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ABSTRACT

The rapid growth of digital imaging applicationscluding desktop publishing,

multimedia, teleconferencing, and high-definitialetvision (HDTV) has increased the
need for effective and standardized image compredschniques. The purpose of image
compression is to achieve a very low bit rate regméation, while preserving a high

visual quality of decompressed images.

As use and reliance on computers continues to gsovdoes the need for efficient ways
of storing large amount of data. For example, soraeuith a web page or online catalog
that uses dozens or hundreds of images will mae tikely need to use some form of
image compression to store those images. The peirpbsmage compression is to
achieve a very low bit rate representation, whitesprving a high visual quality of

decompressed images.

Compression reduces the storage and finds its gptand limitations. Transmission
burdens of raw information by reducing the ubiquéaedundancy without losing its
entropy significantly. The image manipulation thletcupies a significant position in
multimedia technology necessitated the developmértPEG compression technique,
which has proved its usefulness Until recently, minimize the blocking artifact,
inherently present in JPEG at higher compressitos;ialPEG2000 is devised that makes

use of wavelet function.

In this work, a new approach to JPEG compressohrique is proposed that enhanced
the compression performances in comparison witheafobd JPEG techniques. The new
technigue considers both Discrete Cosine Transf@@T) based (DCT, SVD, BTC)
and Discrete Wavelet Transform (DCT) based (PYRAMEXW) methods in the
transformation and reconstruction sides for bestfopmed algorithm. A rigorous

comparison of the various compressions throughityu@mmponents (PSNR, MSE).



The proposed Algorithm select the best possibleordlgn based on the decision
parameter for image to achieve low mean square €W8E), better peak signal to noise

ratio (PSNR), a high Compression ratio (CR), whgeeserving good fidelity of
decompressed image.

MATLAB codes have been developed for all the pdestbmbinations, separately.
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CHAPTER -1

INTRODUCTION

Now a day, the usage of digital image in variougliaptions is growing rapidly. Video
and television transmission is becoming digital andre and more digital image
sequences are used in multimedia applications.

A digital image is composed of pixels, which cantbheught of as small dots on the
screen and it becomes more complex when the paxelgolored. An enormous amount
of data is produced when a two dimensional lighensity function is sampled and
guantized to create a digital image. In fact, theant of data generated may be so great

that it results in impractical storage, processing communications requirements [1].

1.1  Fundamentals of Digital Image

An image is a visual representation of an objeagroup of objects. When using digital

equipment to capture, store, modify and view phiatplic images, they must first be

converted to a set of numbers in a process callgtizdtion or scanning. Computers are
very good at storing and manipulating numbers, rsedhe image has been digitized it
can be used to archive, examine, alter, displansmit, or print photographs in an

incredible variety of ways. Each pixel of the dajjitmage represents the color (or gray
level for black & white images) at a single pointthe image, so a pixel is like a tiny dot
of a particular color. By measuring the color ofianage at a large number of points, we
can create a digital approximation of the imagenfnehich a copy of the original image

can be reconstructed. Pixels are a little graie plrticles in a conventional photographic
image, but arranged in a regular pattern of rows @iumns [1, 2]. A digital image is a

rectangular array of pixels sometimes called a djtnit is represented by an array of N
rows and M columns and usually N=M. typically vadusf N and M are 128, 256, 512

and 1024 etc.



1.2 Types of Digital Image
For photographic purposes, there are two imporgmes of digital images: color and
black & white. Color images are made up of cologpeckls while black & white images

are made of pixels in different shades of gray.

1.2.1 Black & White Images

A black & white image is made up of pixels, eachwdiich holds a single number
corresponding to the gray level of the image aadiqular location. These gray levels
span the full range from black to white in a serxdsvery fine steps, normally 256
different grays [1]. Assuming 256 gray levels, ehtdtk and white pixel can be stored in

a single byte (8 bits) of memory.

1.2.2 Color Images

A color image is made up of pixels, each of whiolds three numbers corresponding to
the red, green and blue levels of the image atticpkar location. Assuming 256 levels,

each color pixel can be stored in three bytes (&} bf memory. Note that for images of

the same size, a black & white version will usee¢htimes less memory than a color

version.

1.2.3 Color Models

The purpose of a color model is to facilitate tpeafication of colors in some standard
generally accepted way. In essence, a color madelspecification of a 3-D coordinate
system and a subspace within that system where @adoh is represented by a single
point. Each industry that uses color employs thetmsaitable color model. For example,
the RGB color model is used in computer graphiddvYor YCbCr are used in video
systems, PhotoYCC is used in PhotoCD production smdon. Transferring color
information from one industry to another requinesmsformation from one set of values
to another. Intel IPP provides a wide number ofcfioms to convert different color

spaces to RGB and vice versa.



1.2.3.1 RGB Color Model

In the RGB model, each color appears as a combmati red, green, and blue. This
model is called additive, and the colors are cgtiehary colors. The primary colors can
be added to produce the secondary colors of ligge Figure "Primary and Secondary
Colors for RGB and CMYK Models") - magenta (redphlue), cyan (green plus blue),
and yellow (red plus green). The combination of, geten, and blue at full intensities

makes white.

red cyan

blue magenta

W oreen vellow

a) RGB model b} CMY(K) model

FIGURE1.1 Primaryand Secondary Colors for RGB and CMYK Models

The color subspace of interest is a cube showngur& "RGB and CMY Color Models”

(RGB values are normalized to 0...1), in which RGBuea are at three corners; cyan,
magenta, and yellow are the three other corneagkhbb at their origin; and white is at
the corner farthest from the origin. The gray seadtends from black to white along the
diagonal joining these two points. The colors &eepoints on or inside the cube, defined
by vectors extending from the origin. Thus, imageshe RGB color model consist of
three independent image planes, one for each priotdor. As a rule, the Intel IPP color

conversion functions operate with non-linear ganuoaectedimages R'G'B’. The

importance of the RGB color model is that it retateery closely to the way that the

human eye perceives color. RGB is a basic colorehfmt computer graphics because
color displays use red, green, and blue to créegelésired color. Therefore, the choice
of the RGB color space simplifies the architectanel design of the system. Besides, a

system that is designed using the RGB color spandake advantage of a large number
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of existing software routines, because this cop@cs has been around for a number of

years.

1.2.4 Binary Images

Binary images use only a single bit to represenhgaxel. Since a bit can only exist in
two states- ON or OFF, every pixel in a binary imagust be one of two colors, usually
black or white. This inability to represent intemiiee shades of gray is what limits their

usefulness in dealing with photographic images.

1.3 Image Compression
Image compression addresses the problem of redubex@mount of data required to
represent a digital image. It is a process interidedeld a compact representation of an

image, thereby reducing the image storage/trangmissquirements.

1.3.1 Need for compression
The following example illustrates the need for coesggion of digital images.

* To store a color image of a moderate size, e.gx512 pixels, one needs 0.75

MB of disk space.

* A 35mm digital slide with a resolution of 12pum régs 18 MB.

» One second of digital PAL (Phase Alternation Livieleo requires 27 MB.
To store these images, and make them available og&rvork (e.g. the internet),
compression techniques are needed. Image compressidresses the problem of
reducing the amount of data required to represeigital image. The underlying basis of
the reduction process is the removal of redundatd. dAccording to mathematical point
of view, this amounts to transforming a two-dimensil pixel array into a statistically
uncorrelated data set. The transformation is apréor to storage or transmission of the
image. At receiver, the compressed image is deaesspd to reconstruct the original
image or an approximation to it. The initial foaefsresearch efforts in this field was on
the development of analog methods for reducingostd@nsmission bandwidth, a process
called bandwidth compression. The example belovarlsleshows the importance of

compression [1].



An image, 1024 pixelx1024 pixelx24 bit, without gqamassion, would require 3 MB of
storage and 7 minutes for transmission, utilizinggh speed, 64 kbits/s, and ISDN line.
If the image is compressed at a 10:1 compressia) the storage requirement is
reduced to 300 KB and the transmission time drapdeconds.

Table 1.1: Multimedia data types and uncompressed storage space, transmission

bandwidth, and transmission time required

Transmission
Bits/Pixel |Uncompressed Transmission| Time (using
(Multimedia
Size/Duration or Size Bandwidth a
Data
Bits/Sample| (B for bytes) | (b for bits) 28.8K
Modem)
A page of Varyin 32-64
Ped 11" x 8.5" ying 4-8 KB 1.1-2.2 sec
text resolution Kb/page
Telephone
quality 10 sec 8 bps 80 KB 64 Kb/fsec 22.2 sec
speech
Grayscale _ _
512 x 512 8 bpp 262 KB 2.1 Mb/image | 1 min 13 sec
Image
Color 6.29
512 x 512 24 bpp 786 KB 3 min 39 sec
Image Mb/image
Medical 41.3
2048 x 1680 12 bpp 5.16 MB 23 min 54 sec
Image Mb/image
SHD Image | 2048 x 2048 24 bpp 12.58 MB 100 Mb/image |58 min 15 sec
Full-motion | 640 x 480, 1
. . 24 bpp 1.66 GB 221 Mb/sec | 5 days 8 hrs
Video min




1.3.2 Principle behind compression

A common characteristic of most images is thatrthighboring pixels are correlated and
therefore contain redundant information. The forsiask then is to find less correlated
representation of the image. Two fundamental corapten of compression are
redundancy and irrelevancy reduction.

Redundancies reduction aims at removing duplication from the signal seurc
(image/video).

Irrelevancy reduction omits parts of the signal that will not be notideyl the signal
receiver, namely the Human Visual System.

In an image, which consists of a sequence of imagfesre are three types of
redundancies in order to compress file size. They a

» Coding redundancy: Fewer bits to represent frequent symbols.

> _Interpixel redundancy: Neighboring pixels have similar values.

» . Psychovisual redundancyHuman visual system cannot simultaneously

distinguish of all colors.

1.3.3 Types of compression

Compression can be divided into two categoried,a@sless and Lossy compression. In
lossless compression, the reconstructed image @tapression is numerically identical
to the original image. In lossy compression schetne,reconstructed image contains
degradation relative to the original. In the cadevideo, compression causes some
information to be lost; some information at a ddtarel is considered not essential for a
reasonable reproduction of the scene. This typecahpression is calledossy
compression Audio compression on the other hand, is not logsis calledlossless
compression An important design consideration in an algorittivat causes permanent
loss of information is the impact of this loss Iretfuture use of the stored data. Lossy

techniqgue causes image quality degradation in eachpression/decompression step.



Careful consideration of the human visual percepénsures that the degradation is often
unrecognizable, though this depends on the seleceygbression ratio. In general, lossy
techniques provide far greater compression ratias tossless techniques.
The following are the some of the lossless andyldssa compression techniques:
JLossless coding techniques

» Run length encoding
Huffman encoding
Arithmetic encoding

Entropy coding

Y V VYV VY

Area coding

JLossy coding techniques
> Predictive coding
» Transform coding (FT/DCT/Wavelets)

1.3.3.1 Lossless versus Lossy compressiolm lossless compression schemes, the
reconstructed image, after compression, is numnibriggentical to the original image.
However lossless compression can only a achieveodest amount of compression.
Lossless compression is preferred for archival psep and often medical imaging,
technical drawings, clip art or comics. This is dege lossy compression methods,
especially when used at low bit rates, introducenmession artifacts. An image
reconstructed following lossy compression contalegradation relative to the original.
Often this is because the compression scheme ctehplaliscards redundant
information. However, lossy schemes are capabéelieving much higher compression.
Lossy methods are especially suitable for naturalges such as photos in applications
where minor (sometimes imperceptible) loss of figlels acceptable to achieve a
substantial reduction in bit rate. The lossy compien that produces imperceptible

differences can be called visually lossless [3].



Predictive versus Transform coding: In predictivadiog, information already sent or
available is used to predict future values, anddifference is coded. Since this is done in
the image or spatial domain, it is relatively sismpd implement and is readily adapted to
local image characteristics. Differential Pulse €ddbdulation (DPCM) is one particular
example of predictive coding. Transform coding,tbe other hand, first transforms the
image from its spatial domain representation taflerént type of representation using
some well-known transform and then codes the toams#d values (coefficients). This
method provides greater data compression comparedetlictive methods, although at

the expense of greater computational requirements.

Qriginal

:> Transform C:> Quantisation :> Lossless ‘::> Compressed
Image Coding fmage

FIGURE 1.2

Image Compression model

Compressd Inverse Lossless Reconstructed
Image )
|:> Transform |:> dequwmsaiiuu |:> Decod:g |:> .Ir.fﬂﬂge

FIGURE 1.3

Image Decompression model
Image compression model shown here consists ohmsiarmer, quantizer and encoder.
1.3.3.2Transformer: It transforms the input data into a format to rexlunterpixel

redundancies in the input image. Transform codewhiques use a reversible, linear

mathematical transform to map



the pixel values onto a set of coefficients, whach then quantized and encoded. The key
factor behind the success of transform-based calihgmes is that many of the resulting
coefficients for most natural images have small mtages and can be quantized without
causing significant distortion in the decoded imdgm compression purpose, the higher
the capability. of compressing information in fewveeefficients, the better the transform;
for that reason, the Discrete Cosine Transform (JPGihd Discrete Wavelet

Transform(DWT) have become the most widely useasftam coding techniques.

Transform coding algorithms usually start by paming the original image into
subimages (blocks) of small size (usually 8 x 8pr FEach block the transform
coefficients are calculated, effectively convertthg original 8 x 8 array of pixel values
into an array of coefficients within which the ciefnts closer to the top-left corner
usually contain most of the information needed tardgize and encode (and eventually
perform the reverse process at the decoder’'s ghe)image with little perceptual
distortion. The resulting coefficients are then mfired and the output of the quantizer is
used by symbol encoding techniques to produce tipub bitstream representing the
encoded image. In image decompression model atebeder’s side, the reverse process
takes place, with the obvious difference that taguantization stage will only generate
an approximated version of the original coefficierglues e.g., whatever loss was
introduced by the quantizer in the encoder stagetiseversible.

1.3.3.3 Quantizer:It reduces the accuracy of the transformer’s outpaccordance with

some pre-established fidelity criterion. Reduces pisychovisual redundancies of the
input image. This operation is not reversible angsiibe omitted if lossless compression
is desired. The quantization stage is at the cbang lossy image encoding algorithm.
Quantization at the encoder side, means partitgpafrthe input data range into a smaller
set of values. There are two main types of quarstizecalar quantizers and vector
guantizers. A scalar quantizer partitions the donadiinput values into a smaller number
of intervals. If the output intervals are equalbpased, which is the simplest way to do it,

the process is called uniform scalar quantizatiherwise, for reasons usually related to



minimization of total distortion, it is called namiform scalar quantization. One of the
most popular non uniform quantizers is the Lloydax\juantizer. Vector quantization
(VQ) techniques extend the basic principles of acafjuantization to multiple

dimensions.

1.3.3.4 Symbol (entropy) encoderit creates a fixed or variable-length code to repne
the quantizer’s output and maps the output in azowre with the code. In most cases, a
variable-length code is used. An entropy encodenpresses the compressed values
obtained by the quantizer to provide more efficiemmpression. Most important types of
entropy encoders used in lossy image compressmmitgues are arithmetic encoder,

huffman encoder and run-length encoder.

1.3.4 Applications
Over the years, the need for image compressiogioae steadily. Currently it is
recognized as an “enabling technology.” It playswial role in many important and
diverse applications [1, 2] such as:
» Business documents, where lossy compression ishptexh for legal reasons.
» Satellite images, where the data loss is undesifadxtause of image collecting
cost.
» Medical images, where difference in original imagel uncompressed one can
Compromise diagnostic accuracy.
Televideoconferencing.
Remote sensing.

Space and hazardous waste control applications.

YV V V VY

Control of remotely piloted vehicles in military.

» Facsimile transmission (FAX).
Image compression has been and continues to belctacthe growth of multimedia
computing. In addition, it is the natural technogldgr handling the increased spatial

resolutions of today’s imaging sensors and evol@raadcast television standards.
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CHAPTER 2
Image Compression using Discrete Cosine Transform

2.1. Introduction

JPEG stands for the Joint Photographic Experts [isr@standards committee that had its
origins within the International Standard Organmat (ISO).JPEG provides a
compression method that is capable of compressingnuous-tone image data with a
pixel depth of 6 to 24 bits with reasonable spesdl efficiency. JPEG may be adjusted to
produce very small, compressed images that arelatively poor quality in appearance
but still suitable for many applications. ConveyselPEG is capable of producing very

high-quality compressed images that are still faalger than the original uncompressed
data.

Transform coding constitutes an integral componehtcontemporary image/video
processing applications. Transform coding reliegh@npremise that pixels in an image
exhibit a certain level of correlation with theieighboring pixels. Similarly in a video
transmission system, adjacent pixels in consectitaraes2 show very high correlation.
Consequently, these correlations can be explodeutadict the value of a pixel from its
respective neighbors. A transformation is, theesfodefined to map this spatial
(correlated) data into transformed (uncorrelatefficients. Clearly, the transformation
should utilize the fact that the information cortefi an individual pixel is relatively
small i.e., to a large extent visual contributiohaopixel can be predicted using its
neighbors.

A typical image/video transmission system is oetlinn Figure2. 1. The objective of the
source encoder is to exploit the redundancies mgendata to provide compression. In
other words, the

11



Source encoder reduces the entropy, which in ose caeans decrease in the average
number of bits required to represent the imageti@rcontrary, the channel encoder adds
redundancy to the output of the source encoderdardo enhance the reliability of the
transmission. Clearly, both these high-level blotlesre contradictory objectives and
their interplay is an active research area ( [8], [6], [7], [8]). However, discussion on
joint source channel coding is out of the scopehid document and this document
mainly focuses on thieansformatiorblock in the source encoder. Nevertheless, peitinen

details about other blocks will be provided as eyl

Transformation Quantizer Entropy Channel

"

-

| Encoder | Encoder

Source Encoder

Image

| Transmission

. Channel

Inverse Inverse Entropy Channel

Transformation | Quantizer Decoder | Decoder

Source Decoder

Reconstructed

Image

FIGURE 2.1 Components ofgical image /video transmission system.

As mentioned previously, each sub-block in the seuencoder exploits some
redundancy in the image data in order to achieti®beompression. The transformation
sub-block decorrelates the image data thereby megand in some cases eliminating)
interpixel redundancyBL1]. The two images shown in Figure 2.2 (a) anjch@ve similar
histograms (see Figure 2.2 (c) and (d)). Figure (®.2and (g) show the normalized
autocorrelation among pixels in one line of thepessive images. Figure 2.2 (f) shows
that the neighboring pixels of Figure 2.2 (b) pdmally exhibit very high
12



autocorrelation. This is easily explained by theiqubc repetition of the vertical white

bars in Figure 2.2(b). This example will be will bmployed in the following sections to

illustrate the decorrelation properties of transfocoding. Here, it is noteworthy that

transformation is a lossless operation; therefthe, inverse transformation renders a

perfect reconstruction of the original image.
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FIGURE 2.2 (a) First Image (b) Second Image (c) Hisgram of First image (d)
Histogram of Second image (e) Normalized autocorration of one line of first image

(f) normalized autocorrelation of one line of Secathimage .

The quantizer sub-block utilizes the fact that linenan eye is unable to perceive some
visual information in an image. Such information dsemed redundant and can be
discarded without introducing noticeable visualfacts. Such redundancy is referred to
as psychovisual redundangi0]. This idea can be extended to low bit rateenesrs
which, due to their stringent bandwidth requirersemhight sacrifice visual quality in
order to achieve bandwidth efficiency. This condsphe basis for rate distortidheory,
that is, receivers might tolerate some visual digto in exchange for bandwidth

conservation.

Lastly, the entropy encoder employs its knowledigth® transformation and quantization
processes to reduce the number of bits requiredpi@sent each symbol at the quantizer
output. In the last decade, Discrete Cosine Trams{®@CT) has emerged as the de-facto
image transformation in most visual systems. DC3 tbeen widely deployed by modern
video coding standards, for example, MPEG, JVT @&tws document introduces the
DCT, elaborates its important attributes and areyirs performance using information

theoretic measures.

2.2. The Discrete Cosine Transform

Like other transforms, the Discrete Cosine Tramaf@DCT) attempts to decorrelate the
image data. After decorrelation each transformfement can be encoded independently
without losing compression efficiency. This sectiescribes the DCT and some of its

important properties.

2.2.1. The One-Dimensional DCT
The most common DCT definition of a 1-D sequenckeogth N
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e (1)
Clu)=ofu)> ff_l‘}cm[% .
x=0 LY

Foru=0, 1, 2...N-1. Similarly, the inverse transformation is detirees

- : +1h ] (2)
Flx)= S el )Clu ?CGE[M; )

w=l -~

forx=0,1,2,...N 1. In both equation@l) and(2) a(u) is defined as

1
— ar u=~>0
MII ! (3)

alu) =
|| 2
— for u=0.
N
N T
Itis clear from(1) that for u =0, Clu=0)= y'?ZﬂxL . Thus, the first transform
coefficient is =l

the average value of the sample sequence. Intliterahis value is referred to as D€
Coefficient All other transform coefficients are called th€ Coefficients.

. _ _ = T(2x+ 1
To fix ideas, ignore th&x) and a(u) component if(1). The plot of Z cos T

x=0
For N = 8 and varying values aii is shown in Figure 3. In accordance with our
previousobservation, the first the top-left wavefofu = O ) renders a constant (DC)
value, whereas, all other waveforms £ 1,2,...,7 ) give waveforms at progressively
increasing frequencies [13].
These waveforms are called tbasine basis functiorNote that these basis functions are
orthogonal. Hence, multiplication of any waveformFkigure 3 with another waveform

followed by a summation over all sample points dgeh zero (scalar) value, whereas

15



multiplication of any waveform in Figure 3 with & followed by a summation yields a

constant (scalar) value. Orthogonal waveforms rdependent, that is, none of the basis

functions can be represented as a combinatiorhef ttasis functions [14].
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FIGURE 2.3 ONE DIMENSIONAL COSINE BASIS FUNCTION (N =8)

If the input sequence has more thidrsample points then it can be divided into sub-

sequences of length and DCT can be applied to these chunks indeperyddidire, a

very important point to note is that in each suomputation the values of the basis

function points will not change. Only the values fofx) will change in each sub-

sequence. This is a very important property, sinskows that the basic functions can be

pre-computed offline and then multiplied with thebssequences. This reduces the

number of mathematical operations (i.e., multiglmas and additions) thereby rendering

computation efficiency.



2.2.2. The Two-Dimensional DCT

2221 Process
The following is a general overview of the JPEGgess. Later we will take the reader

through a detailed tour of JPEG’s method so thmbee comprehensive understanding of
the process may be acquired.

1. The image is broken into 8x8 blocks of pixels.

2. Working from left to right, top to bottom, the DGJ applied to each block.

3. Each block is compressed through quantization.

4. The array of compressed blocks that constitutentiage is stored in a drastically

reduced amount of space.
5. When desired, the image is reconstructed througbrdpression, a process that

uses the Inverse Discrete Cosine transform (IDCT).

2.2.2.2 The DCT Equation
The DCT equation (Eg. 1) computes th&'eitry of the DCT of an image.

N1 N1

— ("r+l)zrj|‘ [ 2_1'+1)ji‘?’j| .

D(i.j) = -~ [ N COS — N 1
L ifu=0

C(u) = v 2
1 ifu=>0

P(x, y) is the x, yth elements of the image repneesst by the matrix p.N is the Size of the
block that the DCT is done on. The equation cateslaone entry of the transformed
image from the Pixel value Of Original image Matrbor the Standard 8x8 block that
JPEG Compression uses N equals 8 and x & y rangerto 7.

7 7

D(i.j) = %C(E)CU) ZZP(-T.J‘)COSI:—(ZY TGUIIE ]cos[—(:r -;61 L ] 3

=0 =0
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Because the DCT use cosine functions, the resultiagix depends on the horizontal,
diagonal, and vertical frequencies. Therefore andge black with a lot of change in
frequency has a very random looking resulting matvhile and image matrix of just one
color, has a resulting matrix of a large valuetfa first element and zeroes for the other

elements.

= ifi =0

/N
T
g 2 (27+1)im ifi -0
| ¥ COS[—EN ] 17 =

For an 8x8 block it results in this matrix:

.3536 .3536 .3536 .3536 .3536 .3536 .3536 .3536
4904 4157 2778 0975 0975 -.2778 —.4157 —4904
4619 1913 -1913 -.4619 —-.4619 -.1913 .1913 .4619
T=| .4157 -0975 —-4904 -2778 .2778 .4904 .0975 —.4157
.3536 —.3536 —.3536 .3536 .3536 -.3536 —.3536 .3536
2778 —4904 .0975 .4157 -.4157 -.0975 .4904 2778
1913 -.4619 4619 -1913 -1913 .4619 -.4619 .1913
0975 -2778 .4157 —-4904 4904 —-.4157 .2778 -.0975

2.2.2.3 Doing the DCT on an 8x8lock

Thefirst row (i =1) of the matrix has all the entriegual to w8 as expected
from Equ (4) .The columns of T an orthogonal setTss an Orthogonal matrix .When
Doing the inverse DCT the orthogonality of T is lonfant ,as the inverse of T is T’

Which is easy to calculate .

Before we begin, it should be noted that the piwedlies of a black & white image range
from O to 255 in step of 1, where pure black isrespnted by O and pure white by 255.
Thus it can be seen how a photo, illustration ean be accurately represented by these
256 shades of gray. Since an image comprises himadreeven thousands of 8x8 blocks
of pixels , the following Description of what hapeto one 8x8 block is a microcosm of
JPEG Process.
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Now, let’s start with a block of image pixel valuéghis particular block was chosen

from the very upper left hand corner of an image.

154 123 123 123 123 123 123 136
192 180 136 154 154 154 136 110
254 198 154 154 180 154 123 123
239 180 136 180 180 166 123 123
180 154 136 167 166 149 136 136
128 136 123 136 154 180 198 154
123 105 110 149 136 136 180 166
110 136 123 123 123 136 154 136

Original

Because the DCT is designed to work on the pixklegaranging from -128 to 127, the
original block is leveled off by subtracting 12&rn each entry .This results in the

following matrix. — _
26 -5 5 -5 -5-5-5 8

64 52 8 26 26 26 8 -18
126 70 26 26 52 26 -5 -5
111 52 8 52 52 38 -5 -5
M = 52 26 8 39 38 21 8 8
0 8 -5 8 26 52 710 26
-5 -23 -18 21 8 8 52 38
-18 8 -5 5 -5 8 26 8

We are now ready to perform the discrete cosin@sfaam, which is accomplished by

matrix multiplication.

D=TMT 5

In Equation (5) matrix M is first multiplied on lkeby the DCT matrix T from the
previous section; This Transforms the rows .Theummols are then transformed by
multiplying on the right by the transpose of the D@atrix. This yields the following

matrix.
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162.3 406 200 723 303 125 -19.7 -115
305 1084 105 323 27.7 -155 184 =20
-94.1 -60.1 12.3 -434 -313 61 -33 7.1
-38.6 -83.4 -54 -22.2 -135 155 -1.3 35
-31.3 179 -55 -124 143 -60 115 -60
-09 -11.8 128 02 281 126 84 29
46 -24 122 6.6 -18.7 -12.8 7.7 120
-100 112 78 -16.3 215 00 5.9 107

This block matrix now consists of 64 DCT CoeffidenG; where i and j range from 0 to
7 .The top-left coefficient, g, correlates to the low frequencies of the Origimage
Block .As we move from g in all directions, the DCT Coefficients CorrelateHigher
and higher frequencies of the image block, where €rresponds to the highest
Frequency. It is important to note that the humam & most sensitive to low

Frequencies, and results from the quantizationstipeflect this fact.

2.2.2.4 Quantization

Our 8x8 block Of DCT coefficient is now ready foompression by quantization .A

remarkable and Highly Useful Feature of the JEP@&gss is that in this step, varying

levels of image compression and quality are obbdnahrough selection of specific

guantization matrices. This enables the user taldean quality levels ranging from 1 to

100.where 1 gives the poorest image quality anddsgcompression, where as 100 gives
the best quality and lowest compressifs. a results, the quality/compression ratio
can be tailored to suit different needs.

16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
Q =| 18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99
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Subjective experiments involving the human visugtem have resulted in the JPEG
Standard quantization matrix .with a quality lewél50, this matrix renders both high

compression and excellent decompression imagetguali

However, another level of quality and compressi®rdeésired, scalar multiples of the
JPEG standards quantization matrix may be useda Eaality level greater than 50(less
compression, more image quality), the standardsitmation matrix is multiplied by
(100-quality levels)/50. For a quality level legsn 50(more compression, lower image
quality), the standards quantization matrix is mpli#d by positive integer value ranging
from 1 to 255. For example, the following quantigatmatrices yields quality levels of
10 and 90.

80 60 50 B0 120 200 255 255
55 60 70 95 130 255 255 255
70 65 80 120 200 255 255 255
70 85 110 145 255 255 255 1255
90 110 185 255 255 255 255 255
120 175 255 255 255 255 255 1255
245 255 255 255 255 255 255 255

255 255 255 255 255 255 255 1255

Qi =

Quantization is achieved by dividing each elemarttansformed image matrix D by the
corresponding elements in the quantization matng #en rounding to the nearest

integer value. For following steps, quantizatiortixaQs, is used

i round (R;/Q: ) 6
[ 10 425 1000 |

3 912 1000
7 51-2-1000

c.| 35010000
2100 0000
0 000 0000
0 000 0000
0 000 0000
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Recall that the coefficients situated near the tygfe corner correspond to the lower
frequencies-to which the human eye is most seesi#nf the image block .In addition,
the zero represents the important, higher freqesrbiat have been discarded, giving rise
to the lossy part of compression. As mentionedierarbnly the remaining non Zero
coefficients will be used to reconstruct the imalfjés also Interesting to note the effect

of different quantization matrices; use f,, would give C significantly more Zeros,

while Qqowould results in very few zeros.

2.2.2.5 Coding

The quantized matrix C is now ready for the firtelsof compression .Before storage; all
coefficients of c are converted by an encoder tosteeam of binary data

(0110110011...... ). After the quantization, it is quitemmon for the most coefficients
equal to zero. Jpeg takes advantage of this engagliantized coefficient in zig —zag

sequence shown in fig.the advantage lies in thealmation of relatively large runs of

zeros, which compress very well.

(D,D]l_([],’l)
Vi

(1,?/(’1.”
.

FIGURE 2.3 quantized coefficients encoding in zigag
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2.2.2.6 Decompression
Reconstruction of our image begins by decoding the bit stream representing the
quantized matrix C. Each element of C is then multiplied by the corresponding element

of the quantization matrix originally used.

Rj= Qi *GCj 7

[ 160 44 20 80 24 00 0 |

36 108 14 38 26 0 0 0

98 —65 16 —48 —40 0 0 0

o 42 85 0 29 0 0 0 0
3 22 0 0 0 000

O 0 0 0 0 000

O 0 0 0 0 000

O 0 0 0 0 000

The IDCT is next applied to matrix R, which is rounded to the nearest integer. Finally,
128 is added to each element of that result, giving us the decompressed JPEG version N

of our original 8x8 image block M.

N = round (T" RT) + 128 8

2.2.2.7 Comparisorof Matrices
Let us now see how the jpeg version of our origpyatl block compares.

154 123 123 123 123 123 123 136
192 180 136 154 154 154 136 110
254 198 154 154 180 154 123 123
Original =| 239 180 136 180 180 166 123 123
180 154 136 167 166 149 136 136
128 136 123 136 154 180 198 154
123 105 110 149 136 136 180 166
110 136 123 123 123 136 154 136
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149
204
253
245
188
132
109
111

Decompressed =

This is a remarkable result, considering that nedf% of DCT coefficients were

discarded prior to image block decompression /reicaation .Given that Similar results
will occur with the rest of the block that constéuhe entire image, it Should be no
surprise that JPEG image will be scarcely distisigable from the original .Remember
there are 256 possible shades of Gray in a blagk#&e picture and a difference of say

134
168
195
185
149
123
119
127

119
140
155
148
132
125
126
127

116
144
166
166
155
143
128
114

10, is barely noticeable to the human eye.

24

121
155
183
184
172
160
139
118

126
150
165
160
159
166
158
141

128
125
111
107
136
171
166
135




Chapter 3
Singular value decomposition image compression

3.1 INTRODUCTION

It is well known that the images, often used inietgr of computer applications, are

difficult to store and transmit. One possible solutto overcome this problem is to use a
data compression technique where an image is viewedmatrix and then the operations
are performed on the matrix. Image compressiorcisesed by using Singular Value

Decomposition (SVD) technique on the image mairhe advantage of using the SVD is
the property of energy compaction and its abilityatlapt to the local statistical variations
of an image. Further, the SVD can be performedronaabitrary, square, reversible and

non reversible matrix of m x n size.

The mechanics of singular value decomposition, @aflg as it relates to some
techniques in natural language processing. It'#emrby someone who knew zilch about
singular value decomposition or any of the undagymaths before he started writing it,
and knows barely more than that now. Accordindlg,a bit long on the background part,
and a bit short on the truly explanatory part, lhopefully it contains all the information
necessary for someone who's never heard of singalae decomposition before to be

able to do it.

3.1.1 POINTS AND SPACE

A point is just a list of numbers. This list of nbers, or coordinates, specifies the point's
Position in space. How many coordinates there aterchines the dimensions of that
space.For example, we can specify the position pdiat on the edge of a ruler with a

single Coordinate. The position of the two pointscth and 1:2cm are precisely specified
by single Coordinates. Because we're using a scgpedinate to identify a point, we're

dealing with Points in one-dimensional space, spaee.

25



The position of a point anywhere in a plane is ggetwith a pair of coordinates; it

takes three coordinates to locate points in threesions. Nothing stops us from going
beyond points in 3-space. The fourth dimensiorftenoused to indicate time, but the
dimensions can be chosen to represent whateveune@asnt unit is relevant to the
objects we're trying to describe.

Generally, space represented by more than threengions is called hyperspace. You'l
also see the term n-space used to talk about sphaifferent dimensionality (e.g. 1-
space, 2-space... h-space).

3.1.2 VECTORS
For most purposes, points and vectors are esdgritial same thingl, that is, a sequence
of numbers corresponding to measurements alongusadimensions.

Vectors are usually denoted by a lower case leitgh an arrow on top, e.g.

—. The numbers comprising the vector are now cal@mponents, and the number of

components equals the dimensionality of the vedide. use a subscript on the vector
name to refer to the component in that position. tlee example below,

—

- Is a 5-dimensional vector, x1 = 8, x2 =5, etc.
[ 8
6

o d

{

D
\ 3
Vectors can be equivalently represented horizontatb save space, e.g.
- = [8, 6, 7, 5 3] is the same vector as above. Mgenerally, a vector

=4

B
I

— with n-dimensions is a sequence of n Numbers,cangpbonent xi represents the value
=4

of =on the dimension.
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3.2 Process of SVD

The use of Singular Value Decomposition (SVD) iraga compression has been widely
studied [15, 16 and 17]. If the image, when congideas a matrix, has low rank, or can
be approximated sufficiently well by a matrix oiMaank, then SVD can be used to find
this approximation, and further this low rank apgmneation can be represented much

more compactly than the original image.

Singular Value Decomposition (SVD) is said to b&gnificant topic in linear algebra by
many renowned mathematicians. SVD has many praetnchtheoretical valueSpecial
feature of SVD is that it can be performed on a®st (m, n) matrix. Let’'s say we have a
matrix A with m rows andn columns, with rank and r < n < m. Then theA can be

factorized into three matrices:

AUSVT 1)

A = 7 5

Hxn o Ht A H nxn

FIGURE 3.1 lllustration of Factoring A to USV!

Where MatrixU is anm x m orthogonal matrix

U=[u,.u,..u,.u,_...u,_] (2)

Column vectorsiyfori = 1, 2...m, form an orthogonal set:
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Ty _J’l,q.r— j

i _10 %] (3)

And matrixV is ann x n orthogonal matrix
=[V,. VoV oV e V] (4)

Column vectors Mor i = 1, 2...n, form an orthogonal set:

Here,Sis anm x n diagonal matrix with singular values (SV) on thagtinal. The

Matrix Scan be showed in following:

o, 0 0 0
0 o,
o o0 « o, 0 - 0
S= (6)
o o - 0 o, - 0
0 0 o,
00 0 |
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Fori=1, 2...n, g; are called Singular Values (SV) of matAxIt can be proved that

G, 26,z20, >0, and

Or1 = Op2 =" =0y = 0. (7)
Fori =1, 2...n, g; are called Singular Values (SVs) of ma#ixThe y’s and ys are

Called right and left singular vector Af

3.3 Properties of the SVD
There are many properties and attributes of SVDe hwee just present parts of the
properties that we used in this project.

1. The singular value; o, 03 04 O, are unique, however, the matriddsand V

are not unigquge

2. Since A A = VS'SV' , soV diagonalizes A A, it follows that thev's are the
eigenvector of AA.

3. Since AR =USS U" , so it follows that) diagonalizes AA and that theu; 's are the
eigenvectors of AA

4. The rank of matrix A is equal to the numbertsfionzero singular values.

3.4 METHODOLOGY OF SVD APPLIED TO IMAGE PROCESSING

3.4.1 SVD Approach for Image Compression

Image compression deals with the problem of reduti®e amount of data required to
represent a digital image. Compression is achidwethe removal of three basic data
redundancies: 1) coding redundancy, which is ptesdmen less than optimal)
Interpixel redundancy, which results from correlat between the pixel8) Psycho
visual redundancies, which is due to data thansiied by the human visual. [14].

The property 4 of SVD in section 3.3 tells us “taak of matrix A is equal to the number

of its nonzero singular values”. In many applicasipthe singular values of a matrix
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decrease quickly with increasing rank. This prdgri@lows us to reduce the noise or

compress the matrix data by eliminating the smagidar values or the higher ranks.

When an image is SVD transformed, it is not comgeds but the data take a form in
which the first singular value has a great amotithe image information. With this, we
can use only a few singular values to represenintiage with little differences from the

original. To illustrate the SVD image compressioogess, we show detail procedures:
i . T
A=UST = Z AR
i=1
That isA can be represented by the outer product expansion:
4_ _ T E— T T T E—
4A=0W,V, +0,u,V, + o uv,

When compressing the image, the sum is not peririoghe very last SVs; the SVs
with small enough values are dropped. (Remembdr ttiea SVs are ordered on the
diagonal.) The closet matrix of rakks obtained by truncating those sums after the firs

k terms:

—_ T 1 T T T 1

The total storage for Ay will be k (m+n+1).

The integek can be chosen confidently less therand the digital image corresponding
to Ay still have very close the original image. Howewadose the differerit will have a
different corresponding image and storage for it.
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For typical choices of the k, the storage requiced\x will be less the 20 percentage.
3.4.2 Image Compression Measures

To measure the performance of the SVD image comjamesnethod, we can computer
the compression factor and the quality of the casped image. Image compression
factor can be computed using the Compressioo: rati

CRmM*n/(k(m+n+1)

To measure the quality between original imagand the compressed imagg, the

measurement of Mean Square Error (MSE).

1 m i
MSE= 3" (f,(x.7) = £, (x.3))

mn S0t

3.5 Application of the SVD: Compression and Pseudaverse

3.5.1 Low rank approximation
One use of the SVD is to approximate a matrix by ohlow rank. One way of looking

at the productzV' gives:
o, SR ; S oy

7 .- .- - ‘."
" ° ° n-n

Which multiples out in the column-times-row pictae

T T T
cimvy T owvy T oo T Gy
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Wherer is the rank oA (the o beyond this are all zero). This is a sum of ran& matrix.
Now since the o are in decreasing order, and this andv’s are all unit vectors, these
rank one matrices are written in decreasing ordefsize” (at least in one way of
measuring size of a matrix). So if we want a lowkrapproximation t&A we should just
stop this sum after a few terms. The first terntstas about the single direction that gets
magnified the most by the matrii; the second tells us about the direction that gets

magnified second most, and so on.

3.5.2 SVD image compression

A digitized picture is essentially just a big nratof numbers. For instance, these could
be the gray-levels in a black-and-white image her ¢olor levels in a color image. Let’s
say our image is 1000 x 2000 pixels. That requresillion numbers. But if the picture
could be accurately approximated by, say, a ten ®vD decomposition we would only
have to store 10’s (10000 numbers), 1@s (20000 numbers) and 10s (10 numbers).
Our storage costs drop to just over 30000, forrapression ratio of over 650: 1. Here is
an example: (original image 480*640, 256 gray lsyahd 307,200 bytes)
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Mathematic to compute the singular value decomjposiof the underlying matrix of
numbers. Keep just one term—approximating the matith a rank one matrix, here is
the result (480 + 640 bytes for the vectors, 4 $joe the singular value (which will be a

real number), total 1124 bytes for a compressitio of over 273: 1)

Can't really see much, although you can see thn¢ dgd dark patches where the children

are wearing lighter-colored clothes. Let’s try tteoms (compression ratio over 136: 1)
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Still no good, really. It's like looking through stortion glass. We can look at the error
(true picture — approximation) and it looks likeetimage on the right. In the difference,
you can clearly make out the children even thodwgy'te kind of ghostly (appropriate
for the Halloween picture, no?). So we’ll up thenhber of terms we use

Trying ten terms (compression ratio now about 3 gjiles us

Now the picture is clearly discernable, thoughl sfilite distorted. The error picture is
getting harder to make out, but still clearly shatwe kids’ outlines. Next, we try 30

terms (compression ratio of about 9: 1)
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The error picture is now almost all black, so isyMeard to see. The picture looks pretty
good a little blocky as if taken by a low-resoluticamera, but clearly discernable.

Finally, we try 90 terms (compression ratio 3: 1)
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Now we're nearly perfect. Compression is small yo8i 1) but we get a very good
picture and still some substantial savings. No& the bar of light color across the top is
not an error or artifact of the technique go baok aheck that it was in the original

picture.

Now while this is a nifty idea, it is not as googiature compression scheme as some
other techniques out there. The discrete cosinesfitam (DCT) is related to the fast
Fourier transform (FFT) so can be done fast, isduUse JPEG image files and it can
achieve compression ratios of around 20: 1 witly wgrod image quality. Wavelets are
used in other image formats (JPEG2000). Some wavatbemes can produce

compression of upward of 100: 1 without perceptiblage distortion.
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3.5.3 Web searching

Search engines like Google use enormous matrice®ss$-references—which pages link
to which other pages, and what words are on eagh. p&hen you do a Google search,
the higher ranks usually go to pages with your keyds that have lots of links to them.
But there are billions of pages out there, andrggoa billion by billion matrix is trouble,
not to mention searching through it.

Here is where SVD shines. In searching, you reatlly care about the main directions
that the Web is taking. So the first few singulalues create a very good approximation
for the enormous matrix, can be searched relatigeigkly (just a few billion entires)
and provide compression ratios of millions to ofilke proof is in the pudding—Google

works.

3.5.4 The pseudoinverse

In an entirely different direction, the SVD can gius the “best” we can do toward
inverting an arbitrary, even non-square, matrixteNilatA sends the row space to the
column space in an invertible fashion, while thdélspace gets sent to 0. The best we
could hope for is to send the column space baekhtere it came from in the row space,

and perhaps send the left nullspace to 0. Butishedsy with the SVD!
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Chapter 4

IMAGE COMPRESSION USING BLOCK TRUNCATION CODING

4.1 Introduction

The amount of image data grows day by day. Largeage and bandwidth are needed to
store and transmit the Images, which is quite gosience methods to compress the
image data are essentially now-a-days. The imagenp@zssion techniques are
categorized into two main classifications namelysdy compression techniques and
Lossless compression techniques [1]. Lossless @ssion ratio gives good quality of
compressed images, but yields only less compressimreas the lossy compression
techniques [2] lead to loss of data with higher poession ratio. JPEG [1] and Block
Truncation Coding [18] is a lossy image compressgmmniques .It is a simple technique
which involves less computational complexity. BTE€ a recent technique used for
compression of monochrome image data. It is onealaptive moment-preserving
guantizer that preserves certain statistical momehsmall blocks of the input image in
the quantized output. The original algorithm of Bpf@serves the standard mean and the
standard deviation [20]. The statistical overhddesn and the Standard deviation are to
be coded as part of the block. The truncated bédtke BTC is the one-bit output of the

guantizer for every pixel in the block.

4.2 BTC ALGORITHM

Block Truncation Coding (BTC) is a well-known corapsion scheme proposed in 1979
for the grayscale images. It was also called thenerd-preserving block truncation [18]-
[19] because it preserves the first and second mtene each image block. The BTC

algorithm involves the following steps:

» Stepl The given image is divided into non overlappimgtangular regions. For the
sake of simplicity the blocks were let to be squaggons of size m x m.
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» Step 2 For a two level (1 bit) quantizer, the idea issiect two luminance values to

represent each pixel in the block. These valuetha&renearx and standard deviatian

— 1
T=L3 o, 0
i=1

=:\/Ej§: (x; = %,)° @)
=

Where xi represents th® pixel value of the image block and n is the totamber of

pixels in that block.

» Step3 The two valuesx and ¢ are termed as quantizers of BTGking x as the

threshold value a two-level bit plane is obtaingdcbmparing each pixel valug with
the threshold. A binary block, denoted by B, ialsed to represent the pixels. We can
use “1” to represent a pixel whose gray level isatgr than or equal t& and “0” to

represent a pixel whose gray level is less titan

By this process each block is reduced to a bitgl&or example, a block of 4 x 4 pixels

will give a 32 bit compressed data, amounting batDer pixel (bpp).

- Step 4 In the decoder an image block is reconstructetepiacing ‘1’s in the bit plane
with H and the ‘0’s with L, which are given by:

|
p |
H= \| p )
lq
L_x—rvi 5)
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Where p and q are the number of 0’s and 1's irctmpressed bit plane respectively.

4.2.1Two Level (binary) Quantizer

The rest of the information is in the Mean and$t@ndard deviation (SD) of

Output
A

X+

v

K Inpu

4.3Advantages of BTC

*Small complexity (faster than TC).

*Preserving edges.

*Each block can be compressed separately accalitgyvariance.
*Fixed and Adaptive bit-allocation optional.
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4.4 BTC Encoding

*Assume a 512x512 image with 256 gray levels.

*The threshold will be the mean valug,£

*For each block we transmit bit-level matrixgand %ye

*The levels X and X can be determined by setting up the expressioas dfuate

(preserve) the moments before and after quantizatio

4.5 BTC FOR COLOR IMAGE

Liquid-crystal displays (LCD) panels have rapidlgcapied the display market share
because of their attractive characteristics. Howewmtion blur of fast moving objects
caused by the slow respond time of LCD is an iiadN& problem. To reduce the motion
blur, the overdrive technique has been proposefl 2dwever, this technique requires
the frame buffer to store a previous frame as shiomiig. 1. In general, a large size of
the frame buffer increases the cost of product®rdfore, simple image compression
algorithms such as block truncation coding (BTQ)][@re employed to reduce the frame
buffer. Since the conventional BTC method is a menl@pping since the conventional
BTC method is a nonoverlapping block compressigordhm based on a two level
guantizer, one bitmap containing the quantizati@vel of each pixel and two
representative values for each color componengemerated from each block. In order to
increase the compression, vector quantization BAQRTC) algorithm for color images
is proposed in [23]. In VQBTC, all color pixels arepresented by RGB vectors and
classified into two classes by using the vectomgjaation method in [24]. Although the
compression ratio required for LCD overdrive carabkieved by VQ-BTC, the blocking
artifacts at block boundaries are inevitable beeat®@BTC is a block-based method. To
solve this problem, we propose a novel color cosgomn method based on VQBTC. The
proposed method first reduces the number of bigsl dsr encoding the representative
vectors. Then, using these remaining bits, theesaprtative vectors are precisely refined
to preserve more edge information.
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FIGURE 4.1 Schematic diagrams of simple overdrivingechniques

4.5.1. ALGORITHM
In the conventional VQ-BTC algorithm, a color imaigedivided into non-overlapping

blocks which are individually coded by a two-leaslaptive vector quantization. Two

representative vectors in VQ-BTC consisting of RaGd B components are defined as

R, R,
V,=|G |. V,= G,
B, | B, |

In case of the 4x4 block which consists of 8-b&atation color components, the total
number of bits required for encoding each bloclegsial to 64 since 48 bits for two
representative vectors and 16 bits for the bitnrepequired. As a consequence, this VQ-
BTC method achieves the 1/6 compression ratio. WHeweannoying blocking artifacts
occurs at the block boundary. In the proposed dlgar we introduce a new method that
can effectively alleviate the blocking artifactd1€fmethod consists of two stages. In the
former, the number of bits used for encoding theragentative vectors is decreased.

These remaining bits can be used for preserving &dfgrmation in the latter stage.
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CHAPTER 5
WAVELET TRANSFORMS

This chapter discusses the fundamental basics okleta It also contains a brief

Overview of the types of wavelet transforms usethis work.

5.1 Introduction to Wavelet

The concept of wavelet was hidden in the works athamaticians even more than a
Century ago. In 1873, Karl Weirstrass mathematcalescribed how a family of
functions can be constructed by superimposing dogdesions of a given basis function.
The term wavelet was originally used in the fielfl seismology to describe the
disturbances that emanate and proceed outward &osharp seismic impulse [25].
Wavelet means a “small wave”. The smallness referthe condition that the window
function is of finite length (compactly supportd@p]. A wave is an oscillating function
of time or space and is periodic. In contrast, Metgeare localized waves. They have
their energy concentrated in time and are suitedn@ysis of transient signals. While
Fourier Transform and STFT use waves to analyzgatsgthe Wavelet Transform uses

wavelets of finite energy [25].

| {H I
| i| M |ll | | N 11
” H' 1}\# ‘H|+U \/ \“ | |\' \IJ

'v | ' L' | 'el
(a) {b)
FIGURE 5.1 Difference between Wawand Wavelet (a) wave (b) wavelet.
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In wavelet analysis the signal to be analyzed i#tiptied with a wavelet function and

then the transform is computed for each segmengrgead. The Wavelet Transform, at
high frequencies, gives good time resolution anar i;equency resolution, while at low

frequencies; the Wavelet Transform gives good feegy resolution and poor time

resolution. An arbitrary signal can be analyzedemms of scaling and translation of a
single mother wavelet function (basis). Waveletsvalboth time and frequency analysis
of signals simultaneously because of the fact ttiiatenergy of wavelets is concentrated
in time and still possesses the wave-like (peripdiwaracteristics. As a result, wavelet
representation provides a versatile mathematiaall ttm analyze transient, time-variant
(non stationary) signals that are not statisticaltgdictable especially at the region of

discontinuities-a feature that is typical of imapasing discontinuities at the edges [27].

5.2 Mathematical Representation of Wavelet

Wavelets are functions generated from one singhetion (basis function) called the
prototype or mother wavelet by dilations (scalirg)d translations (shifts) in time
(frequency) domain. If the mother wavelet is deddbyW(t), the other waveletd/,, (t)

can be represented as

Voo )= (5 —b) )l ld] .

Where a and b are two arbitrary real numbers. Tdr@ables ‘a’ and ‘b’ represent the

parameters for dilations and translations respelstin the time axis.
The mother wavelet can be essentially represersted a

W(t)= Wo1 (t) (2)
For any arbitrary#4l and b = 0, we can derive that
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W, o) =(1% yf{f.f’r(f)}wn'lw "

As shown aboveW,, (t) is nothing but a time-scaled (by a) and arophktscaled
version of the mother wavelet functidd(t). The parameter ‘a’ causes contraction of
Y(t), in the time axis when a < 1 and expansionti@tching when a > 1. That's why the
parameter ‘a’ is called the dilation (scaling) paeter. For a < 0, the functioH,p (t)
results in time reversal with dilation. Mathemalligawe can substitute ‘t’ in equation by
(t — b) to cause a translation or shift in the taweés resulting in the wavelet functidiy,

(t) as shown in equation 1.

The functionW,y, () is a shift of W, () in right along the time axis by an amount b
when b > 0 whereas it is a shift in left along time axis by an amount b when b < 0.

That's why the variable b represents the transiatiotime (shift in frequency) domain
[25].

| W/ (a)

lu" \! (b)

s (c)
FIGURE 5.2 a) Mother wavelet,W¥(t), ;b) W(t/a); o<o<l;c) W(Va); a >1
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5.3 Translation and Scale in WT

TRANSLATION is related to the location of the window, as thexdew is shifted
through the signal. It corresponds to time infolioratin the transform domain [26]. It
simply means delaying (or hastening) its onset.

Mathematically, delaying a functiot’(t), by k is represented by (t — k) [28].

0 Vﬂ n A 0 Vﬂ ﬂn
U V U V
Wavelet functiok!(t), shifté#davelet functiortV(t-k),

FIGURE 5.3 Translations

However, we do not have a frequency parameterin(&IFT). Instead, we have scale

Parameter which is defined as inverse of frequency.

SCALE is a parameter in the WAVELET analysis that is gimilar to the scale used
in maps. In case of maps, high scales correspoldnimn-detailed global view and low

scales correspond to a detailed view.

Similarly in case of frequency, low frequenciesgthiscales) correspond to a global
information of a signal (that usually spans theremngignal), whereas high frequencies
(low scales) correspond to a detailed informatiba dnidden pattern in the signal (that
usually lasts for a relatively short time).Scalirag a mathematical operation, either
dilates or compresses a signal. Larger scales sponel to dilated (or stretched out)

signals and small scales correspond to compresgeas
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FIGURE 5.4 Scaling
If f (t) is a given function, then f (st) corresmsto a contracted (compressed) version of
f (t) if s>1 and to an expanded (dilated) versidnf ¢t) if s<1.However, in WT, the
Scaling term is used in the denominator and hende dilates the signal and s<1

Compresses the signal [26].

5.4 Multi-Resolution Analysis in WT
MULTI-RESOLUTION ANALYSIS, as the name itself sugls, analyzes the signal at
different frequencies with different resolutionserd, every spectral component is not

resolved equally as was the case in the STFT.

MRA provides an alternative approach to analyze sigpal, although the TIME and

FREQUENCY resolution problems are results of a phanon (the Heisenberg's

Uncertainty Principle) and exist regardless of ttasform used. MRA is designed to
give good time resolution and poor frequency rasmtuat high Frequencies and good
frequency resolution and poor time resolution & feequencies. This approach makes
sense especially when the signal at hand has maguéncy Components for short
durations and low frequency components for longtions. In Practical applications as

well, we face such problems [26, 31].

5.5 Properties of Wavelet
» ‘Regqularity’ defined as: if r is an integer andfianction is r-time continuously
Differentiable atxy, then the regularity is r. If r is not an integet,n be the integer Such

that n <r<n+1, then function has a regularity oinrxy if its derivative of ordem
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resembles (x-xo) " locally aroundx,. This property is useful for getting nice featyres

Such as smoothness, of the reconstructed signals.

* The support of a function is the smallest spatefer time-set) outside of which

Function is identically zero.

* The number of vanishing moments of wavelets daters the order of the polynomial

that can be approximated and is useful for compyegsiIrposes.

» The wavelet symmetry relates to the symmetry ted filters and helps to avoid
dephasing in image processing. Among the orthogfamallies, the Haar wavelet is the
only symmetric wavelet. For biorthogonal waveldtssipossible to synthesize wavelet

Functions and scaling functions that are symmeirigntisymmetric [25].

5.6 Types of Wavelet Transforms
There are mainly two types of Wavelet Transforms-
 Continuous Wavelet Transformation (CWT)

* Discrete Wavelet Transformation (DWT)

DWT stands for Discrete Wavelet Transformation. Ithe Transformation of sampled
data, e.g. transformation of values in an arratp, Wwavelet coefficients.

IDWT is Inverse Discrete Wavelet Transformation: procedweonverts wavelet
coefficients into the original sampled data.

Here the case of square images has been consitletacs take an N by N image.

5.6.1 Decomposition Process
To start with, the image is high and low-pass fdtealong the rows and the results of
each filter are down- sampled by two. Those two-sighals correspond to the high and

low frequency components along the rows and ark efsize N by N/2. Then each of
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these sub-signals is again high and low-passédiftealong the column data. The results
are again down-sampled by two.

Feows Colurns
L —@— LL
C G
S
H —®— LH
Input
r (42
L/

FIGURE 5.5 One decomposition step of the two dimeimal image.

As a result the original data is split into fourbsmages each of size N/2 by N/2
Containing information from different frequency gooments. Figure 5.5 shows the level
one decomposition step of the two dimensional gragsimages. Figure 5.6 shows the

four sub bands in the typical arrangement.

Rows Columns| LL HL

LH | HE

FIGURE 5.6 One DIMlecomposition step
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The LL subband is the result of low-pass filteringth the rows and columns and it
contains a rough description of the image as sdelnce, the LL subband is also called
the approximation subband. The HH subband is hagsfiltered in both directions and
contains the high-frequency components along thgatals as well. The HL and LH
images are the result of low-pass filtering in aheection and high-pass filtering in
another direction. LH contains mostly the vertidatail information that corresponds to
horizontal edges. HL represents the horizontalildefarmation from the vertical edges.
All three subbands HL, LH and HH are called theadetubbands, because they add the

high-frequency detail to the approximation image.

5.6.2 Composition Process

The inverse process is shown in Figure 5.7. Therindtion from the four sub-images is
up-sampled and then filtered with the correspondingrse filters along the columns.
The two results that belong together are addedtlaen again up-sampled and filtered
with the corresponding inverse filters. The resfilthe last step is added together in order
to get the original image again. Note that theneadoss of information when the image

is decomposed and then composed again at fullgioeci

Celumns Rows
1L —@— L®
O |-
LH —@— Ht
C+ Casput
HL ‘@* L#
EE ‘®— H*

FIGURE 5.7 One composition step of the four sub inges
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With DWT we can decompose an image more than oBezomposition can be
continued until the signal has been entirely decmsed or can be stopped before by the
application at hand. Mostly two ways of decompositare used. They are:

i.) Pyramidal decomposition

ii.) Packet decomposition

5.6.3 Pyramidal Decomposition

Pyramidal decomposition is the simplest and mosthrmon form of decomposition
used.For the pyramidal decomposition we only agpither decompositions to the LL
subband. Figure 5.8 shows a systematic diagrarhreétdecomposition steps. At each

Level the detail subbands are the final results amlg the approximation subband is
further decomposed [28].

LL1 LL2 I,
— LHI — LH — LH3
Input DWT DWT DWT :
— HLI — HL2 — HL3
— HHI — HH2 —  HH3

FIGURE 5.8 Three decomposition steps of an image ing Pyramidal

Decomposition

Figure 5.9 shows the pyramidal structure that tefom this decomposition. At the
lowest level there is one approximation subband tede are a total of nine detail
subbands at the different levels. After L decomiparss, a total of D (L) =3 *L + 1

subbands are obtained.
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LHI FEEI

FIGURE 5.9 Pyramid after three decomposition steps

Figure 5.10 is an example of this decompositiorc@ss. It shows the “Lena" image after
one, two and three pyramidal decomposition stek [3

FIGURE 5.10 Pyramidal decompositioaf Lena image (1, 2 and 3 times)
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5.6.4 Wavelet Packet Decomposition

For the wavelet packet decomposition, the decoripasiis not limited to the
approximation subband only but a further wavelaetodeposition of all subbands on all
levels is considered. In figure 5.11, the systeagidim for a complete two level wavelet
packet decomposition has been shown.

LLILL2
LL1LH}
I1I.1HI.)
IT1HH2

LL1

WT

i

LHILLZ

THILH2
1HIHIL2
ILH1HH2

LHI

DWT

1

Input — DWT

HL11L12

HL1LH2
HIL1HIL2
HIL1HH2

WT

HHILL2
HHILH2?
HHIHI 2
HH1HH?

WT

HHI1

FIGURE 5.11 Two complete decomposition steps usimwgavelet packet
decomposition
In figure 5.12, the resulting subband structureois display. Again the simple
decomposition step from 5.5 is used as a basidibgilblock. The composition step is
equivalent to the pyramidal case. All four subbaod®ne level are used as input for the
inverse transformation and a resultant in the sattwa the higher level is obtained. This
process is repeated again and again until thenalighage is reproduced.
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LLIII2 | LLIHEL? | HLILI2 | HLIHL2

LLILH} | LLIHE? | HLILH2 HLIEH2

LHILI2 LHIHL? | HHILL2 | HHIHL2

LHILH) | LHIHH? | HEILEY | HHIHHD

Figure 5.12 Subband struatei after two level packet decomposition.

The discrete wavelet transform is very efficieminfrthe computational point of view. Its
only drawback is that it is not translation invatiaTranslations of the original signal
lead to different wavelet coefficients. In orderoiercome this and to get more complete
characteristic of the analyzed signal the unde@dhatavelet transform was proposed.
The general idea behind it is that it doesn't daténthe signal. Thus it produces more
precise information for the frequency localizatiémom the computational point of view
the undecimated wavelet transform has larger stospgice requirements and involves

more computations [28].

5.7 Undecimated Wavelet Transform

UDWT is based on the idea of no decimation. It Egplhe wavelet transform and omits
both down-sampling in the forward and up-samplingthe inverse transform. More
precisely, it applies the transform at each poihtthee image and saves the detail
coefficients and uses the low-frequency coeffigeiar the next level. The size of the
coefficients array does not diminish from leveldgel. By using all coefficients at each
level, we get very well allocated high-frequencfoirmation. From level to level there is

very small step in the width of the scaling filteinstead of 8 pixels at the third level of
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DWT,; here its width is 5 pixels. Generally, thepsie not a power of 2 but a sum with 2.
This property is good for noise removal becausentige is usually spread over small
number of neighboring pixels. With this transforhe tnumber of pixels involved in
computing a given coefficient grows slower and Ise telation between the frequency
and spatial information is more precise. In thaldmse, this means removal of the noise
only at the places that it really exists, withotfeeting the neighboring pixels. It gives

the best results in terms of visual quality (lelssring for larger noise removal) [29].

5.8 Wavelet Families

There are a number of basic functions that canskd as the mother wavelet for Wavelet
Transformation. Since the mother wavelet produdesvavelet functions used in the
Transformation through translation and scalinglétermines the characteristics of the
resulting Wavelet Transform. Therefore, the detaflshe particular application should
be taken into account and the appropriate motheelashould be chosen in order to
use the Wavelet Transform effectively.

Figure 5.13 illustrates some of the commonly usedelet functions. Haar wavelet is
one of the oldest and simplest wavelet. Therefang, discussion of wavelets starts with
the Haar wavelet. Daubechies wavelets are the pumstlar wavelets. They represent the
foundations of wavelet signal processing and aez us numerous applications. These
are also called Maxflat wavelets as their frequerasponses have maximum flatness at
frequencies 0 and R. This is a very desirable ptgpae some applications. The Haar,
Daubechies, Symlets and Coiflets are compactly aipg orthogonal wavelets. These
wavelets along with Meyer wavelets are capablearfegt reconstruction. The Meyer,
Morlet and Mexican Hat wavelets are symmetric iapgh The wavelets are chosen based

on their shape and their ability to analyze thaaign a particular application [28].
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Figure 5.13 seafadifferent families of wavelets
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CHAPTER 6

IMAGE COMPRESSION USING PYRAMID DECOMPQOSITION

6.1 Introduction

An image may be represented by its Fourier transfavith operations applied to the
transform coefficients rather than to the origipatel values. This is appropriate for
some data compression and image enhancement bagksappropriate for others. The
transform representation is particularly unsuited fmachine vision and computer

graphics, where the spatial location of pattermelats is critical.

Recently there has been a great deal of interesépresentations that retain spatial
localization as well as localization in the spatiflequency domain. This is achieved by
decomposing the image into a set of spatial frequdrand pass component images.
Individual samples of a component image represerige pattern information that is
appropriately localized, while the band passed snag a whole represents information
about a particular fineness of detail or scale.r@hs evidence that the human visual
system uses such a representation, and multiresoluschemes are becoming

increasingly popular in machine vision and in imagecessing in general.

The importance of analyzing images at many scalsgesafrom the nature of images
themselves. Scenes in the world contain objectaafy sizes, and these objects contain
features of many sizes. Moreover, objects can baratus distances from the viewer. As
a result, any analysis procedure that is appliety @ a single scale may miss
information at other scales. The solution is torgaout analyses at all scales
simultaneously. Convolution is the basic operatbmost image analysis systems, and
convolution with large weighting functions is a obusly expensive computation. In a
multiresolution system one wishes to perform coatrohs with kernels of many sizes,

ranging from very small to very large. And the catgtional problems
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appear forbidding. Therefore one of the main pnoislén working with multiresolution

representations is to develop fast and efficienhrteques. Members of the Advanced
Image Processing. Research Group have been actimalived in the development of
multiresolution techniques for some time. Most ¢fe twork revolves around a
representation known as a "pyramid,” which is vilesaconvenient, and efficient to use.
We have applied pyramid-based methods to some fed@l problems in image

analysis, data compression, and image manipulation.

6.2 Image pyramids

The task of detecting a target pattern that mayappt any scale can be approached in
several ways. Two of these, which involve only denponvolutions, are illustrated in
Fig. 1.

TARGET IMAGE
al expanded scalos at reduced scales
— =
1 1 i1 {
IMAGE g I (R 5 . )
tixed scale Q i I \,.'-'“ £ —
| A Y | G
: S -
& e i)
TARGET l ’
fixed scale
S— __*@.
E — 1”@ -
— | .@
RESULTS : ¥ ' M
Ril= LR RESULTS

FIGUREG.1. Two methods of searching for a target pgern over many scales. In the
first approach, (a), copies of the target patterrare constructed at several expanded
scales, and each is convolved with the original irga. In the second approach, (b), a
single copy of the target is convolved with copiedf the image reduced in scale. The
target should be just large enough to resolve crital details the two approaches
should give equivalent results, but the second isare efficient by the fourth power
of the scale factor (image convolutions are represted by 'O").

Several copies of the pattern can be constructadceg¢asing scales, and then each is
convolved with the image. Alternatively, a patteffixed size can be convolved with
several copies of the image represented at comespgly reduced resolutions. The two
approaches yield equivalent results, providedaoaitinformation in the target pattern is
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adequately represented. However, the second apgprsanuch more efficient: a given
convolution with the target pattern expanded inesty a factor s will requires more
arithmetic operations than the corresponding cartianl with the image reduced in scale
by a factor of s. This can be substantial for séatéors in the range 2 to 32, a commonly
used range in image analysis. The image pyramaddata structure designed to support
efficient scaled convolution through reduced imageresentation. It consists of a
sequence of copies of an original image in whictihlsample density and resolution are
decreased in regular steps. These reduced resolatiels of the pyramid are themselves
obtained through a highly efficient iterative algiom. The bottom, or zero level of the
pyramid, Gy, is equal to the original image. This is low pa#tered and subsampled by
a factor of two to obtain the next pyramid lev@l. G; is then filtered in the same way
and subsampled to obtaBy. Further repetitions of the filter/subsample stgpserate

the remaining pyramid levels. To be precise, theslke of the pyramid are obtained

iteratively as follows. For 0 k< N:

G, = Z w(m,n)G.a(2i+m,2j+n) (1)
m n

However, it is convenient to refer to this procassa standard REDUCE operation, and
simply write G, = REDUCE [5..1]. We call the weighting functiow, the "generating

kernel." For reasons of computational efficiendg ghould be small and separable.

Fig6.2. Equivalent weighting functions. The process of tamding the Gaussian
(lowpass) pyramid is equivalent to convolving thiggimal image with a set of Gaussian-
like weighting functions, then sub sampling, asvamon (a). The weighting functions
double in size with each increase in 1. The cooedmg functions for the Laplacian
pyramid resemble the difference of two Gaussianshawn in (b).
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FIGURE 6.2 Laplacian pyramid

Pyramid construction is equivalent to convolving tbriginal image with a set of
Gaussian-like weighting functions. These "equivalemighting functions” for three
successive pyramid levels are shown in Fig6. 2ade Nt the functions double in width
with each level. The convolution acts as a lowddtsr with the band limit reduced
correspondingly by one octave with each level. Bseaof this resemblance to the
Gaussian density function we refer to the pyranfitbapass images as the "Gaussian
pyramid."Bandpass, rather than lowpass, im&gsdpass, rather than lowpass, images
are required for many purposes. These may be @otdiy subtracting each Gaussian

(lowpass) pyramid level from the nextlower levetle pyramid.

6.3 Image analysis

Pyramid methods may be applied to analysis in séweays. Three of these will be
outlined here. The first concerns pattern matctand has already been mentioned: to
locate a particular target pattern that may octang scale within an image, the pattern
is convolved with each level of the image pyranfill.levels of the pyramid combined
contain just one third more nodes than there axelgiin the original image. Thus the

cost of searching for a pattern at many scalassisgne third more than that of searching
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the original image alone. The complexity of thetgais that may be found in this way is
limited by the fact that not all image scales apresented in the pyramid. As defined
here, pyramid levels differ in scale by powersvod tor by octave steps in the frequency
domain. Power-of-two steps are adequate when ttterpa to be located are simple, but
complex patterns require a closer match betweesdalke of the pattern as defined in the
target array, and the scale of the pattern aspeas in the image. Variants on the
pyramid can easily be defined with square rootwas-and smaller steps. However, these
not on]y have more levels, but many more sampled,tike computational cost of image
processing based on such pyramids is correspondingleased[32]. A second class of
operations concerns the estimation of integrategbgaties within local image regions.
For example, a texture may often be characterizelbdal density or energy measures.
Reliable estimates of image motion also require ititegration of point estimates of
displacement within regions of uniform motion. brch cases early analysis can often be
formulated as a three-stage sequence of standerdtmms. First, an appropriate pattern
is convolved with the image (or images, in the caflsenotion analysis). This selects a
particular pattern attribute to be examined in tkenaining two stages. Second, a
nonlinear intensity transformation is performed eath sample value. Operations may
include a simple threshold to detect the presehteeaarget pattern, a power function to
be used in computing texture energy measures,eoprbduct of corresponding samples
in two images used in forming correlation measumrsmotion analysis. Finally the
transformed sample values are integrated withiallaindows to obtain the desired local

property measures.

Pattern scale is an important parameter of bothctmolution and integration stages.
Pyramid-based processing may be employed at eathesé stages to facilitate scale
selection and to support efficient computation. I8wf diagram for this three stage
analysis is given in Fig. 6. Analysis begins withe tconstruction of the pyramid
representation of the image.feature pattern is then convolved with each lexethe
pyramid (Stage 1), and the resulting correlatiodnes may be passed through a nonlinear
intensity transformation (Stage?2). Finally, eadtefed and transformed image becomes

61



the bottom level of a new Gaussian pyramid. Pyraoudstruction has the effect of
integrating the input values within a set of Gaasdike windows of many scales (Stage
3).

"TARGET"
PATTERN

)
b
'

w

w

LS £ L
r

IMAGE PYRAMID STAGE 1 STAGE 2 STAGE 3

Pattern Intensity Local
Convolution Transformation Integration

FIGURE.6.3 Efficient procedure for computing integrated image properties at
many scales. Each level of the image pyramid is cavlved with a pattern to enhance
an elementary image characteristic, step 1. Sampialues in the filtered image may
then be passed through a nonlinear transformationsuch as a threshold or power
function, step 2. Finally, a new "integration" pyramid is built on each of the
processed image pyramid levels, step 3. Node valudgen represent an average
image characteristic integrated within a Gaussianike window.
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CHAPTER 7

IMAGE COMPRESSION USING EMBEDDED ZEROTREE
WAVELET

7.1 Introduction

An embedded wavelet coding technique, known as Hddxk Zerotree Wavelet (EZW)
coding that effectively exploits the self-similgribetween subbands and the fact that the
high-frequency subbands mostly contain insignificemefficients. First, we define the
relationship between the subbands, based on thrlsppaations and then define a data
structure in the form of a hierarchical tree thatludes spatially related coefficients
across different subbands. The tree defines a pehdd relationship of DWT
coefficients across subbands. The concept of areercs introduced which identifies the
parts of a tree that have all the DWT coefficianggnificant starting with a root. Since,
DWT coefficients are generally insignificant at Inéy frequency subbands, occurrences
of zerotrees are expected to be frequent and tredree roots can be encoded with a
special symbol. The EZW algorithm is based on ssgige approximation quantization
and this facilitates the embedding algorithm. Basadthe concepts we are going to
present in this lesson, the students should be tabtkesign a complete wavelet coder,

which can be suited to the desired bit-rate ofct@nnel.

7.2 Embedded Coding

In embedded coding, the coded bits are ordereddardance with their importance and

all lower rate codes are provided at the beginmihthe bit stream. Using an embedded
code, the encoder can terminate the encoding pg@temy stage, so as to exactly satisfy
the target bit-rate specified by the channel. Tee this, the encoder can maintain a bit
count and truncate the bit-stream, whenever trgetdit rate is achieved. Although the

embedded coding used in EZW is more general antigagated than the simple bit-

64



plane coding, in spirit, it can be compared with khtter, where the encoding commences
with the most significant bit plane and progreslsiveontinues with the next most
significant bit-plane and so on. If target bit-regeachieved before the less significant bit
planes are added to the bit-stream, there willdo@nstruction error at the receiver, but
the “significance ordering” of the embedded biteam helps in reducing the

reconstruction error at the given target bit rate.

7.3 Relationship between subbands

In a hierarchical subband system, which we haveadly discussed in the previous
lessons, every coefficient at a given scale carelaged to a set of coefficients at the next
finer scale of similar orientation. Only, the highdrequency subbands are exceptions,
since there is no existence of finer scale beybedd. The coefficient at the coarser scale
is called the parent and the coefficients at the firer scale in similar orientation and
same spatial location are the children. For a gpamnt, the set of all coefficients at all
finer scales in similar orientation and spatialailans are called descendants. Similarly,
for a given child, the set of coefficients at atlacser scales of similar orientation and

same spatial location are called ancestors.

s | s,

| HL,
ol 1)l

¥

LH, { “HH;

LH,

FIGURE 7.1 Parent —child dependencies of subbands

65



Fig.7.1 illustrates this concept, showing the dedeeats of a DWT coefficient existing in
HH3 subband. Note that the coefficient under carsition has four children in HH2
subband, since HH2 subband has four times resol@®othat of HH3. Likewise, the
coefficient under consideration in HH3 subband begeen descendants in subband
HH1, which in this case is a highest-resolutionbsma. For a coefficient in the LL
subband, that exists only at the coarsest scal¢hi(gncase, the LL3), the hierarchical
concept is slightly different. There, a coefficiemtLL3 has three children — one in HL3,
one in LH3 and one in HH3, all at the same spddiehtion. Thus, every coefficient at

any subband other than LL3 must have its ultimatestor residing in the LL3 subband.

The relationship defined above best depicts theeginof space-frequency localization
of wavelet transforms. If we form a descendant, tségrting with a coefficient in LL3 as
a root node, the tree would span all coefficietallahigher frequency subbands at the

same spatial location.

7.4 Significance of DWT coefficients

Before we can exploit the hierarchical subband tieiahip concept for efficient
encoding of DWT coefficient, it is necessary toraoluce a very simple concept of
significance. We say that a DWT coefficient of miagghe IXI is significantwith respect
to a given threshold if IXI>T and is insignificant otherwise. In the embedded coding
adopted in EZW, the significance of DWT coefficerdre first examined with the
highest value of threshold in the first pass anentprogressively, the threshold is
decreased by a factor of 2 in subsequent passésteBee start, all coefficients are
assumed to be insignificant and progressively, moemore significant coefficients will
be detected and by the end of the final passpalficients would assume significance at
some pass. At each pass, there is a significangetinaa tells about the significance of
the DWT coefficients and this map requires to beoded efficiently. The significance
map has an entry of zero if the coefficient isgngicant with respect to a threshold and

is one if significant. It should be noted that #ignificance is decided only with respect
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to the magnitude and hence the sign of the sigmifie (positive or negative) must be

included in the encoding process.

LL, 1 HL, HL,
LH | HH | |
—t | "
LH, & { Hhi >

FIGURE 7.2 scannimgder of sub bands

The coefficients are scanned for significance mamner illustrated in fig.7.2 for 3-level
subband decomposition. It starts with the lowestidiency subband, designated as LL
where N s the number of levels. Following the saagrof all the coefficients in this
subband, all the coefficients in subband\Hire scanned. This is followed by kiand
HHy\ . Then the scanning proceeds to the next finexl IBv1 in the same order HL, LH
and HH. It continues till the highest frequencysaids are covered. This ensures that no

child node is scanned before its parent.

7.5 Encoding the Significance map
We are now going to examine how to efficiently esethe significance map at any pass.

For this, the hierarchical relationship of coetitis presented in Section-7.2 is utilized.
A data-structure, called zerotree is defined aer-like data structure that includes an
insignificant coefficient into it, provided all thdescendants of that coefficient are also

insignificant. A zerotree must therefore have atradich itself is insignificant, but its
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parent is significant at that threshold. If all thecestors till the coarsest frequency LL
subband form the zerotree, then the ancestor asubdband is declared as the zerotree
root. The zerotree concept is based on the hypstlieat if a DWT coefficient at a
coarse scale is insignificant with respect to @githreshold, then all its higher frequency
descendants are likely to be insignificant withpexs to the same threshold. Although,
this may not be always true, but these are gepdrak. It may however be noted that all
insignificant coefficients may not be a part ofatege. It is possible that a coefficient is
insignificant, but has some significant descendartgse coefficients are callesblated
zero.Four symbols are used to encode the significange namely

 Zerotree root (ZTR).

* Positive significance (PS).

* Negative significance (NS).

* Isolated Zero (12).

The encoding of the coefficients into one of thewb four symbols is illustrated as

Input coemicient
AR N
e < Bignificant ™ 4
| «. Coefficient?
Y Y
(+) W
i Y What g S Desendant of Y €S » Predictably
- sign? a zerotree Insignificant,
- / root? don't code
L Y
PS NS NO
Y
Any . No
Yes ~ Significant

Desendants?/

v

7 ZTR

FIGURE 7.3 Flow chart for encoding significant map
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Zerotree coding reduces the cost of encoding theifeiance map using self-similarity.
Even though DWT essentially decorrelates the caefits, occurrences of insignificant
coefficients are not independent events. It isezdasi predict insignificance, rather than
predicting significant details across the scalesl aerotree coding exploits the

redundancies that the insignificant coefficienteiof

7.6 Successive Approximation Quantization (SAQ)

Successive Approximation Quantization (SAQ) perferencoding of magnitudes of
DWT coefficients in successive stages. An initidreshold § to examine the
significance is first set up such thag ¥ IXnad /2, where Xax is the maximum of all
DWT coefficients. In each stage of encoding, itusss the threshold by half and
examines the significance once more. The sequehdkeresholds that get applied in
successive stages My T2 T3, .......... Tn-1 are whereN is the number of passes and T
=Tiapfori=1,2,3/4......... N-1 .Each stage consists of twesges — adominant

pass and aubordinate pass

7.6.1Dominant pass

A dominant pass is used to encode those coeffittrat have not yet (that is, till the
previous stage of encoding) been found to be sggmf with respect to a thresholgd T
The significant coefficients identified during thggss in the same scanning order, as
illustrated earlier in fig.7.2 are encoded in zeetstructures, discussed in Section-7.4
and their magnitudes are appended to a list, krasvsubordinate list. At the same time,
the coefficient in the DWT array is set to zerofstitat during the next dominant passes
at lower thresholds, the coefficient is treatedhagnificant and can be included as a part

of zerotree.

7.6.2 Subordinate pass
A dominant pass is followed by a subordinate passhich the coefficients found to be
significant in the subordinate list are scanned @il magnitudes are refined with an

added bit of precision, splitting the uncertainggion of encoding into two halves. For
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each magnitude in the subordinate list, this refieet can be encoded using a binary
symbol, “0” if it falls in the lower half of the wertainty region and “1” if it is in the

other half. The string of symbols generated frommduthe subordinate pass is entropy
coded. After the completion of a subordinate ptss magnitudes on the subordinate list
are sorted in decreasing amplitude, to the extatitthe decoder also should be able to
carry out the same sorting. The encoding procdssnates between dominant pass and
subordinate pass and the threshold is halved efieh dominant pass. The encoding
stops when some target bit rate is achieved. Thidgyato truncate the encoding or

decoding anywhere is extremely useful in systerasdhe rate-constrained or distortion-

constrained.

7.7 An encoding example
127 | 69 |24 73 | 13 5 8 5

37 | 18 |18 B 6 7 15 4

44  -B7 15 21

55 18 29 -56 0 -2 3 7
34 38 -18 17 3 -9 2 1
27 41 11 B 0 -1 0 -3
6 17 5 -19 2 0 3 9
32 26 -7 5 = -5 7 4

FIGURE 7.4 Example DWT coefficient array for 3-levé on an 8x8
image.

The basic principles of EZW coding described so dan be best understood by
considering an example array of DWT coefficients,shown in fig.7.4. The example
shows a 3-level DWT coefficient array of an 8 xn@&ge, split into 10 subbands. It may
be observed that the magnitude of the highest DW@fficient is 127. The initial
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threshold may be set anywhere in the range (628, We set the initial threshold, &s
64. Before we begin the first dominant pass, alabefficients in this array were treated
to be insignificant. With respect to the initiakéshold, the dominant pass picks up the

following significant coefficients in the scanniogder illustrated in fig.7.2.

. Coefficient value 127 in LL3. This will be encoded “PS”, since the coefficient
is of positive value. After decoding this signéile tdecoder knows that the coefficient lies

in the interval [64,128) and its reconstructionueais the centre of this interval, i.e., 96.

» Coefficient value 69 in HL3. This will also be enled as “PS”. As before, its
reconstruction value is also 96.

» Coefficient value 73 in HL2. This will also be ened as “PS” with a
reconstruction value of 96.

» Coefficient value -87 in LH2. This will be encodas “NS”, since the coefficient
is of negative value. The decoder knows that thgnitade of the coefficient lies

in the interval [64,128) and its reconstructionueawill be -96.

All remaining coefficients are insignificant in tiiest dominant pass. The first dominant
pass scanning will identify the following zerotre@ot (coded as “ZTR”) and isolated
zeros (coed as “IZ"):

 Coefficient value of -37 in LH3 is insignificanbut it has significant coefficient
value of -87 in its descendants in LH2. Thus, ttosfficient will be encoded as
isolated zero (12).

» Coefficient value of -18 in HH3 is insignificaand all its descendants in HH2 and
HH1 are insignificant. Thus, this coefficient qdiaé to be a zerotree root (ZTR)
and will be encoded accordingly.

» The reader may verify that the following coeféints are also zerotree root (ZTR):

* 24,-18 and 8 in HL2.
* 44,65 and 18 in LH2.
* Also observe that the following coefficisrare zeros, but not a part of any zerotree

root:
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= -8,5,15and 4 in HL1.

= -18,17,11 and -5in LH1.
For these highest frequency subbands, ZTR and I¥ beamerged into a common
symbol of “Zero” (Z). At the end of the first don@nt pass, the subordinate list will
contain only the four significant coefficients iddied. The first subordinate pass will
refine the magnitudes of the significant coeffi¢tteeand categorize them into one of the
two uncertainty intervals, viz., [64, 96) and [983). Thus, only the LL3 coefficient of
magnitude 127 will belong to the latter intervaldawill be encoded with symbol 1,
whereas the remaining three significant coeffiganill belong to the former interval and
encoded with symbol 0. The first coefficient wikh\e a reconstruction value of 112 and
the remaining coefficients will have a reconstrogtvalue of 80 at the middle of the
uncertainty interval. In this case, the first caméint only is encoded as 1 and the

remaining as Os and no re-ordering in subordinstésl necessary.

The first dominant and the first subordinate pasmmete the first stage of processing.
Now, the second dominant pass starts with threskeldo T= T, /2=32 .During this
pass, the coefficients which are yet to be foundigsificant will only be scanned. All
the coefficients previously found to be significame set to zero so that they could be
included as a part of zerotree in this, as wella#ter passes. However, the subordinate
list is still maintained and the second and subsegyasses will only append the

significant coefficients found in that pass to subordinate list.

As an exercise, the student is advised to completesecond dominant and second
subordinate pass encoding. The processing altéynadatinues between the dominant

pass and the subordinate pass and can be stoppey tahe.

7.8 Order of importance in the bit-stream
The embedded bit-stream, which the EZW algorithmegates inherently, performs an

ordering of bit-stream according to the importariee importance follows the order of

precision, magnitude, scale and spatial locati@oting to the initial dominant list. The
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first importance is assigned to the numerical mieai of the coefficients. All the
coefficients in a pass are encoded with the sameerioal precision and it is only after a
dominant pass that the numerical precision is egfiby a factor of two. The next in
importance is the magnitude. Prior to a pass, aéffcients are assumed to be
insignificant and the dominant pass picks up atindicant coefficients, having
magnitudes greater than those of the insignificamgfficients. During the subordinate
pass, the magnitudes are sorted in a descendirgy ofdthe centres of uncertainty
intervals. Scale is the next factor of importaricéollows the ordering of subbands on
the initial dominant list. The coarser scales avgeced before the finer or the high-
frequency coefficients. The final factor is the t&alocation. It simply means that two
coefficients, which cannot be distinguished by @iea, magnitude and scale, have their
relative importance decided arbitrarily by the iaditscanning ordering of the two

coefficients within a subband.
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CHAPTER 8

PURPOSED WORK

8.1 Introduction

In this work, a new approach to image compresschrtique is proposed that enhanced
the compression performance. The new technique idenss both discrete cosine

Transform and Discrete Wavelet Transform.

In this approach we select the compression teckenajuthe decision parameter of the

image .In this work the decision parameter of imiages Standard Deviation (STD).

In this work, SVD associates DCT and BTC in JPE@ haseline coding. This technique
considers these there DTC, SVD and BTC jpeg basedpression technique. The

incorporation of SVD with nearest neighborhood apph has improved the compression
performance significantly. And this work considemtcompression technique based on
wavelet transformation i.e. pyramid decompositismg Gaussian filter, and EZW.

8.2 Proposed technique

The proposed algorithm incorporates both DCT and Skansform coding instead of
DCT only in baseline coding. Depending on the imageperties a simple decision
making criterion is o choose used the transformb@écemployed. The decision making
criterion is based on the observation of standasdation (STD) of the source SD of an
image is larger when it has many abrupt changestémsity than when the image has

Smoothly varying intensity. The technique is basedhe following algorithm.

1. Input an image which is processed accordinghéoselected compression technique

selected based on the STD of the image.

2. The STD of current image is computed and forcthapression technique belonging to

jpeg compression (other than wavelet) if STD isséesthan the decision making
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parameter, the DCT is used to compute the transfavafficients. Conversely if the
standard deviation is more than the decision makiagmeter the SVD transform is
used. However if the STD is lying between 35 totld&n BTC is used even though the
results of compression for BTC depends on the blsize of image here we are
considering to be 8x8. This is done because DCTommputationally efficient and
achieves good performance for images charactetizetligh correlation. In contrast,

SVD provides optimal energy packing efficiency less correlated images.

3. For the compression technique belongs to wavet#tnology pyramid and EZW are

incorporated such that if STD is lesser the denigiarameter, the EZW is used for the
compression .conversely if the standard deviagomaore the decision making parameter
the pyramid work better even though the its conggdsmage quality depends on the

number of levels used for compression.

4. The image quality factors are given as the dutpu

8.3 Image quality measurements

Image quality measures play important roles inowgiimages processing application
.Once image compression System has been desigdadplemented, it is important to
be able to evaluate its performance. This evaloalwmuld be done in such a way to be
able to compare results against other image comsipresechniques. The image quality
metrics can be broadly classified into two categmrsubjective and objective. Subjective
image quality is a method of evaluation of imagegshe viewers read images directly to
determine their quality. In objective measuresmége quality metrics, some statistical
indices are calculated to indicate the image qualih our work we will focus in
objective measures such as Peak Signal to Noise $NR) and mean square error
(MSE).

The PSNR is most commonly used as a measure oityqoélreconstruction of lossy
compression .It is an attractive measure for tlse tf image quality due to its simplicity
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and mathematical convenience .Peak signal-to-nocéé® (PSNR) is a qualitative

measure based on the mean-square-error of thesteocted image .If the reconstructed
image is close to the original image, then MSEnmls and PSNR takes a large value
.PSNR is dimensionless and is expressed in degileak Signal-to-Noise Ratio (PSNR)
avoids this problem by scaling the MSE accordinghtimage range .PSNR is defined

as follow:
| M N [ ]2
MSE = Vii: =203,
ﬂif?'l'r F-Z=1 ;1 j j)
PSNR = 10 log |£—|
MSE

Where L is the dynamic range of the pixel valuesb(fbr 8-bit grayscale images).

8.4 Experimental Results

8.4.1. Input image-lena.bmp

Orginal lmage

a0

100
150
200
250 l :
&0 100 150200 250
Algorithm | PSNR MSE SD
DCT 30.70271 | 55.31073 | 52.59425
SvD 33.97248 | 26.0515 | 52.59425
BTC 30.08119 | 63.82063 | 52.59425
EZW 30.25315 | 61.34305 | 52.59425
Pyramid | 32.75411 | 34.48814 | 52.59425
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8.4.2. Input image-Hrithik.bomp

Orginal Image

al
100 ¢
150 1
200 .

250 :
A0 100 150200 250

Algorithm | PSNR MSE SD

DCT 31.86982 | 42.27641 | 69.02297
SvD 38.79564 | 8.580566 | 69.02297
BTC 30.73738 | 54.87093 | 69.02297
EZW 27.23152 | 123.0065 | 69.02297
Pyramid 33.16875 | 31.3477 | 69.02297
8.4.3. Input image-sony.bmp

Crginal Irmage

100

200

300

100 200 300

Algorithm | PSNR MSE SD

DCT 29.53501 | 72.37341 | 88.9451
SvD 32.66404 | 35.21088 | 88.9451
BTC 30.07144 | 63.96414 | 88.9451
EZW 14.50748 | 2303.206 | 88.9451
Pyramid 34.09747 | 25.31241 | 88.9451
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8.4.4. Input image-Square.bmp

Crginal Image

100
140
200
240

50 100 150200 250

Algorithm | PSNR MSE SD

DCT 32.81447 | 34.01212 | 47.78622
SvD 37.70188 | 11.03804 | 47.78622
BTC 32.03844 | 40.66646 | 47.78622
EZW 34.66862 | 22.19313 | 47.78622
Pyramid 34.20711 | 24.68137 | 47.78622
8.4.5. Input image-Circle.omp

Crginal Image

5|:| i s

100 {8

150 {}

2004 ¥

250 -

A0 100 150200 250

Algorithm | PSNR MSE SD

DCT 29.3267 | 75.92943 | 66.34601
SvD 33.07188 | 32.05476 | 66.34601
BTC 28.8524 | 84.69154 | 66.34601
EZW 27.19073 | 124.1672 | 66.34601
Pyramid 32.25451 | 38.69276 | 66.34601
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8.5 Following are the screen shot of the output for various input images with different
standard deviation.

8.5.1. Images with STD 66.34

Orginal Image swvil Image dct Image
E01 4 01 501 4
100 | {4 100 1 b 100 - [
150 148 150 148 15|:|.
200 § 200 ¥ ong |
250 - 250 A 250
50 100 150200 250 &0 100 150 200 250 E0 100 150 200 250

BTC Image EZW imane E'}fral’lﬂid |Imag§3
50 - 50 50
100 | {8 100 100
150 148 150 150 4
2001 200 200
250 4 : 250 L, 250 4
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
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8.5.2. Image with STD 47.78

Orginal Image

&0
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200
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&0 100 150200 250

BTC Image
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240

&0 100 150200 250

svd Image
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&0 100 150 200 250
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200
240

&0 100 150 200 250
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dct Image
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150
200
240

&0 100 150 200 250

Pyramid Image

0 4
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200
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50 100 150 200 250



8.5.3. Image with STD 52.59

Orginal Image svd Image dct Image
a0 50
100 100
150 180
200 8 200 § 4
250 4L 250 4L
80 100 150200 250 S0 100 150 200 250 50 100 150 200 250

BTC Image ESVY image

a0
100
150
200

250 1 ;
£0 100 150200 250 50 100 150 200 250

FPyramid Image

50
100
150
200
240

S0 100 150 200 250
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8.5.4. Image with STD 69.02

100 { o
150 {1
200 £
250 &

a0
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200
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Crginal Image

BTC Image

&0 100 150200 250

FPyramid Image
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&0 100 150 200 250
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8.5.5. Image with STD 88.94

Orginal Image

100

200

300
100 200 300
BTC Irmage

i

100
200

300
| 100 200 300

Fyramid Image

a0
100
150
200
250

&0 100150200250

svd Image
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CHAPTER 9

CONCLUSION AND FUTURE SCOPE

This chapter concludes the work in this thesiseims of the various input and output
parameters that have been considered while conipgesmages using Different
compression techniques.

It also provides with a look up in the future scap@®ur work area.
9.1 Conclusion

This thesis presents a comparative analysis obwarimage compression techniques
using wavelet transforms and discrete cosine Toamsftion. A lot of combinations

have been applied in order to find the best method.

The analysis, of all the obtained experimental tesdemonstrates that the incorporation
of SVD and BTC in image compression along with D@&n adaptive manner enhances
the compression performance significantly. The psagl technique perform perform the
best technique in terms of PSNR and MSE.

But it requires slightly longer time that makessititable for large bandwidth channel

only.

In this research compression technique is selemtethe basis of its standard deviation
used as decision parameter for compression. Cosipretechniques other then wavelet
transformation can be divided as SVD for the imhgeing large standard deviation
(greater than 45). If the standard deviation liesMeen 40 to 45 BTC compression is
selected.and lesser standard deviation DCT isteelec
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And for wavelet based compression technique wecs&@&W for image with lesser

standard deviation and pyramid for image with lagandard deviation.

9.2 Future scopes

The field of image processing has been growing sery fast pace. The day to day
emerging technology requires more and more revmiuind evolution in the image
processing field. The well known saying “A pictigays a thousand words” can be taken
as the main motive behind the need of image prougss

The work proposed in this thesis also portrays allsoontribution in this regard. The
proposed compression technique can provide a gt for further research work in
this respect.

This work can be further enhanced to by selectihgrodecision parameter other than of
standard deviation of the images. It will providg@d add on to the already existing
compression techniques used for images compression.

Moreover, for future work we can train our algonithusing various Al techniques like
fuzzy logic or neural network, in order to attaimetbest output without performing
calculations for each and every combination. UseAbftechniques will lead to the

optimal solution directly, with more efficiency atess tedious work.
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