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Abstract
Bluetooth is an open specification for seamless wireless short range communication of data and voice between devices. It uses radio waves to transfer information, so it is very susceptible to attacks. Bluetooth also has security architecture. The Bluetooth authentication protocol is based on symmetric key cryptography and on a typically numeric and short password called pin or passkey that the user enters into both devices. The protocol is vulnerable to a passive attack in which the eavesdropper brute forces the pin, and then it can recover the link keys shared by two devices. With this secret key any encrypted traffic can be decrypted between the devices as well as, potentially, impersonate the devices to each other. So, a protocol is needed which should be robust against pin guessing attack that means if pin or passkey is guessed by intruder it should be difficult to crack the initialization, link and encryption keys. This dissertation discusses the approach to improve pairing protocol by making key generation mechanism more robust by decreasing the dependency for the generation of   keys on the pin.
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Chapter 1

                                Introduction

1.1 Bluetooth Technology Overview 

To provide wireless interconnections between devices a short range radio technology is designed called as Bluetooth wireless technology. A team of researchers at Ericsson Mobile Communications, led by Dr. Jaap Haartsen and Dr. Sven Mattisson started development of Bluetooth in 1994. They initiated a feasibility study of universal short range, low-power wireless connectivity as a way of eliminating cables between mobile phones and computers, headsets and other devices. The wireless link turned out to be useful for many other things and it was developed into a very generic tool for connecting devices [1]. A synchronous mode for voice traffic and support for up to seven slaves was introduced. Bluetooth Special Interest Group (SIG) was founded in May 1998 in order to gain momentum for the technology and to promote acceptance. The group consists of biggest companies like Ericsson, Nokia, Intel, IBM, Toshiba, Microsoft, Apple, 3Com, Motorola, Toyota, Lexus, BMW, etc. By joining forces, the SIG members have evolved the radio link to what is now known as Bluetooth wireless technology. A variety of products is available on the market today, including printers, laptops, keyboards, cars and mobile phones [2]. 
 1.2 The Bluetooth Name
The name Bluetooth comes from King of Denmark Harald Blatand, who was from approximately A.D. 940 to 986. He managed to unite Denmark and part of Norway into a single kingdom and introduced Christianity.  Harald Bluetooth was killed in 986 during a battle with his son, Svend Forkbeard. The name Bluetooth has been chosen for the standard, to indicate how important companies from the Scandinavian region (Denmark, Sweden, Norway and Finland) are to the communication industry and to unify multinational companies after a Scandinavian king who united countries, although the name says little about the way the technology works. The name Bluetooth was initially an unofficial code name for the project but has become the trademark name of the technology and the special interest group. 
1.3 Scope of Work 

It is almost difficult to prevent the interception of data that is transmitted wirelessly. The problem of maintaining a secure system is difficult in wireless devices, given the fact that they are resource poor which makes it difficult to implement strong security mechanisms. Therefore a general-purpose security mechanism must adhere to strict resource constraints. Bluetooth is a standard for wireless personal area networking and short range cable replacement [1]. In Bluetooth, special effort has been taken to develop and standardize adequate security mechanisms and procedures for protecting the wireless radio link. However, Bluetooth technology is considered moderately secure, but still has weaknesses in its security architecture, which have been identified and discussed by many researchers. Security concerns are slowing the mass adoption of wireless technology and Bluetooth is no exception. The issue of Bluetooth security came up when people found that the PIN it used could be cracked. The fundamental weaknesses in security are device's initialization key is based on the Bluetooth's PIN. Shorter PINs is highly susceptible to brute-force cracking techniques and easy to crack making the key generation more vulnerable to attacks by the intruder. There was also the possibility that one Bluetooth device may use its exchange of unit keys with a second device and third device to eavesdrop on their "private" conversation - or even falsely to authenticate itself to the one, masquerading as the other.

This dissertation aims at enhancing Bluetooth security. The present dissertation is an attempt to understand the Bluetooth Security and thereby propounding a monumental effort towards proposing an improvement in current Bluetooth Baseband security algorithm. In this dissertation, Bluetooth Security mechanisms are analyzed and an approach to provide robustness to currently used security procedures is proposed.

1.4 Organization of the Dissertation 

This Dissertation covers two main subject matters including Bluetooth technology and its security concerns 
Chapter 1 is the introductory chapter which gives the overview of the Bluetooth   technology and scope of the work.
Chapter 2 presents the Bluetooth technology architecture, protocols and its features. Security architecture and all pairing algorithm details are also discussed in chapter 2.
Chapter 3 focusses on block cipher principles with detailed description on SAFER+ algorithm. The SAFER+ encryption, decryption structure and key schedule are discussed in this chapter.

Chapter 4 provides complete details of new approach to improve key generation mechanism in Bluetooth technology. It also includes the analysis of present pairing mechanism used in Bluetooth.

Chapter 5 discusses implementation aspects along with experimental results of proposed approach vis-à-vis existing one. 
Chapter 6 is the concluding chapter which discusses the conclusions of experiments performed.  Future research directions are also discussed in chapter 6.  

Chapter 2

  Literature Survey

2.1 Bluetooth

To connect computers to each other, cables have been used from centuries. To secure these cable connections various security measures have been developed so that information can travel safely. So, Bluetooth comes up as a solution to form a cable free environment. Bluetooth is the code name for an alliance between mobile communications and mobile computing companies to develop a short-range communications standard allowing wireless data communications at ranges of about 10 meters to 100 meters [1] [3]. The technology allows users to make effortless, instant connections between a wide range   of communication devices. There are four factors that make the technology appealing especially in the field of mobile devices.

· A compliant implementation requires only a small space and therefore it can be included easily in small devices.

· It consumes so little power that it does not significantly reduce the battery life of the device.

· Compact implementation and mass production enables low-cost solutions.

· It is relatively robust against radio interference.

2.2 Bluetooth Features

Spectrum

Bluetooth technology [3] operates in the unlicensed industrial, scientific and medical (ISM) band at 2.4 to 2.485 GHz, using a spread spectrum, frequency hopping, full-duplex signal at a nominal rate of 1600 hops/sec. The 2.4 GHz ISM band is available and unlicensed in most countries.
Interference
Bluetooth technology’s adaptive frequency hopping (AFH) capability was designed to reduce interference between wireless technologies sharing the 2.4 GHz spectrum. AFH works within the spectrum to take advantage of the available frequency. This is done by detecting other devices in the spectrum and avoiding the frequencies they are using. This adaptive hopping allows for more efficient transmission within the spectrum, providing users with greater performance even if using other technologies along with Bluetooth technology. The signal hops among 79 frequencies at 1 MHz intervals to give a high degree of interference immunity.

Range
The operating range depends on the device class:

1) Class 3 radios – have a range of up to 1 meter or 3 feet 

2) Class 2 radios – most commonly found in mobile devices – have a range of 10   meters or 30 feet  

3) Class 1 radios – used primarily in industrial use cases – have a range of 100 meters or 300 feet

Power
The most commonly used radio is Class 2 and uses 2.5 mW of power. Bluetooth technology is designed to have very low power consumption. This is reinforced in the specification by allowing radios to be powered down when inactive.

Data Rate
1 Mbps for Version 1.2; Up to 3 Mbps supported for Version 2.0 + EDR

2.3 Protocols in Bluetooth Architecture

The Bluetooth architecture is depicted in Figure 2.1. Protocols used can be divided into two categories: transport and middleware protocols [4]. Transport layer protocols consist of both Bluetooth specific and adopted protocols, which are used selectively to enable different application profiles. Normally the middleware protocols shield the specifics of the Bluetooth technology from the actual applications (or profiles), while naturally the actual data transfer is always taking place through transport layer protocols [5].


 















Figure 2.1: Bluetooth Architecture
 Radio Layer: The lowest layer in the protocol stack is the radio layer. Its interface specification defines the characteristics of the front end, frequency bands, channel arrangements, permissible transmit power levels and receiver sensitivity level. Bluetooth radio uses the 2.4 GHz unlicensed ISM band. The spectrum is divided from 2.402 GHz to 2.480 GHz into 79 channels, each 1 MHz wide.  A pseudo-random hopping at 1600 Hz is performed, which effectively reduces interference. Currently the bit rate is 1 Mb/s  (SIG 2003).Given characteristics of a typical Bluetooth device, most current implementations use power class 2, typical operating range being around 10 meters. The transmit power of devices can be further adjusted in operation to conserve power and avoid interference. Bluetooth is a frequency hopping spread spectrum system. This means that the radio hops through the full spectrum of 79 or 23 RF Channels using a pseudorandom hopping sequence. 

Baseband Layer: The baseband offers the fundamental elements for Bluetooth communication. Each Bluetooth devices has a unique IEEE-type 48-bit address called Bluetooth device address (BD_ADDR) allocated at manufacture time. Baseband carries out Bluetooth’s Physical & MAC Layer processing. This includes tasks such as device discovery, link formation, synchronous & asynchronous communication with peers.

Link Manager:  Bluetooth peers must exchange several control messages for the purpose of configuring and managing the baseband connections. These message definitions are part of the link manager protocol. The functional entity responsible for carrying out the processing associated with LMP is called the link manager protocol. Before a device can establish the L2CAP channel, the link manager must carry out a number of baseband actions, such as piconet creation, master slave role assignments, and link configuration. These functions belong to the control plane of the Bluetooth link layer and require the link manager to exchange LMP messages over the air link. Depending upon the operating environment, the link manager must adjust a number of piconet and link specific parameters. Security can also be configured using LMP messages. Before a data or voice exchange can occur, Bluetooth devices should be able to authenticate each other. Bluetooth is unique in offering the front- end RF processing integrated with the baseband module. On-Chip Integration lowers the cost of the network interface, and the small size makes it easy to embed Bluetooth chips in devices such as cell phones and PDAs. 

The Host Controller Interface (HCI): It defines a standard interface independent method of communicating with the Bluetooth Chip. The software stack on the host processor communicates with the Bluetooth hardware using HCI commands. Since no hardware specific knowledge is needed, the Bluetooth stack software can easily be ported from one Bluetooth chip to another. The HCI layer is part of the Bluetooth Stack, but it doesn’t constitute a peer to peer communication layer since the HCI Command and response messages do not flow over the air link.

 The logical link control and adaptation protocol (L2CAP) Specification: It can be viewed as Bluetooth’s link layer. Usually, L2CAP and layers above it are implemented in software.L2CAP delivers packets received from higher layers to the other. L2CAP can be viewed as the data plane of the Bluetooth link layer. L2CAP does not supports integrity checks because the baseband packets are already CRC protected. The L2CAP Channels are connection oriented in the sense that they require an explicit phase to establish a channel, during which both ends choose a local name (channel identifier) and communicate it to the other end. The L2CAP specification also defines a connectionless channel for supporting broadcast and multicast group communication, but this feature is not yet fully developed.

 The Service Discovery protocol (SDP):  It defines the means by which the client device can discover services as well as their attributes. Both ends of a Bluetooth link must support compatible sets of protocols and applications to successfully exchange data. SDP is a client server protocol. The server maintains a list of service records, which describe the characteristics of services hosted at the server. By issuing SDP queries, a client can browse all services records maintained at server or retrieve specific attribute values from a service record. The SDP Design has been optimized for Bluetooth. It defines only the discovery mechanisms and the methods for accessing those services are outside its scope.

The RFCOMM Specification: It defines a method of emulating the RS-232 cable connection on top of the Bluetooth airlink. RFCOMM supports the legacy applications that use the COM port to communicate with the peer host. For example, point to point (PPP) protocols expect a serial line interface from the lower layers. Since PPP provides a packet oriented interface to the higher layers, all packet based network and transport protocols, including TCP/IP, can be supported on top of PPP.

Telephony Control Protocol: The Telephony Control - Binary (TCS Binary) and Telephony Control - AT Commands are used to establish speech and data calls between devices and control mobile phones and modems respectively. 

Adopted Protocols: Bluetooth also supports PPP, TCP/UDP/IP and WAP protocols to maximize interoperability. 

2.4 Wireless Networking 

 In wireless networking, data can be transferred between computers, printers, cameras and other peripherals using an IrDA connection or a radio signal based connection depending on what protocols the devices implement. WPAN Technologies enable network formation within a personal operating space (POS). A POS is small area ranging not more than 10 meters in distance. 

Piconet: Two or more Bluetooth devices that share a same channel (hop sequence) form a piconet. A device participating in a piconet [1] acts either as a master or a slave. Every piconet has one master and up to seven active slaves. There is no direct transmission between slaves; data must be always relayed through the master device instead. 
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Figure 2.2: A piconet with 4 slaves

Scatternet: Two or more piconets can be interconnected forming a structure called a scatternet, as depicted in Figure 2.3. Piconets are linked together by a device that is a member of both piconets. A device can be acting simultaneously as a slave in many piconets, but it can be a master of at most one piconet. Participation in multiple piconets is performed on a time-division multiplex basis, as a device can transmit and receive data only in one piconet at a time. Scatternets[6] [7] make it possible for Bluetooth units to participate in multiple piconets. 
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Figure 2.3: Scatternet Formation
2.4.1 Inquiry & Paging 

Bluetooth uses a procedure known as inquiry for discovering other devices. It uses paging to subsequently establish connections with them. Both inquiry & paging are asymmetric procedures. In other words, they involve the enquirer and the inquired devices to perform different actions. This implies that when two nodes set up a connection, each needs to start from a different initial state, otherwise they would never discover each other. The profile specifications play an important role here, defining the required initial state for each device in all usage scenarios.

 The inquiry and paging are conceptually simple operations, but the frequency hopping nature of the physical layer makes the low level details quite complex. Two nodes cannot exchange messages until they agree to a common channel hopping sequence as well as the correct phase within the chosen sequence. Bluetooth solves this problem simply by mandating the use of a specific inquiry hopping sequence known to all devices. During inquiry, both nodes hop using the same sequence, but the sender hops faster than the listener, transmitting a signal on each channel and listening between transmissions for an answer. The sender device collects some basic information from the listeners, such as the device address and the clock offsets. This information is subsequently used to page the selected listener device.

2.4.2 Piconet Channel
As soon as a piconet is formed, communication between the master and the slave nodes can begin. The piconet channel is divided into 625- microsecond intervals called slots, where a different hop frequency is used for each slot. The channel is shared between master & Slave nodes using a frequency hop/time-division-duplex scheme whereby master-slave and slave-master communications take turns. A piconet channel supports following types of links:-

i) Synchronous Link

To transmit real-time voice, an application must reserve a slot in both directions at regular interval. In Bluetooth terminology, this is called a synchronous link. An SCO Link can transport telephone-grade voice. The packet that carries 30 voice bytes is called an HV3 packet. To cope with bit errors when the channel conditions are perfect, some forward error correction (FEC) is added to the voice payload. Hence an HV2 packet carries 20 bytes of voice plus 10 bytes of redundant data (2/3 FEC Code). To cope with extreme channel conditions, the baseband specification also defines an HV1 packet that carries only 10 bytes of speech and 20 bytes of FES Code.

An SCO link is set up by a link manager (LM) command from the master to the Slave. This message contains timing parameters to specify the reserved slots such as the SCO interval and the starting offset.

ii) Asynchronous Link

Data communication between a master-slave pair involves a different set of considerations. For example, the data payload must be protected by a cyclic redundancy check, so that the receiver can determine whether the receiver bits are in error. When losses occur, the baseband layer retransmits the data. To make efficient use of the piconet channel, slots are allocated on demand, instead of being reserved for the usage duration. A data path between a master-slave pair meeting all of these requirements is called an asynchronous data link (ACL). SCO Links have priority over data. So ACL links can claim only unused slots. Only a single ACL can exist between master and slave.

2.4.3 Connection States of Bluetooth Devices

At any time, a Bluetooth device is in one of a number of different states. They are defined as follows:-

1. Active: Both master and slave participates actively on the channel by transmitting or receiving the packets.

2. Sniff: In this mode slave rather than listening on every slot for master's message for that slave, sniffs on specified time slots for its messages. Hence the slave can go to sleep in the free slots thus saving power. Sniff mode is used to reduce traffic to periodic sniff slots. Sniff mode can be used to allow the PDA to reduce the slots in which it has to listen, but to react faster when traffic appears.

3. Hold: In this mode, a device can temporarily not support ACL packets and go to low power sleep mode to make the channel available for things like paging, scanning etc. Hold mode is used to stop ACL Traffic for a specific period of time. An example of when Hold mode might be used is if a device wanted to perform an inquiry, page or scan operation.

4. Park: Slave stays synchronized but not participating in the piconet, then the device is given a Parking Member Address (PMA) and it loses its Active Member Address (AMA). The device hence ceases to be an active member of the piconet. As long as it is parked, it cannot transmit, as it has no active member address, it cannot be addressed directly by the master. However, it wakes up periodically and listens for broadcasts, so these can be used to unpark it, bringing it back to active life.

2.5 Bluetooth Security Overview 

Bluetooth SIG claims that Bluetooth offers better security [8] than its competitors such as IrDA, WLAN etc. Security features like Authentication and encryption are built into the protocol stack. This enables a negotiation as to the level of security to be used before actual packets are transmitted. Apart from security offered by protocol stack, applications are further free to decide and implement upon their own security requirements independently and thereby enhance security.
The Bluetooth’s generic access Protocol (GAP) has defined the following the following three different security modes for Bluetooth device:-

i) Mode 1: Mode 1 is inherently insecure and does not allow authentication and encryption at all.

ii) Mode 2:   Mode 2 enforces security after establishment of the link between the devices and requires that devices are authenticated and encryption is used once channel that requires security has been established. In mode 2, the channel has to be established at the L2CAP level. This mode is suitable for running applications that require different security requirements in parallel.

iii) Mode 3:  In Mode 3, security is enforced down to the link layer and the authentication is performed during the connection establishment. Therefore, connection between devices in security mode 3 can be restricted to devices that have been previously paired with each other. During pairing, devices exchange link keys and are said to be bonded. This mode of security enforces a common security level for all applications.

 In every Bluetooth device, there are four entities used for maintaining the security at the link level:-

  1. The Bluetooth device address (BD_ADDR), which is a 48-bit address that is unique 

     for each Bluetooth device and defined by the Institute of Electrical and Electronics 

      Engineers (IEEE). 

       2.  Private authentication key, which is a 128-bit random number, is used for

           authentication purposes.

       3.   Private encryption key, 8-128 bits in length is used for encryption. 

        4.  A random number (RAND), which is a frequently changing 128-bit random or 

            pseudorandom number that is generated by the Bluetooth device itself.

2.6 Security Architecture

The Bluetooth specification includes security features [9] at the link level. It supports authentication (unidirectional or mutual) and encryption. These features are based on a secret link key that is shared by a pair of devices. To generate this key a pairing procedure is used when the two devices communicate for the first time. Bluetooth devices transmit on the heavily used unlicensed 2.45 GHz radio band (The same used by microwaves). To keep transmissions from breaking up, Bluetooth employs frequency hopping, a practice of skipping around the radio band 1600 times each second. This improves clarity and also reduces what Bluetooth proponents call “casual eavesdropping “ by allowing only synchronized devices to be able to communicate. Each Bluetooth device has a unique device address, allowing users to have some trust in the person at the other end of the transmission. Once this ID is associated with a person, by tracking the unscrambled address sent with each message, individuals can be traced and their activities easily logged. Security allows security levels [9] to be defined for both devices as well as the services. 

For device there are two possible security levels. A remote device could be either: -

1. Trusted device: - Such a device would have access to all the services for which the trust relationship has been set.

2. Untrusted device: - Such a device would have restricted access to services. Typically such devices would not share a permanent relationship with the other device.

For services, three levels of security have been defined: -

1. Services that require authorization and authentication. Automatic access is only granted to trusted devices. Other devices need a manual authorization.
2. Services that require authentication only. Authorization is not necessary.
      3.   Services that is open to all the devices. Authentication is not required, no

              access approval required before services access is granted.

2.7 Security Manager

The security features [9] and policies that can be supported by Bluetooth as mentioned above are enabled by a component called the security manager. The security manager component is the entity that decides what policies are to be enforced when a connection request is made (Both for inbound and outbound connections) as shown in Figure 2.4. Based on the service, device type and whether the device is trusted or untrusted the security manager can enforce application level authentication, encryption of the session and any other specific access policies.

The security manager needs information regarding devices as well as services before it can take a decision whether or not to allow and if so, to what services. This information is stored in two databases namely, the device database and the service database. The device database stores the information about the device type, the trust level (whether trusted or untrusted) and about the link key (used for encryption) length .The service database stores information regarding the authentication, authorization and encryption requirements for the services. It also stores other routing information for the services.

The security manager performs the following tasks:-

· Stores security related information for all services (Service Database). 

· Stores security related information for available devices in range (Device Database).

· Processes access requests by protocol implementations or applications (a grant access or denies connection).

· Enforces authentication and/or encryption before connection can be established.

· Initiates and processes input from a device user (called External Security Control Entity (ESCE) - a human operating a device) to setup trusted relationship.

· Initiates pairing and queries PIN. The typical step followed by the security manager in granting access to a remote device to connect to a particular service is as follows (shown in Figure 2.4). 
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Figure 2.4: Bluetooth Security Architecture

1. Remote device requests access.
2. Connection request comes to L2CAP.

3. L2CAP requests security manager to grant access.

4. Security manager queries both device and service databases.

5. If the device is trusted, then security manager may or may not (depending upon the implementation) ask for authentication or authorization.

6. If the device is untrusted, the security manager may either terminate the connection or enforce authorization. Authentication at the core Bluetooth protocol level will happen when the link keys are exchanged. Depending on the security policy governing access, the security manager might call upon an application protocol to enforce application level security such as username/password scheme for authentication. Support is also built in for other authentication schemes through the security manager interface.

7. The security manager will then decide if the service access requires link encryption. if so, keys will be negotiated and exchanged at the L2CAP protocol level and the connection will continue to be set up.

8. Alternatively, if the device is in security mode 3, the security manager instructs the LMP to authenticate and encrypt the communication before the connection to the service is set up.

The Bluetooth technology has a significant security component [8] [9], which include key management, authentication and secrecy. However, the security of the whole system relies on the user's choice of a secret Personal Identification Number (PIN) - which is often much too short. Moreover, the Bluetooth designers invented several new cryptographic primitives, which were incorporated into the system. Cryptographers consider fielding new primitives to be risky, because new cryptography is less tested and may contain hidden flaws. Furthermore, Bluetooth is designed for short-range communication (nominal range of about 10m). This short-range is perceived as a security feature, since an attacker is supposed to be quite near the attack target but it is also true range-extenders can be built very cheaply.
2.8 Bluetooth Pairing

Each time when two or more Bluetooth units needs communicate securely, they will first set up the secure channel.

2.8.1 Definition and Overview 

When two Bluetooth enabled devices agree to communicate with one another Bluetooth Pairing [10] is done. After the joining of two devices a trusted pair is formed. Bluetooth pairing between two devices follows simple steps given below:

1) Device A searches for other Bluetooth enabled devices in area. 

2) A detects Device B (such as a mobile phone that's discoverable).

3) A asks B to enter a Passkey or PIN

      A passkey (or PIN) is a simple code shared by both devices to prove that both users agree to be part of the trusted pair. 

4) A sends the passkey to B for comparison

5) B sends passkey back to A

      If B's passkey is the same entered by A, a trusted pair is formed. This happens automatically when the passkeys agree. Once a trusted pair is developed, communication between the two devices should be relatively seamless, and shouldn't require the standard authentication process that occurs between two devices who are strangers. 

2.8.2 The Bluetooth initialization procedures & authentication process 

The Bluetooth pairing is done by doing first initialization procedures which consist of 3 or 4 steps. In the first step initialization key (Kinit) [10] is created and on the basis of kinit the link key generated. After these two important steps authentication of devices is done. After this pairing devices generate an encryption key to hide all future communication. 

The PIN code must be entered into both Bluetooth devices before the beginning pairing process .In some devices the PIN is fixed and cannot be changed. In such cases, the fixed PIN is entered into the peer device. Detailed steps of pairing involves 


2.8.2.1 Creation of Kinit 

The initialization key ( Kinit ) is created using the E22 algorithm. This algorithm takes 3 inputs a BD_ADDR, the PIN code and its length and a 128 bit random number IN_RAND. 

The output of this algorithm is a 128 bit word, which is referred to as the initialization key (Kinit). Figure 2.5 describes Kinit generation [10] using E22. The PIN code is available at both Bluetooth devices, and the 128 bit IN_RAND is transmitted in plaintext. If one of the devices has a fixed PIN, they use the BD_ADDR of the peer device. If both have a variable PIN, they use the PIN of the slave device that receives the IN_RAND. In Figure 2.5, if both devices have a variable PIN, BD_ADDRB shall be used. The Bluetooth device address can be obtained via an inquiry routine by a device. This is usually done before connection establishment begins. 

This initialization key (Kinit) is used only during the pairing process. After creation of the link key (Kab), the Kinit key is discarded. 
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     Figure 2.5: Generation of kinit using E22 Algorithm.

Working of E22 

 E22 is used to generate the initialization key. For the generation of kinit, the PIN and the BD_ADDR are combined to create a new word called as PIN’, some of the BD_ADDR bytes are appended to the PIN if the PIN contains less than 16 bytes. If the PIN is less than 10 bytes long, all bytes of BD_ADDR shall be used. L' denote the number of bytes the PIN’ contains. If L' is less than 16, the PIN’ is cyclic expanded till it contains 16 bytes and is known as PIN’’ after expansion. PIN'' [10] is used as the 128 bit input key of Ar'. IN_RAND is used as the 128 bit input data, after xoring the most significant byte with L'. Figure 2.6 describes the working of E22. 
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                                      Figure 2.6 Working of E22 Algorithm.

2.8.2.2 Creation of Kab 

Second step of the pairing is a creation of link key kab which is done by using a kinit. The devices use the initialization key to exchange two new 128 bit random words, known as LK_RANDA and LK_RANDB. These random words is exchanged after bitwise xoring it with Kinit. Since both devices know Kinit, each device now holds both random numbers LK_RANDA and LK_RANDB.  Both devices create the link key Kab by E21 Algorithm. E21 algorithm takes two inputs, a BD_ADDR and 128 bit random number LK_RAND. Figure 2.7 describes generation of link key Kab [10].
                                   [image: image6.png]Master A

Stave B
LK_RAND L ranp, (3) kit LKRAND
BD ADDRs | E21 T ynd
ey iy
LK Ka il
. s
C;) Kab | < RanD (¥) Kinit O] -
ol A LK Kg
e ’ LK_RANDB
e B0 ADDR g | E21
e iy





            Figure 2.7 Generation of Link key using E21 Algorithm

Working of E21 

 E21 is used to generate the link key At first, the BD_ADDR is cyclic expanded to form a 128 bit word which is used as the input data of Ar'. The key used for Ar' consists of the 128 bit random number LK_RAND, after xoring its most significant byte with 6 (result denoted LK_RAND'). Figure 2.8 describes the working of E21. 
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             Figure 2.8: Working of E21 Algorithm
2.8.2.3 Mutual authentication 

After the creation of the link key Kab, mutual authentication of the devices is performed. Mutual authentication is done by using challenge-response scheme. AU_RANDA   a 128 bit word is a random number generated by the verifier and it is sent as a plain text to a claimant.  Using an algorithm E1, the claimant, calculates a 32 bit word called SRES.  E1 takes 3 inputs, random word AU_RANDA, link key Kab   and own Bluetooth device address  (BD_ADDRB) and calculated the 32 bit word called SRES [10]. This SRES is send by the claimant as reply to the verifier, then verifier run E1 algorithm by taking the same input as claimant. Verifier verifies the response word, if the response word is successful, the verifier and the claimant change roles and repeat the entire process. Figure 2.9 describes the process of mutual authentication. 



[image: image8.png]AURAND | Eq

| sres,

Compare
HALT |«—|  SRES,

with
Not |  SRES
Equal

Equal

Switch role and Repeat
Process

AU_RAND

SRES),

Slave B

Kag

—

BD ADDRf | E1

_—5

AU_RAND
>

SRES,,





                            Figure 2.9:  Mutual Authentication process


Working of E1 algorithm 

E1 performs the mutual authentication process .The inner design of E1 contains both Ar and Ar'. In E1 the link key is used twice. It acts as key input to the Ar. Later, Transformed link key denoted as offset acts as the key input of Ar'. The “Offset'' transformation consists of adding and xoring its bytes with some constants. As for the BD_ADDR, it is cyclic expanded to form a 128 bit word denoted BD_ADDR'. Figure 2.10 denotes a detailed working of E1 algorithm.
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 Figure 2.10: Working of E1 Algorithm
2.9 Problems with the Bluetooth Standard Security

Some of the known problems [11] [12] [13] with the standard security of Bluetooth are: 

1) Strength of the challenge-response pseudorandom generator is not known
The Random Number Generator (RNG) may produce static number or periodic        numbers that may reduce the effectiveness of the authentication scheme. 

2) Short PIN codes are allowed 

Weak PIN codes, which are used for the generation of link and encryption keys, can be easily guessed. Increasing the PIN length in general increases the security. People have a tendency to select short PIN codes. A global agreement must be established on minimum key length. 

3) Elegant way to generate and distribute PIN codes does not exist 

Establishing PIN codes in large Bluetooth networks with many users may be difficult. Scalability problems frequently yield security problems. 

4) Encryption key length is negotiable 
The encryption key size varies from 8 to 128 bits. Each device has a parameter defining the maximum allowed key length. The key length is negotiated between the master and the slave. Applications can define a minimum acceptable key size to avoid situations where malicious devices force the encryption to be low. 

5) Unit key is reusable and becomes public once used
A unit key is a link key that one unit generates by itself and uses as a link key with any other device. Unit keys can only be safely used when there is full trust among the devices that are paired with the same unit key. This is because every paired device can impersonate or eavesdrop any other device holding the same unit key. A unit key can be used on very small units with very low resources. Since Bluetooth version 1.2, the use of unit keys is not recommended. But, for legacy reasons, unit keys have not been completely removed from the specification. 

6) The initialization key strength is based on the used PIN code 

 The E22 initialization key generation algorithm derives the key from the PIN code [12], the length of the PIN code and a random number, which is transmitted over the air. Only the PIN code is secret, making the trustworthiness of most initialization keys low and completely dependent of the users chosen PIN code. 

7) No user authentication exists

Only device authentication is provided. Application level security and user authentication can be employed. 

8) Privacy may be compromised if the Bluetooth device address (BD_ADDR) is captured. Once the BD_ADDR is associated with a particular user, that user’s activities could be logged, resulting in a loss of privacy. 
2.10 Bluetooth PIN Cracking

2.10.1 The Basic Attack


DEVICE X                                                   DEVICE Z                                                         


                  IN_RAND (128 bit) plaintext

                   LK_RANDA (128 bit) XOR KINIT
                  LK_RANDB (128 bit) XOR KINIT
                  AU_RANDA(128 bit) plaintext

                   SRES(32 bit) plaintext

                   AU_RANDB(128 bit) plaintext

                   SRES(32 bit) plaintext

     Figure 2.11 Messages transferred during pairing and authentication process

This figure 2.11 shows all the messages transferred during pairing and authentication process. These messages are transferred wirelessly, so all these message will be available to the eavesdropper easily. So, it is easy for an attacker to eavesdrop the entire pairing and authentication process and to break the algorithm and recover the PIN code used. Since the attacker knows the IN_RAND and BD_ADDR of the first device X, the attacker can recover the PIN code with a brute force attack. By guessing the value of the PIN code and running the E22 algorithm, a hypothesis for the K_INIT can be found. K_INIT key is then used to decode the LK_RAND values and then use these decoded values to compute the link key KAB with the E21 algorithm [10]. To check that PIN is guessed right or not by checking that observed SRES values are equal to the value the attacker computed. For this reason, the Bluetooth SIG recommends to use long PIN codes and only establish the first pairing process in a safe environment. If the PIN is longer, then with high probability there will be multiple PIN candidates, and will be difficult to crack
2.10.2 The Re-Pairing attack

When a new device is connected, and the attack requires recording all pairing and authentication messages, the attack was not very practical. If two Bluetooth devices already paired wants to communicate to each other again then they don't need to create the link key Kab again, since they have already created and stored it before. This means they will proceed directly to the Authentication phase. So, a new attack that exploits the connection establishment protocol to force the communicating devices to repeat the pairing process is created. This will make it possible for an attacker to record the pairing messages and use it with the first attack. For an attack three methods were designed which will force the device to repeat the paring process [10]. In these entire methods attacker inject false messages to the master and slave, and are forced to do the pairing again. When again pairing is done, attacker records all the messages passed and crack the PIN used. 
In the first method, pairing process is skipped and devices proceeded toward authentication directly. The master device sends the slave an AU_RAND message. After sending AU_RAND, master waits for SRES message to return. Bluetooth specifications allow a Bluetooth device to forget a link key. So, the slave sends an LMP_not_accepted message to master, to let the master know it has forgotten the link key. Therefore, after the master device has sent the AU_RAND message to the slave, the attacker injects LMP_not_accepted message toward the master. The master will be convinced that the slave has lost the link key and pairing will be restarted. Restarting the pairing procedure causes the master to discard the link key. This assures pairing must be done before devices can authenticate again.

In the second method, the master device sends the AU_RAND to the slave in the beginning of the authentication process. But before this, attacker injects IN_RAND message toward the slave, the slave device will be convinced the master has lost the link key and pairing is restarted. This will cause the connection establishment to restart.

In the third method, the master device sends the slave an AU_RAND message. After sending AU_RAND, master waits for SRES message to return. If, after the master has sent the AU_RAND message, an attacker injects a random SRES message toward the master, this will cause the Authentication phase to restart, and repeated attempts will be made. At some point, after a certain number of failed authentication attempts, the master device is expected to declare that the authentication procedure has failed (implementation dependent) and initiate pairing.

The three methods have one thing in common they all cause one of the devices to discard its link key. This assures the pairing process will occur during the next connection establishment, so the attacker will be able to eavesdrop on the entire process, and use the method to crack the PIN.

Chapter 3

Block Cipher Design

3.1 Introduction

Cryptography deals with the protection of transmitted information from being received and understood by anyone but the recipient. To transmit information, it is transformed into an unintelligible message called cipher text. Transformation is applied either on bit steams of plaintext message or by segregating plaintext into blocks or bits and by applying identical encryption algorithm on each block [14]. Transformation, which results from latter, is called Block Cipher [14] [15]. This chapter examines block ciphers including general concepts with detailed discussion on SAFER+ block cipher algorithm.

3.2 Introduction to Block Ciphers

 A block cipher is one in which a block of plaintext is treated as a whole and used to produce a cipher text block of equal length. A block cipher is a type of symmetric-key encryption algorithm that transforms a fixed-length block of plaintext (unencrypted text) data into a block of cipher text [15] (encrypted text) data of the same length. This transformation takes place under the action of a user-provided secret key. Applying the reverse transformation to the cipher text block using the same secret key performs decryption. The fixed length is called the block size, and for many block ciphers, the block size is at least 64 bits. 

When we use a block cipher to encrypt a message of arbitrary length, we use techniques known as modes of operation for the block cipher. To be useful, a mode must be at least as secure and as efficient as the underlying cipher. Modes may have properties in addition to those inherent in the basic cipher.

3.2.1 Block cipher design principles

The terms diffusion and confusion were introduced by Claude Shannon to capture the two basic building blocks for any cryptographic systems. Today it has been found out that diffusion and confusion are the cornerstones of modern block cipher design.

 In diffusion [15], the statistical structure of the plaintext is dissipated into long range statistics of the cipher text. This is achieved by having each plaintext digit affect the value of many cipher text digits.

 On the other hand, confusion [15] seeks to make the relationship between the statistics of the cipher text and the value of the encryption key as complex as possible to thwart attempts to discover key. The objective of block cipher is to provide confidentiality. The corresponding objective of an adversary is to recover plaintext from the given cipher text. A block cipher is totally broken if a key can be found and partially broken, if an adversary is able to recover a part of plaintext but not the key. On the basis of the above principles, general structure of Block Cipher is defined in Figure 3.1.
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Figure 3.1: General structure of Block Cipher
3.2.2 Iterated Block Cipher
Iterated block ciphers encrypt a plaintext block by a process that has several rounds. In each round, the same transformation (also known as a round function) is applied to the data using a sub key. The set of sub keys is usually derived from the user-provided secret key by a special function. The set of sub keys is called the key schedule. The number of rounds in an iterated cipher depends on the desired security level and the consequent tradeoff with performance. In most cases, an increased number of rounds will improve the security offered by a block cipher, but for some ciphers the number of rounds required to achieve adequate security will be too large for the cipher to be practical or desirable. 

Feistel ciphers [15] are a special class of iterated block ciphers where the cipher text is calculated from the plaintext by repeated application of the same transformation or round function. Feistel ciphers are sometimes called DES-like ciphers. An example of iterated Block encryption is shown in Figure 3.2. As shown in the Figure 3.2, input is divided into 8 bit pieces, an s block, which incorporates key controlled substitution, operates upon each 8-bit block. The resultant output undergoes permutation so as to produce a round output. This round output undergoes n rounds so as to produce final cipher text block
Figure 3.2: Iterated Block Cipher

3.2.3 Criteria for Evaluating Block Ciphers

Block ciphers are evaluated on the following criteria’s: -

1. Estimated Security level: Confidence in the security of cipher grows if it has been subjected to and withstood expert cryptanalysis over a substantial period of time.

2. Key size: The effective bit length of the key, or more specifically the entropy of the key space, defines an upper bound on the security of a cipher. Longer keys typically impose additional costs (eg, generation, transmission, storage).

3. Throughput: It is related to the complexity of the cryptographic mapping and the degree to which mapping is tailored to a particular implementation.

4. Block size: Block size impacts both security and complexity.

5. Complexity of cryptographic mapping: Algorithmic complexity affects the implementation cost both in terms of development and resources.

6. Data expansion: It is generally desirable that encryption does not increase the size of cipher text.
3.2.4 Advantages 

Block Cipher algorithms are very simple to implement. They also have the advantage that it is not difficult to encrypt or decrypt the message, since the same key is used. Although Block Cipher cannot operate as fast as Stream Ciphers, the convenience, ease of use and relative secure algorithms make Block Ciphers a good choice for many communication security tasks. 

3.3 SAFER+ Block Cipher Algorithm

3.3.1 Background

The cipher SAFER+ (Secure and Fast Encryption Routine) [16] is based on the existing family of ciphers, which comprises the ciphers SAFER K-64, SAFER K-128. The block size of all ciphers in the existing SAFER family is 64 bits, while the user selected key length is 40 or 64 or 128 bits as indicated in the name of the particular cipher. The ciphers in the existing SAFER [16] family are non-proprietary ciphers and were designed by Prof. James L. Massey of the ETH Zurich (Swiss Federal Institute of Technology Zurich) at the request of Cylink Corporation. 

SAFER+ provides for a block size of 128 bits for the plaintext and cipher text and accommodates three different user-selected key lengths, namely, 18, 192, 256. However, in Bluetooth, key length of 128 bits is used. SAFER+ is neither a Feistel cipher nor a substitution permutation cipher. SAFER+ can be called a substitution/ linear transformation cipher, by which we mean that an invertible function controlled by the round sub key is first applied to the round input, and then an invertible linear transformation is applied to the result.

3.3.2 Specification of the SAFER+ Algorithm

The input for the encryption is the plaintext block of 16 bytes. (The convention used in the algorithm for numbering bytes and bits is the same as that in the Data Encryption Standard), i.e. byte 1 is the most significant byte in the block and byte 16 is the least significant byte. Similarly, bit 1 is the most significant bit of a byte and bit 8 is the least significant bit [16]. The plaintext then passes through r rounds of encryption where r is determined by the key length chosen for encryption in the following manner:

· If key length= 128 bits, then r=8 rounds.

· If key length= 192 bits, then r=12 rounds.

· If key length = 256 bits, then r=16 rounds.

Two 16 byte round sub keys are used within each round of encryption. These round sub keys( K1,…….K2r) are determined from the user selected key K according to a key schedule. Finally a round sub key K2r+1 is added to the block produced by the r rounds of encryption in the manner that bytes 1,4,5,8,9,12,13 and 16 are added together bit by bit modulo two (“bitwise exclusive-or” operation) while bytes 2,3,6,7,10,11,14,15 are added together modulo 256. This “addition” of round sub key K2r+1 constitutes the output transformation for SAFER+ encryption and produces the cipher text block of 16 bytes.

3.3.3 SAFER+ Encryption Round

The details of one round of encryption with SAFER+ are shown in figure 3.2. The first operation within round i, 1( i ( r, is the “ addition” of the round sub key K2i-1 to the 16 byte round input in the manner that bytes 1,4,5,8,9,12,13 and 16 are added together bit by bit modulo two while bytes 2,3,6,7,10,11,14,15 are added together modulo 256. The 16 byte result of this “ addition” is then processed by a non linear layer in the manner that value x of byte j is converted to 45x mod 257 for bytes j=1, 4, 5, 8, 9, 12, 13 and 16 ( with the convention that when x= 128 then 45128 mod 257= 256 is represented by 0), while the values x of byte j is converted to log45(x) for bytes j=2, 3, 6, 7, 10, 11, 14,and 15 ( with the convention that when x=0 then the output log45(0) is represented by 128). The round key K2i is then “added” to the output of the non linear layer in the manner that bytes 2, 3, 6, 7, 10, 11, 14 and 15 are added together bit by bit modulo two, while bytes 1, 3, 4, 5, 8, 9, 12, 13 and 16 are added together modulo 256 [16]. The 16 byte result of this “addition” X={x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16}

is then post multiplied by the matrix M modulo 256  to give the 16 byte round output

Y= {y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13, y14, y15, y16}

in the manner y=x M where M is the 16 X 16 matrix
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                                      Figure 3.3: Matrix M

For instance, this operation gives 

Y2 = 2 x1 + x2 + x3 + x4 + 4x5 + 2x6 + x7 + x8 + x9 + x10 + 2x11 + x12 + 2x13 + 2x14 + 8x15 + 4x16 where the arithmetic is modulo 256.
                                    

                     Figure 3.4: SAFER+ Encryption structure

“XOR” denotes bit-by-bit exclusive-or of bytes 

“Add” denotes modulo 256 addition of bytes 

“Exp” denotes 45x modulo 257, where x is the input byte, with the convention that the result 45128=256 is represented by 0.

“Log” denotes log45x, where x is the input byte, with the convention that log45(0)=128. 


Figure 4.5: Details of SAFER+ Encryption round i
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                       Figure 3.5 Details of SAFER+ Encryption round i

3.3.4 SAFER+ Key Schedules

The key schedules of SAFER+ make use of 16 byte words to “randomize” the round sub keys produced. The required number of bias words is the same as the number 2r+1 of the round sub keys [16] [17]. The first bias word however is a “dummy” word that is never used but is convenient to have defined for programming purposes.

Let Bi denote the i-th bias word and let Bij denote the j-th byte of this i-th bias word. The bias words which are used in 128 bit user selected key are computed in the following manner: -

Bi, j = 45 ( 45
     mod 257 ) mod 257

where Bi,j is represented as zero in case this expression gives a value of 256 .

The key schedule for the 128 bit (16 byte) input key is shown in figure 3.7. The necessary 17 round sub keys for the 8 rounds and the output transformation are produced in the following manner. The user- selected key itself is used as the first round sub key K1 and is also loaded into the first 16 byte positions of a 17 byte key register. The last byte position of this register is loaded with the bit-by-bit modulo-two sum of the 16 bytes of the user selected key. Each byte of the key register is then rotated leftwards by 3 bit positions. The second round sub key K2 is then computed as the modulo 256 sum of the bytes in the 16 byte bias word B2 with the bytes in byte positions 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 and 17 of the key register. Each byte of the key register is then rotated leftwards by 3 bit positions. The third round sub key is then computed as the modulo 256 sum of the bytes in the 16 byte bias word B3 with the bytes in byte positions 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 and 1 of the key register. The process continues with leftwards rotation by 3 bit positions of the key register followed by addition of the appropriate bias word to the 16 bytes of the key register located one byte position rightwards (with position 1 understood to be the right of position 17) of those previously used until the seventeenth round sub key K17 has been produced as the modulo 256 sum of the bytes in the 16 byte bias word B17 with the bytes in the byte positions 17, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 respectively, of the key register.

Bias words are shown in the following Figure 3.6.
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Figure 3.6:  Bias words used in Key Schedule


                    ∑ denotes bytewise modulo 256 addition of 128 bit

                        Figure 3.7: Key Schedule of 128 bit SAFER+
3.4 SAFER+ Decryption

The input for decryption is the cipher text block of 16 bytes. Decryption begins with the input transformation that undoes the output transformation in the encryption process. In the input transformation, the round sub key is “subtracted” from the cipher text block in the manner that the round sub key bytes 1,4,5,8,9,12,13 and 16 are added together bit-by-bit modulo 2 to the corresponding cipher text bytes while round sub key bytes 2,3,6,7,10,11,14 and 15 are subtracted modulo 256 from the corresponding text bytes [16].

The result of this “subtraction” is the same 16-byte block as was produced from the r rounds of encryption before the output transformation was applied. The block then passes through the r rounds of decryption, round 1 of which undoes round r of encryption, round 2 undoes round r-1 and so on. Finally, round r undoes round 1 of encryption to produce the original plaintext block. The round sub keys are same as that used in encryption but are used in reverse order. SAFER + Decryption is shown in Figure 3.8.

                      

                              Figure 3.8: SAFER+ Decryption structure

3.5 Design Rationale

3.5.1 Byte Orientation

SAFER+ is a byte-oriented cipher in the sense that during encryption and execution of key schedule, only functions from one byte to one byte are used. This has the advantage that SAFER+ implementation in hardware and software is easy.

3.5.2 Group Operation at the round input

The first operation with the SAFER+ encrypting algorithm is to combine the 16 byte plaintext block with the 16 byte round sub key K1 by the “addition” operation described previously. This addition operation is the group operation. Moreover, the 16 bytes of round sub key K1 are the first 16 bytes of the user selected key regardless of the key length chosen. The group operation used to insert round sub keys is the operation of the “product group” consisting of 16 smaller groups [16] [17]. For 8 of these smaller groups, the operation is addition modulo 256 and for the remaining 8 smaller groups, the operation is bit-by-bit addition modulo 2.

3.5.3 Use of the Exponential and Logarithm in Nonlinear Layer

We find that that 16 bytes within a round of SAFER+ that result from the “addition” of the first of two round inputs are used as inputs to either the function exptab(.) or its inverse logtab(y) = log45 (y) for 0 ( y ( 255 (with the convention that log45 (y)=128), which is the function corresponding to “log” [17]. The choice of “exp” and “log” functions is governed by the fact that both are mutually inverse non-linear functions. The operation, which holds true for exponential function does not, holds true for the other function.

3.5.4 Scalability

SAFER+ has the property, as do all ciphers in the previous SAFER family, that it can be scaled down to “mini versions” that permit study of the properties of the algorithm in a simplified setting. A byte in standard SAFER+ can be reduced to 2 bits by changing modulo 256 and modulo 257 arithmetic used in SAFER+ to modulo 4 and modulo 5 arithmetic respectively. Alternatively, a byte in standard SAFER + can be reduced to 4 bits by changing  modulo 256 and modulo 257 arithmetic used in SAFER+ to modulo 16 and modulo 17 arithmetic, respectively. The only “arbitrary” parameter that must be selected for these non-standard versions of SAFER+ [17] is then element of multiplicative order 2m +1 where m is the number of bits in a symbol, used as the base in exponentiation and logarithms. The choice of this parameter (which was chosen as 45 in standard SAFER+ with m=8) is of minor importance.

3.6 Advantages of SAFER+

The major advantages [16] offered by SAFER+ are: -

1. A proven track of record of Security: Many cryptanalysts in the public arena have attacked the previous ciphers in the SAFER Family since their announcement in 1993. The only weakness was found in the original Key Schedule of SAFER, which has led to a significantly improved key schedule that has been incorporated in SAFER+.

2. Speed and Simplicity: The simple structure of SAFER+ is based on byte operations and is easy to implement.

3. Transparency: The fact that the SAFER + uses only well defined mathematical functions, serves as a strong proof that there are no “trapdoors” built into this cipher.

Chapter 4
Proposed Design

Modification of Initialization key generation mechanism
In this chapter, an approach to make more robust E22 algorithm is discussed. By this approach key generation mechanism becomes more robust against passkey [18] or PIN guessing attack.

4.1 Generation of the Initialization Key 

At the start of a communication session, the Bluetooth devices do not yet share a session key. This will be achieved in different steps. First, an initialization key is generated. This temporary key is a function of a random number IN AND (generated by A and sent to B in clear), a shared PIN and the length L of this PIN [10]. The PIN should be entered in both devices and length of the PIN can be chosen between 8 and 128 bits. Typically, it consists of 4 decimal digits. If one of the devices does not have an input interface, a fixed PIN is used (often, the default value is 0000). Note that a low-entropy shared secret (the PIN) is used to generate the (initialization) key. All details are explained in chapter 2 above. 

4.2 SAFER+ modified version

 Bluetooth uses both SAFER+ and modified SAFER+ algorithm. Initialization algorithm in Bluetooth uses a modified version of the SAFER+ Algorithm where the input to round 1 is fed back into algorithm during round 3. Some bytes are xored and some are added. This combination is done to make the modified version non-invertible. SAFER+ algorithm [16] uses a fixed block size of 128 bits, with key lengths of 128 bits. Original safer+ algorithm used in Bluetooth is called as Ar algorithm. Modified SAFER+ algorithm is also called as A’r algorithm. SAFER+ algorithm comprises of key-scheduling algorithm that produces 17 different 128-bit sub keys, 8 identical rounds and output transformation which is implemented as a xor between the output of the last round and the last sub key. 
Figure 4.1 Describes how the input of round 1 is combined with the input of round 3. 


[image: image11]
    Figure 4.1:  Input of round 1 is combined with the input of round 3

                       In SAFER+ modified version 

All algorithms used during Bluetooth pairing and authentication process, use SAFER+ as is, or the modified version of SAFER+. SAFER+ is denoted as Ar, and the modified version of SAFER+ is denoted, as A’r algorithm .The details about Safer+ have been described in Chapter 3.

4.3 E22 algorithm 

To generate initialization key E22 algorithm is used in Bluetooth .E22 algorithm takes three inputs, 128 bit random number, Bluetooth device address of claimant and the passkey (maximum length 128 bits). In the algorithm random number forms the plain text input to the A’r algorithm .Passkey ( pin number) and device address act as a input to the key schedule of the A’r algorithm and 17 keys is generated depending on them. Maximum length specified of the passkey is 128 bits that is 16 octets. Initialization key is generated using the following formula 

Kinit = E22 (BD_ADDR, PIN, length (PIN), IN_RAND)
To generate the key schedule user selected PASSKEY or PIN forms the input to the key schedule, however users have tendency to select shorter passkeys which is mostly less than 128 bits .so, input to the key schedule is calculated as follows: -

PIN’ =PIN [0 …….L-1](BD_ADDR, L<16

PIN’=PIN [0……….L-1], L=16 

                                      i=15

A=Expand128 (PIN’) = ( PIN [i mod L’]

                                      i=0

B=IN_RAND [0…14] ((IN_RAND [15] [image: image12.bmp] L’)

Where L’=min {16, length (passkey) + 6} means number of octets in passkey’. Where PIN OR PASSKEY is a user provided sequence of bytes and IN RAND is an 128 bit random number exchanged during the pairing initiation and BD ADDR is the address of the device that received the IN RAND value. PIN’ is the augmented Passkey and L is the number of octets in the PIN. So, ‘A’ Acts as input to the key schedule to generate keys, it acts as first key k1. B acts a plaintext input to the A’r algorithm.

	 Input Computation A’r algorithm 

1. Compute PIN’ from PIN and BD_ADDR

2. Compute input A from PIN’                        A,B              Generate Kinit
3. Compute input B from IN_RAND 




      Figure 4.2: Initialization key generation algorithm
4.4 Analysis of the Bluetooth pairing Mechanism

Current pairing procedure used in Bluetooth is considered insecure by many researches.

Initialization key is a function of a random number IN RAND, a shared PIN and the length L of the PIN. The random number is sent in clear and hence known by an attacker that is eavesdropping during the initialization phase. This means that only the PIN is a secret value. If an attacker obtains the PIN, (s) he knows the initialization key. It even gets worse, since all the other keys are derived from the initialization key, the attacker will also know them. Hence the security of the keys used in Bluetooth depends on the security of the PIN. If this value is too short or weak (e.g., 0000), it is very easy for an attacker to guess the PIN (and hence the initialization key). It is possible to verify a guess of the PIN. The reason is that a mutual authentication protocol is executed after the generation of the initialization key. If an attacker observes this protocol, (s) he obtains a challenge and the corresponding response. The attacker calculates for every guess of the PIN the corresponding response and when this is equal to the observed response, the guess of the PIN was correct. The shorter the PIN, the faster this brute force attack can be carried out.  The strength of the initialization key is based purely on the used PIN code.

There is also a problem in the unit key scheme. Authentication and encryption are based on the assumption that the link key is the participants' shared secret. All other information used in the procedures is public. Now, suppose that devices A and B use A's unit key as their link key. At the same time (or later on), device C may communicate with device A and use A's unit key as the link key. This means that device B, having obtained A's unit key earlier, can use the unit key with a faked device address to calculate the encryption key and therefore listen to the traffic. It can also authenticate itself to device A as device C and to device C as device A. The Bluetooth Device Address, which is unique to each and every Bluetooth device, introduces another problem. When a connection is made that a certain Bluetooth device belongs to a certain person, it is easy to track and monitor the behavior of this person. Logs can be made on all Bluetooth transactions and privacy is violated. 
The biggest weakness of the current key generation mechanism is its dependency on PIN number, the only user selected shared secret. Further due to limited display capabilities of the mobile devices and inherent human tendency to select shorter PIN and PIN guessing attack created a hole in Bluetooth security. SAFER+ algorithm is very strong against cryptanalysis attack, no weakness is found in its key schedule .But given the fact that it is possible to guess PIN by the attacker i.e. one of the main inputs to safer+ algorithm. Attacker can derive round sub keys making current key generation algorithm weak.

This is a very critical security problem. To solve it, we have to change the initialization procedure. The combination of a mutual authentication protocol and the generation of keys from low-entropy secrets will always be insecure. In the next section, we will suggest to use another pairing protocol [18] [19]. The goal is to improve the security, without changing the Bluetooth standard too much. 
4.5 Modified Initialization Key Generation Procedure

To improve initialization key generation, we introduce another shared secret parameter, which we called password, which will be used in E22 algorithm to generate initialization key. Password (128 bit) is a shared parameter, which can be exchanged[20] [21] [22] between the two devices using Diffie-Hellman key exchange method [20] [21], which has been accepted by Bluetooth SIG as method to exchange keys.

Password would be used to augment passkey as follows: -

PIN’=PIN [0….L-1],    L=16

PIN’=HASH (PIN [0…. L-1] ( PASSWORD [0…15-L],    L<16

A=HASH (PIN [0…. L-1] ( PASSWORD [0…15-L],        L<16

B= (IN_RAND [0…14] ((IN_RAND [15] [image: image13.bmp] L’))

The augmented PIN is found by making union of PIN and PASSWORD and then hashing is applied on it. SHA-1 hashing is used for this.

This augmented PIN’ can be directly used as input to the key schedule to compute round keys .This augmented PIN’ adds more robustness to key schedule, as the PIN guessing attack only reveals PIN number, since round sub keys are computed from two shared parameter, it is difficult to compute round keys. So, retrieval Kinit is very difficult because both the input A, B of the A’r algorithm will be unknown to the attacker. 

	Input Computation A’r algorithm 

1.compute PIN’ from PIN and PASSWORD

 2.compute input A from hashed PIN’                     A,B           Generate Kinit
 3.compute input B from  IN_RAND 




       Figure 4.3: Modified initialization key generation algorithm
4.5.1 Calculation of the Password 

The password is computed from Diffie-Hellman key exchange as follows:-

1. Device A generate a random number X(Secret key of A), similarly Device B generate a random number Y(Secret key of B ),

2. Device A generates gx, public key of A similarly device B generates gy, public key of B. Public keys of both devices are transmitted on air.

3. Both devices compute gxy, shared secret key.

4. The shared secret key is input to a hash function which produces fixed 128 bit output which in our case is password. However if key length is more than 16 bytes or more step 4 can be omitted.

4.5.2 Using Password in Pairing

Once the password is calculated it is stored in both devices, and initialization key can be generated .The Password is incremented, as per number of transactions between the two devices during a session. 

1. After two devices have performed the number of transaction, before closing the connection, they update the value of combination keys as follows:-

            KAB’= KAB XOR PASSWORD

                  Where 

                  XOR is the byte wise modulo 256 addition 

                  KAB’ is the new value of the combination key.

2. Password is stored in security manager component of Bluetooth along with devices addresses of the devices in the device database .Next time when two devices need to communicate, authentication mechanism will only succeed with devices having updated value of KAB’.

3. For the security purposes, if devices need to recalculate Kinit, current stored value of version can be used, without any need to exchange new password values . 

4.6 Enhancing Security 

Introduction of another shared secret parameter in key generation promises increased security .If the attacker, by the brute force attack tries and guesses [23] initial password values, he may not be able to guess the current password, as it would be incremented as per the number of transaction between two devices during current session .For example, if the devices during a single session perform two transaction involving a file transfer and job of printing, password would be incremented twice.

4.6.1 Improving Authentication Mechanism using password 

Further, if two known devices establish connection again, they will authenticate with challenge response mechanism where the verifier sends a random value, AU_RAND to the claimant unit. The claimant then sends a response, SRES that is computed via the following parameters:

1) BD_ADDR_claimant

2) AU_RAND

3) KAB
Since, two devices will have updated value of KAB, which would further enhance the current challenge response mechanism.

This approach promises increased security, as the attacker may observe the number of sessions between the two devices, but he may not be able to guesses, the number of transactions between two devices, hence current value of password would remain as a secret between two devices. Further since the keys also updated with new value of password, this ensures security from man in middle attack. Every time password is incremented then new augmented PIN is calculated and new key schedule is found so, it helps in overcoming the repairing attack.
4.7 No Resource Constraints

Given the fact, that Bluetooth devices are having a limited memory, so storing password would impose considerable overhead in terms of space. To deal with this issue, we take into consideration the fact that the encryption keys are generated from link keys, and since links keys are updated at the end of session between two devices, so we need not store encryption keys in memory, instead of which we can store password in its place. Thus each time devices are authenticated, new encryption keys would be generated .the delay introduced in regeneration of keys would be acceptable, as this would result in situation when devices uses master keys which are regenerated each time .

Chapter 5
Implementation Results and Analysis

5.1 Introduction

Implementation is an important aspect of research. This chapter explores the implementation aspects of our approach. The chapter presents information about the necessary data structure and classes as well as methods used in our implementation. The implementation results obtained are listed as well as a comparative analysis of our approach with the existing approach is carried out.

5.2 Choice of Visual C++

Microsoft Visual C++ has always been one of the most comprehensive and sophisticated software development environments available. It has consistently provided a high level of programming power and convenience, while offering a diverse set of tools designed to suit almost every programming style. Further VC++ provides various classes, which offer support for cryptography, and therefore is the most suitable candidate for our implementation.

5.3 Approach towards Implementation

Our proposed solution is implemented in two modules: -

1. Exchanging “Password” Using Diffie-Hellman Exchange.

2. Implementation of Modified E22 Algorithms using “Password”

5.3.1 Implementation of Diffie-Hellman Key Exchange Mechanism 

To implement Diffie-Hellman key Exchange mechanism “DrmCrypto” class that is variant in VC++ is used. It provides the functionality to implement the key exchange mechanism.

DrmCrypto: It is the crypto library for exchanging keys using the Diffie-Hellman key exchange protocol. The Diffie-Hellman can be used to securely exchange keys between parties, where a third party eavesdropper given the values being transmitted cannot determine the key.

5.3.1.1 Main methods of DrmCrypto Class to implement Diffie-Hellman key Exchange

1) int CreateKeys(__int64 &Generator, __int64 &Modulus)
                   This function creates public values for generator and modulus . 

                    Pseudo code is as follows: -

	1. Generate two prime numbers randomly as g, n where g is the generator and n is the modulus.

2. If g>n then swap g & n.

3. Return g & n.


2)  int CreateSenderInterKey(__int64 & InterKey)

                 This function generates public keys for sender.

                Pseudo code is as follows: -

	1. Create random number.

2. Compute X pow Y mod n

3. Resultant is the sender interim key.


3) Int CreateRecipientInterKey(__int6 & InterKey,__int6 Generator,__int64 Modulus) 
                     This function generates public keys for receiver.

                      Pseudo code is shown as follows :-

	1.   Create random number.

           2.   Compute X pow Y mod n

                 3.  Resultant is the receiver interim key.


3. Int  CreateSenderEncryptionKey(__int64 &EncryptionKey, __int64 RecipientInterKey) 

               This function creates private key for the sender from public keys of 

               both sender as well as receiver. 

                      This function performs the computation.

Encryption Key K= (g pow XY ) mod n

4. int CreateRecipientEncryptionKey(__int64 &EncryptionKey, __int64 SendersInterKey) 

           This function creates private key for the receiver from public keys of 

            both sender as well as receiver. 

            This function performs the computation.

                  Encryption Key K= (g pow XY  ) mod n

5. bool MillerRabin (__int64 n, __int64 trials)

         This function performs Miller Rabin primality test. 

         Pseudo code to perform Rabin miller primality tests given as follows:- 

	 __int64 a = 0; 


for (__int64 i=0; i<trials; i++)


{ 



a = (rand() % (n-3))+2;// gets random value in [2..n-1] 



if (IsItPrime (n,a)==false) 



{ 




return false; 




//n composite, return false 



} 

 
} return true; // n probably prime


6. __int64 GeneratePrime()
      This function generates a large prime number by choosing a randomly 

      large integer  and ensuring the values is odd then uses the Miller-Rabin 

      primality test on it to see if it is prime if not the value gets increased 

      until it is prime. 

           Pseudo code to generates prime number is shown as follows: -

	GUID RandomNumber

CoCreateGuid(&RandomNumber)

Perform Miller-Rabin primality test

If Test succeeds then accept random number

Else generate new number 


7. __int64 XpowYmodN(__int64 x, __int64 y, __int64 N)  

          Raises X to the power Y is modulus N the values of X, Y and N can be 

           massive, and this can be achieved by first calculating X to the power of 2 

          then using power changing over modulus N. 

          Pseudo code is shown as follows:

	__int64 tmp = 0;


if (y==1) return (x % N);


if ((y&1)==0)


{



tmp = XpowYmodN(x,y/2,N);



return ((tmp * tmp) % N);


}


else


{



tmp = XpowYmodN(x,(y-1)/2,N);



tmp = ((tmp * tmp) % N);



tmp = ((tmp * x) % N);



return (tmp);


}


5.3.2 Implementation of modified E22 Algorithms

To implement modified E22 Algorithms, we implement a class “SAFER” which provides the functionality to implement 128 bit SAFER+.

5.3.2.1 Data Structures used

Data may be organized in several ways. The logical and mathematical model of a particular organization of data is called a data structure. The choice of particular data structure depends on:- 

1. Relationship of data in real world.

2. Simplicity of use.

Based on the above criteria following data structure have been defined:-

1.  Class  CDrmCrypto

{

public:


CDrmCrypto(void);


~CDrmCrypto(void);


int CreateKeys(__int64 &Generator, __int64 &Modulus);


int CreateSenderInterKey(__int64 &InterKey);


int CreateRecipientInterKey(__int64 &InterKey, __int64  

            Generator, __int64 Modulus);        


int CreateSenderEncryptionKey(__int64 &EncryptionKey, __int64

            RecipientInterKey);

             int CreateRecipientEncryptionKey(__int64 &EncryptionKey, 

             __int64 SendersInterKey);


 int GetValue(__int64 &value, DWORD dwFlags = KEY);

             void CleanMem(DWORD dwFlags=CLEAN_ALL_MEMORY);

                            private:


__int64 XpowYmodN(__int64 x, __int64 y, __int64 N);


__int64 GeneratePrime();


bool IsItPrime (__int64 n, __int64 a);


bool MillerRabin (__int64 n, __int64 trials);

             __int64 g;


__int64  n;


__int64  a;


__int64  b;


__int64  X;


__int64  Y;


__int64 K;

}

This class serves as the blueprint to implement Diffie Hellman Modules

2. struct bit

{

 Unsigned a:8;

}

This structure is defined to create bit vector, on which we can perform bit level operations.

3. byte y[16][16]; 

It is used to create byte vector of 16*16 so as to store 16 round subkeys.

4. class  safer

{

private: 

  byte y[16][16];

  bit b1[17];

                                    public:

                                      static byte key[16][16];

  void compute_round_keys(CString Plaintext);

  void compute_ cipher text(int h,int s);

  void compute_rounds(CString random);

  void copy_bytevect_to_bit(byte y[16][16],int i);

  void display_array(int g);

};

This class services as the blueprint for the implementation of Modified E22.

5. class CDiffie_testDlg : public CDialog

{

public:


CDiffie_testDlg(CWnd* pParent = NULL);



 CButton m_sender1;

             CButton m_Button_SenderInterim;


 CButton m_Button_GenPubKey;


 CButton m_Button_ReceiverInterim;

};

This class provides MFC support to our application for providing GUI to Diffie Hellman Key Exchange Module.

6. class CDlg2 : public CDialog

{

public:


CDlg2(CWnd* pParent = NULL); // standard constructor

void print_round_keys(int l);

                          };

This class provides MFC support to our application providing GUI to modified E22 algorithms.

5.3.2.2 Main methods of “SAFER” to implement modified E22 Algorithm

5.3.2.2.1 Pseudo code of Modified E22 Algorithms

                 In our implementation of Modified E22 algorithms, we have implementation 

                  3 major function: 

1) void compute_round_keys(CString Plaintext)  

This function computes round sub keys for all rounds of SAFER+. Round sub keys are computed according to the key schedule discussed. Round sub keys are computed by rotating each byte left by 3 bit position and then appropriate bias words are added to the resultant to generate round sub keys. 

Pseudo code of compute_round_keys (CString Plaintext) is given as follows:

	             void compute_round_keys (CString Plaintext)

            {         

            int i;


bit b2;


//int key[16][16];


b2.a=0;


for( i=0;i<16;i++)


b1[i].a=(Plaintext.GetAt(i)-'0');

             for(int j=0;j<17;j++)


      {



b2.a= b2.a+b1[j].a;


      }


b1[17].a=b2.a;

           // rotate each byte left by 3 bit positions


CString key2;


CString ct;


for(int c=1;c<16;c++)


   {      for(i=0;i<16;i++)


           { 



b1[i].a=((b1[i].a<<3)+(b1[i].a>>3));



key[c][i]=(b1[(c+i)%18].a +bias[c][i])%256 ;

                         ct.Format("%u",key[c][i]);



 ct1[c][i]=ct; }

               }}


2) void compute_rounds(CString random) 

This function computes output of 8 rounds of SAFER+. 

Pseudo code of compute_rounds(CString Plaintext) is given as follows:

	                    void compute_rounds(CString random)

                        {           bit b2[16];

                                     int i;


                         for( i=0;i<16;i++)


                         {b1[i].a=(random.GetAt(i)-'0');


                            b2[i].a=b1[i].a;

                           } 

                       for(I=1 to 8)

                        {

                              compute roundoutput for round i;

                                if(I== 3)

                                add result of round 1 to input of round 3

                         }

                    }


3) void compute_ cipher text(int g,int s) 

 This function computes single encryption round.

  Pseudo code is shown below:-

	void compute_ cipher text(int g,int s)

{ 

 // Step1:Key Controlled Substitution

 temp[i]=b1[I]a^key[g][i]; //for bytes I=0,3,4,7,8,11.12.15

 temp[j]=b1[j].a+key[g][j];// for bytes j=1,2,5,6,9,10,13,14

 //Step 2: Processing in the non linear layer

temp[i]=EXP(temp[i]); //for bytes I=0,3,4,7,8,11.12.15

temp[j]=LOG(temp[j]); // for bytes j=1,2,5,6,9,10,13,14

//Step 3: Addition of second round sub key


 temp[i]=b1[i].a^key[g+1][i]; //for bytes I=0,3,4,7,8,11.12.15

 temp[j]=b1[j].a+key[g+1][j]; // for bytes j=1,2,5,6,9,10,13,14

// Step 4 Multiplication with matrix M

 int h=0;


 for(int j=0;j<16;j++)


 { y[h][j]=0;


 for(int k=0;k<16;k++)



 y[h][j]=y[h][j]+temp[k]*M[k][j];


 }

}


5.4 Implementation Results

 In this section we present the snapshots of our implementation.

Our implementation is divided into two parts:-

A. Exchange of “Password” using Diffie-Hellman Key Exchange.

B. Implementation of modified E22 algorithm.

5.4.1 Implementation results of Exchange of “Password” using Diffie-Hellman Key Exchange

Step 1: Sender generates public key
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             Figure 5.1: Generation of Public key of Sender

Step 2 : Receiver creates public key
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            Figure 5.2: Generation of Public key of Receiver

Step 3: Calculation of “Password”
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           Figure 5.3: Generation of shared secret key and “Password”

5.4.2 Implementation of modified E22 Algorithm
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Figure 5.4: Results of Modified E22 Algorithm

5.5 Comparison of the results of modified E22 with the existing E22.

In current Bluetooth system, E22 algorithm fails as it is highly dependent on Length of the PIN.

	PIN Size ( Decimal Digits)
	Brute force Attack combination to guess PIN
	Brute force Attack combination to guess initialization key by using E22

	1
	9
	9

	2
	99
	99

	3
	999
	999

	4
	9999
	9999

	5
	99999
	99999

	14
	99999999999999
	99999999999999

	16
	9999999999999999
	9999999999999999


Table 5.1: Performance of E22 towards PIN guessing attack

5.5.1 Results of Modified E22 Algorithm

	PIN Size ( Decimal Digits)
	Brute force Attack combination to guess PIN
	Brute force Attack combination to guess initialization key by using Modified E22

	1
	9
	9+ (10 pow 15 * 9 for guessing “Password” )

	2
	99
	99 + (10 pow 15 * 9 for guessing “Password” )

	3
	999
	999 + (10 pow 15 * 9 for guessing “Password” )

	4
	9999
	9999 + (10 pow 15 * 9 for guessing “Password” )

	5
	99999
	99999 + (10 pow 15 * 9 for guessing “Password” )

	14
	99999999999999
	99999999999999 + (10 pow 15 * 9 for guessing “Password” )

	16
	9999999999999999
	9999999999999999 + (10 pow 15 * 9 for guessing “Password” )


Table 5.2: Performance of Modified E22 towards PIN guessing attack

5.5.2 Reasons for Enhanced Security towards Brute force attack

A. E22 algorithm has its dependency on “Password” parameter exchanged via Diffie-Hellman Key Exchange.

B. To guess the link keys, attacker will first have to guess the “Password”.

C. Guessing of “Password” is difficult, as its value changes internally as per the number of transactions between the devices.

Chapter 6
                        Conclusion and Future Work

1.   Conclusion
In this dissertation we have presented the overview of Bluetooth technology and security procedures currently used in the technology. The biggest weakness of the current key generation mechanism is its dependency on PIN number, the only user selected shared secret. Shorter pin is highly susceptible to brute-force cracking techniques and easy to crack making the key generation more vulnerable to attacks by the intruder. The dissertation addresses the problem of pin guessing attack which appears as the main weakness in Bluetooth security and depicts the need to have a robust key generation mechanism. To address the problem new approach to add robustness to initialization key generation mechanism is proposed. 
In the proposed approach the E22 algorithm which is used for the generation of the initialization key is modified. Original E22 algorithm used in Bluetooth takes pin and Bluetooth device addresses as input. Both pin and the address are easy to crack by the intruder. If intruder comes to know about the pin he can calculate the initialization key. All other keys like link keys and encryption keys which is used in Bluetooth devices is calculated by the initialization keys. If intruder comes to know about the initialization key, then all other keys can be easily calculated. By knowing the encryption key, all the encrypted data can be easily decrypted by the intruder and all the information flowing between two Bluetooth devices can be tracked. So, in this dissertation basic algorithm used to calculate the initialization key is modified. In the modified E22 algorithm, the one secret parameter called ‘password’ is introduced. This secret parameter is calculated by the Diffie Hellman key exchange method. The Diffie Hellman key exchange method is run on both the Bluetooth devices which is pairing with each other. So, same parameter is calculated by both the devices. This password is combined with the user entered pin. New pin is calculated by sha1 hashing the combination of pin and password. This new pin will act as one of the input to the Modified E22 algorithm. This augmented pin adds more robustness to key schedule, as the pin guessing attack only reveals pin number, since round keys are computed from two shared parameters, it is difficult to compute round subkeys. 

In the proposed approach, password is incremented, as per the number of transactions between the two devices, during the session. If the attacker, by brute force attack tries and guesses initial password value, he may not be able to guess the current password, as it would be incremented as per the number of transaction between two devices during current session. By using this algorithm there is no need to store the encryption key in memory, instead password is stored. Encryption keys are generated from the link keys and link keys are updated at the end of session between two devices so, encryption keys are not stored in memory. This helps in meeting the resource constraints.             

So, Following contribution has resulted from the dissertation:-

1) A new approach to improve Bluetooth Baseband Security, which promises significant improvement in key generation mechanism of Bluetooth security, making it robust against key guessing attack.

2) Implementation results of the approach which shows the improvement. 

2. Future Work

Bluetooth name has become well known and understood to relate to wireless connectivity and freedom. Enhancements in technology in terms of increased security would further boost up its success. There is a large potential for future research in the area of Bluetooth security. In this dissertation an approach to enhance key generation by introducing shared parameter called ‘password’ is proposed. However, finding new ways of combining this parameter with PIN number to add more confusion to the key generation process may further extend this work. More secure hashing for the combination of pin and password can be used. To extend the same model, concept of Elliptic curve cryptography can be used with the proposed model.
References
[1] Jenniffer Bray,Charles F Sturman: Bluetooth 1.1 connect without cables, Second  Edition,  pearson Education,  2003.

[2]  M.  Bjornsson: Bluetooth  in  Secure  Products, Final  Paper Department of Electrical Engineering Linkoping University and Sectra Communications AB, 14 June 2001.
[3] Pravin bhagat: Bluetooth technology for short range wireless application, IEEE Internet computing, May-June 2001.

[4] J.  Haartsen,  M.  Naghshineh,  J. Inouye,  O. Joeressen,  and  W. Allen: Bluetooth: 

 Visions,  Goals and Architecture, In ACM Mobile Computing and Communications 
Review: pages 38-45, 1998.
[5] R.  Mettala: Bluetooth  Protocol  Architecture, Bluetooth SIG official whitepaper, V1.0., August 1999. 
[6] Huaizhi Li and Mukesh Sinmghal: A key establishment protocol for bluetooth  

Scatternet, Proceedings of the 25th IEEE International Conference on Distributed Computing Systems Workshops (ICDCSW'05), 2005.

[7] Karl E. Persson, D. Manivannan: Secure Connections in  Bluetooth Scatternets, 36th      Hawaii International  Conference  on  System  Sciences,  pages 6-9, january2003.
[8] J. T. Vainio: Bluetooth Security, Proceedings of Helsinki University   of   Technology,   Telecommunication  Software and  Multimedia  Laboratory,  Seminar  on Internetworking: Ad Hoc Networking, 25 May 2000.

[9] Gregory Lamm, Gerlando Falauto, Jorge Estrada, and Jag  Gadiyaram: Bluetooth Wireless Networks Security  Features, Proceedings  of  the  2001  IEEE  Workshop  on  Information Assurance  and  Security,  United  States  Military  Academy, West Point, NY, June, 2001. 
[10] Y. Shaked and A. Wool: Cracking  the  Bluetooth  PIN, Proceedings of the 3rd International  Conference  on  Mobile  Systems, Applications,  and  Services, pages  39-50. ACM, June 2005..
[11] G.  Lamm,  G.  Falauto,  J.  Estrada, and  J. Gadiyaram:  Security  Attacks  against         Bluetooth  Wireless  Networks, In  Proceedings  of  the  2001  IEEE  Workshop  on 
Information  Assurance and Security,  pages  265-272.  U.S. Military Academy, West 

Point, NY, June  2001.
[12] M.  Jakobsson  and  S. Wetzel: Security  weaknesses  in Bluetooth. In Topics in Cryptology CT-RSA 2001, volume 2020, pages 176-191, San Francisco, springer. April 2001. 
[13] Keijo M.J. Haataja: Bluetooth network vulnerability to Disclosure, Integrity and Denial of Service  attacks, Proceedings  of  the  Annual  Finnish  Data  Processing  Week  at  the University of  Petrozavodsk (FDPW'2005), Advances in Methods of Modern Information Technology, vol. 7, Petrozavodsk  2006
[14] William Stallings: Cryptography and network security –principles and practices, Third Edition, Pearson education, 2004.

[15] A. Menezes, P. van Oorschot, and S. Vanstone: Handbook of Applied Cryptography, 

CRC Press, New York, 1997.

[16] James Massey, Gurgen Khachatrian  and  Melsik Kuregian: Nomination of SAFER+ as Candidate Algorithm for the Advanced Encryption Standard, Proceedings of the 1st AES Candidate Conference, 1998. 
[17] J.L. Massey: On the Optimality of SAFER+ Diffusion,  Proceedings of the 2nd Advanced Encryption Standard Candidate Conference, 1999. 
[18] Selim Aissi,Christian Gehrman, Kaisa Nyberg: Proposal for Enhancing.Bluetooth Security Using an. Improved Pairing Mechanism, Presented to the Bluetooth Architecture 

Review board at Bluetooth all hands meeting,  pages 19-23, 2004.

[19] C. Gehrmann  and  K. Nyberg:  Enhancements  to  Bluetooth  Baseband  Security, 

Proceedings  of  Nordsec, Nov 2001

[20] W. Dife and M. Hellman: New Directions in Cryptography, In IEEE Transactions 
On  Information  Theory,  pages 644-654,  1976.
[21] Victor  Boyko,  Philip  Mackenzie  and  Sarvar  Patel: Provably  Secure  Password 
Authentication  and  Key  Exchange  Using  Diffie- Hellman, EuroCrypt  2000, Pages    156-171, 2000..
[22] Philip  Mackenzie: More  Efficient  Password-Authenticated Key  Exchange, RSA 
Conference, Cryptographer's  Track,  pages 361-377,  2001.
 [23] L. Gong, M. Lomas, R. Needham and J. Saltzer: Protecting Poorly Chosen Secrets 

from  Guessing  Attacks,  IEEE  Journal  on  Selected  Areas  in  Communications, 

Pages  648-656,  June  1993
Appendix A

Diffie-Hellman Key Exchange
This public key algorithm first appeared in the seminal paper by Diffie-Hellman that defined public key cryptography and is generally referred to as Diffie-Hellman key exchange. The purpose of this algorithm is to enable two users to exchange a key securely that can be used for subsequent encryption of messages. The algorithm itself is limited to the exchange of keys.

The Diffie-Hellman algorithm depends for its effectiveness on the difficulty of computing discrete logarithms. Briefly, we can define a primitive root of a prime number P as one whose powers generate all integers from 1 to P-1. For any integer B and a primitive root A of prime number P, we can find a unique exponent i such that B=Ai mod P where 0<=i<=(P-1).

The exponent i is referred to as discrete logarithm, or index, of B for the base A. With this background we can define the Diffie-Hellman exchange as follows:-

1. P is prime number and g is a primitive root of P, these two elements are gobal elements known by user A and user B. Suppose the users A and B wish to exchange a key. User A selects a random integer X<P (private) and computes its public key as gX mod P.

2. Similarly user B, independently selects a random number Y<q(private) and computes its public key as gY mod P.

3. Public keys of both the parties are made available publically.

4. Each user computes secret key K. User A computes K=gXY mod P and user B computes K=gXY mod P respectively. These two calculations produce identical results and hence keys are exchanged.    

      The security of the Diffie-Hellman lies in the fact that, while it is relatively easy to calculate exponentials modulo a prime, it is very difficult to calculate the discrete logarithms. Diffie-Hellman is well explained by following example:

Key exchange is based on the use of the prime number P=353 and primitive root of 353 is 3. A and B select secret keys X=97 AND Y=233 respectively. Each computes its public keys as X1=397 mod 353 = 40 and B computes Y1=3223 mod 353 = 248, then they exchange public keys and each can compute the common secret key. A computes 

K= 24897 mod 353=160 and B computes K=40233 mod 353=160.

If the attacker got the public values P=353, g=3, X1=40 AND Y1=248.It is possible by brute force attack to determine the secret key 160. An attacker can determine the common by discovering a solution to the equation 3a mod 353=40 or the equation 3b mod 353 =248. The brute force approach is to calculate powers of 3 modulo 353, stopping when the result equal either 40 or 248. The desired answer is reached with the exponent value of 97, which provides 397 mod 353=40.

With larger numbers, the problem becomes impractical.

Appendix B

Source Code

// diffie_testDlg.cpp : implementation file

#include "stdafx.h"

#include "diffie_test.h"

#include "diffie_testDlg.h"

#include"Dlg21.h"

#include "DrmCrypto.h"

#include "CSHA1ClassSource/SHA1.h" // The CSHA1 class

CDrmCrypto *DH = new CDrmCrypto;

CString version;

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

char str_g[255] = {0};

char str_n[255] = {0};

__int64 n = 0;

__int64 g = 0;

__int64 SInterim = 0;

__int64 RInterim = 0;

__int64 key = 0; 

class CAboutDlg :public CDialog

/////////////////////////////////////////////////////////////////////////////

// CAboutDlg dialog used for App AboutCDiffie_testDlg::IDD,pParent);

{

public:


CAboutDlg();

// Dialog Data


//{{AFX_DATA(CAboutDlg)


enum { IDD = IDD_ABOUTBOX };


//}}AFX_DATA


// ClassWizard generated virtual function overrides


//{{AFX_VIRTUAL(CAboutDlg)


protected:


virtual void DoDataExchange(CDataExchange* pDX);    // DDX/DDV support


//}}AFX_VIRTUAL

// Implementation

protected:


//{{AFX_MSG(CAboutDlg)


//}}AFX_MSG


DECLARE_MESSAGE_MAP()

};

CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD)

{


//{{AFX_DATA_INIT(CAboutDlg)


//}}AFX_DATA_INIT

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)

{


CDialog::DoDataExchange(pDX);


//{{AFX_DATA_MAP(CAboutDlg)


//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CAboutDlg, CDialog)


//{{AFX_MSG_MAP(CAboutDlg)



// No message handlers


//}}AFX_MSG_MAP

END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////

// CDiffie_testDlg dialog

CDiffie_testDlg::CDiffie_testDlg(CWnd* pParent /*=NULL*/)


: CDialog(CDiffie_testDlg::IDD, pParent)

{


//{{AFX_DATA_INIT(CDiffie_testDlg)


m_gen1 = _T("");


m_sender = _T("");


m_mod1 = _T("");


m_receiver = _T("");


m_key = _T("");


m_version = _T("");


//}}AFX_DATA_INIT


// Note that LoadIcon does not require a subsequent DestroyIcon in Win32


m_hIcon = AfxGetApp()->LoadIcon(IDR_MAINFRAME);

}

void CDiffie_testDlg::DoDataExchange(CDataExchange* pDX)

{


CDialog::DoDataExchange(pDX);


//{{AFX_DATA_MAP(CDiffie_testDlg)


DDX_Text(pDX, IDC_EDIT1, m_gen1);


DDX_Text(pDX, IDC_EDIT2, m_sender);


DDX_Text(pDX, IDC_EDIT3, m_mod1);


DDX_Text(pDX, IDC_EDIT4, m_receiver);


DDX_Text(pDX, IDC_EDIT5, m_key);


DDX_Control(pDX, IDC_CHECK1, m_sender1);


DDX_Control(pDX, IDC_BUTTON2, m_Button_SenderInterim);


DDX_Control(pDX, IDC_BUTTON3, m_Button_ReceiverInterim);


DDX_Control(pDX, IDC_BUTTON1, m_Button_GenPubKey);


DDX_Text(pDX, IDC_EDIT6, m_version);


//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CDiffie_testDlg, CDialog)


//{{AFX_MSG_MAP(CDiffie_testDlg)


ON_WM_SYSCOMMAND()


ON_WM_PAINT()


ON_WM_QUERYDRAGICON()


ON_BN_CLICKED(IDC_BUTTON1, OnButton1)


ON_BN_CLICKED(IDC_BUTTON2, OnButton2)


ON_BN_CLICKED(IDC_BUTTON3, OnButton3)


ON_BN_CLICKED(IDC_BUTTON4, OnButton4)


ON_BN_CLICKED(IDC_CHECK1, OnCheck1)


//}}AFX_MSG_MAP


ON_BN_CLICKED(IDCANCEL, OnBnClickedCancel)

END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////

// CDiffie_testDlg message handlers

BOOL CDiffie_testDlg::OnInitDialog()

{


CDialog::OnInitDialog();


// Add "About..." menu item to system menu.


// IDM_ABOUTBOX must be in the system command range.


ASSERT((IDM_ABOUTBOX & 0xFFF0) == IDM_ABOUTBOX);


ASSERT(IDM_ABOUTBOX < 0xF000);


CMenu* pSysMenu = GetSystemMenu(FALSE);


if (pSysMenu != NULL)


{



CString strAboutMenu;



strAboutMenu.LoadString(IDS_ABOUTBOX);



if (!strAboutMenu.IsEmpty())



{




pSysMenu->AppendMenu(MF_SEPARATOR);




pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX, strAboutMenu);



}


}


// Set the icon for this dialog.  The framework does this automatically


//  when the application's main window is not a dialog


SetIcon(m_hIcon, TRUE);


// Set big icon


SetIcon(m_hIcon, FALSE);

// Set small icon


// TODO: Add extra initialization here


return TRUE;  // return TRUE  unless you set the focus to a control

}

void CDiffie_testDlg::OnSysCommand(UINT nID, LPARAM lParam)

{


if ((nID & 0xFFF0) == IDM_ABOUTBOX)


{



CAboutDlg dlgAbout;



dlgAbout.DoModal();


}


else


{



CDialog::OnSysCommand(nID, lParam);


}

}

// If you add a minimize button to your dialog, you will need the code below

//  to draw the icon.  For MFC applications using the document/view model,

//  this is automatically done for you by the framework.

void CDiffie_testDlg::OnPaint() 

{


if (IsIconic())


{



CPaintDC dc(this); // device context for painting



SendMessage(WM_ICONERASEBKGND, (WPARAM) dc.GetSafeHdc(), 0);



// Center icon in client rectangle



int cxIcon = GetSystemMetrics(SM_CXICON);



int cyIcon = GetSystemMetrics(SM_CYICON);



CRect rect;



GetClientRect(&rect);



int x = (rect.Width() - cxIcon + 1) / 2;



int y = (rect.Height() - cyIcon + 1) / 2;



// Draw the icon



dc.DrawIcon(x, y, m_hIcon);


}


else


{



CDialog::OnPaint();


}

}

// The system calls this to obtain the cursor to display while the user drags

//  the minimized window.

HCURSOR CDiffie_testDlg::OnQueryDragIcon()

{


return (HCURSOR) m_hIcon;

}

void CDiffie_testDlg::OnOK() 

{


// TODO: Add extra validation here

DH->CleanMem();

  delete DH;


CDialog::OnCancel();


//m_version=version;


CDlg2 dlg2;


dlg2.m_version=version;


dlg2.DoModal ();


//CDialog::OnOK();

}

void CDiffie_testDlg::OnButton1() 

{

//UpdateData(FALSE);

   // __int64 n = 0;

  //
__int64 g = 0;


DH->CreateKeys(g,n);


sprintf(str_g,"%u",g);


sprintf(str_n,"%u",n);

     //SetWindowText(str_g);


UpdateData(FALSE);


m_gen1=str_g;


//UpdateData(TRUE);

//
m_gen1.SetWindowText(str_g);


UpdateData(FALSE);


m_mod1=str_n;


// m_mod1.SetWindowText(str_n);

//DH->CreateSenderInterKey(SInterim);

}

void CDiffie_testDlg::OnButton2() 

{

    __int64 SInterim;


DH->CreateSenderInterKey(SInterim);


char strInterim[255] = {0};


sprintf(strInterim,"%u",SInterim);

   //  GetDlgItem(IDC_EDIT3);


//this->m_sender. SetWindowText(strInterim);

    UpdateData(FALSE);


m_sender=strInterim;


//UpdateData(TRUE);

}

void CDiffie_testDlg::OnButton3() 

{   __int64 SInterim   = 0;


CString nStr;


CString gStr;


//m_mod1.GetWindowText(nStr);

    UpdateData(TRUE);


nStr=m_mod1;

//
UpdateData(TRUE);


gStr=m_gen1;


//AfxMessageBox(gStr);

//
UpdateData(FALSE);


__int64 g = atoi(gStr);

    __int64 n= atoi(nStr);


DH->CreateRecipientInterKey(SInterim,g,n);


//AfxMessageBox(strInterim);


  
char strInterim[255] = {0};


sprintf(strInterim,"%u",SInterim);


m_receiver=strInterim;


//UpdateData(TRUE);


//this->m_receiver.SetWindowText(strInterim);


UpdateData(FALSE);

}

void CDiffie_testDlg::OnButton4() 

{if (m_sender1.GetCheck())


{



//SENDER



__int64 key       = 0;



__int64 SInterim  = 0;



CString strInterim1;


    UpdateData(TRUE);



//m_receiver.GetWindowText(strInterim);



strInterim1=m_receiver;



SInterim = atoi(strInterim1);



DH->CreateSenderEncryptionKey(key,SInterim);



char strKey[255] = {0};



sprintf(strKey,"%u",key);


m_key=strKey;

//
UpdateData(TRUE);//m_key.SetWindowText(strKey);

UpdateData(FALSE);


}


else


{



//RECIEVER



__int64 key       = 0;



__int64 SInterim  = 0;



CString strInterim;



UpdateData(TRUE);



strInterim=m_sender;



//m_sender.GetWindowText(strInterim);



SInterim = atoi(strInterim);



DH->CreateRecipientEncryptionKey(key,SInterim);



char strKey[255] = {0};



sprintf(strKey,"%u",key);


    m_key=strKey;


    //UpdateData(TRUE);



UpdateData(FALSE);



//m_key.SetWindowText(strKey);


}

}

void CDiffie_testDlg::OnCheck1() 

{

if (m_sender1.GetCheck())


{



this->m_Button_GenPubKey.EnableWindow();



this->m_Button_ReceiverInterim.EnableWindow(FALSE);



this->m_Button_SenderInterim.EnableWindow();


}


else


{



this->m_Button_GenPubKey.EnableWindow(FALSE);



this->m_Button_ReceiverInterim.EnableWindow();



this->m_Button_SenderInterim.EnableWindow(FALSE);


}


}

void CDiffie_testDlg::OnCancel() 

{


// TODO: Add extra cleanup here


int i;

    char szString[1024];


char szReport[1024];


CSHA1 sha1;


CString szS;


CString szR;


int length;


version=m_key;


UpdateData(FALSE);


UpdateData(TRUE);


length=version.GetLength();


CString temp;


temp.Format("%d",length);


szS=version;


szReport[0]=0;


szString[0]=0;


for (i=0; i < szS.GetLength(); i++)

    
{

        

szString[i]=szS.GetAt(i);

       
}


sha1.Reset();


sha1.Update((UINT_8 *)szString, strlen(szString));


sha1.Final();


sha1.ReportHash(szReport, CSHA1::REPORT_HEX);


for(i= 0; i < strlen(szReport) ; i++){



szR = szR + szReport[i];


}


version=szR.Left(16);


//version+=version ;

//
version=version.Left(16);


m_version=version;

}

void CDiffie_testDlg::OnBnClickedCancel()

{


// TODO: Add your control notification handler code here


OnCancel();

}

// Dlg21.cpp : implementation file

//

#include "stdafx.h"

#include "diffie_test.h"

#include "Dlg21.h"

#include<math.h>

#include"safer.h"

#include "CSHA1ClassSource/SHA1.h" // The CSHA1 class

#ifdef _DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[] = __FILE__;

#endif

CString Plaintext;

extern CString ct1[16][16];

/////////////////////////////////////////////////////////////////////////////

// CDlg2 dialog

CDlg2::CDlg2(CWnd* pParent /*=NULL*/)


: CDialog(CDlg2::IDD, pParent)

{


//{{AFX_DATA_INIT(CDlg2)


m_pin = _T("");


m_rand1 = _T("");


m_version = _T("");


m_cipher = _T("");


m_key1 = _T("");


m_plaintext = _T("");


m_key2 = _T("");


m_key3 = _T("");


m_key4 = _T("");


m_key5 = _T("");


m_key6 = _T("");


m_key7 = _T("");


m_key8 = _T("");


m_key9 = _T("");


m_key10 = _T("");


m_key11 = _T("");


m_key12 = _T("");


m_key13 = _T("");


m_key14 = _T("");


m_key15 = _T("");


m_key_input = _T("");


m_key16 = _T("");


//}}AFX_DATA_INIT

}

void CDlg2::DoDataExchange(CDataExchange* pDX)

{


CDialog::DoDataExchange(pDX);


//{{AFX_DATA_MAP(CDlg2)


DDX_Text(pDX, IDC_EDIT1, m_pin);


DDX_Text(pDX, IDC_EDIT2, m_rand1);


DDX_Text(pDX, IDC_EDIT4, m_version);


DDX_Text(pDX, IDC_EDIT5, m_cipher);


DDX_Text(pDX, IDC_EDIT6, m_key1);


DDX_Text(pDX, IDC_EDIT3, m_plaintext);


DDX_Text(pDX, IDC_EDIT13, m_key2);


DDX_Text(pDX, IDC_EDIT7, m_key3);


DDX_Text(pDX, IDC_EDIT8, m_key4);


DDX_Text(pDX, IDC_EDIT9, m_key5);


DDX_Text(pDX, IDC_EDIT10, m_key6);


DDX_Text(pDX, IDC_EDIT11, m_key7);


DDX_Text(pDX, IDC_EDIT12, m_key8);


DDX_Text(pDX, IDC_EDIT20, m_key9);


DDX_Text(pDX, IDC_EDIT21, m_key10);


DDX_Text(pDX, IDC_EDIT14, m_key11);


DDX_Text(pDX, IDC_EDIT15, m_key12);


DDX_Text(pDX, IDC_EDIT16, m_key13);


DDX_Text(pDX, IDC_EDIT17, m_key14);


DDX_Text(pDX, IDC_EDIT18, m_key15);


DDX_Text(pDX, IDC_EDIT19, m_key_input);


DDX_Text(pDX, IDC_EDIT22, m_key16);


//}}AFX_DATA_MAP

}

BEGIN_MESSAGE_MAP(CDlg2, CDialog)


//{{AFX_MSG_MAP(CDlg2)


ON_BN_CLICKED(IDC_BUTTON1, OnButton1)


ON_BN_CLICKED(IDC_BUTTON3, OnButton3)


ON_BN_CLICKED(IDC_BUTTON2, OnButton2)


ON_BN_CLICKED(IDC_BUTTON4, OnButton4)


ON_BN_CLICKED(IDC_BUTTON5, OnButton5)


ON_EN_CHANGE(IDC_EDIT1, OnEnChangeEdit1)


//}}AFX_MSG_MAP

END_MESSAGE_MAP()

/////////////////////////////////////////////////////////////////////////////

// CDlg2 message handlers

void CDlg2::OnButton1() 

{   


__int64 a;


CString temp;


GUID RandomNumber;


//AfxMessageBox("button clicked");


CoCreateGuid(&RandomNumber);

    a = (__int64)(RandomNumber.Data1 % MAX_RANDOM_INTEGER);



//% MAX_RANDOM_INTEGER);


// TODO: Add your control notification handler code here

    temp.Format("%d",a);


temp=temp+temp;


m_rand1=temp.Left(16);


AfxMessageBox("PIN Entered is : "+m_pin);


UpdateData(FALSE);

}

void CDlg2::OnButton3() 

{ CString temp,temp1;

int i;  

UpdateData(TRUE);

  temp=m_rand1;

  temp1=m_pin+m_version ;

  char szString[1024];


char szReport[1024];


CSHA1 sha1;


CString szS;


CString szR;

//----------------------------


szS=temp1;

    szReport[0]=0;


szString[0]=0;


for (i=0; i < szS.GetLength(); i++)

    
{

        

szString[i]=szS.GetAt(i);

       
}


sha1.Reset();


sha1.Update((UINT_8 *)szString, strlen(szString));


sha1.Final();


sha1.ReportHash(szReport, CSHA1::REPORT_HEX);


for( i= 0; i < strlen(szReport) ; i++){



szR = szR + szReport[i];


}


temp1=szR.Left(16);

//---------------------------

  m_plaintext=temp.Left(16);

  m_key_input=temp1.Left(16);

  UpdateData(FALSE);

  Plaintext=temp1.Left(16);

}

void CDlg2::OnButton2() 

{    CString key1[16];

int i,c;

     CString ctt;


for( i=0;i<16;i++)


{  key1[i]=(Plaintext.GetAt(i));


   //AfxMessageBox(key1[i]);


}for( i=0;i<16;i++)


ctt+=key1[i]+" ";


//AfxMessageBox(Plaintext);



m_key1=ctt;


CString key2[16];


compute_round_keys(Plaintext);


int d=1;


for(c=0;c<16;c++)


{//
CString key2;


key2[c]=ct1[c][0]+" "+ct1[c][1]+" "+ct1[c][2]+" "+ct1[c][3]+" "+ct1[c][4]+" "+ct1[c][5]+" "+ct1[c][6]+" "+ct1[c][7]+" "+ct1[c][8]+" "+ct1[c][9]+" "+ct1[c][10]+" "+ct1[c][11]+" "+ct1[c][12]+" "+ct1[c][13]+" "+ct1[c][14]+" "+ct1[c][15];



d++;


}


m_key2=key2[1];


m_key3=key2[2];

    m_key4=key2[3];


m_key5=key2[4];

    m_key6=key2[5];


m_key7=key2[6];


m_key8=key2[7];


m_key9=key2[8];


m_key10=key2[9];


m_key11=key2[10];

    m_key12=key2[11];


m_key13=key2[12];


m_key14=key2[13];


m_key15=key2[14];

    m_key16=key2[15];


CListBox *Display = reinterpret_cast<CListBox *>(GetDlgItem(IDC_LIST2));


//Display->AddString(m_key1);


//for(int i=0;i<=15;i++)


//{



//Display->AddString(key2[i]);


Display->AddString(m_key1);


Display->AddString(m_key2);


Display->AddString(m_key3);


Display->AddString(m_key4);


Display->AddString(m_key5);


Display->AddString(m_key6);


Display->AddString(m_key7);


Display->AddString(m_key8);


Display->AddString(m_key9);


Display->AddString(m_key10);


Display->AddString(m_key11);


Display->AddString(m_key12);


Display->AddString(m_key13);


Display->AddString(m_key14);


Display->AddString(m_key15);


Display->AddString(m_key16);


//}


//AfxMessageBox(key2);

UpdateData(FALSE);

}

void CDlg2::OnButton4() 

{  CString random;

   CString ct;

   random=m_rand1;

   UpdateData(FALSE);


compute_rounds(random);


FILE * f2;


f2=fopen("c:\\abc.txt","r");


char c;


{   



while((c=getc(f2))!=EOF)



{


 
    ct=ct+c;



}


}


m_cipher=ct;


UpdateData(FALSE);


fclose(f2);

}

void CDlg2::OnButton5() 

{


CDialog::OnOK();


}

void CDlg2::OnOK()

{ CDialog::OnOK();

}

void CDlg2::OnCancel()

{ CDialog::OnCancel();

}

void CDlg2::OnEnChangeEdit1()

{


CEdit *Display;


Display = reinterpret_cast<CEdit *>(GetDlgItem(IDC_EDIT1));


Display->GetWindowText(m_pin);

}

//DrmCrypto.cpp

#include"StdAfx.h"

#include ".\drmcrypto.h"

#include "diffie_test.h"

#include "diffie_testDlg.h"

CDrmCrypto::CDrmCrypto(void)

{


 g = 0;


 n = 0;


 a = 0;


 b = 0;


 X = 0;


 Y = 0;


 K = 0;

}

CDrmCrypto::~CDrmCrypto(void)

{


CleanMem();

}

// Checks the integer n for primality

bool CDrmCrypto::IsItPrime (__int64 n, __int64 a) 

{ 


__int64 d = XpowYmodN(a, n-1, n); 


if (d==1) 



return true; 


else 



return false; 

} 

//Performs the miller-rabin primality test on a guessed prime n.

//trials is the number of attempts to verify this, because the function

//is not 100% accurate it may be a composite.  However setting the trial

//value to around 5 should guarantee success even with very large primes

bool CDrmCrypto::MillerRabin (__int64 n, __int64 trials) 

{ 


__int64 a = 0; 


for (__int64 i=0; i<trials; i++)


{ 



a = (rand() % (n-3))+2;// gets random value in [2..n-1] 



if (IsItPrime (n,a)==false) 



{ 




return false; 




//n composite, return false 



} 


} return true; // n probably prime 

} 

//Generates a large prime number by

//choosing a randomly large integer, and ensuring the value is odd

//then uses the miller-rabin primality test on it to see if it is prime

//if not the value gets increased until it is prime

__int64 CDrmCrypto::GeneratePrime()

{


GUID RandomNumber;


__int64 tmp = 0;


CoCreateGuid(&RandomNumber);


tmp
= ((RandomNumber.Data1 * (RandomNumber.Data2 * RandomNumber.Data3))% MAX_PRIME_NUMBER);


//ensure it is an odd number


if ((tmp & 1)==0)



tmp += 1;


if (MillerRabin(tmp,5)==true) return tmp;


do


{



tmp+=2;



} while (MillerRabin(tmp,5)==false);


return tmp;

}

//Raises X to the power Y in modulus N

//the values of X, Y, and N can be massive, and this can be 

//acheived by first calculating X to the power of 2 then 

//using power chaining over modulus N

__int64 CDrmCrypto::XpowYmodN(__int64 x, __int64 y, __int64 N)

{


__int64 tmp = 0;


if (y==1) return (x % N);


if ((y&1)==0)


{



tmp = XpowYmodN(x,y/2,N);



return ((tmp * tmp) % N);


}


else


{



tmp = XpowYmodN(x,(y-1)/2,N);



tmp = ((tmp * tmp) % N);



tmp = ((tmp * x) % N);



return (tmp);


}

}

int CDrmCrypto::CreateKeys(__int64 &Generator, __int64 &Modulus)

{


__int64 swap = 0;


//Check if keys have already been established


if ((n!=0) && (g!=0))


{



Generator = g;



Modulus   = n;


}


else


{



g = GeneratePrime();



n = GeneratePrime();



if (g>n)



{




swap = g;




g    = n;




n    = swap;



}



Generator = g;



Modulus   = n;


}


return 0;

}

int CDrmCrypto::CreateSenderInterKey(__int64 &InterKey)

{


GUID RandomNumber;


CoCreateGuid(&RandomNumber);


a = (__int64) (RandomNumber.Data1 % MAX_RANDOM_INTEGER);


X = XpowYmodN(g,a,n);


InterKey = X;


return 0;

}

int CDrmCrypto::CreateRecipientInterKey(__int64 &InterKey, __int64 Generator, __int64 Modulus)

{


GUID RandomNumber;


CoCreateGuid(&RandomNumber);


b = (__int64) (RandomNumber.Data1 % MAX_RANDOM_INTEGER);


g = Generator;


n = Modulus;


Y = XpowYmodN(g,b,n);


InterKey = Y;


return 0;

}

int CDrmCrypto::CreateSenderEncryptionKey(__int64 &EncryptionKey, __int64 RecipientInterKey)

{


Y = RecipientInterKey;


K = XpowYmodN(Y,a,n);


EncryptionKey = K;


//CleanMem(CLEAN_ALL_MEMORY_EXCEPT_KEY);


return 0;

}

int CDrmCrypto::CreateRecipientEncryptionKey(__int64 &EncryptionKey, __int64 SendersInterKey)

{


X = SendersInterKey;


K = XpowYmodN(X,b,n);


EncryptionKey = K;


//CleanMem(CLEAN_ALL_MEMORY_EXCEPT_KEY);


return 0;

}

void CDrmCrypto::CleanMem(DWORD dwFlags)

{


g = 0;


n = 0;


a = 0;


b = 0;


X = 0;


Y = 0;


if (dwFlags!=CLEAN_ALL_MEMORY_EXCEPT_KEY)


{



K = 0;


}

}

int CDrmCrypto::GetValue(__int64 &value, DWORD dwFlags)

{


switch (dwFlags)


{



case MODULUS:



{




value = n;




break;



}



case GENERATOR:



{




value = g;




break;



}



case PRIVATE_A:



{




value = a;




break;



}



case PRIVATE_B:



{




value = b;




break;



}



case INTERIM_A:



{




value = X;




break;



}



case INTERIM_B:



{




value = Y;




break;



}



case KEY:



{




value = K ;




break;



}


}


return 0;

}

//safer.cpp

#include"StdAfx.h"

#include"safer.h"

#include "diffie_test.h"

#include "Dlg21.h"

#include<math.h>

#include<fstream>

bit b1[17];

CString ct1[16][16];

FILE* f1;

byte y[16][16];

int bias [16][16]={{ 70,151,177,186,163,183,16,10,197,55,179,201,90,40,172,100},

{ 236,171,170,198,103,149,88,13,248,154,246,110,102,220,5,61},

{138,195,216,137,106,233,54,73,67,191,235,212,150,155,104,160},

{93,87,146,31,213,113,92,187,34,193,190,123,188,153,99,148},

{42,97,184,52,50,25,253,251,23,64,230,81,29,65,68,143},

{221,4,128,222,231,49,214,127,1,162,247,57,218,111,35,202},

{58,208,28,209,48,62,18,161,205,15,224,168,175,130,89,44},

{125,173,178,239,194,135,206,117,6,19,2,144,79,46,114,51},

{192,141,207,169,129,226,196,39,47,108,122,159,82,225,21,56},

{252,32,66,199,8,228,9,85,94,140,20,118,96,255,223,215},

{250,11,33,0,26,249,166,185,232,158,98,76,217,145,80,210},

{24,180,7,132,234,91,164,200,14,203,72,105,75,78,156,53},

{69,77,84,229,37,60,12,74,139,63,204,167,219,107,174,244},

{45,243,124,109,157,181,38,116,242,147,83,176,240,17,237,131},

{182,3,22,115,59,30,142,112,189,134,27,71,126,36,86,241},

{136,70,151,177,186,163,183,16,10,197,55,179,201,90,40,172}

};


byte temp[16];

#define EXP(x)       exp_tab[(x)]

#define LOG(x)       log_tab[(x)]

const int exp_tab[256] = 


{1, 45, 226, 147, 190, 69, 21, 174, 120, 3, 135, 164, 184, 56, 207, 63,


8, 103, 9, 148, 235, 38, 168, 107, 189, 24, 52, 27, 187, 191, 114, 247,


64, 53, 72, 156, 81, 47, 59, 85, 227, 192, 159, 216, 211, 243, 141, 177,


255, 167, 62, 220, 134, 119, 215, 166, 17, 251, 244, 186, 146, 145, 100, 131,


241, 51, 239, 218, 44, 181, 178, 43, 136, 209, 153, 203, 140, 132, 29, 20,


129, 151, 113, 202, 95, 163, 139, 87, 60, 130, 196, 82, 92, 28, 232, 160,


4, 180, 133, 74, 246, 19, 84, 182, 223, 12, 26, 142, 222, 224, 57, 252,


32, 155, 36, 78, 169, 152, 158, 171, 242, 96, 208, 108, 234, 250, 199, 217,


0, 212, 31, 110, 67, 188, 236, 83, 137, 254, 122, 93, 73, 201, 50, 194,


249, 154, 248, 109, 22, 219, 89, 150, 68, 233, 205, 230, 70, 66, 143, 10,


193, 204, 185, 101, 176, 210, 198, 172, 30, 65, 98, 41, 46, 14, 116, 80,


2, 90, 195, 37, 123, 138, 42, 91, 240, 6, 13, 71, 111, 112, 157, 126,


16, 206, 18, 39, 213, 76, 79, 214, 121, 48, 104, 54, 117, 125, 228, 237,


128, 106, 144, 55, 162, 94, 118, 170, 197, 127, 61, 175, 165, 229, 25, 97,


253, 77, 124, 183, 11, 238, 173, 75, 34, 245, 231, 115, 35, 33, 200, 5,


225, 102, 221, 179, 88, 105, 99, 86, 15, 161, 49, 149, 23, 7, 58, 40};

const byte log_tab[256] = 


{128, 0, 176, 9, 96, 239, 185, 253, 16, 18, 159, 228, 105, 186, 173, 248,


192, 56, 194, 101, 79, 6, 148, 252, 25, 222, 106, 27, 93, 78, 168, 130,


112, 237, 232, 236, 114, 179, 21, 195, 255, 171, 182, 71, 68, 1, 172, 37,


201, 250, 142, 65, 26, 33, 203, 211, 13, 110, 254, 38, 88, 218, 50, 15,


32, 169, 157, 132, 152, 5, 156, 187, 34, 140, 99, 231, 197, 225, 115, 198,


175, 36, 91, 135, 102, 39, 247, 87, 244, 150, 177, 183, 92, 139, 213, 84,


121, 223, 170, 246, 62, 163, 241, 17, 202, 245, 209, 23, 123, 147, 131, 188,


189, 82, 30, 235, 174, 204, 214, 53, 8, 200, 138, 180, 226, 205, 191, 217,


208, 80, 89, 63, 77, 98, 52, 10, 72, 136, 181, 86, 76, 46, 107, 158,


210, 61, 60, 3, 19, 251, 151, 81, 117, 74, 145, 113, 35, 190, 118, 42,


95, 249, 212, 85, 11, 220, 55, 49, 22, 116, 215, 119, 167, 230, 7, 219,


164, 47, 70, 243, 97, 69, 103, 227, 12, 162, 59, 28, 133, 24, 4, 29,


41, 160, 143, 178, 90, 216, 166, 126, 238, 141, 83, 75, 161, 154, 193, 14,


122, 73, 165, 44, 129, 196, 199, 54, 43, 127, 67, 149, 51, 242, 108, 104,


109, 240, 2, 40, 206, 221, 155, 234, 94, 153, 124, 20, 134, 207, 229, 66,


184, 64, 120, 45, 58, 233, 100, 31, 146, 144, 125, 57, 111, 224, 137, 48};

byte M[16][16]={{2,2,1,1,16,8,2,1,4,2,4,2,4,1,4,4},

{1,1,1,1,8,4,2,1,2,1,4,2,1,1,2,2},

{1,1,4,4,2,1,4,2,4,2,16,8,2,2,1,1},

{1,1,2,2,2,1,2,1,4,2,8,4,1,1,1,1},

{4,4,2,1,4,2,4,2,16,8,1,1,1,1,2,2},

{2,2,2,1,2,1,4,2,8,4,1,1,1,1,1,1},

{1,1,4,2,4,2,16,8,2,1,2,2,4,4,1,1},

{1,1,2,1,4,2,8,4,2,1,1,1,2,2,1,1},

{2,1,16,8,1,1,2,2,1,1,4,4,4,2,4,2},

{2,1,8,4,1,1,1,1,1,1,2,2,4,2,2,1},

{4,2,4,2,4,4,1,1,2,2,1,1,16,8,2,1},

{2,1,4,2,2,2,1,1,1,1,1,1,8,4,2,1},

{4,2,2,2,1,1,4,4,1,1,4,2,2,1,16,8},

{4,2,1,1,1,1,2,2,1,1,2,1,2,1,8,4},

{16,8,1,1,2,2,1,1,4,4,2,1,4,2,4,2},

{8,4,1,1,1,1,1,1,2,2,2,1,2,1,4,2}};

// select bytes and add biases to generate subkeys

  void compute_round_keys(CString Plaintext)

{  

 int i;


bit b2;


//int key[16][16];


b2.a=0;


for( i=0;i<16;i++)


b1[i].a=(Plaintext.GetAt(i)-'0');

    for(int j=0;j<17;j++)


{



b2.a= b2.a+b1[j].a;


}


b1[17].a=b2.a;

    // rotate each byte left by 3 bit positions


CString key2;


CString ct;


for(int c=1;c<16;c++)


{




for(i=0;i<16;i++)


{ 



b1[i].a=((b1[i].a<<3)+(b1[i].a>>3));



key[c][i]=(b1[(c+i)%18].a +bias[c][i])%256 ;


    ct.Format("%u",key[c][i]);



ct1[c][i]=ct;


}


//AfxMessageBox(key2);


}//key2=ct1[c][0]+" "+ct1[c][1]+" "+ct1[c][2]+" "+ct1[c][3]+" "+ct1[c][4]+" "+ct1[c][5]+" "+ct1[c][6]+" "+ct1[c][7]+" "+ct1[c][8]+" "+ct1[c][9]+" "+ct1[c][10]+" "+ct1[c][11]+" "+ct1[c][12]+" "+ct1[c][13]+" "+ct1[c][14]+" "+ct1[c][15];


}

void compute_rounds(CString random)

{   bit b2[16];

int i;


for( i=0;i<16;i++)


{b1[i].a=(random.GetAt(i)-'0');


b2[i].a=b1[i].a;

    }    


compute_ciphertext(0,0);

    copy_bytevect_to_bit(y,0);


compute_ciphertext(2,1);

    copy_bytevect_to_bit(y,0);


for( i=0;i<16;i++)


{ b1[i].a=b1[i].a+b2[i].a; }


compute_ciphertext(4,2);


copy_bytevect_to_bit(y,0);


compute_ciphertext(6,3);


copy_bytevect_to_bit(y,0);


compute_ciphertext(8,4);


copy_bytevect_to_bit(y,0);


compute_ciphertext(10,5);


copy_bytevect_to_bit(y,0);


compute_ciphertext(12,6);


copy_bytevect_to_bit(y,0);


compute_ciphertext(14,7);


copy_bytevect_to_bit(y,0);


f1=fopen("c:\\abc.txt","w");

//
CString ct1;

//
CString ct;


for( i=0;i<16;i++)


fprintf(f1,"%d  ",y[0][i]);

   fclose(f1);

}

void compute_ciphertext(int g,int s)

{  

    temp[0]=b1[0].a^key[g][0];


temp[3]=b1[3].a ^key[g][3];


temp[4]=b1[4].a ^key[g][4];


temp[7]=b1[7].a ^key[g][7];


temp[8]=b1[8].a^key[g][8];


temp[11]=b1[11].a^key[g][11];

    temp[12]=b1[12].a ^key[g][12];


temp[15]=b1[11].a ^key[g][15];

    temp[1]=b1[1].a+key[g][1];


temp[2]=b1[2].a +key[g][2];


temp[5]=b1[5].a +key[g][5];


temp[6]=b1[6].a +key[g][6];


temp[9]=b1[9].a +key[g][9];

    temp[10]=b1[10].a +key[g][10];


temp[13]=b1[13].a+key[g][13];


temp[14]=b1[14].a +key[g][14];


temp[4]=EXP(temp[4]);


 temp[0]=EXP(temp[0]);

    temp[7]=EXP(temp[7]);

    temp[8]=EXP(temp[8]);


temp[3]=EXP(temp[3]);

    temp[11]=EXP(temp[11]);

    temp[12]=EXP(temp[12]);

    temp[15]=EXP(temp[15]);

    temp[1]=LOG(temp[1]);

    temp[2]=LOG(temp[2]);

    temp[5]=LOG(temp[5]);

    temp[6]=LOG(temp[6]);

    temp[9]=LOG(temp[9]);

    temp[10]=LOG(temp[10]);

    temp[13]=LOG(temp[13]);

    temp[14]=LOG(temp[14]);

// round 1 layer 3

    temp[0]=b1[0].a^key[g+1][0];


temp[3]=b1[3].a ^key[g+1][3];


temp[4]=b1[4].a ^key[g+1][4];


temp[7]=b1[7].a ^key[g+1][7];


temp[8]=b1[8].a^key[g+1][8];


temp[11]=b1[11].a^key[g+1][11];

    temp[12]=b1[12].a ^key[g+1][12];


temp[15]=b1[11].a ^key[g+1][15];

    temp[1]=b1[1].a+key[g+1][1];


temp[2]=b1[2].a +key[g+1][2];


temp[5]=b1[5].a +key[g+1][5];


temp[6]=b1[6].a +key[g+1][6];


temp[9]=b1[9].a +key[g+1][9];

    temp[10]=b1[10].a +key[g+1][10];


temp[13]=b1[13].a+key[g+1][13];


temp[14]=b1[14].a +key[g+1][14];


// layer 4 multiplication with matrix M

 int h=0;


 for(int j=0;j<16;j++)


 { y[h][j]=0;


   for(int k=0;k<16;k++)



   y[h][j]=y[h][j]+temp[k]*M[k][j];


 }

//AfxMessageBox("oupu");
 

//display_array( g);
 

}

void display_array(int g)

{ CString ct;


for(int i=0;i<16;i++)

{ ct.Format("%u",y[g][i]);

  AfxMessageBox(ct);

}

}

 void copy_bytevect_to_bit(byte y[1][16],int i)

 {

  b1[0].a=y[i][0];

b1[1].a=y[i][1];

b1[2].a=y[i][2];

b1[3].a=y[i][3];

b1[4].a=y[i][4];

b1[5].a=y[i][5];

b1[6].a=y[i][6];

b1[7].a=y[i][7];

b1[8].a=y[i][8];

b1[9].a=y[i][9];

b1[10].a=y[i][10];

b1[11].a=y[i][11];

b1[12].a=y[i][12];

b1[13].a=y[i][13];

b1[14].a=y[i][14];

b1[15].a=y[i][15];

 }

//SHA1.cpp

#include "stdafx.h"

#include "CSHA1ClassSource/SHA1.h" // The CSHA1 class

#ifdef SHA1_UTILITY_FUNCTIONS

#define SHA1_MAX_FILE_BUFFER 8000

#endif

// Rotate x bits to the left

#ifndef ROL32

#ifdef _MSC_VER

#define ROL32(_val32, _nBits) _rotl(_val32, _nBits)

#else

#define ROL32(_val32, _nBits) (((_val32)<<(_nBits))|((_val32)>>(32-(_nBits))))

#endif

#endif

#ifdef SHA1_LITTLE_ENDIAN

#define SHABLK0(i) (m_block->l[i] = \


(ROL32(m_block->l[i],24) & 0xFF00FF00) | (ROL32(m_block->l[i],8) & 0x00FF00FF))

#else

#define SHABLK0(i) (m_block->l[i])

#endif

#define SHABLK(i) (m_block->l[i&15] = ROL32(m_block->l[(i+13)&15] ^ m_block->l[(i+8)&15] \


^ m_block->l[(i+2)&15] ^ m_block->l[i&15],1))

// SHA-1 rounds

#define _R0(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK0(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }

#define _R1(v,w,x,y,z,i) { z+=((w&(x^y))^y)+SHABLK(i)+0x5A827999+ROL32(v,5); w=ROL32(w,30); }

#define _R2(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0x6ED9EBA1+ROL32(v,5); w=ROL32(w,30); }

#define _R3(v,w,x,y,z,i) { z+=(((w|x)&y)|(w&x))+SHABLK(i)+0x8F1BBCDC+ROL32(v,5); w=ROL32(w,30); }

#define _R4(v,w,x,y,z,i) { z+=(w^x^y)+SHABLK(i)+0xCA62C1D6+ROL32(v,5); w=ROL32(w,30); }

CSHA1::CSHA1()

{


m_block = (SHA1_WORKSPACE_BLOCK *)m_workspace;


Reset();

}

CSHA1::~CSHA1()

{


Reset();

}

void CSHA1::Reset()

{


// SHA1 initialization constants


m_state[0] = 0x67452301;


m_state[1] = 0xEFCDAB89;


m_state[2] = 0x98BADCFE;


m_state[3] = 0x10325476;


m_state[4] = 0xC3D2E1F0;


m_count[0] = 0;


m_count[1] = 0;

}

void CSHA1::Transform(UINT_32 *state, UINT_8 *buffer)

{


// Copy state[] to working vars


UINT_32 a = state[0], b = state[1], c = state[2], d = state[3], e = state[4];


memcpy(m_block, buffer, 64);


// 4 rounds of 20 operations each. Loop unrolled.


_R0(a,b,c,d,e, 0); _R0(e,a,b,c,d, 1); _R0(d,e,a,b,c, 2); _R0(c,d,e,a,b, 3);


_R0(b,c,d,e,a, 4); _R0(a,b,c,d,e, 5); _R0(e,a,b,c,d, 6); _R0(d,e,a,b,c, 7);


_R0(c,d,e,a,b, 8); _R0(b,c,d,e,a, 9); _R0(a,b,c,d,e,10); _R0(e,a,b,c,d,11);


_R0(d,e,a,b,c,12); _R0(c,d,e,a,b,13); _R0(b,c,d,e,a,14); _R0(a,b,c,d,e,15);


_R1(e,a,b,c,d,16); _R1(d,e,a,b,c,17); _R1(c,d,e,a,b,18); _R1(b,c,d,e,a,19);


_R2(a,b,c,d,e,20); _R2(e,a,b,c,d,21); _R2(d,e,a,b,c,22); _R2(c,d,e,a,b,23);


_R2(b,c,d,e,a,24); _R2(a,b,c,d,e,25); _R2(e,a,b,c,d,26); _R2(d,e,a,b,c,27);


_R2(c,d,e,a,b,28); _R2(b,c,d,e,a,29); _R2(a,b,c,d,e,30); _R2(e,a,b,c,d,31);


_R2(d,e,a,b,c,32); _R2(c,d,e,a,b,33); _R2(b,c,d,e,a,34); _R2(a,b,c,d,e,35);


_R2(e,a,b,c,d,36); _R2(d,e,a,b,c,37); _R2(c,d,e,a,b,38); _R2(b,c,d,e,a,39);


_R3(a,b,c,d,e,40); _R3(e,a,b,c,d,41); _R3(d,e,a,b,c,42); _R3(c,d,e,a,b,43);


_R3(b,c,d,e,a,44); _R3(a,b,c,d,e,45); _R3(e,a,b,c,d,46); _R3(d,e,a,b,c,47);


_R3(c,d,e,a,b,48); _R3(b,c,d,e,a,49); _R3(a,b,c,d,e,50); _R3(e,a,b,c,d,51);


_R3(d,e,a,b,c,52); _R3(c,d,e,a,b,53); _R3(b,c,d,e,a,54); _R3(a,b,c,d,e,55);


_R3(e,a,b,c,d,56); _R3(d,e,a,b,c,57); _R3(c,d,e,a,b,58); _R3(b,c,d,e,a,59);


_R4(a,b,c,d,e,60); _R4(e,a,b,c,d,61); _R4(d,e,a,b,c,62); _R4(c,d,e,a,b,63);


_R4(b,c,d,e,a,64); _R4(a,b,c,d,e,65); _R4(e,a,b,c,d,66); _R4(d,e,a,b,c,67);


_R4(c,d,e,a,b,68); _R4(b,c,d,e,a,69); _R4(a,b,c,d,e,70); _R4(e,a,b,c,d,71);


_R4(d,e,a,b,c,72); _R4(c,d,e,a,b,73); _R4(b,c,d,e,a,74); _R4(a,b,c,d,e,75);


_R4(e,a,b,c,d,76); _R4(d,e,a,b,c,77); _R4(c,d,e,a,b,78); _R4(b,c,d,e,a,79);


// Add the working vars back into state


state[0] += a;


state[1] += b;


state[2] += c;


state[3] += d;


state[4] += e;


// Wipe variables

#ifdef SHA1_WIPE_VARIABLES


a = b = c = d = e = 0;

#endif

}

// Use this function to hash in binary data and strings

void CSHA1::Update(UINT_8 *data, UINT_32 len)

{


UINT_32 i, j;


j = (m_count[0] >> 3) & 63;


if((m_count[0] += len << 3) < (len << 3)) m_count[1]++;


m_count[1] += (len >> 29);


if((j + len) > 63)


{



i = 64 - j;



memcpy(&m_buffer[j], data, i);



Transform(m_state, m_buffer);



for( ; i + 63 < len; i += 64) Transform(m_state, &data[i]);



j = 0;


}


else i = 0;


memcpy(&m_buffer[j], &data[i], len - i);

}

#ifdef SHA1_UTILITY_FUNCTIONS

// Hash in file contents

#endif

void CSHA1::Final()

{


UINT_32 i;


UINT_8 finalcount[8];


for(i = 0; i < 8; i++)



finalcount[i] = (UINT_8)((m_count[((i >= 4) ? 0 : 1)]




>> ((3 - (i & 3)) * 8) ) & 255); // Endian independent


Update((UINT_8 *)"\200", 1);


while ((m_count[0] & 504) != 448)



Update((UINT_8 *)"\0", 1);


Update(finalcount, 8); // Cause a SHA1Transform()


for(i = 0; i < 20; i++)


{



m_digest[i] = (UINT_8)((m_state[i >> 2] >> ((3 - (i & 3)) * 8) ) & 255);


}


// Wipe variables for security reasons

#ifdef SHA1_WIPE_VARIABLES


i = 0;


memset(m_buffer, 0, 64);


memset(m_state, 0, 20);


memset(m_count, 0, 8);


memset(finalcount, 0, 8);


Transform(m_state, m_buffer);

#endif

}

#ifdef SHA1_UTILITY_FUNCTIONS

// Get the final hash as a pre-formatted string

void CSHA1::ReportHash(char *szReport, unsigned char uReportType)

{


unsigned char i;


char szTemp[16];


if(szReport == NULL) return;


if(uReportType == REPORT_HEX)


{



sprintf(szTemp, "%u", m_digest[0]);



strcat(szReport, szTemp);



for(i = 1; i < 20; i++)



{




sprintf(szTemp, "%u", m_digest[i]);




strcat(szReport, szTemp);



}


}


else if(uReportType == REPORT_DIGIT)


{



sprintf(szTemp, "%u", m_digest[0]);



strcat(szReport, szTemp);



for(i = 1; i < 20; i++)



{




sprintf(szTemp, "%u", m_digest[i]);




strcat(szReport, szTemp);



}


}


else strcpy(szReport, "Error: Unknown report type!");

}

#endif

// Get the raw message digest

void CSHA1::GetHash(UINT_8 *puDest)

{


memcpy(puDest, m_digest, 20);

}
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