sender and receiver i.e. the secret key.

This algorithm may execute slowly. Also, the source files downloaded by

the authorized sender and receiver must be identical. To ensure this, the

authorized sender and receiver systems can be synchronized.

The seed information, i.e. the source file link and the secret key, must be

transmitted to an authorized receiver in a secure way and thus rely on some

other encryption techniques like RSA or AES. Hence the pseudorandom key

based stream ciphers do not work completely independent of other

algorithms and their security may be affected by any attack on the security

of these algorithms.

 48

CHAPTER 5

DUPLICATE BLOCKS REMOVAL-

CHAINING MODE ENCRYPTION METHOD

5.1 Introduction

This is the fourth proposed algorithm and is an encryption based algorithm.

The authorized sender and receiver can share their very large size data over

an unsecure channel at a very low cost using this algorithm. For this, the

authorized sender and the authorized receiver share a link on the Internet

from where a file can be downloaded. This link must be shared using a very

secure form of communication so that an unauthorized receiver is not able to

see it. The authorized sender and receiver also decide the cryptographic

symmetric key algorithm to be used during the process and share the secret

key and the initial vector between them through the same secure channel.

Then they download the file from the Internet using this link, which is

termed as the source file. Then both the authorized sender and receiver

generate the key file using this source file. This key file is XORed with the

plain data file to generate a cipher data file. Then this cipher data file is

transmitted over the unsecure channel.

The information that goes from the authorized sender to the authorized

receiver through the secure channel or medium includes: the file download

link, the encryption algorithm, the chaining mode, the secret key and the

initial vector.

 49

The information that goes from the authorized sender to the authorized

receiver through the insecure channel or medium includes: the cipher data

file encrypted using the key file generated from the proposed method.

5.2 Methodology

The key generation algorithm consists of the following steps.

Step 1: Open the source file in binary read mode. Open two other binary

files, say X and Y in binary write mode.

Step 2: Remove the header from the source file. Store the result in X. Also,

instead of generating the key from the whole file, we can also generate the

key from a segment of the source file. This will be useful when the size of

key is required to be very small as compared to the size of source file. This

will speed up the process.

Step 3: Close all X.

Step 4: Open X in binary read mode.

Step 5: Segment X in 64-bit blocks for DES and IDEA or 128-bit blocks for

AES.

 50

Step 6: Encrypt X using some standard secret key encryption algorithm like

IDEA, DES or AES in chaining mode (CBC/CFB/OFB). Remove all

successive duplicate blocks from the file or alternatively remove all

duplicate bytes which occur eight times in a sequence from the file. This

increases randomness of the file. Also the secret key and initial vector are

only available with the authorized sender and receiver. Hence only the

authorized sender and receiver can generate the file.

Step 7: Store the resultant bytes in Y. The resultant file Y serves as the key

file during encryption.

Step 8: Close all files.

The significance of the major steps of the algorithm is given as follows:

Header Removal: The header is removed as the header of all files with

same extension will be almost similar. Thus, if not removed, a cryptanalyst

can easily predict the first few bytes of the key sequence. Also, instead of

generating the key from the whole file, we can also generate the key from a

segment of the source file. This will be useful when the size of key is

required to be very small as compared to the size of source file. This will

speed up the process.

Encryption: The results of NIST and ENT tests show that after encryption

the randomness of the file increases to a great extent. The randomness of an

encrypted file is close to the randomness of a true random file. The

encryption is performed in chaining mode (CBC/CFB/OFB) [56] and not in

 51

ECB [56] mode because in ECB mode, a codebook attack is possible. In this

attack, if two or more blocks of plaintext are identical then the

corresponding ciphertext blocks will also be identical. Thus a cryptanalyst

can use this information to attack the secret system. It does not matter that

the identical blocks of the plaintext reside at which position in the source

file. The probability of a codebook attack increases when the number of such

identical blocks is large in the source file. Performing the encryption in

chaining mode removes the probability of the codebook attack.

5.3 Results

The proposed algorithm was implemented in C and Java programming

language to generate the pseudorandom binary key files from various types

of source files (i.e. from the text, audio, video and image files). The change

in the size of the files after each step is given in table 5.1. We also performed

ENT [31] and NIST [32] statistical tests on the source files and the

corresponding output files of the key generation algorithm to find the amount

of randomness in the files. The ENT and the NIST tests are performed using

the standard testing software available online on the official websites of these

tests. The results of the ENT tests are given in the tables 5.2, 5.3, 5.4 and 5.5

for text, image, audio and video files respectively. The results of NIST tests

for the text file are given in tables 5.6, 5.7 and 5.8. The results of NIST tests

for the image file are given in tables 5.9, 5.10 and 5.11. The results of NIST

tests for the audio file are given in tables 5.12, 5.13 and 5.14. The results of

NIST tests for the video file are given in tables 5.15, 5.16 and 5.17.

 52

Table 5.1 Size of the files after each step

File Type Size of SF Size of DRF Size of DBRF Size of KF

Text 11.8 KB 11.6 KB 11.1 KB 11.1 KB

Audio 94.7 KB 93.6 KB 93.6 KB 93.6 KB

Video 3.97 MB 3.56 MB 3.54 MB 3.54 MB

Image 63.7 KB 60.1 KB 60.1 KB 60.1 KB

5.3.1 ENT Tests

Table 5.2 Results of ENT tests on Text File

TEXT FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

AES Encrypted Source File

CBC 7.981414 0 0.85 129.2305 3.059055118 2.63 0.003301

CFB 7.984934 0 48.98 128.0091 3.088582677 1.69 -0.012361

OFB 7.984554 0 35.51 127.0594 3.192913386 1.63 0.003837

DES Encrypted Source File

CBC 7.984761 0 43.55 126.5590 3.187007874 1.45 -0.005805

CFB 7.985555 0 66.11 127.9566 3.055118110 2.75 -0.001727

OFB 7.985568 0 69.94 127.4976 3.141732283 0.00 0.004748

Duplicate Bytes Removed File

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

AES Encrypted Duplicate Bytes Removed File

CBC 7.987448 0 98.47 127.0578 3.208459215 2.13 -0.001078

CFB 7.983033 0 12.66 128.0075 3.125881168 0.50 -0.006565

OFB 7.984573 0 49.83 126.9382 3.170191339 0.91 -0.000054

DES Encrypted Duplicate Bytes Removed File

CBC 7.985959 0 84.14 128.4050 3.121410579 0.64 -0.001444

CFB 7.983799 0 31.09 126.4731 3.117380353 0.77 -0.012860

OFB 7.986016 0 86.87 127.3440 3.153652393 0.38 0.005629

Duplicate Blocks Removed File

NONE 4.374020 45 0.01 93.6546 4.000000000 27.32 -0.038895

AES Encrypted Duplicate Blocks Removed File

CBC 7.982608 0 15.99 129.0339 3.187795897 1.47 -0.005523

CFB 7.985064 0 79.47 127.8787 3.109942136 1.01 -0.003268

OFB 7.985196 0 84.88 127.3972 3.122567070 0.61 -0.001105

DES Encrypted Duplicate Blocks Removed File

CBC 7.985360 0 85.94 126.2659 3.157894737 0.52 -0.008137

CFB 7.982293 0 15.19 127.9438 3.086315789 1.76 -0.007784

OFB 7.983706 0 48.89 127.4754 3.164210526 0.72 -0.005406

 53

Table 5.3 Results of ENT tests on Image File

IMAGE FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.184481 10 0.01 126.8271 3.504828474 11.56 0.435878

AES Encrypted Source File

CBC 7.997009 0 25.02 127.6634 3.159095089 0.56 0.002612

CFB 7.997205 0 53.19 127.9309 3.133345595 0.26 0.002743

OFB 7.997005 0 21.39 127.6488 3.139231194 0.08 -0.005302

DES Encrypted Source File

CBC 7.997578 0 94.72 127.4071 3.165348538 0.76 0.001454

CFB 7.997158 0 46.28 127.1562 3.133713445 0.25 0.005772

OFB 7.997188 0 48.69 127.5111 3.131506345 0.32 -0.000608

Duplicate Bytes Removed File

NONE 7.203551 9 0.01 127.0198 3.497174040 11.32 0.403755

AES Encrypted Duplicate Bytes Removed File

CBC 7.997269 0 82.82 127.1143 3.156664069 0.48 -0.005372

CFB 7.997007 0 48.93 127.3832 3.131722525 0.31 -0.002387

OFB 7.996878 0 29.65 127.9351 3.147310990 0.18 0.000137

DES Encrypted Duplicate Bytes Removed File

CBC 7.996863 0 27.32 127.3771 3.149873319 0.26 -0.004107

CFB 7.997184 0 73.21 127.3175 3.160397583 0.60 0.005344

OFB 7.996711 0 11.82 127.2607 3.121808614 0.63 0.006084

Duplicate Blocks Removed File

NONE 7.203451 9 0.01 127.0309 3.497125037 11.32 0.403595

AES Encrypted Duplicate Blocks Removed File

CBC 7.997275 0 83.41 127.1037 3.156664069 0.48 -0.005419

CFB 7.997005 0 48.53 127.3841 3.131722525 0.31 -0.002413

OFB 7.996875 0 29.28 127.9343 3.147310990 0.18 0.000151

DES Encrypted Duplicate Blocks Removed File

CBC 7.996865 0 27.67 127.3809 3.149873319 0.26 -0.004063

CFB 7.997172 0 71.66 127.3166 3.160397583 0.60 0.005361

OFB 7.996707 0 11.58 127.2616 3.121808614 0.63 0.006112

Table 5.4 Results of ENT tests on Audio File

AUDIO FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 6.200233 22 0.01 125.2086 2.295751129 26.92 0.174946

AES Encrypted Source File

CBC 7.998017 0 29.11 127.9112 3.109956710 1.01 0.007598

 54

CFB 7.997902 0 11.73 127.3821 3.130488559 0.35 0.007982

OFB 7.998031 0 32.37 127.9757 3.119851577 0.69 -0.001320

DES Encrypted Source File

CBC 7.997967 0 21.63 127.5902 3.126283241 0.49 0.005749

CFB 7.998078 0 42.50 127.4880 3.160667904 0.61 -0.004354

OFB 7.997968 0 20.95 127.2620 3.147062461 0.17 -0.001750

Duplicate Bytes Removed File

NONE 6.238276 22 0.01 125.9610 2.267692885 27.82 0.160875

AES Encrypted Duplicate Bytes Removed File

CBC 7.998085 0 51.59 127.4865 3.140890891 0.02 -0.004667

CFB 7.998121 0 57.31 127.6669 3.136636637 0.16 0.001433

OFB 7.998058 0 43.98 127.3267 3.131131131 0.33 -0.004011

DES Encrypted Duplicate Bytes Removed File

CBC 7.998247 0 84.00 127.6452 3.145789013 0.13 0.001662

CFB 7.998192 0 73.09 127.4565 3.165310975 0.75 -0.000014

OFB 7.998354 0 94.66 127.5859 3.148291828 0.21 -0.002491

Duplicate Blocks Removed File

NONE 6.238962 22 0.01 125.9726 2.267651477 27.82 0.160845

AES Encrypted Duplicate Blocks Removed File

CBC 7.998095 0 53.99 127.4925 3.142320691 0.02 -0.004222

CFB 7.998103 0 53.95 127.6487 3.138815872 0.09 0.000346

OFB 7.998045 0 41.08 127.3267 3.129302791 0.39 -0.004233

DES Encrypted Duplicate Blocks Removed File

CBC 7.998241 0 83.44 127.6534 3.145772047 0.13 0.001940

CFB 7.998220 0 78.57 127.4175 3.163547600 0.70 -0.000599

OFB 7.998339 0 93.56 127.6059 3.147524567 0.19 -0.002567

Table 5.5 Results of ENT tests on Video File

VIDEO FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.606804 4 0.01 112.1045 3.271680939 4.14 0.256775

AES Encrypted Source File

CBC 7.999953 0 21.07 127.4872 3.141693605 0.00 0.000406

CFB 7.999959 0 78.20 127.4771 3.144166945 0.08 0.000367

OFB 7.999956 0 47.08 127.4854 3.139824220 0.06 -0.000285

DES Encrypted Source File

CBC 7.999956 0 49.38 127.4710 3.138742853 0.09 0.000121

CFB 7.999956 0 45.43 127.4665 3.141716613 0.00 0.000472

OFB 7.999957 0 57.75 127.5061 3.142228537 0.02 0.000206

Duplicate Bytes Removed File

NONE 7.892749 1 0.01 112.4897 3.389071855 7.88 0.031485

AES Encrypted Duplicate Bytes Removed File

CBC 7.999945 0 10.11 127.5300 3.141478682 0.00 -0.000809

CFB 7.999952 0 62.23 127.5222 3.136860907 0.15 -0.000506

OFB 7.999961 0 99.18 127.4717 3.143813224 0.07 -0.000152

DES Encrypted Duplicate Bytes Removed File

 55

CBC 7.999953 0 66.48 127.4791 3.142227695 0.02 0.001001

CFB 7.999948 0 21.64 127.4859 3.142317485 0.02 0.000002

OFB 7.999951 0 54.55 127.5118 3.142253349 0.02 -0.000318

Duplicate Blocks Removed File

NONE 7.897290 1 0.01 112.7841 3.388054407 7.85 0.030452

AES Encrypted Duplicate Blocks Removed File

CBC 7.999955 0 83.72 127.5514 3.139340839 0.07 0.000570

CFB 7.999952 0 60.29 127.4694 3.143507150 0.06 -0.000383

OFB 7.999948 0 30.82 127.4848 3.143204028 0.05 -0.000172

DES Encrypted Duplicate Blocks Removed File

CBC 7.999954 0 74.81 127.5190 3.139901937 0.05 0.000144

CFB 7.999952 0 59.27 127.4979 3.142462348 0.03 -0.000867

OFB 7.999945 0 8.83 127.5065 3.140256654 0.04 -0.000513

5.3.2 NIST Tests

Table 5.6 Results of NIST tests on Text – Source File

Table 5.7 Results of NIST tests on Text – Duplicate Bytes Removed File

Text – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Text – Duplicate Bytes Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

 56

Table 5.8 Results of NIST tests on Text – Duplicate Blocks Removed File

Table 5.9 Results of NIST tests on Image – Source File

Non-periodic template S S S S S S S

Overlapping Template F S S S S F S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S F S S S

Serial2 F S S S S S S

Universal S S S S S S S

Text – Duplicate Blocks Removed File

TEST UNENCRYPTED AES ENCRYPTED DES ENCRYPTED

CBC CFB OFB CBC CFB OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Image – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

 57

Table 5.10 Results of NIST tests on Image – Duplicate Bytes Removed File

Table 5.11 Results of NIST tests on Image – Duplicate Blocks Removed File

Table 5.12 Results of NIST tests on Audio – Source File

Image – Duplicate Bytes Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S F S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Image – Duplicate Blocks Removed File

TEST UNENCRYPTED AES ENCRYPTED DES ENCRYPTED

CBC CFB OFB CBC CFB OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S F S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Audio – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

 58

Table 5.13 Results of NIST tests on Audio – Duplicate bytes Removed File

Table 5.14 Results of NIST tests on Audio – Duplicate Blocks Removed File

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S F S S S S

Serial1 F S F S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Audio – Duplicate bytes Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F F S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Audio – Duplicate Blocks Removed File

TEST UNENCRYPTED AES ENCRYPTED DES ENCRYPTED

CBC CFB OFB CBC CFB OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S F S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

 59

Table 5.15 Results of NIST tests on Video – Source File

Table 5.16 Results of NIST tests on Video – Duplicate Bytes Removed File

Table 5.17 Results of NIST tests on Video – Duplicate Blocks Removed File

Video – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity F S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S F S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Video – Duplicate Bytes Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S F S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S F S S S

Universal S S S S S S S

Video – Duplicate Blocks Removed File

TEST UNENCRYPTED AES ENCRYPTED DES ENCRYPTED

CBC CFB OFB CBC CFB OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

 60

5.4 Advantages and Limitations

The algorithm mainly reduces the problem of large size key distribution to

the authorized receiver. One just requires to tell the authorized receiver (in a

secure way), the song or movie name or link (for example) with which the

data file is encrypted, the encryption algorithm the initial value and the

secret key. The authorized receiver can generate the key file at his own site

using the same popular song or movie file and decrypt the data file from it.

An unauthorized receiver (intruder) does not have the knowledge of which

song or movie file is used as key or even the extension of the file used for

key generation and hence cannot generate key file. Even if the unauthorized

receiver knows the source file from which the key file is generated, he

cannot generate the key file as he does not know the secret key and initial

value used at the encryption stage. Moreover the brute force attack on source

file using the file database is not possible as the file database on the Internet

is infinite. Also a brute force attack on the source file bits is not possible as

the size of the source file is very large.

This algorithm is better than the algorithm given in chapter 4 in that it uses

an initial vector and chaining mode encryption methods and hence the

strength of the algorithm against the brute force attack is higher.

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

 61

Again, this algorithm is slow.

Also, the source files downloaded by the authorized sender and receiver

must be identical. To ensure this, the authorized sender and receiver systems

can be synchronized.

The seed information, i.e. the source file link, the secret key and the initial

value, must be transmitted to an authorized receiver in a secure way and thus

rely on some other encryption techniques like RSA or AES. Hence the

pseudorandom key based stream ciphers do not work completely

independent of other algorithms and their security may be affected by any

attack on the security of these algorithms.

 62

CHAPTER 6

WITHOUT DUPLICATE BLOCKS REMOVAL-

CHAINING MODE ENCRYPTION METHOD

6.1 Introduction

This is the fifth proposed algorithm and is an encryption based algorithm.

The authorized sender and receiver can share their very large size data over

an unsecure channel at a very low cost using this algorithm. For this, the

authorized sender and the authorized receiver share a link on the Internet

from where a file can be downloaded. This link must be shared using a very

secure form of communication so that an unauthorized receiver is not able to

see it. The authorized sender and receiver also decide the cryptographic

symmetric key algorithm to be used during the process and share the secret

key and the initial value between them through the same secure channel.

Then they download the file from the Internet using this link, which is

termed as the source file. Then both the authorized sender and receiver

generate the key file using this source file. This key file is XORed with the

plain data file to generate a cipher data file. Then this cipher data file is

transmitted over the unsecure channel.

The information that goes from the authorized sender to the authorized

receiver through the secure channel or medium includes: the file download

link, the encryption algorithm, the chaining mode, the initial vector and the

secret key

 63

The information that goes from the authorized sender to the authorized

receiver through the insecure channel or medium includes: the cipher data

file encrypted using the key file generated from the proposed method.

6.2 Methodology

The key generation algorithm consists of the following steps.

Step 1: Input the source binary file in binary read mode. Open two other

binary files, say X and Y in binary write mode.

Step 2: Remove the header from the source file. Store the result in X. Also,

instead of generating the key from the whole file, we can also generate the

key from a segment of the source file. This will be useful when the size of

key is required to be very small as compared to the size of source file. This

will speed up the process.

Step 3: Close X.

Step 4: Open X in binary read mode.

Step 5: Segment X in 64-bit blocks for DES and IDEA or 128-bit blocks for

AES.

 64

Step 6: Encrypt X using some standard secret key encryption algorithm like

IDEA, DES or AES in Cyclic mode (CBC, CFB or OFB). Remove all

duplicate bytes which occur eight times in a sequence blocks from the file.

This increases randomness of the file. Also the secret key and the initial

vector are only available with the authorized sender and receiver. Hence

only the authorized sender and receiver can generate the file.

Step 7: Store the resultant bytes in Y. The resultant file Y serves as the key

file during encryption.

Step 8: Close all files.

The significance of the major steps of the algorithm is given as follows:

Header Removal: The header is removed as the header of all files with

same extension will be almost similar. Thus, if not removed, a cryptanalyst

can easily predict the first few bytes of the key sequence. Also, instead of

generating the key from the whole file, we can also generate the key from a

segment of the source file. This will be useful when the size of key is

required to be very small as compared to the size of source file. This will

speed up the process.

Encryption: The results of NIST and ENT tests show that after encryption

the randomness of the file increases to a great extent. The randomness of an

encrypted file is close to the randomness of a true random file. The

encryption is performed in chaining mode (CBC/CFB/OFB) [56] and not in

ECB [56] mode because in ECB mode, a codebook attack is possible. In this

 65

attack, if two or more blocks of plaintext are identical then the

corresponding ciphertext blocks will also be identical. Thus a cryptanalyst

can use this information to attack the secret system. It does not matter that

the identical blocks of the plaintext reside at which position in the source

file. The probability of a codebook attack increases when the number of such

identical blocks is large in the source file. Performing the encryption in

chaining mode removes the probability of the codebook attack.

6.3 Results

The proposed algorithm was implemented in C and Java programming

language to generate the pseudorandom binary key files from various types

of source files (i.e. from the text, audio, video and image files). The change

in the size of the files after each step is given in table 6.1. We also performed

ENT [31] and NIST [32] statistical tests on the source files and the

corresponding output files of the key generation algorithm to find the amount

of randomness in the files. The ENT and the NIST tests are performed using

the standard testing software available online on the official websites of these

tests. The results of the ENT tests are given in the tables 6.2, 6.3, 6.4 and 6.5

for text, image, audio and video files respectively. The results of NIST tests

for the text file are given in tables 6.6 and 6.7. The results of NIST tests for

the image file are given in tables 6.8 and 6.9. The results of NIST tests for the

audio file are given in tables 6.10 and 6.11. The results of NIST tests for the

video file are given in tables 6.12 and 6.13.

Table 6.1 Size of the files after each step

File Type Size of SF Size of DRF Size of KF

Text 11.8 KB 11.6 KB 11.6 KB

Audio 94.7 KB 93.6 KB 93.6 KB

 66

Video 3.97 MB 3.56 MB 3.56 MB

Image 63.7 KB 60.1 KB 60.1 KB

6.3.1 ENT Tests

Table 6.2 Results of ENT tests on Text File

TEXT FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

AES Encrypted Source File

CBC 7.981414 0 0.85 129.2305 3.059055118 2.63 0.003301

CFB 7.984934 0 48.98 128.0091 3.088582677 1.69 -0.012361

OFB 7.984554 0 35.51 127.0594 3.192913386 1.63 0.003837

DES Encrypted Source File

CBC 7.984761 0 43.55 126.5590 3.187007874 1.45 -0.005805

CFB 7.985555 0 66.11 127.9566 3.055118110 2.75 -0.001727

OFB 7.985568 0 69.94 127.4976 3.141732283 0.00 0.004748

Duplicate Bytes Removed File

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

AES Encrypted Duplicate Bytes Removed File

CBC 7.987448 0 98.47 127.0578 3.208459215 2.13 -0.001078

CFB 7.983033 0 12.66 128.0075 3.125881168 0.50 -0.006565

OFB 7.984573 0 49.83 126.9382 3.170191339 0.91 -0.000054

DES Encrypted Duplicate Bytes Removed File

CBC 7.985959 0 84.14 128.4050 3.121410579 0.64 -0.001444

CFB 7.983799 0 31.09 126.4731 3.117380353 0.77 -0.012860

OFB 7.986016 0 86.87 127.3440 3.153652393 0.38 0.005629

Table 6.3 Results of ENT tests on Image File

IMAGE FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.184481 10 0.01 126.8271 3.504828474 11.56 0.435878

AES Encrypted Source File

CBC 7.997009 0 25.02 127.6634 3.159095089 0.56 0.002612

CFB 7.997205 0 53.19 127.9309 3.133345595 0.26 0.002743

OFB 7.997005 0 21.39 127.6488 3.139231194 0.08 -0.005302

DES Encrypted Source File

CBC 7.997578 0 94.72 127.4071 3.165348538 0.76 0.001454

CFB 7.997158 0 46.28 127.1562 3.133713445 0.25 0.005772

 67

OFB 7.997188 0 48.69 127.5111 3.131506345 0.32 -0.000608

Duplicate Bytes Removed File

NONE 7.203551 9 0.01 127.0198 3.497174040 11.32 0.403755

AES Encrypted Duplicate Bytes Removed File

CBC 7.997269 0 82.82 127.1143 3.156664069 0.48 -0.005372

CFB 7.997007 0 48.93 127.3832 3.131722525 0.31 -0.002387

OFB 7.996878 0 29.65 127.9351 3.147310990 0.18 0.000137

DES Encrypted Duplicate Bytes Removed File

CBC 7.996863 0 27.32 127.3771 3.149873319 0.26 -0.004107

CFB 7.997184 0 73.21 127.3175 3.160397583 0.60 0.005344

OFB 7.996711 0 11.82 127.2607 3.121808614 0.63 0.006084

Table 6.4 Results of ENT tests on Audio File

AUDIO FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 6.200233 22 0.01 125.2086 2.295751129 26.92 0.174946

AES Encrypted Source File

CBC 7.998017 0 29.11 127.9112 3.109956710 1.01 0.007598

CFB 7.997902 0 11.73 127.3821 3.130488559 0.35 0.007982

OFB 7.998031 0 32.37 127.9757 3.119851577 0.69 -0.001320

DES Encrypted Source File

CBC 7.997967 0 21.63 127.5902 3.126283241 0.49 0.005749

CFB 7.998078 0 42.50 127.4880 3.160667904 0.61 -0.004354

OFB 7.997968 0 20.95 127.2620 3.147062461 0.17 -0.001750

Duplicate Bytes Removed File

NONE 6.238276 22 0.01 125.9610 2.267692885 27.82 0.160875

AES Encrypted Duplicate Bytes Removed File

CBC 7.998085 0 51.59 127.4865 3.140890891 0.02 -0.004667

CFB 7.998121 0 57.31 127.6669 3.136636637 0.16 0.001433

OFB 7.998058 0 43.98 127.3267 3.131131131 0.33 -0.004011

DES Encrypted Duplicate Bytes Removed File

CBC 7.998247 0 84.00 127.6452 3.145789013 0.13 0.001662

CFB 7.998192 0 73.09 127.4565 3.165310975 0.75 -0.000014

OFB 7.998354 0 94.66 127.5859 3.148291828 0.21 -0.002491

Table 6.5 Results of ENT tests on Video File

VIDEO FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.606804 4 0.01 112.1045 3.271680939 4.14 0.256775

 68

AES Encrypted Source File

CBC 7.999953 0 21.07 127.4872 3.141693605 0.00 0.000406

CFB 7.999959 0 78.20 127.4771 3.144166945 0.08 0.000367

OFB 7.999956 0 47.08 127.4854 3.139824220 0.06 -0.000285

DES Encrypted Source File

CBC 7.999956 0 49.38 127.4710 3.138742853 0.09 0.000121

CFB 7.999956 0 45.43 127.4665 3.141716613 0.00 0.000472

OFB 7.999957 0 57.75 127.5061 3.142228537 0.02 0.000206

Duplicate Bytes Removed File

NONE 7.892749 1 0.01 112.4897 3.389071855 7.88 0.031485

AES Encrypted Duplicate Bytes Removed File

CBC 7.999945 0 10.11 127.5300 3.141478682 0.00 -0.000809

CFB 7.999952 0 62.23 127.5222 3.136860907 0.15 -0.000506

OFB 7.999961 0 99.18 127.4717 3.143813224 0.07 -0.000152

DES Encrypted Duplicate Bytes Removed File

CBC 7.999953 0 66.48 127.4791 3.142227695 0.02 0.001001

CFB 7.999948 0 21.64 127.4859 3.142317485 0.02 0.000002

OFB 7.999951 0 54.55 127.5118 3.142253349 0.02 -0.000318

6.3.2 NIST Tests

Table 6.6 Results of NIST tests on Text – Source File

Table 6.7 Results of NIST tests on Text – Duplicate Removed File

Text – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Text – Duplicate Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

 69

Table 6.8 Results of NIST tests on Image – Source File

Table 6.9 Results of NIST tests on Image – Duplicate Removed File

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S F S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S F S S S

Serial2 F S S S S S S

Universal S S S S S S S

Image – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Image – Duplicate Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S F S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

 70

Table 6.10 Results of NIST tests on Audio – Source File

Table 6.11 Results of NIST tests on Audio – Duplicate Removed File

Table 6.12 Results of NIST tests on Video – Source File

Audio – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S F S S S S

Serial1 F S F S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Audio – Duplicate Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F F S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Video – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

 71

Table 6.13 Results of NIST tests on Video – Duplicate Removed File

6.4 Advantages and Limitations

The algorithm mainly reduces the problem of large size key distribution to

the authorized receiver. One just requires to tell the authorized receiver (in a

secure way), the song or movie name or link (for example) with which the

data file is encrypted, the encryption algorithm the initial value and the

secret key. The authorized receiver can generate the key file at his own site

using the same popular song or movie file and decrypt the data file from it.

An unauthorized receiver (intruder) does not have the knowledge of which

song or movie file is used as key or even the extension of the file used for

Linear Complexity F S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S F S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Video – Duplicate Removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S F S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S F S S S

Universal S S S S S S S

 72

key generation and hence cannot generate key file. Even if the unauthorized

receiver knows the source file from which the key file is generated, he

cannot generate the key file as he does not know the secret key and initial

value used at the encryption stage. Moreover the brute force attack on source

file using the file database is not possible as the file database on the Internet

is infinite. Also a brute force attack on the source file bits is not possible as

the size of the source file is very large.

This algorithm is faster than the algorithms given in chapter 4 and 5. It uses

initial vector as an extra security weapon. But this algorithm is somewhat

less (almost negligible) secure.

Also, the source files downloaded by the authorized sender and receiver

must be identical. To ensure this, the authorized sender and receiver systems

can be synchronized.

The seed information, i.e. the source file link, the secret key and the initial

value, must be transmitted to an authorized receiver in a secure way and thus

rely on some other encryption techniques like RSA or AES. Hence the

pseudorandom key based stream ciphers do not work completely

independent of other algorithms and their security may be affected by any

attack on the security of these algorithms.

 73

CHAPTER 7

WITHOUT DUPLICATE BLOCKS REMOVAL-

NULL REMOVED- CHAINING MODE

ENCRYPTION METHOD

7.1 Introduction

This is the sixth proposed algorithm and is an encryption based algorithm.

The authorized sender and receiver can share their very large size data over

an unsecure channel at a very low cost using this algorithm. For this, the

authorized sender and the authorized receiver share a link on the Internet

from where a file can be downloaded. This link must be shared using a very

secure form of communication so that an unauthorized receiver is not able to

see it. The authorized sender and receiver also decide the cryptographic

symmetric key algorithm to be used during the process and share the secret

key and the initial vector between them through the same secure channel.

Then they download the file from the Internet using this link, which is

termed as the source file. Then both the authorized sender and receiver

generate the key file using this source file. This key file is XORed with the

plain data file to generate a cipher data file. Then this cipher data file is

transmitted over the unsecure channel.

The information that goes from the authorized sender to the authorized

receiver through the secure channel or medium includes: the file download

 74

link, the encryption algorithm, chaining mode, the initial vector and the

secret key.

The information that goes from the authorized sender to the authorized

receiver through the insecure channel or medium includes: the cipher data

file encrypted using the key file generated from the proposed method.

7.2 Methodology

The key generation algorithm consists of the following steps.

Step 1: Input the source binary file in binary read mode. Open two other

binary files, say X and Y in binary write mode.

Step 2: Remove the header from the source file. Store the result in X. Also,

instead of generating the key from the whole file, we can also generate the

key from a segment of the source file. This will be useful when the size of

key is required to be very small as compared to the size of source file. This

will speed up the process.

Step 3: Close X.

Step 4: Open X in binary read mode.

Step 5: Segment X in 64-bit blocks for DES and IDEA or 128-bit blocks for

AES.

 75

Step 6: Encrypt X using some standard secret key encryption algorithm like

IDEA, DES or AES in Cyclic mode (CBC, CFB or OFB). Remove all null

bytes which occur eight times in a sequence blocks from the file or

alternatively remove all duplicate bytes which occur eight times in a

sequence blocks from the file. This increases randomness of the file. Also

the secret key and the initial vector are only available with the authorized

sender and receiver. Hence only the authorized sender and receiver can

generate the file.

Step 7: Store the resultant bytes in Y. The resultant file Y serves as the key

file during encryption.

Step 8: Close all files.

The significance of the major steps of the algorithm is given as follows:

Header Removal: The header is removed as the header of all files with

same extension will be almost similar. Thus, if not removed, a cryptanalyst

can easily predict the first few bytes of the key sequence. Also, instead of

generating the key from the whole file, we can also generate the key from a

segment of the source file. This will be useful when the size of key is

required to be very small as compared to the size of source file. This will

speed up the process.

Encryption: The results of NIST [32] and ENT [31] tests show that after

encryption the randomness of the file increases to a great extent. The

 76

randomness of an encrypted file is close to the randomness of a true random

file. The encryption is performed in chaining mode (CBC/CFB/OFB) [56]

and not in ECB [56] mode because in ECB mode, a codebook attack is

possible. In this attack, if two or more blocks of plaintext are identical then

the corresponding ciphertext blocks will also be identical. Thus a

cryptanalyst can use this information to attack the secret system. It does not

matter that the identical blocks of the plaintext reside at which position in

the source file. The probability of a codebook attack increases when the

number of such identical blocks is large in the source file. Performing the

encryption in chaining mode removes the probability of the codebook attack.

7.3 Results

The proposed algorithm was implemented in C and Java programming

language to generate the pseudorandom binary key files from various types

of source files (i.e. from the text, audio, video and image files). The change

in the size of the files after each step is given in table 7.1. We also performed

ENT [31] and NIST [31] statistical tests on the source files and the

corresponding output files of the key generation algorithm to find the amount

of randomness in the files. The ENT and the NIST tests are performed using

the standard testing software available online on the official websites of these

tests. The results of the ENT tests are given in the tables 7.2, 7.3, 7.4 and 7.5

for text, image, audio and video files respectively. The results of NIST tests

for the text file are given in tables 7.6, 7.7 and 7.8. The results of NIST tests

for the image file are given in tables 7.9, 7.10 and 7.11. The results of NIST

tests for the audio file are given in tables 7.12, 7.13 and 7.14. The results of

NIST tests for the video file are given in tables 7.15, 7.16 and 7.17.

 77

Table 7.1 Size of the files after each step

File Type Size of SF Size of NRF Size of DRF Size of KF

Text 11.8 KB 11.8 KB 11.6 KB 11.6 KB

Audio 94.7 KB 61.3 KB 61 KB 61 KB

Video 3.97 MB 3.5 MB 3.47 MB 3.47 MB

Image 63.7 KB 61.5 KB 58 KB 58 KB

7.3.1 ENT Tests

Table 7.2 Results of ENT tests on Text File

TEXT FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

Source file encrypted by DES in different chaining modes

CBC 7.984761 0 43.55 126.5590 3.187007874 1.45 -0.005805

CFB 7.985555 0 66.11 127.9566 3.055118110 2.75 -0.001727

OFB 7.985568 0 69.94 127.4976 3.141732283 0.00 0.004748

Source file encrypted by AES in different chaining modes

CBC 7.981414 0 0.85 129.2305 3.059055118 2.63 0.003301

CFB 7.984934 0 48.98 128.0091 3.088582677 1.69 -0.012361

OFB 7.984554 0 35.51 127.0594 3.192913386 1.63 0.003837

Bytes with ASCII value 0 or 255 removed File

NONE 4.364403 45 0.01 93.5753 4.000000000 27.32 0.005331

Bytes with ASCII value 0 or 255 removed file encrypted by DES in different chaining modes

CBC 7.984761 0 43.55 126.5590 3.187007874 1.45 -0.005805

CFB 7.985555 0 66.11 127.9566 3.055118110 2.75 -0.001727

OFB 7.985568 0 69.94 127.4976 3.141732283 0.00 0.004748

Bytes with ASCII value 0 or 255 removed file encrypted by AES in different chaining modes

CBC 7.981414 0 0.85 129.2305 3.059055118 2.63 0.003301

CFB 7.984934 0 48.98 128.0091 3.088582677 1.69 -0.012361

OFB 7.984554 0 35.51 127.0594 3.192913386 1.63 0.003837

Duplicate bytes removed File

NONE 4.371993 45 0.01 93.8352 4.000000000 27.32 -0.034203

Duplicate bytes removed file encrypted by DES in different chaining modes

CBC 7.985959 0 84.14 128.4050 3.121410579 0.64 -0.001444

CFB 7.983799 0 31.09 126.4731 3.117380353 0.77 -0.012860

OFB 7.986016 0 86.87 127.3440 3.153652393 0.38 0.005629

Duplicate bytes removed file encrypted by AES in different chaining modes

CBC 7.987448 0 98.47 127.0578 3.208459215 2.13 -0.001078

CFB 7.983033 0 12.66 128.0075 3.125881168 0.50 -0.006565

OFB 7.984573 0 49.83 126.9382 3.170191339 0.91 -0.000054

 78

Table 7.3 Results of ENT tests on Image File

IMAGE FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.184481 10 0.01 126.8271 3.504828474 11.56 0.435878

Source file encrypted by DES in different chaining modes

CBC 7.997578 0 94.72 127.4071 3.165348538 0.76 0.001454

CFB 7.997158 0 46.28 127.1562 3.133713445 0.25 0.005772

OFB 7.997188 0 48.69 127.5111 3.131506345 0.32 -0.000608

Source file encrypted by AES in different chaining modes

CBC 7.997009 0 25.02 127.6634 3.159095089 0.56 0.002612

CFB 7.997205 0 53.19 127.9309 3.133345595 0.26 0.002743

OFB 7.997005 0 21.39 127.6488 3.139231194 0.08 -0.005302

Bytes with ASCII value 0 or 255 removed File

NONE 7.190326 10 0.01 124.0478 3.596536302 14.48 0.573973

Bytes with ASCII value 0 or 255 removed file encrypted by DES in different chaining modes

CBC 7.997416 0 90.94 126.9423 3.148539347 0.22 -0.003961

CFB 7.997185 0 64.29 127.4188 3.164906271 0.74 0.001327

OFB 7.996693 0 6.61 127.7179 3.124559901 0.54 -0.000463

Bytes with ASCII value 0 or 255 removed file encrypted by AES in different chaining modes

CBC 7.997119 0 54.02 127.5154 3.160338757 0.60 0.001292

CFB 7.997150 0 57.29 127.6159 3.129508041 0.38 -0.003875

OFB 7.996935 0 30.76 127.8547 3.140546198 0.03 0.003660

Duplicate bytes removed File

NONE 7.213525 9 0.01 123.9359 3.612877182 15.00 0.548074

Duplicate bytes removed file encrypted by DES in different chaining modes

CBC 7.997007 0 65.58 127.4817 3.156407669 0.47 -0.010896

CFB 7.997070 0 72.20 127.6587 3.142280525 0.02 0.000993

OFB 7.996509 0 7.62 127.7783 3.115640767 0.83 0.003125

Duplicate bytes removed file encrypted by AES in different chaining modes

CBC 7.997006 0 61.67 127.8429 3.153349475 0.37 0.001354

CFB 7.996739 0 27.57 127.6573 3.113801453 0.88 -0.002511

OFB 7.996965 0 57.82 127.4581 3.135996772 0.18 -0.002745

TABLE 7.4 Results of ENT tests on Audio File

AUDIO FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 6.200233 22 0.01 125.2086 2.295751129 26.92 0.174946

Source file encrypted by DES in different chaining modes

CBC 7.997967 0 21.63 127.5902 3.126283241 0.49 0.005749

 79

CFB 7.998078 0 42.50 127.4880 3.160667904 0.61 -0.004354

OFB 7.997968 0 20.95 127.2620 3.147062461 0.17 -0.001750

Source file encrypted by AES in different chaining modes

CBC 7.998017 0 29.11 127.9112 3.109956710 1.01 0.007598

CFB 7.997902 0 11.73 127.3821 3.130488559 0.35 0.007982

OFB 7.998031 0 32.37 127.9757 3.119851577 0.69 -0.001320

Bytes with ASCII value 0 or 255 removed File

NONE 7.580974 5 0.01 125.6436 2.861509074 8.92 0.026084

Bytes with ASCII value 0 or 255 removed file encrypted by DES in different chaining modes

CBC 7.997276 0 78.44 127.6637 3.116714422 0.79 -0.000042

CFB 7.997133 0 57.58 127.3520 3.111747851 0.95 0.000487

OFB 7.996821 0 15.65 126.9218 3.154918816 0.42 0.003979

Bytes with ASCII value 0 or 255 removed file encrypted by AES in different chaining modes

CBC 7.997055 0 44.50 127.2969 3.152406417 0.34 -0.009549

CFB 7.997608 0 98.53 127.1199 3.167303285 0.82 0.007595

OFB 7.997290 0 79.87 127.3885 3.122994652 0.59 -0.003575

Duplicate bytes removed File

NONE 7.585443 5 0.01 125.6610 2.866961029 8.74 0.019331

Duplicate bytes removed file encrypted by DES in different chaining modes

CBC 7.996774 0 13.79 127.3606 3.142637742 0.03 0.003703

CFB 7.997372 0 89.35 127.4517 3.136110578 0.17 -0.002129

OFB 7.997070 0 49.54 127.2234 3.149164907 0.24 0.006220

Duplicate bytes removed file encrypted by AES in different chaining modes

CBC 7.997469 0 95.30 127.3135 3.154924170 0.42 0.003221

CFB 7.997385 0 89.62 127.6495 3.148397005 0.22 0.002925

OFB 7.997027 0 45.56 127.4090 3.138798234 0.09 0.001511

TABLE 7.5 Results of ENT tests on Video File

VIDEO FILE

Encryption

type/ mode

Entropy

(bits/byte)

Optimal

Compression

Reduction

%

Chi square

Distribution

%

Arithmetic

mean

Monte

Carlo Value

for Pi

Monte

Carlo

Error

%

Serial

Correlation

Coefficient

The Desired Totally Random File

NONE 8 0 10 to 90 127.5 3.14 0.0 0.0

Source File

NONE 7.606804 4 0.01 112.1045 3.271680939 4.14 0.256775

Source file encrypted by DES in different chaining modes

CBC 7.999956 0 49.38 127.4710 3.138742853 0.09 0.000121

CFB 7.999956 0 45.43 127.4665 3.141716613 0.00 0.000472

OFB 7.999957 0 57.75 127.5061 3.142228537 0.02 0.000206

Source file encrypted by AES in different chaining modes

CBC 7.999953 0 21.07 127.4872 3.141693605 0.00 0.000406

CFB 7.999959 0 78.20 127.4771 3.144166945 0.08 0.000367

OFB 7.999956 0 47.08 127.4854 3.139824220 0.06 -0.000285

Bytes with ASCII value 0 or 255 removed File

NONE 7.905912 1 0.01 114.2856 3.391006983 7.94 0.034345

Bytes with ASCII value 0 or 255 removed file encrypted by DES in different chaining modes

CBC 7.999943 0 6.14 127.4424 3.143817882 0.07 0.000206

CFB 7.999952 0 66.28 127.4448 3.144183345 0.08 -0.000742

OFB 7.999948 0 35.60 127.4761 3.139569374 0.06 -0.001084

Bytes with ASCII value 0 or 255 removed file encrypted by AES in different chaining modes

 80

CBC 7.999953 0 71.47 127.4964 3.143799700 0.07 -0.000334

CFB 7.999952 0 69.72 127.4711 3.143649600 0.07 -0.000336

OFB 7.999956 0 90.93 127.4584 3.143134037 0.05 0.000310

Duplicate bytes removed File

NONE 7.908754 1 0.01 114.5160 3.386551745 7.80 0.024494

Duplicate bytes removed file encrypted by DES in different chaining modes

CBC 7.999947 0 26.11 127.5158 3.143274320 0.05 0.000797

CFB 7.999952 0 70.04 127.5023 3.145519642 0.12 -0.000162

OFB 7.999951 0 61.72 127.4883 3.142359071 0.02 -0.000699

Duplicate bytes removed file encrypted by AES in different chaining modes

CBC 7.999958 0 97.83 127.5090 3.140054487 0.05 -0.000339

CFB 7.999956 0 91.77 127.4891 3.142457838 0.03 0.000619

OFB 7.999956 0 92.17 127.6123 3.140475897 0.04 -0.000358

7.3.2 NIST Tests

Table 7.6 Results of NIST tests on Text – Source File

Table 7.7 Results of NIST tests on Text – ASCII value 0 or 255 removed File

Text – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Text – ASCII value 0 or 255 removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

 81

Table 7.8 Results of NIST tests on Text – Duplicate bytes removed File

Table 7.9 Results of NIST tests on Image – Source File

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Text – Duplicate bytes removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency S S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S F S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S F S S S

Serial2 F S S S S S S

Universal S S S S S S S

Image – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

 82

Table 7.10 Results of NIST tests on Image – ASCII value 0 or 255 removed File

Table 7.11 Results of NIST tests on Image – Duplicate bytes removed File

Table 7.12 Results of NIST tests on Audio – Source File

Image – ASCII value 0 or 255 removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S F

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Image – Duplicate bytes removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank F S S S S S S

Runs F S S F S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Audio – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

 83

Table 7.13 Results of NIST tests on Audio – ASCII value 0 or 255 removed File

Table 7.14 Results of NIST tests on Audio – Duplicate bytes removed File

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template F S S S S S S

Rank F S S S S S S

Runs F S F S S S S

Serial1 F S F S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Audio – ASCII value 0 or 255 removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT S S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank S S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Audio – Duplicate bytes removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT S S S S S S S

Frequency F S S S S S S

Linear Complexity F S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank S S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 S S S S S S S

Universal S S S S S S S

 84

Table 7.15 Results of NIST tests on Video – Source File

Table 7.16 Results of NIST tests on Video – ASCII value 0 or 255 removed File

Table 7.17 Results of NIST tests on Video – Duplicate bytes removed File

Video – Source File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity F S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S F S S

Rank F S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Video – ASCII value 0 or 255 removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S S

Block Frequency F S S S S S S

Cumulative Sum F S S S S F S

FFT F S S S S S S

Frequency F S S S S S S

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank F S S S S S S

Runs F S F S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

Video – Duplicate bytes removed File

TEST UNENCRYPTED ENCRYPTED

DES

CBC

DES

CFB

DES

OFB

AES

CBC

AES

CFB

AES

OFB

Approx. Entropy F S S S S S F

Block Frequency F S S S S S S

Cumulative Sum F S S S S S S

FFT S S S S S S S

Frequency F S S S S S S

 85

7.4 Advantages and Limitations

The algorithm mainly reduces the problem of large size key distribution to

the authorized receiver. One just requires to tell the authorized receiver (in a

secure way), the song or movie name or link (for example) with which the

data file is encrypted, the encryption algorithm the initial value and the

secret key. The authorized receiver can generate the key file at his own site

using the same popular song or movie file and decrypt the data file from it.

An unauthorized receiver (intruder) does not have the knowledge of which

song or movie file is used as key or even the extension of the file used for

key generation and hence cannot generate key file. Even if the unauthorized

receiver knows the source file from which the key file is generated, he

cannot generate the key file as he does not know the secret key and initial

value used at the encryption stage. Moreover the brute force attack on source

file using the file database is not possible as the file database on the Internet

is infinite. Also a brute force attack on the source file bits is not possible as

the size of the source file is very large.

This algorithm is faster than the algorithms given in chapter 4 and 5. It uses

initial vector as an extra security weapon. But this algorithm is somewhat

less (almost negligible) secure.

Linear Complexity S S S S S S S

Longest Run S S S S S S S

Non-periodic template S S S S S S S

Overlapping Template S S S S S S S

Rank S S S S S S S

Runs F S S S S S S

Serial1 F S S S S S S

Serial2 F S S S S S S

Universal S S S S S S S

 86

Also, the source files downloaded by the authorized sender and receiver

must be identical. To ensure this, the authorized sender and receiver systems

can be synchronized.

The seed information, i.e. the source file link, the secret key and the initial

value, must be transmitted to an authorized receiver in a secure way and thus

rely on some other encryption techniques like RSA or AES. Hence the

pseudorandom key based stream ciphers do not work completely

independent of other algorithms and their security may be affected by any

attack on the security of these algorithms.

 87

CONCLUSION

The proposed algorithms may prove to be a practical implementation of

One-Time Pad if the source file and the secret key is not compromised in

any way and the reduced bits from the source file in the key file are random

enough. The results of our experiments show that the key file generated from

the proposed algorithm is almost truly random. The proposed algorithms are

simple, robust and universally applicable. The authorized sender and

receiver can exchange large data including audio and video files at very low

price during each session. In other words, the proposed algorithms can be

used to generate very large size session keys to be used with stream cipher

algorithms at a very low price.

The proposed algorithms require that the source files downloaded by the

authorized sender and receiver must be identical. To ensure this, the

authorized sender and receiver systems can be synchronized.

The seed information, i.e. the source file link and the secret value/secret

key/initial value, must be transmitted to an authorized receiver in a secure

way and thus rely on some other encryption techniques like RSA or AES.

Hence the pseudorandom key based stream ciphers do not work completely

independent of other algorithms and their security may be affected by any

attack on the security of these algorithms.

 88

ABBREVIATIONS

Acronym

Meaning

AES Advance Encryption Standard

CBC Cyclic Block Chaining Encryption mode

CF Compressed File

CFB Cyclic Feedback Encryption mode

DBRF The file after removing blocks which are duplicate to

any of their predecessor

DES Data Encryption Standard

DRF The file obtained after removing bytes which are

duplicate to their immediate predecessor

EA Encryption Algorithm applied in the implementation

of the proposed algorithm for testing purpose

F Failure

IDEA International Data Encryption Algorithm

IF The file obtained after applying the inversion process

KF Key File generated as output from the proposed

algorithm

N The secret value used at the inversion step

NRF The file obtained after removing bytes with ASCII

values 0 or 255

OFB Output Feedback Encryption mode

OTP One Time Pad

PRNG Pseudorandom number generator

S Success

SF Source File used as input to the proposed algorithm

UCF Uncompressed File

 89

REFERENCES

[1] Gilbert S. Vernam, U. S. Patent 1310719, “Secret signaling system”, 22 July

1919.

[2] G. S. Vernam, “Cipher printing telegraph systems for secret wire and radio

telegraphic communications”, J. of the American Institute of Electrical Engineers,

vol.55, Feb. 1926, pp. 295-301.

[3] C. E. Shannon, “Communication theory of secrecy systems”, Bell Systems

Technical J., vol. 28, 1949, pp. 656-715.

[4] William Stallings, Cryptography and Network Security Principles and Practices,

4th ed., USA: Prentice Hall, 2005, pp. 34, 48-49, 189-194, 218-227.

[5] I. J. Kumar, Cryptology, New York: Aegean Park Press, 1997, pp. 22-24, 138-

249.

[6] Bruce Schneier, Applied Cryptography, 2nd ed., New York: Wiley, 1996, ch.2.8,

9, 12, 16, 17.

[7] Douglas Stinson, Cryptography: Theory and Practice, London: CRC press, 1995,

ch. 12.

[8] Charlie Kaufman, Radia Perlman, Mike Speciner, Network Security, 2nd ed.,

India: PHI, 2002, pp. 59-104.

[9] Donald E. Knuth, “The Art of Computer Programming”, 3rd ed., vol. 2:

Seminumerical Algorithms. Reading, MA: Addison-Wesley, 1998, pp. 1-184.

[10] Jan L. Harrington, Network Security, India: Elsevier, 1st ed., 2006, pp. 286-288.

[11] Brijendra Singh, Network Security and Management, India: PHI, 2007, 1st ed.,

pp. 40.

[12] Richard E. Smith, Internet Cryptography, 2nd ed., Addison Weslay.

[13] K. Zeng, C. H. Yang, D. Y. Wei and T. R. N. Rao, “Pseudorandom bit

generators in stream cipher cryptography”, Computer, Feb. 1991, pp. 8-16.

[14] R. N. Mutagi, “Pseudo noise sequences for engineers”, Electronics and

Communication Engineering J., pp. 79-87, April 1996.

[15] M. J. B. Robshaw, “Stream Ciphers”, RSA Laboratories Technical Report TR-

701, July 1995.

[16] Palash Sarkar, “Pseudo-random functions and parallelizable modes of operations

of a block cipher”, IEEE Trans. on Information Theory, vol.56, no. 8, Aug. 2010,

pp. 4025-4037.

[17] Howard M. Heys, “Analysis of the statistical cipher feedback mode of block

ciphers”, IEEE Trans. on Computers, vol. 52, no. 1, 2003, pp. 77-92.

[18] Yang Xiao, Hsiao-Hwa Chen, Xiaojiang Du and Mohsen Guizani, “Stream-

based cipher feedback mode in wireless error channel”, IEEE Trans. Wireless

Communications, vol. 8, no. 2, Feb. 2009, pp. 622-626.

 90

[19] Debrup Chakraborty and Palash Sarkar, “A general construction of tweakable

block ciphers and different modes of operations, IEEE Trans. on Information

Theory, vol.54, no. 5, May 2008, pp. 1991-2006.

[20] Kamel H. Rahouma, “A block cipher technique for security of data and computer

networks”, Int. Conf. on Internet Workshop, IWS 1999.

[21] Ibrahim F. Elashry, Osama S. Farag Allah, Alaa M. Abbas and S. L. Rabaie, “A

new diffusion mechanism for data encryption in the ECB mode”, Int. conf. on

Computer Engineering and Systems, ICCES 2009.

[22] Jun Yang, Lan Gao and Youtao Zang, “Improving memory encryption

performance in secure processors”, IEEE Trans. on Computers, vol. 54, no. 5,

May 2005, pp.630-640.

[23] Timothy E. Lindquist, Mohamed Diarra and Bruce R. Millard, “A java

cryptography service provider implementing One-Time pad”, Proc. of 37th

Hawaii Int. Conf. on System Sciences, 2004.

[24] Zhihua Chen and Jin Xu, “One-Time-Pad encryption in the tile assembly

model”, 3rd Int. Conf. on Bio-Inspired Computing: Theories and Applications,

BICTA 2008.

[25] Natalie Kostinski, Konstantin Kravtsov, and Paul R. Prucnal, “Demonstration of

all-optical OCDMA encryption and decryption system with variable two-code

keying”, IEEE Photonics technology letters, vol. 20, n. 24, Dec. 2008, pp.2045-

2047.

[26] Donghua Xu, Chenghuai Lu and Adre Dos Santos, “Protecting web usage of

credit cards using One-Time pad cookie encryption”, Proc. of 18th Annual

Computer Security Applications Conf., 2002.

[27] Jiao Hongqiang, Tian Junfeng and Wang Baomin, “A study on One-Time Pad

scheme based on Stern-Brocot Tree”, Int. Sym. On Computer Science and

Computational Technology, 2008.

[28] Vasin Suttichaya and Pattarasinee Bhattarakosol, “Chain rule protection over the

Internet using PUGGAD algorithm”, Int. Conf. on Computer and Electrical

Engineering, 2008.

[29] Chi-Wu Huang, Che-Hao Chiang, Chien-Lun Yen, Yi-Cheng Chen, Kuo-Huang

Chang and Chi-Jeng Chang, “The AES application in image using different

operation modes”, 5th IEEE Conf. on Industrial Electronics and Applications,

2010.

[30] Yan Zhang, Chengqi Xu and Feng Wang, “A novel scheme for secure network

coding using One-Time Pad”, Int. Conf. on Network Security, Wireless

Communication and Trusted Computing, 2009

[31] “ENT. A pseudorandom number sequence test program”, [Online]. Available:

http://www.fourmilab.ch/random.

 91

[32] “NIST Suite. Random Number Generation and Testing”, [Online]. Available:

http://csrc.nist.gov/rng/.

[33] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M.

Vangel, D. Banks, A. Heckert, J. Dray and San Vo, “A statistical test suite for

random and pseudorandom number generators for cryptographic applications”,

NIST special publication 800-22 (with revision dated May 15, 2001).

[34] Alireza Yavari, “A practical research on randomness of digits of binary

expansion of irrational numbers”, Int. Conf. on Information, Communications and

signal Processing 2009, ICICS 2009.

[35] Giles Cotter, “Generation of pseudorandom numbers from microphone input”,

Computing Devices, University of Virginia, 2002.

[36] Edward J. Groth, “Generation of binary sequences with controllable

complexity”, IEEE Trans. on Information Theory, vol. 17, pp. 288-296, May

1971.

[37] The Win RAR archiver website. [Online]. Available: http://www.rarlab.com.

[38] The Wikipedia website. [Online]. Available: http://www.wikipedia.com.

[39] The howstuffworks website. [Online]. Available:

http://www.howstuffworks.com.

[40] Terry Ritter. (1991). The efficient generation of cryptographic confusion

sequences. Cryptologia [Online]. vol. 15(2), pp. 81-139. Available:

http://www.ciphersbyritter.com/ARTS/CRNG2ART.HTM

[41] Dilip V. Sarwate and Michael B. Pursley, “Crosscorrelation properties of

pseudorandom and related sequences”, Proc. of IEEE, vol. 68, no. 5, pp. 593-619,

May 1980.

[42] Ai Hui Tan and Keith R. Godfrey, “The generation of binary and near-binary

pseudorandom signals: An Overview”, IEEE Trans. On Instrumentations and

Measurements, vol. 51, no. 4, pp. 583-588, August 2002.

[43] Yukiyaso Tsunoo, Teruo Saito, Hiroyasu Kubo and Tomoyasu Suzaki, “A

distinguishing attack on a fast software-implemented RC-4 like stream cipher”,

IEEE Trans. on Information Theory, vol. 53, no. 9, pp. 3250-3255 September

2007.

[44] Tao Sang, Ruli Wang, Tixun Yang, “Generating binary Bernoulli sequences

based on a class of even-symmetric chaotic maps”, IEEE Trans. on

Communications, vol. 49, no. 4, pp. 620-623, April 2001.

[45] Jong-Seon No and P. Vijay Kumar, “A new family of binary pseudorandom

sequences having optimal periodic correlation properties and large linear span”,

IEEE Trans. on Information Theory, vol. 35, no. 2, pp. 371-379, March 1989.

[46] Jong-Seon No, Solomon W. Golomb, Guang Gong, Hwan-Keun Lee and Peter

Gaal, “Binary pseudorandom sequences of period 2
n
 - 1 with ideal

 92

autocorrelation”, IEEE Trans. on Information Theory, vol. 44, no. 2, pp. 814-817,

March 1998.

[47] Jong-Seon No, Habong Chung and Min-Seon Yun, “Binary pseudorandom

sequences of period 2
m

 - 1 with ideal autocorrelation generated by the polynomial

Z
d
 + (Z+1)

d
”, IEEE Trans. on Information Theory, vol. 44, no. 3, pp. 1278-1282,

May 1998.

[48] Mark Goresky and Andrew Klapper, “Arithmetic cross-correlations of feedback

with carry shift register sequences”, IEEE Trans. on Information Theory, vol. 43,

no. 4, pp. 1342-1345, July 1997.

[49] Chaoping Xing and Kwok Yan Lam, “Sequences with almost perfect linear

complexity profiles and curves over finite fields”, IEEE Trans. on Information

Theory, vol. 45, no. 4, pp. 1267-1270, May 1999.

[50] Francois Arnault, Thiery P. Berger, and Abdelkadar Necer, “Feedback with carry

shift registers synthesis with the Euclidean algorithm”, IEEE Trans. on

Information Theory, vol. 50, no. 5, pp. 910-917, May 2004.

[51] Xiaohu Tang, Parampalli Udaya, Pingzhi Fan, “A new family of nonbinary

sequences with three level correlation property and large linear span”, IEEE

Trans. on Information Theory, vol. 51, no. 8, pp. 2906-2914, August 2005.

[52] Nilanjan Mukherji, Janusz Rajski, Grzegorz Mrugalski, Artur Pogiel and Jerzy

Tyszer, “Ring generator: an ultimate linear feedback shift register”, Computer,

vol. 44, no. 6, pp. 64-71, June 2011.

[53] Howard M. Heys, “An analysis of the statistical self-synchronization of stream

ciphers”, IEEE INFOCOM, 2001.

[54] Data Encryption Standard (DES), FIPS Publication 46-3, National Institute of

Standard and Technology, 1979.

[55] Advanced Encryption Standard (DES), FIPS Publication 197, National Institute

of Standard and Technology, 2001.

[56] DES modes of Operation, FIPS Publication 81, National Institute of Standard

and Technology, Dec. 1980.

[57] Recommendations for Block cipher modes of operation: Three variants of

ciphertext stealing for CBC mode, FIPS Special Publication 800-38A, National

Institute of Standard and Technology, Oct. 2010.

