
MODELING AND CONTROL OF NON-LINEAR SYSTEMS

USING NEURO-FUZZY APPROACH

A MAJOR THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF ENGINEERING

IN

CONTROL & INSTRUMENTATION

SUBMITTED BY

V.RAVI KISHORE REDDY

(Roll No.13/C&I/06)

UNIVERSITY ROLL NO.10222

UNDER THE ESTEEMED GUIDANCE

OF

Mr. RAM BHAGAT

(LECTURER)

DEPARTMENT OF ELECTRICAL ENGINEERING

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI

2006-2008

CERTIFICATE

 This is to certify that Major thesis titled “MODELING AND CONTROL OF NON-

LINEAR SYSTEMS USING NEURO-FUZZY APPROACH” submitted by Mr. V. Ravi

Kishore Reddy in partial fulfillment for the degree of Master of Engineering (Control &

Instrumentation) of the Electrical Engineering Department, Delhi college of Engineering,

Delhi – 110042 is a bonafide record of work, he has carried out under my guidance and

supervision.

Mr.RAM BHAGAT

(Lecturer)

Electrical Engineering Department,

Delhi College of Engineering, Delhi.

ACKNOWLEDGEMENT

 I would like to extend my sincere gratitude to my guide Mr.RAM BHAGAT

(Lecturer, Electrical Engineering Department, Delhi College of Engineering, Delhi) for his

assistance and invaluable guidance towards the progress of this thesis.

 I would like to thank Prof. PARMOD KUMAR, Head of Department,

Electrical Engineering for providing valuable comments.

Mr. V. RAVI KISHORE REDDY

M.E (C& I)

College Roll No: 13/C&I/06

i

 ABSTRACT

 In this work a neuro-fuzzy approach is used to model any non-linear data. Fuzzy curve

approach is used to know prerequisite parameters to model the system. Back-propagation

algorithm is used to properly train the network. The appropriateness of the model is tested

with a non-linear data and the model results are compared with actual data.

Neuro-fuzzy controller is designed for LOS stabilization for a two axis gimbal system.

Implementation in azimuth axis is presented. A conventional compensator designed in [2] is

used as training data for neuro-fuzzy controller. Fuzzy logic based controller is implemented

on the system. Neuro-fuzzy model algorithm is used in modelling the controller. Step

response of the system using the three controllers is implemented in MATLAB and the

results are compared.

 ii

 CONTENTS

Chapter 1 INTRODUCTION 1

 1.1 Neuro-fuzzy modeling 1

 1.2 Line of sight stabilization control 1

 1.3 Design and implementation of controllers 2

 1.4 Organization of the Dissertation 2

Chapter 2 LITERATURE REVIEW 4

Chapter 3 FUZZY NEURAL SYSTEM MODELING 6

 3.1 Introduction 6

 3.2 Neural networks

3.2.1 Model of a neuron

3.2.2 Network Architectures

6

 3.3 Learning

3.3.1 Error-Correcting Learning

3.3.2 Least-Mean-Square Algorithm

9

 3.4 Back-Propagation Algorithm 12

 3.5 Fuzzy Curves 20

 3.6 Architecture of Fuzzy Neural Network 21

Chapter 4 LINE OF SIGHT STABILIZATION CONTROL 25

 4.1 Introduction 25

 4.2 Dynamically Tuned Gyroscope

4.2.1 Modeling of DTG rotor

25

 4.3 Gimbal Dynamics 28

 4.4 Modeling of DC Motor 28

 4.5 Overall system operation 29

 4.6 Controller design for LOS stabilization

4.6.1 Conventional controller

4.6.2 Fuzzy controller

4.6.3 Neuro-fuzzy controller

30

 iii

Chapter 5 Implementation in MATLAB 35

 5.1 Implementation of model to Non-linear system data 35

 5.2 Implementation of LOS stabilization loop control

5.2.1 Conventional controller

5.2.2 Fuzzy controller

5.2.3 Neuro-fuzzy controller

38

Chapter 6 RESULTS 41

Chapter 7 CONCLUSIONS AND FUTURE SCOPE 45

 REFERENCES

 APPENDIX

1

 CHAPTER 1

INTRODUCTION

1.1 NEURO-FUZZY MODELING

 A multilayered neural network can approximate any continuous function on a compact

set [6] and a fuzzy system can do the same approximation [7]. A simple fuzzy –neural

network for modeling systems from input-output data [1] is introduced. Fuzzy-neural

networks can be divided into two main categories. One group of neural networks for fuzzy

reasoning uses fuzzy weights in the neural network. In a second group, the input data are

fuzzified in the first or second layer, but the neural network weights are not fuzzy. The fuzzy-

neural network discussed here comes under second group.

 A simple neural network is used to implement a fuzzy rule based model of a real system

from input-output data. Fuzzy curves are used for, identification of the significant input

variables, estimation of the number of rules needed in the fuzzy model, and determination of

initial weights for the neural networks. The number of input variables and the number of rules

determine the structure of neural network. Training the network using back-propagation is the

heart of the modeling process. The model can be viewed as either a fuzzy system, a neural

network, or a fuzzy-neural system.

The algorithm developed is implemented on a non-linear data [7] as explained in chapter 5.

1.2 LINE-OF-SIGHT (LOS) STABILIZATION CONTROL

 Line-of-sight stabilization is an essential feature of modern fire control and surveillance

systems. As the imaging system in a fire control system undergoes angular vibrations, the

resolution within the image decreases. This is primarily due to the spread of incident optical

energy on the imaging detector (pixel). The control system must sense the disturbance on the

LOS using gyros and generate appropriate control torques to minimize the spread of optical

energy on the detector. This is done by integrating the imaging system in a set of gimbals,

which are excited by the torquers. These torquers get their drive from the control system. The

torque disturbances in the system can be due to bearing and motor friction, unbalanced

aerodynamics, vibration forces from onboard mechanisms, and spring torque forces from

2

wires or flexures. Presence of inherent non-linearities such as stiction friction, saturation of

actuators, etc. is also to be taken into account.

1.3 DESIGN AND IMPLEMENTATION OF CONTROLLERS

 Conventional controller designs are dependent on the accuracy of the mathematical

model of the plant, which usually ignore high order dynamics. Although robust controllers

can be designed to overcome uncertainties in plant parameters as well as non-linearities, the

resultant controller becomes complex for implementation. In order to overcome above

problems, intelligent controlling techniques are used. Artificial neural networks and fuzzy

logic are potential tools for intelligent control engineering. Neural networks are best known

for their learning capabilities. Fuzzy logic is a method of using human skills and thinking

processes in a machine. Neural networks offer the possibility of solving the problem of

tuning. A combination of neural networks and fuzzy logic offers the possibility of solving

tuning problems and design difficulties of fuzzy logic. The resulting network can be easily

recognized in the form of fuzzy logic control rules. This new approach combines the well-

established advantages of both the methods and avoids the drawbacks of both. The

computation of control value from the given measured input value is seen as a feed forward

procedure as in layered networks, where the inputs are forwarded through the network

resulting in some output value(s). If the actual output value differs from the desired output

value, the resulting error is propagated back through the architecture, which in turn results in

modification of certain parameters and reduction in error during the next cycle.

 For the line-of-sight stabilization control system considered, conventional controller and

fuzzy knowledge based controller (FKBC) are implemented in [2]. LOS stabilization loop is

implemented in MATLAB using conventional controller and FKBC and the control laws are

stored in an array. These control laws are taken as training data for a neuro-fuzzy controller.

The neuro-fuzzy algorithm developed in [1] is used in modeling the controller for Line-of

sight stabilization systems which is more robust under non-linearities.

1.4 ORGANIZATION OF THE DISSERTATION

This Dissertation is organized as follows.

Chapter 2 Literature Review

3

Chapter 3 Fuzzy Neural System Modeling

Chapter 4 Line-of-Sight (LOS) Stabilization

Chapter 5 Implementation of Model to Non-linear system data

Chapter 6 Implementation of LOS Stabilization loop in MATLAB

Chapter 7 Results and Discussions

Chapter 8 Conclusions and Future Scope

4

CHAPTER 2

LITERATURE REVIEW

 Yinghua Lin and George A. Cunningham III developed simple but effective fuzzy rule

based neural models of complex systems from input-output data. They introduced fuzzy-

neural network for modeling systems that can represent any continuous function over a

compact set. [1]

J.A.R. Krishna Moorty, Rajeev Marathe and Hari Babu carried out the controller

(conventional and fuzzy logic) design for a two-axis electomechanical gimbal. As an example

LOS stabilization in only direction (azimuth) is demonstrated in this paper. Very stringent

specifications for disturbance attenuation and command following specifications are met by

appropriately designing the various membership functions and rules [2].

 Simon Haykin in his book “Neural Networks” [3] provided a comprehensive foundation of

neural networks. He explained the role of neural networks in the construction of intelligent

machines for pattern recognition, control and signal processing.

 Kevin M. Passino and Stephen Yurkovich provided a control-engineering perspective on

fuzzy control [4]. Overall a pragmatic engineering approach to the design, analysis,

performance evaluation, and implementation of fuzzy control systems is provided.

Han-Xiong Li and H. B. Gatland proposed a general robust rule base for fuzzy two-term

control, and leave the optimum tuning to the scaling gains, which greatly reduces the

difficulties of design and tuning [5]. More systematic analysis and design are given for the

conventional fuzzy control.

M. Sugeno and T. Yasukawa discussed a method of qualitative modeling based on fuzzy

logic and input-output data of a non-linear system is presented as an example of identification

[7]. This data is verified with the neuro-fuzzy algorithm.

Stelios Papadakis and John Theocharis presented a novel modeling technique based on the

fuzzy curve concept [8]. This method exhibits a number of significant attributes, such as

5

effective input space searching computational simplicity and high accuracy of the resulting

fuzzy models

Fernando de Castro Junqueira and Ettore Apolônio de Barros presented the general aspects

about Dynamically Tuned Gyroscope (DTG) development, the main difficulties involved, as

well as some performance results. Fundamentals and mathematical modeling of a single-

gimballed DTG are introduced [9]. An analysis of the constructive requirements, the

machining methods and materials employed in the DTG implementation are presented.

Peter J. Kennedy and Rhonda L. Kennedy investigate the impact of LOS disturbances and

sensor noise on the performance of each stabilization control loop configuration. They

focuses on two methods of implementing the stabilization servo loop design. Mathematical

model of gimbal is derived from torque relationships about inner and outer gimbal body axes

based on rigid body dynamics [10].

Y. Hayashi, J. Buckley, and E. Czogala discussed the direct fuzzification of a standard

layered, feedforward, neural network where the signals and weights are fuzzy sets and a

fuzzified delta rule is presented for learning [11].

6

CHAPTER 3

FUZZY NEURAL SYSTEM MODELING

3.1 INTRODUCTION

 Modelling of systems provide several useful information on the expected behaviour of a

final system. Great advantage of modeling, which might be considered as a supplement to the

simulation of controlling is demonstration, and the examination of the impact of parameters

that can be simulated only with difficulty on the system to be developed. Modeling these

systems is a very cost effective means of addressing the problem of security from an overall

system view. Let us begin by reviewing the modeling process; this should make more

apparent the nature of the problem we intend to address. The first stage of the modeling, i.e.,

identification, is to identify good explanatory variables (i.e., input variables for the model),

and to collect sufficient data for the modelling task. This is the hardest and most crucial stage

in the modelling process. Analysis of the target is necessary, and for that purposes various

tools and methods such as statistical analysis methods already exists.

 A simple fuzzy-neural network can be developed for modeling the systems that can

represent any continuous function over a compact set [6], [7]. Fuzzy-neural networks can be

divided into two main categories. One group of neural networks for fuzzy reasoning uses

fuzzy weights in the neural network. [11], [12]. In a second group, the input data are

fuzzified in the first or second layer, but the neural network weights are not fuzzy [13],[14].

The fuzzy-neural network model developed comes under this group. There are many methods

to obtain the proper network structure and initial weights to reduce training time [15]. Fuzzy

curves concept is used to create our system model. Number of input variables and the number

of rules to determine the structure of the neural network are found with the help of fuzzy

curves. Then network can be trained using back-propagation algorithm.

3.2 NEURAL NETWORKS

 In its most general form, a neural network is a machine that is designed to model the way

in which the brain performs a particular task or function of interest; the network is usually

implemented by using electronic components or is simulated in software on a digital

computer. To achieve good performance, neural networks employ a massive interconnection

7

of simple computing cells referred to as “neurons” or “processing units”. Neural networks

and conventional algorithmic computers are not in competition but complement each other.

In general a neural network viewed as an adaptive machine can be defined as

A neural network is a massively parallel distributed processor made up of simple processing

units, which has a natural propensity for storing experimental knowledge and making it

available for use. It resembles the brain in two aspects:

1. Knowledge is acquired by the network from its environment through a learning process.

2. Interneuron connection strengths, known as synaptic weights, are used to store the

acquired knowledge.

Neural networks are also referred to in literature as neurocomputers, connectionist networks,

parallel distributed processors, etc.

 3.2.1 MODEL OF A NEURON

 A neuron is an information-processing unit that is fundamental to the operation of a neural

network. Three basic elements of the neuron model are

1. A set of synapses or connecting links, each of which is characterized by a weight or

strength of its own. Unlike a synapse in the brain, the synaptic weight of an artificial neuron

may lie in the range that includes negative as well as positive values.

2. An adder for summing the input signals, weighted by the respective synapses of the

neuron.

3. An activation function for limiting the amplitude of the output of a neuron. The activation

function is also referred to as a squashing function in that it squashes (limits) the permissible

amplitude range of the output signal to some infinite value. Typically, the normalized

amplitude range of the output of a neuron is written as the closed interval [0,1] or

alternatively [-1,1].

The neuronal model also includes an externally applied bias, denoted by b. The bias b has the

effect of increasing or lowering the net input of the activation function, depending on whether

it is positive or negative, respectively.

8

 Fig.3.1 : Model of a neuron

Mathematical equations, activation functions, feedback etc, are dealt clearly in [3].

 3.2.2 NETWORK ARCHITECTURES

 The manner in which the neurons of a neural network are structured is intimately linked with

the learning algorithm used to train the network. In general fundamentally three different

classes of network architectures are identified:

 1. Single-Layer Feedforward Networks

 In a layered neural network the neurons are organized in the form of layers. In the simplest

form of a layered network, we have an input layer of source node that projects onto an output

layer of layer of neurons (computational nodes), but not vice versa. In other words this

network is strictly a feedforward or acyclic type. Such a network is called a single layer

network, with the designation “single-layer” referring to the output layer of computation

nodes (neurons). We do not count the input layer of source nodes because no computation is

performed there.

 2. Multilayer Feedforward Networks

 The second class of a feedforward neural network distinguishes itself by the presence of one

or more hidden layers, whose computation nodes are correspondingly called hidden neurons

or hidden units. The function of hidden neurons is to intervene between the external input and

the network output in some useful manner. By adding one or more hidden layers, the network

9

is enabled to extract higher-order statistics. The ability of hidden neurons to extract higher-

order statistics is particularly valuable when the size of input layer is large. The neural

network may be fully connected or partially connected. It is said to be fully connected in the

sense that every node in each layer of the network is connected to every other node in the

adjacent forward layer. If, however, some of the communication links (synaptic connections)

are missing from the network, the network is said to be partially connected.

3. Recurrent networks

 A recurrent neural network distinguishes itself from a feedforward neural network in that it

has at least one feedback loop. The presence of feedback loops has a profound impact on the

learning capability of the network and on its performance.

3.3 LEARNING

 The property that is of primary significance for a neural network is the ability of the

network to learn from its environment, and to improve its performance through learning. The

improvement in performance takes place over a time in accordance with some prescribed

measure. A neural network learns about its environment through an interactive process of

adjustments applied to its synaptic weights and bias levels. Ideally, the network becomes

more knowledgeable about its environment after each iteration of the learning process.

Simon Haykin defined learning in the context of neural network [3] as:

Learning is a process by which the free parameters of a neural network are adapted through

a process of stimulation by the environment in which the network is embedded. The type of

learning is determined by the manner in which the parameter changes takes place.

 A prescribed set of well-defined rules for the solution of a learning problem is called a

learning algorithm. There is no unique learning algorithm for the design of neural networks.

Rather many kit of tools represented by a diverse variety of learning algorithms, each of

which offers advantage of its own. Basically, learning algorithms differ from each other in

the way in which the adjustment to a synaptic weight of a neuron is formulated. Some of the

basic learning rules presented in the literature are error-corrector learning, memory based

learning, Hebbian learning, competitive learning, and Boltzmann learning.

10

3.3.1 Error-Correction Learning

 Neuron k is driven by a signal vector x (n) produced by one or more layers of hidden

neurons, which are themselves driven by an input vector (stimulus) applies to the source node

(i.e., input layer) of the neural network. The argument n denotes discrete time, or precisely,

the time step of an iterative process involved in adjusting the synaptic weights of neuron k.

The output signal of neuron k is denoted by yk (n). This output signal, representing the only

output of the neural network, is compared to a desired response or target output, denoted by

dk (n). Consequently, an error signal, denoted by ek (n), is produced. By definition, we thus

have ek (n) = dk (n) - yk (n). The error signal ek (n) actuates a control mechanism, the purpose

of which is to apply a sequence of corrective adjustments to the synaptic weights of neuron k.

The corrective adjustments are designed to make the output signal yk (n) come closer to the

desired response dk (n) in a step-by-step manner. This objective is achieved by minimizing a

cost function or index of performance, ξ (n), defined in terms of the error signal ek (n) as:

 ξ (n)= ek
2

(n)/2

That is, ξ (n) is the instantaneous value of the error energy. The step-by-step adjustments to

the synaptic weights of neuron k are continued until the system reaches a steady state. At that

point the learning process is terminated. This learning process is referred to as error-

correcting learning. In particular, minimization of the cost function ξ(n) leads to a learning

rule commonly referred to as the delta rule or Widrow-Hoff rule, named in honor of its

originators. Let wkj (n) denote the value of synaptic weight wkj of neuron k excited by element

xj (n) of the signal vector x (n) at time step n. According to delta rule, the adjustment Δwkj (n)

applied to the synaptic weight wkj at time step n is defined by

 Δwkj (n)=η ek(n) xj(n)

where η is a learning parameter, which determines the rate of learning as moved from one

step in the learning process to another.

The delta rule discussed herein, presumes that the error signal is directly measurable. For this

measurement to be feasible, clearly desired response from some external source should be

supplied which is directly accessible to neuron k. In other words, neuron k is visible to the

outside world, as shown in fig .

11

Having computed the synaptic weight adjustment Δwkj (n), the updated value of synaptic

weight wkj is determined by

 wkj (n+1)= wkj (n)+ Δwkj (n)

In effect, wkj (n) and wkj (n+1) may be viewed as the old and new values of synaptic weights

wkj (n), respectively. In computational terms wkj (n)=z
-1

 [wkj (n+1)] where z
-1

 is the unit –

delay operator. That is, z
-1

represents a storage element.

3.3.2 LEAST MEAN SQUARE ALGORITHM

The least-mean-square (LMS) algorithm is based on the use of instantaneous values for the

cost function, namely

 ξ (w) = 21
()

2
e n --------------------- (3.1)

where e (n) is the error signal measured at time n. Differentiating ξ (w) with respect to the

weight vector w yields

() ()

()
w e n

e n
w w

 


 
 --------------------- (3.2)

()

()ji

n

w n





As with the linear least-square filter, the LMS algorithm operates with a linear neuron so the

error signal is

 e (n)=d (n)-x
T

(n)w (n) -------------------- (3.3)

Hence,

()

()

e n

w n




= -x (n) -------------------- (3.4)

and

()

()

w

w n




= -x (n)e (n) -------------------- (3.5)

Using (3.5) as an estimate for the gradient vector, g (n) = -x (n) e (n)

12

From the steepest gradient method Δw (n) = -η g (n)

Finally LMS algorithm is formulated as

 w (n+1) =w (n)+ η x (n)e (n)

where η is the learning parameter.

3.4 BACK PROPAGATION ALGORITHM

A multilayer feedforward networks consists of a set of sensory units (source nodes) that

constitute the input layer, one or more hidden layers of computation nodes, and an output

layer of computation nodes. The input signal propagates through the network in a forward

direction, on a layer-by-layer basis. These neural networks are commonly referred to as

multilayer perceptrons (MLPs).

Multilayer perceptrons solve difficult and diverse problems by training them in a supervised

manner with a high popular algorithm known as error back-propagation algorithm. This

algorithm is based on the error-correction learning rule. It may be viewed as a generalization

of an equally popular adaptive filtering algorithm: the ubiquitous least-mean-square (LMS)

algorithm.

Basically, error back-propagation learning consists of two passes through the different layers

of the network: a forward pass and a backward pass. In the forward pass, an activity pattern

(input vector) is applied to the sensory nodes of the network, and its effect propagates

through the network layer by layer. Finally, a set of outputs is produced as the actual response

of the network. During the forward pass the synaptic weights of the network are all fixed.

During the backward pass, on the other hand, the synaptic weights are all adjusted in

accordance with an error-correction rule. Specifically, the actual response of the network is

subtracted from a desired (target) response to produce an error signal. This error signal is then

propagated backward through the network, against the direction of synaptic connections-

hence the name “error back-propagation.” The synaptic weights are adjusted to make the

actual response of the network move closer to the desired response in a statistical sense.

13

The development of the back-propagation algorithm represents a landmark in neural

networks in that it provides a computationally efficient method for training of multilayer

perceptrons.

 Fig.3.2 Details of output neuron

The error signal at the output of neuron j at iteration n as shown in fig 3.2 (i.e., presentation

of the nth training example) is defined by

 ej (n) = dj (n) - yj (n), ----------------- (3.6)

 neuron j is an output node

Instantaneous value of the error energy for neuron j is 21
()

2
je n . Correspondingly, the

instantaneous value of the total energy is obtained by summing 21
()

2
je n over all neurons in

the output layer; these are only “visible” neurons for which error signals can be calculated

directly. Therefore

14

 ξ (n) = 21
()

2 j C

e n


 ------------------- (3.7)

where the set C includes all the neurons in the output layer of the network. Let N denote the

total number of patterns contained in the training set. The average squared error energy is

obtained by summing ξ (n) over all n and then normalizing with respect to the set size N.

 ξav =  
1

 n
N

n




 -------------------- (3.8)

For a given training set, ξav represents the cost function as a measure of learning performance.

The objective of the learning process is to adjust the free parameters of the network to

minimize ξav. To do this minimization an approximation similar in rationale to that used in

LMS algorithm is used.

The arithmetic average of these individual weight changes over the training set is therefore an

estimate of the true change that would result from modifying the weights based on

minimizing the cost function ξav over the entire training set.

Consider fig.2 which depicts neuron j being fed by a set of function signal produced by a

layer of neurons to its left. The induced local field vj (n) produced at the input of the

activation function associated with neuron j is therefore

 vj (n) =
0

() ()ji i

m

i

w n y n


 -------------------- (3.9)

where m is the total number of inputs (excluding the bias) applied to neuron j. The synaptic

weight wjo (corresponding to the fixed input yo = +1) equals to bias bj applied to neuron j.

Hence the function signal yj (n) appearing at the output of neuron j at iteration n is

 yj (n) = φ (vj (n)) -------------------- (3.10)

In a manner similar to the LMS algorithm, the back-propagation algorithm applies a

correction Δwji (n) to the synaptic weight wji (n), which is proportional to the partial

derivative
()

()ji

n

w n




. According to the chain rule of calculus,

()

()ji

n

w n




=

()

()j

n

e n





()

()

j

j

e n

y n





()

()

j

j

y n

v n





()

()

j

ji

v n

w n




 -------------------- (3.11)

15

The partial derivative
()

()ji

n

w n




represents a sensitivity factor, determining the direction of

search in weight space for the synaptic weight wji.

 Differentiating both sides of (3.7) with respect to ej (n),

()

()j

n

e n




=ej (n) --------------------- (3.12)

Differentiating both sides of (3.6) with respect to yj (n),

()

()

j

j

e n

y n




= -1 --------------------- (3.13)

Next, differentiating (3.10) with respect to vj (n),

()

()

j

j

y n

v n




= φ

1
j

(vj (n)) --------------------- (3.14)

Finally, differentiating (3.9) with respect to wji (n) yields

()

()

j

ji

v n

w n




=yi (n) --------------------- (3.15)

Using Eqs (3.12), (3.13), (3.14), and (3.15) in (3.11) yields

()

()ji

n

w n




= -ej (n) φ

1
j

(vj (n)) yi (n) -------------------- (3.16)

The correction Δwji (n) applied to wji (n) is defined by the delta rule:

 Δwji (n) = -η
()

()ji

n

w n




 -------------------- (3.17)

where η is the learning-rate parameter of the back-propagation algorithm. The use of the

minus sign in (3.17) accounts for the gradient descent in weight space (i.e., seeking the

direction for weight change that reduces the value of ξ (n)). Accordingly, the use of (3.16) in

(3.17) yields

 Δwji (n)= η δj(n)yi(n) -------------------- (3.18)

where the local gradient δj(n) is defined by

16

 δj (n)= -
()

()j

n

v n





 = -
()

()j

n

e n





()

()

j

j

e n

y n





()

()

j

j

y n

v n





()

()

j

ji

v n

w n





 = ej (n) φ
1
j

(vj (n)) -------------------- (3.19)

The local gradients points to required changes in synaptic weights. According to Eq. (3.19)

the local gradient δj(n) for output neuron j is equal to the product of the corresponding error

signal ej (n) for that neuron and the derivative φ
1
j

(vj (n)) of the associated activation function.

From Eq. (3.18) and (3.19), the key factor involved in the calculation of the weight

adjustment Δwji (n) is the error signal ej (n) at the output of neuron j. Two distinct cases are

identified in this context, depending on where in the network neuron j is located. In case 1,

neuron j is an output node. This is simple to handle because each output node of the network

is supplied with a desired response of its own, making it a straight forward matter to calculate

the associated error signal. In case 2, neuron j is a hidden node. Even though hidden neurons

are not directly accessible, they share responsibility for any error made at the output of the

network. The question is to know how to penalize or reward hidden neurons for their share of

the responsibility. This problem is the credit-assignment problem which can be solved in an

elegant fashion by back-propagating the error signals through the network.

Case 1 Neuron j is an Output Node

When neuron j is located in the output layer of the network, it is supplied with a desired

response of its own. Eq. (3.6) is used to compute the error signal ej (n) associated with this

neuron. Having determined ej (n), it is a straightforward matter to compute the local gradient

δj (n) using Eq. (3.19).

Case 2 Neuron j is a Hidden Node

When neuron j is located in a hidden layer of the network, as shown in fig.3.3 there is no

specified desired response for that neuron. Accordingly, the error signal for a hidden layer

would have to be determined recursively in terms of the error signals of all neurons to which

that hidden neuron is directly connected.

17

 Fig.3.3: Details of output neuron k connected to hidden neuron j

According to Eq. (3.19), local gradient may be redefined for hidden neuron as

 δj (n) = -
()

()j

n

y n





()

()

j

j

y n

v n




 -----------------------(3.20)

 = -
()

()j

n

y n




φ

1
j

(vj (n)), neuron j is hidden ------------- (3.21)

 Eq. (3.14) is used in the second line. To calculate the partial derivative (∂ξ (n)/ ∂yj (n)),

Consider

 ξ (n) = 21
()

2
k

k C

e n


 , neuron k is an hidden node ----------- (3.22)

 Differentiating Eq. (3.22) with respect to the function signal yj (n),

()

()j

n

y n




=

k

 ek

()

()

k

j

e n

y n




 --------------- (3.23)

Using chain rule for the partial derivative
()

()

k

j

e n

y n




, and rewriting Eq. (3.23)

()

()j

n

y n




=

k

 ek
()

()

k

k

e n

v n





()

()

k

j

v n

y n




 -------------- (3.24)

18

However, ek (n) = dk (n) – yk (n)

 = dk (n) - φ (vk (n)), neuron k is an output node

Hence

()

()

k

k

e n

v n




 = -φ

1
k

(vk (n)) ---------------- (3.25)

For neuron k, the induced field is

 vk (n) =
0

() ()
m

kj j

j

w n y n


 ------------------- (3.26)

where m is the total number of inputs (excluding the bias) applied to neuron k. Differentiating

Eq. (3.26) with respect to yj (n) yields

()

()

k

j

v n

y n




 = wkj (n) -------------------- (3.27)

 By using Eq. (3.25) and (3.27) in (3.24)

()

()j

n

y n




 = -

k

 ek (n) φ
1
k

(vk (n)) wkj (n)

 = -
k

 δk (n) wkj (n) ------------------ (3.28)

in the second line definition of local gradient is used

Finally using Eq. (3.28) in (3.21), back-propagation formula for the local gradient is:

 δj (n) = φ
1

j

(vj (n))

k

 δk (n) wkj (n) ------------------- (3.29)

where neuron j is hidden node.

Summarizing the relations of the derivation of back-propagation algorithm,

First, the correction Δwji (n) applied to the synaptic weight connecting neuron i to neuron j is

defined by the delta rule:

(Weight correction Δwji (n)) = (η) (δj (n)) (input signal to neuron j yi (n)) --------------- (3.30)

19

Second, the local gradient δj (n) depends on whether neuron j is an output node or a hidden

node:

1. If neuron j is an output node, δj (n) equals the product of the derivative φ
1

j

(vj (n)) and the

error signal ej (n), both of which are associated with neuron j.

2. If neuron j is a hidden node, δj (n) equals the product of the associated derivative φ
1

j

(vj (n))

and the weighted sum of the δs computed for the neurons in the next hidden or output layer

that are connected to neuron j.

The two passes of computation

In the application of the back-propagation algorithm, two distinct passes of computation are

distinguished. The first pass is referred to as the forward pass, and the second is referred to as

the backward pass.

In the forward pass the synaptic weights remain unaltered throughout the network, and the

function signals of the network are computed on a neuron-by-neuron basis. The function

signal appearing at the output to neuron j is computed as

 yj (n) = φ (vj (n))

where vj (n) is the induced local field neuron j, defined by

 vj (n) =
0

() ()ji i

m

i

w n y n




where m is the local number of inputs (excluding the bias) applied to neuron j, and wji is the

synaptic weight connecting neuron i to neuron j, and yi (n) is the input signal of neuron j or

equivalently, the function signal appearing at the output of neuron i. If neuron j is in the first

hidden layer of the network, m=mo and the index i refers to the i
th

 input terminal of the

network, for which

 yi (n) = xi (n)

where xi (n) is the i
th

 element of the input vector (pattern). If, on the other hand, neuron j is

the output layer of the network, m=mL and the index j refers to the j
th

 output terminal of the

network, for which

20

 yj (n) = oj (n)

where oj (n)is the j
th

 element of the output vector (pattern). This output is compared with the

desired response dj (n), obtaining the error signal ej (n) for the jth output neuron. Thus the

forward phase of computation begins at the first hidden layer by presenting it with the input

vector, and terminates at the output layer by computing the error signal for each neuron of

output layer.

The backward pass, on the other hand, starts at the output layer by passing the error signal

leftward through the network, layer by layer, and recursively computing the δ (i.e. the local

gradient) for each neuron. This recursive process permits the synaptic weights of the network

to undergo changes in accordance with the delta rule of Eq. (3.30). For a neuron located in

the output layer, the δ is simply equal to the error signal of that neuron multiplied by the first

derivative of its nonlinearity. Hence Eq. (3.30) is used to compute the changes to the weights

of all the connections feeding into the output layer. Given the δs for the neurons of the output

layer, Eq. (3.29) is used to compute the δs for all the neuron in the penultimate layer and

therefore the changes to the weights of all connections feeding into it. The recursive

computation is continued layer by layer, by propagating the changes to all synaptic weights in

the network.

For the presentation of each training example, the input pattern is fixed (“clamped”)

throughout the round-trip process, encompassing the forward pass followed by the backward

pass.

3.5 FUZZY CURVES

Fuzzy curves are used for i) identification of the significant variables, ii) estimation of the

number of rules needed in the fuzzy model, and iii) determination of initial weights for the

neural network.

 Consider a multiple-input, single-output system for which we have input-output data with

possible extraneous inputs. To determine the initial membership functions, first step is to

determine the significant inputs, the number of rules R, and initial values for the weights. Let

the input candidates be xi (i=1,2,…,n), and the output variable y. Let us assume that m

training data points are available and that xik (k-1,2,…,m) are the i
th

 coordinates of each of the

m training points. For each input variable xi, plot the m data points in xi - y space. For every

21

point (xik, yk) in the xi – y space, draw a fuzzy membership function for the input variable

defined by

 ---------- (3.31)

 Each pair of ɸik and the corresponding yk provides a fuzzy rule for y with respect to xi,

The rule is represented as “if xi is ɸik (xi), then y is yk”. ɸik is the input variable fuzzy

membership function for xi, corresponding to the data point k. ɸik can be any fuzzy

membership function, including triangle, trapezoidal, Gaussian, and others. Here Gaussian is

used. Typically take b as about 20% of the length of the input interval of xi. For m training

data points, we have m fuzzy rules for each input variable.

Centroid defuzzification is used to produce a fuzzy curve ci for each input variable xi by

 ----------------------- (3.32)

 If the fuzzy curve for given input is flat, then this input has little influence in the output

data and it is not a significant input. If the range of a fuzzy curve ci is about the range of the

output data y, then the input variable xi is important to the output variable. The fuzzy curve

tells us that the output is changing when xi is changing. We rank the importance of the input

variables xi according to the range covered by their fuzzy curves ci. For input identification

we drop those input with fuzzy curve Range < 1/4th of Max Range and the rest are the

significant inputs.

The number of rules, Ri, needed to approximate each fuzzy curve ci, are estimated by the

maximum and minimum points on the curve. This is a heuristic based on the idea that the

fuzzy model will interpolate between the maximum and minimum points. If the maximum

and minimum points are far apart, or the curve is not smooth between the maximum and

minimum points, we may add rules. If we have N fuzzy curves, then we will have N different

numbers R1, R2, . . . , RN corresponding to the N fuzzy curves. To determine the number of

rules R needed in the fuzzy neural network, we let R = max (R1, R2, . . . , RN).

3.6 THE ARCHITECTURE OF THE FUZZY-NEURAL NETWORK

22

 Architecture of four layer (input, fuzzification, inference, and defuzzification)

fuzzy-neural network (Fig. 1).There are N inputs with N neurons in the input layer, and R

rules, with R neurons in the inference layer. There are N x R neurons in the fuzzification

layer. Hence, once we determine the number of inputs N and the number of rules R, the

structure of the network can be determined. The first N neurons (one per input variable) in

the fuzzification layer incorporate the first rule, the second N neurons incorporate the second

rule, and so on.

 Fig.1 The architecture of fuzzy-neural network

Every neuron in the second or fuzzification layer represents a fuzzy membership function for

one of the input variables. The activation function used in the fuzzification layer is

 f(netij)=exp(-│netij│
lij

)

where lij is typically in the range 0.5≤lij ≤5 and initially equals one or two, and

 netij = wij1xi + wij0

Hence, the output of the fuzzification layer is

23

 ---------------- (3.33)

where µij is the value of fuzzy membership function of the i
th

 input variable corresponding to

the j
th

 rule. We label the set of weights between the input and the fuzzification layer by

 ---------------- (3.34)

The activation function used in the third or inference layer is f(netj) = netj.

 We use multiplicative inference, so the output of the inference layer is

 --------------------- (3.35)

where the µij are from (3.33).

 The connecting weights between the third layer and the fourth layer are the central values,

vj, of the fuzzy membership functions of the output variable. We label the set of weights {vj}

by V = { vj : j = l , . . . , R }. Each fuzzy rule r j (j = 1, 2, . . . , R) is of the form: if x1 is µ1j

and x2 is µ2j and …. if xN is µNj then y is vj. Note that the neural network weights in V and W

determine the fuzzy rules. We use the weighted sum defuzzification, and the equation for the

output is

- (3.36)

The initial weights in V are set to the centers of output variable fuzzy membership functions.

To do this divide the range of the desired output data into R intervals, and set the initial vj (j

= 1, 2, . . , R) to be the central value of these R intervals, and assign these central values to

the weights vj in ascending order.

Fuzzy curves are used to set the initial weights in W. Divide the domain for each fuzzy curve

ci, into R intervals corresponding to the R intervals in the output space. For the fuzzy curve ci,

label the centers of the intervals xij (j= 1, 2 , . - . ,R). Order xij (j= 1, 2 , . - . ,R) by the value

of ci, at the center of each interval. xiR corresponds to the interval containing the largest value

of c,. The interval containing the point xiR is associated with the output interval whose center

is at vr In a similar fashion xiR-1 is the center of the interval which contains the next largest

24

central point on the curve ci and xiR-1 is associated with vR-1, and so on for j = R - 2 , R - 3 , .

. , 1. The length of the interval over which a rule applies in the domain of ci, is denoted as

Δxi. The initial fuzzy membership function of xi for rule j is defined as exp(-│(xij-

xi)/a·Δxi│
lij

) where a is typically in the range of [0.5,2]. Hence, referring to (l), the initial

weights wij0 and wij1 are wij0=1/(a·Δxi) and wij1= -xij/(a·Δxi).

The training of the network is done using back-propagation algorithm .

The performance index for the model is

 ------------------------ (3.37)

where o
d

k, (k=1,2,…,m), are the actual or desired output values and ok, (k=1,2,…,m), are the

outputs from the model.

Choosing a maximum number of iterations Imax, and some small number ε>0, the training is

continued until, for some i, or the number of

iterations reaches Imax.

25

CHAPTER 4

LINE OF SIGHT STABILIZATION CONTROL

4.1 INTRODUCTION

Line-of-sight (LOS) stabilization form part of modern surveillance and fire control systems

(FCS). Gimbals are precision electro-mechanical assemblies designed primarily to steer the

telescope and isolate the optical system from disturbances induced by the operating

environment. The two gimbal model has an azimuth gimbal and an elevation gimbal to which

the payload (telescope) is attached. The gimbals together with the control system are

responsible for tracking commands and LOS (stabilization).

The rate sensors are bore sight inertial sensors used for angular rate feedback in the

stabilization loop of the control system. Hence they play a very important role in the

stabilization of the gimbal-mounted payload against disturbances.

Following are some of the options available for rate sensors:

1. Rate gyro (RG)

2. Rate integrating gyro (RIG)

3. Dynamically tuned gyro (DTG)

4. Ring laser gyro (RLG)

5. Fiber optic gyro (FOG)

A dynamic tuned gyroscope, the so-called DTG, is one of the options nowadays that can

provide the required performance for many applications.

4.2. DYNAMICALLY TUNED GYROSCOPE (DTG)

The DTG is two-axis, spinning mass, inertial rate sensor whose rotor is suspended by a

universal hinge of zero stiffness at the tuned speed. Due to their low cost, fast reaction time,

small size and ruggedness, DTGs have become very popular in navigation and gimballed

systems. As they are dry, they provide good performance over wider range of temperatures

than conventional rate gyros. The main disadvantage of DTGs is that the gyro electronics are

more complicated. Figures 4.1 show the construction of a DTG.

26

Fig. 4.1 (a): Construction of DTG Fig. 4.1 (b): Gimbal Structure

4.2.1 Modeling of DTG rotor:

 Fig. 4.2 DTG rotor

The sum of the external torques on the rotor both presses the rotor at an angular velocity

proportional to the angular momentum of the rotor (H) and accelerate the rotor

proportionately to its transverse inertia (A),

2
1 2

1, 2ext

d d
T A H

t dt

 
 


 ------------------------ (4.1)

27

2

2 1

2, 2ext

d d
T A H

t dt

 
 


 ------------------------ (4.2)

The inertial rotor rates
1d

dt


 (or

2d

dt


) is the sum of the corresponding inertial case rate and the

rotor rate relative to the case. The primary external torques on the rotor is those generated by

the torquers. There are two torquers, one in each axis, which generate torque proportional to

the amount of current in their coils. Figure shows the torquer in the first axis generating a

precession rate
2d

dt


 in the second axis. The pickoff measures the rotor position relative to the

case (θ2). The role of the subsequent compensators and electronics is to null this pickoff, so

that the current in the torquer is proportional to the inertial case rate (precession rate). Having

complete control of the rotor‟s precession rate is the key to the DTG‟s ability to measure rate.

Note that the external torqueses include not only the controlled torquer inputs KTI1 and KTI2,

but also viscous damping, mistuning elastic restraints and windage torques.

The dynamic equations for the DTG model are:

2

1 2

1 1 2 2T d d

m

d N d d
K I C H T A H

dt F dt dt

   
      ---------------- (4.3)

2

2 2 1

1 1 2 2T d d

m

d N d d
K I C H T A H

dt F dt dt

   
      --------------- (4.4)

where

 1I , 2I = currents in torquer coils

 1 , 2 = pickoff angles (rotor position relative to the case)

1d

dt


,

2d

dt


 = precession rates of rotor (inertial)

TK = torquer constant

 dC = viscous damping coefficient

 H = angular momentum

 N = Difference between actual rotor rate and tuned rotor rate

 mF = Figure of merit of the rotor system

28

 dT = Drag torque due to windage effects from gas around rotor

 A = Transverse inertia

A simple second order transfer function with f Hz bandwidth of the form

 

   

2

22

(.) 2
()

2 2 2
gyro

scale factor f
G s

s f s f



  

  


        
 may be used to model the gyro response in each

of the rate feedback channels (azimuth and elevation) [2].

4.3 GIMBAL DYNAMICS

 A gimbal is a pivoted support that allows the rotation of an object about a single axis. A set

of two gimbals, one mounted on the other with pivot axes orthogonal, may be used to allow

an object mounted on the innermost gimbal to remain vertical regardless of the motion of its

support. The gimbal dynamics model can be derived from the torque relationships about the

inner and outer gimbal body axes based on rigid body dynamics. A two-axis gimbal rigid

model dynamics is formulated in APPENDIX.

4.4 MODELING OF DC MOTOR

Motors play the role of actuators that drive the gimbal assembly. Two motors will be used,

one for driving the azimuth gimbal assembly and one for elevation. Consider the

mathematical modeling of DC motor,

 Fig. 4.3 A Simple DC Motor

29

Nomenclature:

 L=armature inductance, R=armature resistance, Va =armature voltage,

 ia= armature current, eb=back emf, =angular speed, T=motor torque

 J=load inertia, Ka=motor torque constant, kb=back emf constant

Figure 4.3 shows a simple electromechanical model of a DC motor. The armature voltage is

the input. The mathematical equations representing the model (excluding drive electronics)

are:

 bb ke  ----------------- (4.5)

 aaiKT  ----------------- (4.6)

Using Newton‟s law combined with Kirchhoff‟s law

 a a
d

J b k i
dt


  ---------------- (4.7)

 0 ba
a

a eRi
dt

di
LV ----------------- (4.8)

In Laplace domain using Eq. (4.5) and (4.6) in (4.8) and (4.7),

  )()()(sksV
RLs

K
sT ba

a 


 --------------- (4.9)

 () () ()Js b s T s  --------------- (4.10)

 Eliminating ()s from Eq. (4.9) and (4.10) deriving the transfer function between

T(s) and Va(s),
()

()a

T s

V s
 =

()
()

^ 2 () ()

a

a b

k Js b

LJs Lb JR s Rb k k



   

- (4.11)

4.5 OVERALL SYSTEM (TRACKER) OPERATION

The laser and track sensor (i.e., telescope, camera, etc.) are mounted on the inner axis of a

multi-axis mechanical gimbal; or below the gimbal, coupled to the line of sight (LOS) via a

stabilized pointing mirror. Pointing control is implemented via two servo loops, the outer

track or pointing loop and an inner stabilization or rate loop. The track sensor detects the

laser returns from the target location. The track processor uses this information to generate

rate commands that direct the gimbal bore-sight toward the target LOS. The stabilization loop

30

isolates the laser and sensor from platform motion and disturbances that would otherwise

perturb the aim-point. The track loop must have sufficient bandwidth to track the LOS

kinematics. The stabilization loop bandwidth must be high enough to reject the platform

disturbance spectrum. A typical configuration is shown in fig.4.5.1

 Fig 4.4 Two-axis tracker configuration

In this work we concentrate on the inner stabilization loop (rate loop) of the azimuthal axis.

4.6 CONTROLLER DESIGN FOR LOS STABILIZATION

The plant under consideration consists of a gimbaled payload that is driven by DC motor. A

servo power amplifier amplifies the controller output before being fed to the DC torque

motor. A high performance dual axis dynamically tuned gyro (DTG) is used to sense the

inertial angular rate of the gimbal azimuth and elevation axis.

The relevant parameters of gimbal/electronic system are as follows:

1. Gimbal inertia, 0.5 kg m
2

2. Weight of pay load, 35 kg

31

3. Load pole, 1 Hz

4. Gimbal resonance, 140 Hz

5. Torquer rating, 3.5 nm (peak)

6. Torque sensitivity (Kt), 0.786 nm/A

7. Back emf constant (Kb), 0.786 V/rad s
-1

8. Gyro scale factor, 5.73 V/rad

9. Gyro dynamics, single pole at 100 Hz

10. Data acquisition resolution, 16 bits (max. input= 10 V)

12. dead band due to stiction friction, 10% of the peak torque

13. digital-to-analog converter resolution, 16 bits (max output= 10 V)

and the design is carried out for the following design specifications:

1. Steady state error for step response,  0.1%

2. Percent overshoot,  40%

3. Rise time, 50 msec

4.6.1 Conventional Controller

The Bode plot technique is used for the design. A linear model of the plant is used for this

purpose. Lead and Lag compensator design procedures are used in the design process [16].

The transfer function of the controller designed is as follows:

(/ 80 1)

(/1.5 1)

s

s





(/ 91 1)

(/ 400 1)

s

s





(/ 20 1)

(/ 5 1)

s

s





(9200)

(/ 400 1)s 
 ------------- (4.12)

The analog controller is transformed to digital domain using “Tustin” method. The synthesis

of the control law in the digital domain is carried out with a 4-kHz sampling frequency. The

four stages of the z transform of the controller is given as follows:

(0.018934 0.018559)

(0.9963)

z

z





(4.2239 4.1387)

(0.90476)

z

z





(0.25047 0.249922)

(0.99875)

z

z





(438.1 438.1)

(0.90476)

z

z




--(4.13)

32

4.6.2 Fuzzy Controller

 For the system under study, seven linguistic variables for each of the input and

output variables with one normalized universe of discourse (-1, +1) are used to describe them.

These are NB (negative big), NM (negative medium), NS (negative small), ZO (zero), PS

(positive small), PM (positive medium), PB (positive big). Each fuzzy variable is a member

of the subsets with a degree of membership µ. After specifying the fuzzy sets, it is required to

determine the membership functions for these sets. For inputs and output Gaussian

membership functions have been used. For input variables of error and change of error the

output of the fuzzy controller is the incrementel control force. The membership functions

were defined using the standard Gaussian function.

 f(x,ζ,c)= exp(-(x-c))^2/2*ζ^2)

 Table 4.1 Parameters of fuzzy membership fiunctions

variables e u

function parameters c ζ c ζ c ζ

fuzzy sets

nb -1.0 0.35 -1.0 0.141 -1.0 0.141

nm -0.25 0.1 -0.66 0.141 -0.57 0.142

ns -0.1 0.04 -0.2 0.12 -0.15 0.1

z 0.0 0.013 0.0 0.05 0.0 0.007

ps 0.1 0.04 0.2 0.12 0.15 0.1

pm 0.25 0.1 0.66 0.141 0.57 0.142

pb 1.0 0.35 1.0 0.141 1.0 0.141

 Having specified the inputs from the simulation, a set of rules have to be defined using the

linguistic variables. For a system with two inputs and with each input universe defined with

seven linguistic variables, 49 rules can be formed considering all the combinations of inputs.

A proper way to show these rules is given in Table 4.2 where all the symbols are defined in

the basic of fuzzy logic terminology.

33

Table 4.2: Fuzzy rules

 The fuzzy controller can be programmed in C, FORTRAN, MATLAB, or virtually

any other programming language. There may be some advantage to programming it in C

since it is then sometimes easier to transfer the code directly to an experimental setting for

use in real-time control. At other times it may be advantageous to program it in MATLAB

since plotting capabilities and other control computations may be easier to perform there.

Pseudo-code:

 The pseudo-code for a simple fuzzy controller [4] that is used to compute the fuzzy

controller output given its two inputs:

1. Obtain x1 and x2 values. (Get inputs to fuzzy controller)

2. Compute mf1[i] and mf2[j] for all i,j. (Find the values of all membership functions given

the values for u1 and u2)

3. Compute prem [i,j]=min[mf1[i],mf2[j]] for all i, j (Find the values for the premise

membership functions for a given x1 and x2 using the AND(minimum) operation)

4. Implication method of min is used, implies the minimum values of the AND operation in

the previous step is carried forward.

e/e NB NM NS ZR PS PM PB

NB NB NB NB NB NM NS ZR

NM NB NB NB NM NS ZR PS

NS NB NB NM NS ZR PS PM

ZR NB NM NS ZR PS PM PB

PS NM NS ZR PS PM PM PB

PM NS ZR PS PM PB PB PB

PB ZR PS PM PB PB PB PB

34

5. Compute agg [i,j] = agg[rule[i,j],prem[i,j]] for all i, j (Find the aggregate of each output

linguistic variable by evaluating all rules by using „max‟ operator)

6. Let Num=0, Den=0 (Initialize the COG numerator and denominator values)

7. For all i , j (Cycle through all areas to determine COG)

Num=Num+agg[i,j]*center[rule[i,j]] (Compute numerator for COG)

Den=Den+agg[i,j] (Compute denominator for COG)

8. Output Crisp=Num/Den (Output the value computed by the fuzzy controller)

9. Go to Step 1.

4.6.3 Neuro-fuzzy controller:

Using Eq 4.12 or 4.13 the conventional controller is implemented in MATLAB and the

control law is saved in workspace and used as training data for the neuro-fuzzy algorithm and

the model is properly trained.

35

CHAPTER 5

IMPLEMENTATION IN MATLAB

5.1 IMPLEMENTATION OF MODEL TO NON-LINEAR SYSTEM DATA

Consider the input-output data of a non-linear system [7] as shown in table 5.1

 Table 5.1 Input output data of a non-linear system

 Group A Group B

No x1 x2 x3 x4 y No x1 x2 x3 x4 y

1 1.40 1.80 3.00 3.80 3.70 26 2.00 2.06 2.25 2.37 2.52

2 4.28 4.96 3.02 4.39 1.31 27 2.71 4.13 4.38 3.21 1.58

3 1.18 4.29 1.60 3.80 3.35 28 1.78 1.11 3.13 1.80 4.71

4 1.96 1.90 1.71 1.59 2.70 29 3.61 2.27 2.27 3.61 1.87

5 1.85 1.43 4.15 3.30 3.52 30 2.24 3.74 4.25 3.26 1.79

6 3.66 1.60 3.44 3.33 2.46 31 1.81 3.18 3.31 2.07 2.20

7 3.64 2.14 1.64 2.64 1.95 32 4.85 4.66 4.11 3.74 1.30

8 4.51 1.52 4.53 2.54 2.51 33 3.41 3.88 1.27 2.21 1.48

9 3.77 1.45 2.50 1.86 2.70 34 1.38 2.55 2.07 4.42 3.14

10 4.84 4.32 2.75 1.70 1.33 35 2.46 2.12 1.11 4.44 2.22

11 1.05 2.55 3.03 2.02 4.63 36 2.66 4.42 1.71 1.23 1.56

12 4.51 1.37 3.97 1.70 2.80 37 4.44 4.71 1.53 2.08 1.32

13 1.84 4.43 4.20 1.38 1.97 38 3.11 1.06 2.91 2.80 4.08

14 1.67 2.81 2.23 4.51 2.47 39 4.47 3.66 1.23 3.62 1.42

15 2.03 1.88 1.41 1.10 2.66 40 1.35 1.76 3.00 3.82 3.91

16 3.62 1.95 4.93 1.58 2.08 41 1.24 1.41 1.92 2.25 5.05

17 1.67 2.23 3.93 1.06 2.75 42 2.81 1.35 4.96 4.04 1.97

18 3.38 3.70 4.65 1.28 1.51 43 1.92 4.25 3.24 3.89 1.92

36

19 2.83 1.77 2.61 4.50 2.40 44 4.61 2.68 4.89 1.03 1.63

20 1.48 4.44 1.33 3.25 2.44 45 3.04 4.97 2.77 2.63 1.44

21 3.37 2.13 2.42 3.95 1.99 46 4.82 3.80 4.73 2.69 1.39

22 2.84 1.24 4.42 1.21 3.42 47 2.58 1.97 4.16 2.95 2.29

23 1.19 1.53 2.54 3.22 4.99 48 4.14 4.76 2.63 3.88 1.33

24 4.10 1.71 2.54 1.76 2.27 49 4.35 3.90 2.55 1.65 1.40

25 1.65 1.38 4.57 4.03 3.94 50 2.22 1.35 2.75 1.01 3.39

The data of x3 and x4 are put as dummy inputs to check the appropriateness of the model

algorithm.

Model algorithm is evaluated on the data and the results are shown in the figures below.

Fig. 5.1 shows the actual output value for each data point.

Fig. 5.2 shows the fuzzy curves drawn for the data.

Fig. 5.3 shows the modeled output for each data point.

 Fig 5.1: Output data for data points (50)

37

 Fig. 5.2: Fuzzy Curves for the non-linear system data

 Fig.5.3: Modeled output for each data point

38

5.2 IMPLEMENTATION OF LOS STABILIZATION LOOP CONTROL

 Implementation of LOS stabilization loop control (in azimuthal axis) is explained in

chapter 4. Stabilization loop is controlled using conventional controllers and intelligent

controllers.

5.2.1 CONVENTIONAL CONTROLLER

 Conventional controller designed for LOS stabilization loop [2] in discrete domain is

given by Eq. 4.13. Complete simulink diagram as given by [2] is shown in Fig.5.4

 Fig. 5.4: LOS stabilization loop using a conventional controller

5.2.2 FUZZY CONTROLLER

 Fuzzy controller designed for LOS stabilization loop is explained in Chapter 4. As

explained in pseudo-code fuzzy controller was coded in MATLAB m-file and linked to

simulation environment. Complete simulink diagram is shown in Fig.5.5

39

 Fig. 5.5: LOS stabilization loop using a fuzzy logic controller

5.2.3 NEURO-FUZZY CONTROLLER

 Neuro-fuzzy controller design process for LOS stabilization loop is explained in Chapter

4. As explained, the control law of conventional controller is taken as training data for the

neuro-fuzzy model and the model is properly trained. Finally the computation process is

coded in MATLAB m-file and linked to the simulation environment. Complete simulink

diagram is shown in Fig.5.6.

40

 Fig. 5.6: LOS stabilization loop using a neuro-fuzzy logic controller

41

 CHAPTER 6

 RESULTS

 Neuro-fuzzy model algorithm is evaluated on the non-linear data presented in table 5.1

and the plot of actual data and modeled data is shown in Fig. 6.1

 Fig. 6.1 : Comparison of Actual and Modeled output data of non-linear system

 Implementation of LOS stabilization loop using conventional, fuzzy and neuro-fuzzy

controllers is presented in chapter 5. The simulation results for step command are shown in

the following figures:

42

 Fig. 6.2: Step response using conventional controller

 Fig. 6.3: Step response using fuzzy controller

43

 Fig. 6.4: Step response using neuro-fuzzy controller

44

 Fig. 6.5: Comparison of step response using three controllers

 Fig. 6.6 Error comparison of conventional and neuro-fuzzy controller

45

 CHAPTER 7

 CONCLUSIONS & FUTURE SCOPE

7.1 CONCLUSIONS

From the results obtained in chapter 6

- The neuro-fuzzy model implemented in MATLAB can be used for system identification and

it can model non-linear data appropriately by properly choosing the number of neurons in

each layer.

- Neuro-fuzzy controller implemented has given satisfactory results and it is a simple non-

linear controller that performs well even in the presence of non-linearities. Since the training

data is from conventional controller designed for the linear model of the system, design

specifications are also considered in the neuro-fuzzy controller design process.

- Intelligent (Fuzzy and neuro-fuzzy) controllers have performed well in the presence of non-

linearities and provide more robust control and have less complex design process than the

conventional non-linear controllers.

7.2 FUTURE SCOPE

- Off-line training is used in training the neuro-fuzzy model, a better model can be built with

on-line training.

- The controller modeled can be extended to control the overall stabilization loop of two-axis

gimbal and also for position control.

REFERENCES

1. Yinghua Lin, and George A. Cunningham III, “A New Approach to Fuzzy-Neural system

Modeling,” IEEE Transactions on Fuzzy systems, vol. 3, no. 2, May 1995.

2. J. A. R. Krishna Moorty, Rajeev Marathe and Hari Babu, “Fuzzy controller for line-of

sight stabilization systems,” Opt. Eng. 43(6) 1-0 (June 2004). © 2004 Society of Photo-

Optical Instrumentation Engineers.

3. Simon Haykins, “Neural Networks A Comprehensive Foundation,” Second Edition. ©

1999 by Prentice-hall, Inc.

4. Fuzzy Control, “Kevin M. Passino and Stephen Yurkovich,” © 1998 Addison Wesley

Longman Inc.

5. Han-Xiong Li and H. B. Gatland, “Conventional Fuzzy Control and Its Enhancement,”

IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, Vol. 26, No. 5,

October 1996.

6. T. Poggio and F. Girosi, “Networks for approximation and learning,” in Proc. IEEE, vol.

78, no. 9, Sept.1990, pp. 1481-1497.

7. M. Sugeno and T. Yasukawa, “A fuzzy-logic-based approach to qualitative modeling,”

IEEE Trans. Fuzzy Systems, vol. 1, no. 1, pp. 7-31, 1993.

8. Stelios Papadakis and John Theocharis, “An Efficient Fuzzy Neural Modeling Approach

Using the Fuzzy Curve Concept,” ICES 96.pp. 279-282.

9. Fernando de Castro Junqueira and Ettore Apolônio de Barros, “Development of a

Dynamically Tuned Gyroscope (DTG),” ABCM Symposium Series in Mechatronics- Vol.

pp. 470-478. © 2004 by ACM.

10. Peter J. Kennedy and Rhonda L. Kennedy, “Direct versus Indirect Line of Sight (LOS)

Stabilization,” IEEE Transactions on Control Systems Technology, Vol. 11, No. 1, January

2003.

11. Y. Hayashi, J. Buckley, and E. Czogala, “Fuzzy neural network with fuzzy signals and

weights,” International Journal of Intelligent Systems. Vol. 8, pp. 527-537, 1993.

12. H. Ishibuchi, R. Fujioka, and H. Tanaka, “Neural networks that learn from fuzzy if-then

rules,” IEEE Trans. Fuzzy System, vol. 1, no. 2, pp. 85-97, 1993.

APPENDIX

MATLAB PROGRAM TO IMPLEMENT NEURO-FUZZY MODEL

Inputs = size(x,1); % determination of inputs
datasets = size(x,2); % determination of samples
a=1; % Setting the parameter 'a'
lij=1.5; % Setting the parameter 'l'
sumN=0;
sumD=0;
point_old = 0;

%------ Fuzzy Curve Generation ---------------------c---------------

for inp=1:Inputs
 r = range(x(inp,:));
 for i=1:datasets
 for k=1:datasets
 phi(inp,i,k)= exp(-(((x(inp,i)-x(inp,k))/(0.2*r))^2));
 sumN = sumN + (phi(inp,i,k))*y(k);
 sumD = sumD + (phi(inp,i,k));
 end
 c(inp,i)= sumN/sumD;
 sumN=0;
 sumD=0;
 end
 clear r;
rc(inp) = range(c(inp,:));
 fprintf('\n Range of Curve %d is %d',inp,rc(inp))
 % Range display on console
end
fprintf('\n');
maxrc = max(rc);
leftinp=0;
reminp=0;
for inp=1:Inputs
 if(rc(inp)<(0.5*maxrc)) % Change the dropping criterion here
 fprintf('\n Curve %d is dropped',inp)
 else
 leftinp = leftinp + 1;
 reminp(leftinp)= inp;
 end
end
fprintf('\n \n \n');
rules = input('Total No. of Rules: ');

fprintf('\n Total number of neurons in the Input layer = %d',leftinp)
fprintf('\n Total number of neurons in the Inference layer = %d',rules)
fprintf('\n Total number of neurons in the Fuzzification Layer layer =

%d',(leftinp*rules))
fprintf('\n \n ');

minY = min(y);
centY=0;
initcent=0;
intY=0;
intvalY= range(y)/rules;
initcent= min(y) + ((range(y)/(2*rules)));

 fprintf('\n The centers of the the output \n ---------------------------')
for j=1:rules
 centY(j)= initcent + ((j-1)*intvalY);
 fprintf('\n Interval %d = %f',(j),centY(j))
 intY(j) = min(y)+ (j*intvalY);
end

 fprintf('\n \n ');

%-----------------Centers of Input Intervals----------c----------
centX=0;
for i=1:leftinp

 rangeX(i)= range(ins(i,:));
 minX(i) = min(ins(i,:));

 initcent = 0;

 %deltaXi(i) = rc(reminp(i));

 deltaXi(i) = 0.72; %rangeX(i); % DELTA Xi
%deltaXi(i) = rc(reminp(i));
 % deltaXi(i) = rangeX(i)/rules;
 initcentX(i) = minX(i) + (rangeX(i)/(2*rules));
 fprintf('\n The centers of the the Input %d \n ------------------------

---',i)
 for j=1:rules
 centX(i,j) = initcentX(i) + ((j-1)*deltaXi(i));

 fprintf('\n interval %d = %f',(j),centX(i,j))
 end
 fprintf('\n \n ');
end

%---

 end
%-------------------------- Setting up initial weights

 for i=1:leftinp
 for j=1:rules
 w1(i,j) = -(centXn(i,cvC(i,j,2))./(a*deltaXi(i)));
 end
 end

for j=1:rules
v(j) = centY(j);
end

% ------------ FORWARD PROPAGATION OF SIGNAL ------------------------------

% Output and weights calculation

hold on
Nsum = 0;

Dsum = 0;
maxError = 0.001;

 eta =0.1; % Learning Rate

epochs =1000;
% PI = zeros(1,epochs);
%---

for t=1:epochs
 mape = zeros(epochs)';

 for k=1:datasets

 inplay = 0;
 fuzlay = 0;
 inflay = 0;
% ----------------------Input Layer

 for i=1:leftinp
 for j=1:rules
 inplay(i,j)= (w0(i,j)+(ins(i,k)*w1(i,j)));
 end
 end
 % ---------------------Inference Layer

 for j=1:rules
 mult = 1;
 for i=1:leftinp
 mult = mult * fuzlay(i,j);
 end
 inflay(j) = mult;
 end

 %-----------------------Output Layer

 sum =0;
 for j=1:rules
 sum = sum + (inflay(j)* v(j));
 end
 out(k)=sum;

 err=0;
err = (y(k)-out(k));
 errorsig(k) = err;
% err2 = err * out(k) * (1-out(k));
 % --------------------- ERROR CHECK ------------------------------
 many = 0;

 if(abs(err) < maxError)
 many = many+1;
 % fprintf('\n the process converged successfully')

 else
ierr = 0;
 for j=1:rules
% ierr(j) = (err*v(j));
 ierr(j) = err;

 end
ferrsum=0;
 for j=1:rules
 for i=1:leftinp
 end
 end
 % ----- Input layer Error
 inerrsum1 = 0;
 for i = 1:leftinp
 for j =1:rules

 inerrsum1(i,j) = err * inflay(j)* v(j) * inplay(i,j)*

abs(inplay(i,j))^(l(i,j)-2);

 end
 end
%------- Updating First Layer weights ----------------------------

 for i = 1:leftinp
 for j=1:rules
 w1(i,j) = w1(i,j) - (eta* inerrsum1(i,j) * ins(i,k)) ;
 if(w1(i,j) > 50)
 w1(i,j) = 50;
 end
 if(w1(i,j) < -50)
 w1(i,j) = -50;
 end
 end
 end

 for i = 1:leftinp
 for j=1:rules
 w0(i,j) = w0(i,j) - (eta* inerrsum0(i,j)) ;
 if(w0(i,j) > 50)
 w0(i,j) = 50;
 end
 if(w0(i,j) < -50)
 w0(i,j) = -50;
 end
 end
 end
for j=1:rules
% v(j) = v(j) + (0.01 * err * inflay(j));
 v(j) = v(j) + (0.01 * err * inflay(j)*inflay(j));
 end
end
if(y(k) > 0)
 mape(t) = mape(t) + abs((y(k) - out(k))/y(k));
 end
 mape(t) = (mape(t)*100)/datasets;
 end
 %PI(t) = sqrt(Nsum)/Dsum;
 plot(t,mape(t));
end

for k=1:datasets

 fuzlay = 0;
 inflay = 0;

 % ---------------------Fuzzification Layer

 for i=1:leftinp
 for j=1:rules
 fuzlay(i,j)= (exp(-((abs(w0(i,j)+(ins(i,k)*w1(i,j))

))^l(i,j))));
 end
 end

 % ---------------------Inference Layer

 for j=1:rules
 mult = 1;
 for i=1:leftinp
 mult = mult * fuzlay(i,j);
 end
 inflay(j) = mult;
 end

 %-----------------------Output Layer

 sum =0;
 for j=1:rules
 sum = sum + (inflay(j)* v(j));
 end
 out(k)=sum;
 % ----------------------- ERROR CALCULATION -----------------------

-
 % Nsum = Nsum +(y(k) - out(k))^2;
 % Dsum = Dsum + abs(y(k)) ;
 % err = ((y(k)-out(k)))/y(k);

 % PI(k) = sqrt(Nsum)/Dsum; Performance Index
 % hold on
 % plot(k,PI(k),'.');
 err=0;
 err = (y(k)-out(k)); % Error propagation *out(k)*(1-out(k))
 errorsig(k) = err;

end

plot(y,'b');
 hold on
plot(out,'r');

 mape = 0;
 for k=1:datasets
 if(y(k) > 0)
 mape = mape + abs((y(k) - out(k))/y(k));
 end
 end

 fprintf(' mape = %f \n\n',(100*mape)/datasets);

MATLAB PROGRAM TO IMPLEMENT FUZZY-LOGIC CONTROLLER

liv=7;

% STANDARD DEVIATION OF INPUT CURVES
sigma=[0.35 0.1 0.04 0.013 0.04 0.1 0.35;
 0.141 0.141 0.12 0.05 0.12 0.141 0.141];
sigmau=[0.141 0.142 0.1 0.007 0.1 0.142 0.141];

% CENTERS OF INPUT CURVES
% ctrs=[-100 -25 -10 0.0 10 25 100;
% -100 -66 -20 0.0 20 66 100];
% ctru = [-200 -114 -30 0.0 30 114 200];

ctrs=[-1.0 -0.25 -0.1 0.0 0.1 0.25 1.0;
 -1.0 -0.66 -0.2 0.0 0.2 0.66 1.0];
ctru = [-1.0 -0.57 -0.15 0.0 0.15 0.57 1.0];

% GENERATING GAUSSIAN MEMBERSHIP FUNCTIONS

for i=1:2
 for j=1:liv
 mi(i,j)= exp((-((u(i)-ctrs(i,j))^2))/(2*((sigma(i,j)^2))));
 end

end

% AND METHOD OF EVALUATION
for j=1:liv
 for k=1:liv
 miinf(j,k) = min(mi(1,j),mi(2,k));
 % mu(j,k,i)= exp((-((u(i)-ctrs(i,k))^2))/(2*((sigma(i,k)^2))));
 end
end
%RULE BASE
rij=[1 1 1 1 2 3 4;
 1 1 1 2 3 4 5;
 1 1 2 3 4 5 6;
 1 2 3 4 5 6 7;
 2 3 4 5 6 7 7;
 3 4 5 6 7 7 7;
 4 5 6 7 7 7 7];

% AGGREGATION
agg=zeros(1,7);
i=0;
hold on
for j=1:liv
 maxm=0;
 for k=1:liv
 for l=1:liv
 if(rij(k,l)==j)
 maxm = max(maxm,miinf(k,l));
 i=i+1;
 plot(i,miinf(k,l),'.');
 end
 end
 end
agg(j) = maxm;

end

% DEFUZZIFICATION
num=0;
den=0;
for j=1:liv
 num = num + (agg(j)*ctru(j));
 den = den + agg(j);
end
deout = num/den;

	FRONT PAGE.pdf
	2.Abstract.pdf
	3.contents.pdf
	Complete.pdf
	5.REFERENCES.pdf
	6.Appendix.pdf

