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                                             ABSTRACT 

 

      In this work a neuro-fuzzy approach is used to model any non-linear data. Fuzzy curve 

approach is used to know prerequisite parameters to model the system. Back-propagation 

algorithm is used to properly train the network. The appropriateness of the model is tested 

with a non-linear data and the model results are compared with actual data.  

Neuro-fuzzy controller is designed for LOS stabilization for a two axis gimbal system. 

Implementation in azimuth axis is presented. A conventional compensator designed in [2] is 

used as training data for neuro-fuzzy controller. Fuzzy logic based controller is implemented 

on the system. Neuro-fuzzy model algorithm is used in modelling the controller. Step 

response of the system using the three controllers is implemented in MATLAB and the 

results are compared. 
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                                                   CHAPTER 1 

INTRODUCTION 

1.1 NEURO-FUZZY MODELING  

        A multilayered neural network can approximate any continuous function on a compact 

set [6] and a fuzzy system can do the same approximation [7]. A simple fuzzy –neural 

network for modeling systems from input-output data [1] is introduced. Fuzzy-neural 

networks can be divided into two main categories. One group of neural networks for fuzzy 

reasoning uses fuzzy weights in the neural network. In a second group, the input data are 

fuzzified in the first or second layer, but the neural network weights are not fuzzy. The fuzzy-

neural network discussed here comes under second group. 

       A simple neural network is used to implement a fuzzy rule based model of a real system 

from input-output data. Fuzzy curves are used for, identification of the significant input 

variables, estimation of the number of rules needed in the fuzzy model, and determination of 

initial weights for the neural networks. The number of input variables and the number of rules 

determine the structure of neural network. Training the network using back-propagation is the 

heart of the modeling process. The model can be viewed as either a fuzzy system, a neural 

network, or a fuzzy-neural system. 

The algorithm developed is implemented on a non-linear data [7] as explained in chapter 5. 

1.2 LINE-OF-SIGHT (LOS) STABILIZATION CONTROL 

       Line-of-sight stabilization is an essential feature of modern fire control and surveillance 

systems. As the imaging system in a fire control system undergoes angular vibrations, the 

resolution within the image decreases. This is primarily due to the spread of incident optical 

energy on the imaging detector (pixel). The control system must sense the disturbance on the 

LOS using gyros and generate appropriate control torques to minimize the spread of optical 

energy on the detector. This is done by integrating the imaging system in a set of gimbals, 

which are excited by the torquers. These torquers get their drive from the control system. The 

torque disturbances in the system can be due to bearing and motor friction, unbalanced 

aerodynamics, vibration forces from onboard mechanisms, and spring torque forces from 
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wires or flexures. Presence of inherent non-linearities such as stiction friction, saturation of 

actuators, etc. is also to be taken into account. 

1.3 DESIGN AND IMPLEMENTATION OF CONTROLLERS 

        Conventional controller designs are dependent on the accuracy of the mathematical 

model of the plant, which usually ignore high order dynamics. Although robust controllers 

can be designed to overcome uncertainties in plant parameters as well as non-linearities, the 

resultant controller becomes complex for implementation.  In order to overcome above 

problems, intelligent controlling techniques are used. Artificial neural networks and fuzzy 

logic are potential tools for intelligent control engineering. Neural networks are best known 

for their learning capabilities. Fuzzy logic is a method of using human skills and thinking 

processes in a machine. Neural networks offer the possibility of solving the problem of 

tuning. A combination of neural networks and fuzzy logic offers the possibility of solving 

tuning problems and design difficulties of fuzzy logic. The resulting network can be easily 

recognized in the form of fuzzy logic control rules. This new approach combines the well-

established advantages of both the methods and avoids the drawbacks of both. The 

computation of control value from the given measured input value is seen as a feed forward 

procedure as in layered networks, where the inputs are forwarded through the network 

resulting in some output value(s). If the actual output value differs from the desired output 

value, the resulting error is propagated back through the architecture, which in turn results in 

modification of certain parameters and reduction in error during the next cycle. 

       For the line-of-sight stabilization control system considered, conventional controller and 

fuzzy knowledge based controller (FKBC) are implemented in [2]. LOS stabilization loop is 

implemented in MATLAB using conventional controller and FKBC and the control laws are 

stored in an array. These control laws are taken as training data for a neuro-fuzzy controller.  

The neuro-fuzzy algorithm developed in [1] is used in modeling the controller for Line-of 

sight stabilization systems which is more robust under non-linearities. 

 

1.4 ORGANIZATION OF THE DISSERTATION 

This Dissertation is organized as follows.  

Chapter 2 Literature Review 
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Chapter 3 Fuzzy Neural System Modeling 

Chapter 4 Line-of-Sight (LOS) Stabilization   

Chapter 5 Implementation of Model to Non-linear system data 

Chapter 6 Implementation of LOS Stabilization loop in MATLAB 

Chapter 7 Results and Discussions 

Chapter 8 Conclusions and Future Scope 
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CHAPTER 2 

LITERATURE REVIEW 

   Yinghua Lin and George A. Cunningham III developed simple but effective fuzzy rule 

based neural models of complex systems from input-output data. They introduced fuzzy-

neural network for modeling systems that can represent any continuous function over a 

compact set. [1]  

J.A.R. Krishna Moorty, Rajeev Marathe and Hari Babu carried out the controller 

(conventional and fuzzy logic) design for a two-axis electomechanical gimbal. As an example 

LOS stabilization in only direction (azimuth) is demonstrated in this paper. Very stringent 

specifications for disturbance attenuation and command following specifications are met by 

appropriately designing the various membership functions and rules [2]. 

 Simon Haykin in his book “Neural Networks” [3] provided a comprehensive foundation of 

neural networks. He explained the role of neural networks in the construction of intelligent 

machines for pattern recognition, control and signal processing.  

  Kevin M. Passino and Stephen Yurkovich provided a control-engineering perspective on 

fuzzy control [4]. Overall a pragmatic engineering approach to the design, analysis, 

performance evaluation, and implementation of fuzzy control systems is provided. 

 

Han-Xiong Li and H. B. Gatland proposed a general robust rule base for fuzzy two-term 

control, and leave the optimum tuning to the scaling gains, which greatly reduces the 

difficulties of design and tuning [5]. More systematic analysis and design are given for the 

conventional fuzzy control. 

 

M. Sugeno and T. Yasukawa discussed a method of qualitative modeling based on fuzzy 

logic and input-output data of a non-linear system is presented as an example of identification 

[7]. This data is verified with the neuro-fuzzy algorithm. 

 

Stelios Papadakis and John Theocharis presented a novel modeling technique based on the 

fuzzy curve concept [8]. This method exhibits a number of significant attributes, such as 
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effective input space searching computational simplicity and high accuracy of the resulting 

fuzzy models 

 

Fernando de Castro Junqueira and Ettore Apolônio de Barros presented the general aspects 

about Dynamically Tuned Gyroscope (DTG) development, the main difficulties involved, as 

well as some performance results. Fundamentals and mathematical modeling of a single-

gimballed DTG are introduced [9]. An analysis of the constructive requirements, the 

machining methods and materials employed in the DTG implementation are presented. 

 

Peter J. Kennedy and Rhonda L. Kennedy investigate the impact of LOS disturbances and 

sensor noise on the performance of each stabilization control loop configuration. They 

focuses on two methods of implementing the stabilization servo loop design. Mathematical 

model of gimbal is derived from torque relationships about inner and outer gimbal body axes 

based on rigid body dynamics [10]. 

 

Y. Hayashi, J. Buckley, and E. Czogala discussed the direct fuzzification of a standard 

layered, feedforward, neural network where the signals and weights are fuzzy sets and a 

fuzzified delta rule is presented for learning [11]. 
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CHAPTER 3 

FUZZY NEURAL SYSTEM MODELING 

3.1 INTRODUCTION 

       Modelling of systems provide several useful information on the expected behaviour of a 

final system. Great advantage of modeling, which might be considered as a supplement to the 

simulation of controlling is demonstration, and the examination of the impact of parameters 

that can be simulated only with difficulty on the system to be developed. Modeling these 

systems is a very cost effective means of addressing the problem of security from an overall 

system view. Let us begin by reviewing the modeling process; this should make more 

apparent the nature of the problem we intend to address. The first stage of the modeling, i.e., 

identification, is to identify good explanatory variables (i.e., input variables for the model), 

and to collect sufficient data for the modelling task. This is the hardest and most crucial stage 

in the modelling process. Analysis of the target is necessary, and for that purposes various 

tools and methods such as statistical analysis methods already exists. 

 

       A simple fuzzy-neural network can be developed for modeling the systems that can 

represent any continuous function over a compact set [6], [7]. Fuzzy-neural networks can be 

divided into two main categories. One group of neural networks for fuzzy reasoning uses 

fuzzy weights in the neural network.  [11], [12]. In a second group, the input data are 

fuzzified in the first or second layer, but the neural network weights are not fuzzy [13],[14]. 

The fuzzy-neural network model developed comes under this group. There are many methods 

to obtain the proper network structure and initial weights to reduce training time [15]. Fuzzy 

curves concept is used to create our system model. Number of input variables and the number 

of rules to determine the structure of the neural network are found with the help of fuzzy 

curves. Then network can be trained using back-propagation algorithm. 

 

3.2 NEURAL NETWORKS 

       In its most general form, a neural network is a machine that is designed to model the way 

in which the brain performs a particular task or function of interest; the network is usually 

implemented by using electronic components or is simulated in software on a digital 

computer. To achieve good performance, neural networks employ a massive interconnection 
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of simple computing cells referred to as “neurons” or “processing units”. Neural networks 

and conventional algorithmic computers are not in competition but complement each other. 

In general a neural network viewed as an adaptive machine can be defined as 

A neural network is a massively parallel distributed processor made up of simple processing 

units, which has a natural propensity for storing experimental knowledge and making it 

available for use. It resembles the brain in two aspects: 

1. Knowledge is acquired by the network from its environment through a learning process.    

2. Interneuron connection strengths, known as synaptic weights, are used to store the 

acquired knowledge. 

Neural networks are also referred to in literature as neurocomputers, connectionist networks, 

parallel distributed processors, etc. 

 3.2.1 MODEL OF A NEURON 

  A neuron is an information-processing unit that is fundamental to the operation of a neural 

network. Three basic elements of the neuron model are 

1. A set of synapses or connecting links, each of which is characterized by a weight or 

strength of its own. Unlike a synapse in the brain, the synaptic weight of an artificial neuron 

may lie in the range that includes negative as well as positive values. 

2. An adder for summing the input signals, weighted by the respective synapses of the 

neuron. 

3. An activation function for limiting the amplitude of the output of a neuron. The activation 

function is also referred to as a squashing function in that it squashes (limits) the permissible 

amplitude range of the output signal to some infinite value. Typically, the normalized 

amplitude range of the output of a neuron is written as the closed interval [0,1] or 

alternatively [-1,1]. 

The neuronal model also includes an externally applied bias, denoted by b. The bias b has the 

effect of increasing or lowering the net input of the activation function, depending on whether 

it is positive or negative, respectively. 
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                                             Fig.3.1 : Model of a neuron 

Mathematical equations, activation functions, feedback etc, are dealt clearly in [3]. 

 3.2.2 NETWORK ARCHITECTURES 

 The manner in which the neurons of a neural network are structured is intimately linked with 

the learning algorithm used to train the network. In general fundamentally three different 

classes of network architectures are identified: 

  1. Single-Layer Feedforward Networks 

 In a layered neural network the neurons are organized in the form of layers. In the simplest   

form of a layered network, we have an input layer of source node that projects onto an output 

layer of layer of neurons (computational nodes), but not vice versa. In other words this 

network is strictly a feedforward or acyclic type. Such a network is called a single layer 

network, with the designation “single-layer” referring to the output layer of computation 

nodes (neurons). We do not count the input layer of source nodes because no computation is 

performed there.      

 2. Multilayer Feedforward Networks 

 The second class of a feedforward neural network distinguishes itself by the presence of one 

or more hidden layers, whose computation nodes are correspondingly called hidden neurons 

or hidden units. The function of hidden neurons is to intervene between the external input and 

the network output in some useful manner. By adding one or more hidden layers, the network 
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is enabled to extract higher-order statistics. The ability of hidden neurons to extract higher-

order statistics is particularly valuable when the size of input layer is large. The neural 

network may be fully connected or partially connected. It is said to be fully connected in the 

sense that every node in each layer of the network is connected to every other node in the 

adjacent forward layer. If, however, some of the communication links (synaptic connections) 

are missing from the network, the network is said to be partially connected.  

3. Recurrent networks  

 A recurrent neural network distinguishes itself from a feedforward neural network in that it 

has at least one feedback loop. The presence of feedback loops has a profound impact on the 

learning capability of the network and on its performance.   

3.3 LEARNING 

        The property that is of primary significance for a neural network is the ability of the 

network to learn from its environment, and to improve its performance through learning. The 

improvement in performance takes place over a time in accordance with some prescribed 

measure. A neural network learns about its environment through an interactive process of 

adjustments applied to its synaptic weights and bias levels. Ideally, the network becomes 

more knowledgeable about its environment after each iteration of the learning process.    

Simon Haykin defined learning in the context of neural network [3] as: 

Learning is a process by which the free parameters of a neural network are adapted through 

a process of stimulation by the environment in which the network is embedded. The type of 

learning is determined by the manner in which the parameter changes takes place.     

       A prescribed set of well-defined rules for the solution of a learning problem is called a 

learning algorithm. There is no unique learning algorithm for the design of neural networks. 

Rather many kit of tools represented by a diverse variety of learning algorithms, each of 

which offers advantage of its own. Basically, learning algorithms differ from each other in 

the way in which the adjustment to a synaptic weight of a neuron is formulated. Some of the 

basic learning rules presented in the literature are error-corrector learning, memory based 

learning, Hebbian learning, competitive learning, and Boltzmann learning.   
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3.3.1 Error-Correction Learning 

       Neuron k is driven by a signal vector x (n) produced by one or more layers of hidden 

neurons, which are themselves driven by an input vector (stimulus) applies to the source node 

(i.e., input layer) of the neural network. The argument n denotes discrete time, or precisely, 

the time step of an iterative process involved in adjusting the synaptic weights of neuron k. 

The output signal of neuron k is denoted by yk (n). This output signal, representing the only 

output of the neural network, is compared to a desired response or target output, denoted by 

dk (n). Consequently, an error signal, denoted by ek (n), is produced. By definition, we thus 

have   ek (n) = dk (n) - yk (n). The error signal ek (n) actuates a control mechanism, the purpose 

of which is to apply a sequence of corrective adjustments to the synaptic weights of neuron k. 

The corrective adjustments are designed to make the output signal yk (n) come closer to the 

desired response dk (n) in a step-by-step manner. This objective is achieved by minimizing a 

cost function or index of performance, ξ (n), defined in terms of the error signal ek (n) as: 

                                                          ξ (n)= ek
2 

(n)/2 

That is, ξ (n) is the instantaneous value of the error energy. The step-by-step adjustments to 

the synaptic weights of neuron k are continued until the system reaches a steady state. At that 

point the learning process is terminated. This learning process is referred to as error-

correcting learning. In particular, minimization of the cost function ξ(n) leads to a learning 

rule commonly referred to as the delta rule or Widrow-Hoff rule, named in honor of its 

originators. Let wkj (n) denote the value of synaptic weight wkj of neuron k excited by element 

xj (n) of the signal vector x (n) at time step n. According to delta rule, the adjustment Δwkj (n) 

applied to the synaptic weight wkj at time step n is defined by  

                                                       Δwkj (n)=η ek(n) xj(n)      

where η is a learning parameter, which determines the rate of learning as moved from one 

step in the learning process to another. 

The delta rule discussed herein, presumes that the error signal is directly measurable. For this 

measurement to be feasible, clearly desired response from some external source should be 

supplied which is directly accessible to neuron k. In other words, neuron k is visible to the 

outside world, as shown in fig    . 
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Having computed the synaptic weight adjustment Δwkj (n), the updated value of synaptic 

weight wkj is determined by 

                                                   wkj (n+1)= wkj (n)+ Δwkj (n) 

In effect, wkj (n) and wkj (n+1) may be viewed as the old and new values of synaptic weights 

wkj (n), respectively. In computational terms wkj (n)=z
-1

 [wkj (n+1)] where z
-1

 is the unit –

delay operator. That is, z
-1 

represents a storage element.  

3.3.2 LEAST MEAN SQUARE ALGORITHM 

The least-mean-square (LMS) algorithm is based on the use of instantaneous values for the 

cost function, namely 

                                                 ξ (w) = 21
( )

2
e n                                         --------------------- (3.1) 

where e (n) is the error signal measured at time n. Differentiating ξ (w) with respect to the 

weight vector w yields  

                                             
( ) ( )

( )
w e n

e n
w w

 


 
                                    --------------------- (3.2) 

 
( )

( )ji

n

w n




 

As with the linear least-square filter, the LMS algorithm operates with a linear neuron so the 

error signal is  

                                              e (n)=d (n)-x
T 

(n)w (n)                                -------------------- (3.3)          

Hence, 

                                                  
( )

( )

e n

w n




= -x (n)                                         -------------------- (3.4) 

and                                          

                                                 
( )

( )

w

w n




= -x (n)e (n)                                  -------------------- (3.5) 

Using (3.5) as an estimate for the gradient vector, g (n) = -x (n) e (n) 
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From the steepest gradient method         Δw (n) = -η g (n) 

Finally LMS algorithm is formulated as   

                                            w (n+1) =w (n)+ η x (n)e (n) 

where η is the learning parameter. 

 

3.4 BACK PROPAGATION ALGORITHM 

A multilayer feedforward networks consists of a set of sensory units (source nodes) that 

constitute the input layer, one or more hidden layers of computation nodes, and an output 

layer of computation nodes. The input signal propagates through the network in a forward 

direction, on a layer-by-layer basis. These neural networks are commonly referred to as 

multilayer perceptrons (MLPs). 

Multilayer perceptrons solve difficult and diverse problems by training them in a supervised 

manner with a high popular algorithm known as error back-propagation algorithm. This 

algorithm is based on the error-correction learning rule. It may be viewed as a generalization 

of an equally popular adaptive filtering algorithm: the ubiquitous least-mean-square (LMS) 

algorithm. 

Basically, error back-propagation learning consists of two passes through the different layers 

of the network: a forward pass and a backward pass. In the forward pass, an activity pattern 

(input vector) is applied to the sensory nodes of the network, and its effect propagates 

through the network layer by layer. Finally, a set of outputs is produced as the actual response 

of the network. During the forward pass the synaptic weights of the network are all fixed. 

During the backward pass, on the other hand, the synaptic weights are all adjusted in 

accordance with an error-correction rule. Specifically, the actual response of the network is 

subtracted from a desired (target) response to produce an error signal. This error signal is then 

propagated backward through the network, against the direction of synaptic connections-

hence the name “error back-propagation.” The synaptic weights are adjusted to make the 

actual response of the network move closer to the desired response in a statistical sense. 
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The development of the back-propagation algorithm represents a landmark in neural 

networks in that it provides a computationally efficient method for training of multilayer 

perceptrons. 

 

 

                                         Fig.3.2 Details of output neuron 

The error signal at the output of neuron j at iteration n as shown in fig 3.2 (i.e., presentation 

of the nth training example) is defined by 

                                                 ej (n) = dj (n) - yj (n),                                     ----------------- (3.6)     

         neuron j is an output node 

Instantaneous value of the error energy for neuron j is 21
( )

2
je n . Correspondingly, the 

instantaneous value of the total energy is obtained by summing 21
( )

2
je n over all neurons in 

the output layer; these are only “visible” neurons for which error signals can be calculated 

directly. Therefore 
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                                                  ξ (n) = 21
( )

2 j C

e n


                                      ------------------- (3.7) 

where the set C includes all the neurons in the output layer of the network. Let N denote the 

total number of patterns contained in the training set. The average squared error energy is 

obtained by summing ξ (n) over all n and then normalizing with respect to the set size N. 

                                               ξav =   
1

 n  
N

n




                                           -------------------- (3.8) 

For a given training set, ξav represents the cost function as a measure of learning performance. 

The objective of the learning process is to adjust the free parameters of the network to 

minimize ξav. To do this minimization an approximation similar in rationale to that used in 

LMS algorithm is used. 

The arithmetic average of these individual weight changes over the training set is therefore an 

estimate of the true change that would result from modifying the weights based on 

minimizing the cost function ξav over the entire training set. 

Consider fig.2 which depicts neuron j being fed by a set of function signal produced by a 

layer of neurons to its left. The induced local field vj (n) produced at the input of the 

activation function associated with neuron j is therefore 

                                               vj (n) = 
0

( ) ( )ji i

m

i

w n y n


                               -------------------- (3.9) 

where m is the total number of inputs (excluding the bias) applied to neuron j. The synaptic 

weight wjo (corresponding to the fixed input yo = +1) equals to bias bj applied to neuron j. 

Hence the function signal yj (n) appearing at the output of neuron j at iteration n is  

                                          yj (n) = φ (vj (n))                                           -------------------- (3.10) 

In a manner similar to the LMS algorithm, the back-propagation algorithm applies a 

correction Δwji (n) to the synaptic weight wji (n), which is proportional to the partial 

derivative
( )

( )ji

n

w n




. According to the chain rule of calculus,  

                                
( )

( )ji

n

w n




=

( )

( )j

n

e n





( )

( )

j

j

e n

y n





( )

( )

j

j

y n

v n





( )

( )

j

ji

v n

w n




                  -------------------- (3.11) 
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The partial derivative 
( )

( )ji

n

w n




represents a sensitivity factor, determining the direction of 

search in weight space for the synaptic weight wji. 

  Differentiating both sides  of (3.7) with respect to ej (n), 

                                                  
( )

( )j

n

e n




=ej (n)                                        --------------------- (3.12) 

Differentiating both sides of (3.6) with respect to yj (n), 

                                                 
( )

( )

j

j

e n

y n




= -1                                           --------------------- (3.13) 

Next, differentiating (3.10) with respect to vj (n), 

                                                
( )

( )

j

j

y n

v n




= φ

1
j
 
(vj (n))                              --------------------- (3.14) 

Finally, differentiating (3.9) with respect to wji (n) yields 

                                               
( )

( )

j

ji

v n

w n




=yi (n)                                      --------------------- (3.15) 

Using Eqs (3.12), (3.13), (3.14), and (3.15) in (3.11) yields 

                                              
( )

( )ji

n

w n




= -ej (n) φ

1
j
 
(vj (n)) yi (n)         -------------------- (3.16) 

The correction Δwji (n) applied to wji (n) is defined by the delta rule: 

                                           Δwji (n) = -η 
( )

( )ji

n

w n




                                 -------------------- (3.17) 

where η is the learning-rate parameter of the back-propagation algorithm. The use of the 

minus sign in (3.17) accounts for the gradient descent in weight space (i.e., seeking the 

direction for weight change that reduces the value of ξ (n)). Accordingly, the use of (3.16) in 

(3.17) yields 

                                        Δwji (n)= η δj(n)yi(n)                                     -------------------- (3.18) 

where the local gradient  δj(n) is defined by  
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                                           δj (n)= - 
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
 

                                                  = ej (n) φ
1
j
 
(vj (n))                                 -------------------- (3.19) 

The local gradients points to required changes in synaptic weights. According to Eq. (3.19) 

the local gradient δj(n) for  output neuron j is equal to the product of the corresponding error 

signal ej (n) for that neuron and the derivative φ
1
j
 
(vj (n)) of the associated activation function. 

From Eq. (3.18) and (3.19), the key factor involved in the calculation of the weight 

adjustment Δwji (n) is the error signal ej (n) at the output of neuron j. Two distinct cases are 

identified in this context, depending on where in the network neuron j is located. In case 1, 

neuron j is an output node. This is simple to handle because each output node of the network 

is supplied with a desired response of its own, making it a straight forward matter to calculate 

the associated error signal. In case 2, neuron j is a hidden node. Even though hidden neurons 

are not directly accessible, they share responsibility for any error made at the output of the 

network. The question is to know how to penalize or reward hidden neurons for their share of 

the responsibility. This problem is the credit-assignment problem which can be solved in an 

elegant fashion by back-propagating the error signals through the network. 

Case 1 Neuron j is an Output Node 

When neuron j is located in the output layer of the network, it is supplied with a desired 

response of its own. Eq. (3.6) is used to compute the error signal ej (n) associated with this 

neuron. Having determined ej (n), it is a straightforward matter to compute the local gradient 

δj (n) using Eq. (3.19). 

Case 2 Neuron j is a Hidden Node 

When neuron j is located in a hidden layer of the network, as shown in fig.3.3 there is no 

specified desired response for that neuron. Accordingly, the error signal for a hidden layer 

would have to be determined recursively in terms of the error signals of all neurons to which 

that hidden neuron is directly connected. 
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                Fig.3.3: Details of output neuron k connected to hidden neuron j  

According to Eq. (3.19), local gradient may be redefined for hidden neuron as  

                                              δj (n) = - 
( )

( )j

n

y n





( )

( )

j

j

y n

v n




                          -----------------------(3.20) 

                                                       = - 
( )

( )j

n

y n




φ

1
j
 
(vj (n)), neuron j is hidden   ------------- (3.21) 

 Eq. (3.14) is used in the second line. To calculate the partial derivative (∂ξ (n)/ ∂yj (n)), 

Consider 

                                              ξ (n)  = 21
( )

2
k

k C

e n


 , neuron k is an hidden node  ----------- (3.22) 

  Differentiating Eq. (3.22) with respect to the function signal yj (n),  

                                            
( )

( )j

n

y n




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k

 ek 

( )

( )

k

j

e n

y n




                                     --------------- (3.23) 

Using chain rule for the partial derivative
( )

( )

k

j

e n

y n




, and rewriting Eq. (3.23)  

                                             
( )

( )j

n
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


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k

 ek 
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k
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e n
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
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k
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v n

y n




                          -------------- (3.24) 
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However,                              ek (n) = dk (n) – yk (n) 

                                                        = dk (n) - φ (vk (n)), neuron k is an output node 

Hence 

                                          
( )

( )

k

k

e n

v n




 = -φ

1
k

 
(vk (n))                                         ---------------- (3.25) 

For neuron k, the induced field is 

                                                    vk (n) = 
0

( ) ( )
m

kj j

j

w n y n


                          ------------------- (3.26) 

where m is the total number of inputs (excluding the bias) applied to neuron k. Differentiating 

Eq. (3.26) with respect to yj (n) yields  

                                              
( )

( )

k

j

v n

y n




    = wkj (n)                                     -------------------- (3.27) 

 By using Eq. (3.25) and (3.27) in (3.24)  

                                               
( )

( )j

n

y n




  = -

k

 ek (n) φ
1
k

 
(vk (n)) wkj (n)    

                                                              = - 
k

 δk (n) wkj (n)                   ------------------ (3.28) 

in the second line definition of local gradient is used 

Finally using Eq. (3.28) in (3.21), back-propagation formula for the local gradient is: 

                                   δj (n) = φ
1

j
 
(vj (n)) 

k

 δk (n) wkj (n)                     ------------------- (3.29) 

where neuron j is hidden node. 

Summarizing the relations of the derivation of back-propagation algorithm, 

First, the correction Δwji (n) applied to the synaptic weight connecting neuron i to neuron j is 

defined by the delta rule: 

(Weight correction Δwji (n)) = ( η) (δj (n)) (input signal to neuron j yi (n))  --------------- (3.30) 
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Second, the local gradient δj (n) depends on whether neuron j is an output node or a hidden 

node: 

1. If neuron j is an output node, δj (n) equals the product of the derivative φ
1

j
 
(vj (n)) and the 

error signal ej (n), both of which are associated with neuron j. 

2. If neuron j is a hidden node, δj (n) equals the product of the associated derivative φ
1

j
 
(vj (n)) 

and the weighted sum of the δs computed for the neurons in the next hidden or output layer 

that are connected to neuron j. 

The two passes of computation 

In the application of the back-propagation algorithm, two distinct passes of computation are 

distinguished. The first pass is referred to as the forward pass, and the second is referred to as 

the backward pass. 

In the forward pass the synaptic weights remain unaltered throughout the network, and the 

function signals of the network are computed on a neuron-by-neuron basis. The function 

signal appearing at the output to neuron j is computed as 

                                                          yj (n) = φ (vj (n)) 

where vj (n) is the induced local field neuron j, defined by 

                                                          vj (n) = 
0

( ) ( )ji i

m

i

w n y n


             

where m is the local number of inputs (excluding the bias) applied to neuron j, and wji is the 

synaptic weight connecting neuron i to neuron j, and yi (n) is the input signal of neuron j or 

equivalently, the function signal appearing at the output of neuron i. If neuron j is in the first 

hidden layer of the network, m=mo and the index i refers to the i
th

 input terminal of the 

network, for which  

                                                         yi (n) = xi (n) 

where xi (n) is the i
th

 element of the input vector (pattern). If, on the other hand, neuron j is 

the output layer of the network, m=mL and the index j refers to the j
th

 output terminal of the 

network, for which  
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                                                           yj (n) = oj (n) 

where oj (n)is the j
th

 element of the output vector (pattern). This output is compared with the 

desired response dj (n), obtaining the error signal ej (n) for the jth output neuron. Thus the 

forward phase of computation begins at the first hidden layer by presenting it with the input 

vector, and terminates at the output layer by computing the error signal for each neuron of 

output layer. 

The backward pass, on the other hand, starts at the output layer by passing the error signal 

leftward through the network, layer by layer, and recursively computing the δ (i.e. the local 

gradient) for each neuron. This recursive process permits the synaptic weights of the network 

to undergo changes in accordance with the delta rule of Eq. (3.30). For a neuron located in 

the output layer, the δ is simply equal to the error signal of that neuron multiplied by the first 

derivative of its nonlinearity. Hence Eq. (3.30) is used to compute the changes to the weights 

of all the connections feeding into the output layer. Given the δs for the neurons of the output 

layer, Eq. (3.29) is used to compute the δs for all the neuron in the penultimate layer and 

therefore the changes to the weights of all connections feeding into it. The recursive 

computation is continued layer by layer, by propagating the changes to all synaptic weights in 

the network. 

For the presentation of each training example, the input pattern is fixed (“clamped”) 

throughout the round-trip process, encompassing the forward pass followed by the backward 

pass. 

3.5 FUZZY CURVES 

Fuzzy curves are used for i) identification of the significant variables, ii) estimation of the 

number of rules needed in the fuzzy model, and iii) determination of initial weights for the 

neural network. 

   Consider a multiple-input, single-output system for which we have input-output data with  

possible extraneous inputs. To determine the initial membership functions, first step is to 

determine the significant inputs, the number of rules R, and initial values for the weights. Let 

the input candidates be xi (i=1,2,…,n), and the output variable y. Let us assume that m 

training data points are available and that xik (k-1,2,…,m) are the i
th

 coordinates of each of the 

m training points. For each input variable xi, plot the m data points in xi - y space. For every 



21 

 

point (xik, yk) in the xi – y space, draw a fuzzy membership function for the input variable 

defined by    

              ---------- (3.31) 

 

      Each pair of ɸik and the corresponding yk provides a fuzzy rule for y with respect to xi, 

The rule is represented as “if xi is ɸik (xi), then y is yk”.  ɸik is the input variable fuzzy 

membership function for xi, corresponding to the data point k. ɸik can be any fuzzy 

membership function, including triangle, trapezoidal, Gaussian, and others. Here Gaussian is 

used. Typically take b as about 20% of the length of the input interval of xi. For m training 

data points, we have m fuzzy rules for each input variable. 

Centroid defuzzification is used to produce a fuzzy curve ci for each input variable xi  by 

 

                                  ----------------------- (3.32) 

      If the fuzzy curve for given input is flat, then this input has little influence in the output 

data and it is not a significant input. If the range of a fuzzy curve ci is about the range of the 

output data y, then the input variable xi is important to the output variable. The fuzzy curve 

tells us that the output is changing when xi is changing. We rank the importance of the input 

variables xi according to the range covered by their fuzzy curves ci. For input identification 

we drop those input with fuzzy curve Range < 1/4th of Max Range and the rest are the 

significant inputs. 

The number of rules, Ri, needed to approximate each fuzzy curve ci, are estimated by the 

maximum and minimum points on the curve. This is a heuristic based on the idea that the 

fuzzy model will interpolate between the maximum and minimum points. If the maximum 

and minimum points are far apart, or the curve is not smooth between the maximum and 

minimum points, we may add rules. If we have N fuzzy curves, then we will have N different 

numbers R1, R2, . . . , RN corresponding to the N fuzzy curves. To determine the number of 

rules R needed in the fuzzy neural network, we let R = max (R1, R2, . . . , RN).  

3.6 THE ARCHITECTURE OF THE FUZZY-NEURAL NETWORK 
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                 Architecture of four layer (input, fuzzification, inference, and defuzzification) 

fuzzy-neural network (Fig. 1).There are N inputs with N neurons in the input layer, and R 

rules, with R neurons in the inference layer. There are N x R neurons in the fuzzification 

layer. Hence, once we determine the number of inputs N and the number of rules R, the 

structure of the network can be determined. The first N neurons (one per input variable) in 

the fuzzification layer incorporate the first rule, the second N neurons incorporate the second 

rule, and so on. 

                

                   Fig.1 The architecture of fuzzy-neural network 

Every neuron in the second or fuzzification layer represents a fuzzy membership function for 

one of the input variables. The activation function used in the fuzzification layer is 

                                                       f(netij)=exp(-│netij│
lij

) 

where lij is typically in the range 0.5≤lij ≤5 and initially equals one or two, and 

                                                       netij = wij1xi + wij0  

 

Hence, the output of the fuzzification layer is 
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                                ---------------- (3.33) 

where µij is the value of fuzzy membership function of the i
th

 input variable corresponding to 

the j
th

 rule. We label the set of weights between the input and the fuzzification layer by 

                     ---------------- (3.34) 

The activation function used in the third or inference layer is    f(netj) = netj.                                              

  We use multiplicative inference, so the output of the inference layer is 

                                        --------------------- (3.35) 

where the µij are from (3.33). 

      The connecting weights between the third layer and the fourth layer are the central values, 

vj, of the fuzzy membership functions of the output variable. We label the set of weights {vj} 

by  V = { vj : j = l , . . . , R }. Each fuzzy rule r j ( j = 1, 2, . . . , R) is of the form: if x1 is µ1j  

and x2 is µ2j and …. if xN is µNj then y is vj. Note that the neural network weights in V and W 

determine the fuzzy rules. We use the weighted sum defuzzification, and the equation for the 

output is 

- (3.36) 

The initial weights in V are set to the centers of output variable fuzzy membership functions. 

To do this divide the range of the desired output data into R intervals, and set the initial vj ( j 

= 1, 2, . . , R) to be the central value of these R intervals, and assign these central values to 

the weights vj in ascending order. 

 

Fuzzy curves are used to set the initial weights in W. Divide the domain for each fuzzy curve 

ci, into R intervals corresponding to the R intervals in the output space. For the fuzzy curve ci, 

label the centers of the intervals xij (j= 1, 2 , . - . ,R ). Order xij (j= 1, 2 , . - . ,R ) by the value 

of ci, at the center of each interval. xiR corresponds to the interval containing the largest value 

of c,. The interval containing the point xiR is associated with the output interval whose center 

is at vr In a similar fashion xiR-1 is the center of the interval which contains the next largest 
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central point on the curve ci and xiR-1  is associated with vR-1, and so on for j = R - 2 , R - 3 , . 

. , 1. The length of the interval over which a rule applies in the domain of ci, is denoted as 

Δxi. The initial fuzzy membership function of xi for rule j is defined as exp(-│(xij-

xi)/a·Δxi│
lij

)  where a is typically in the range of [0.5,2]. Hence, referring to (l), the initial 

weights wij0 and wij1 are wij0=1/(a·Δxi) and  wij1= -xij/(a·Δxi). 

The training of the network is done using back-propagation algorithm . 

 

 

The performance index for the model is  

                                                           ------------------------ (3.37) 

where o
d

k, (k=1,2,…,m), are the actual or desired output values and ok, (k=1,2,…,m), are the 

outputs from the model. 

Choosing a maximum number of iterations Imax, and some small number ε>0, the training is 

continued until, for some i,  or the number of 

iterations reaches Imax. 
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CHAPTER 4 

LINE OF SIGHT STABILIZATION CONTROL 

4.1 INTRODUCTION 

Line-of-sight (LOS) stabilization form part of modern surveillance and fire control systems 

(FCS). Gimbals are precision electro-mechanical assemblies designed primarily to steer the 

telescope and isolate the optical system from disturbances induced by the operating 

environment. The two gimbal model has an azimuth gimbal and an elevation gimbal to which 

the payload (telescope) is attached. The gimbals together with the control system are 

responsible for tracking commands and LOS (stabilization). 

The rate sensors are bore sight inertial sensors used for angular rate feedback in the 

stabilization loop of the control system. Hence they play a very important role in the 

stabilization of the gimbal-mounted payload against disturbances.  

Following are some of the options available for rate sensors: 

1. Rate gyro (RG) 

2. Rate integrating gyro (RIG) 

3. Dynamically tuned gyro (DTG) 

4. Ring laser gyro (RLG) 

5. Fiber optic gyro (FOG) 

A dynamic tuned gyroscope, the so-called DTG, is one of the options nowadays that can 

provide the required performance for many applications. 

 

4.2. DYNAMICALLY TUNED GYROSCOPE (DTG) 

The DTG is two-axis, spinning mass, inertial rate sensor whose rotor is suspended by a 

universal hinge of zero stiffness at the tuned speed. Due to their low cost, fast reaction time, 

small size and ruggedness, DTGs have become very popular in navigation and gimballed 

systems. As they are dry, they provide good performance over wider range of temperatures 

than conventional rate gyros. The main disadvantage of DTGs is that the gyro electronics are 

more complicated. Figures 4.1 show the construction of a DTG. 



26 

 

 

Fig. 4.1 (a): Construction of DTG                       Fig. 4.1 (b): Gimbal Structure                            

                           

4.2.1 Modeling of DTG rotor: 
 

 

 

          Fig. 4.2 DTG rotor 

 

The sum of the external torques on the rotor both presses the rotor at an angular velocity 

proportional to the angular momentum of the rotor (H)  and accelerate the rotor 

proportionately to its transverse inertia (A), 

2
1 2

1, 2ext

d d
T A H

t dt

 
 


                        ------------------------ (4.1) 
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2

2 1

2, 2ext

d d
T A H

t dt

 
 


                        ------------------------ (4.2) 

The inertial rotor rates 
1d

dt


 (or

2d

dt


) is the sum of the corresponding inertial case rate and the 

rotor rate relative to the case. The primary external torques on the rotor is those generated by 

the torquers. There are two torquers, one in each axis, which generate torque proportional to 

the amount of current in their coils. Figure shows the torquer in the first axis generating a 

precession rate 
2d

dt


 in the second axis. The pickoff measures the rotor position relative to the 

case (θ2). The role of the subsequent compensators and electronics is to null this pickoff, so 

that the current in the torquer is proportional to the inertial case rate (precession rate). Having 

complete control of the rotor‟s precession rate is the key to the DTG‟s ability to measure rate. 

Note that the external torqueses include not only the controlled torquer inputs KTI1 and KTI2, 

but also viscous damping, mistuning elastic restraints and windage torques.    

The dynamic equations for the DTG model are: 

                        
2

1 2

1 1 2 2T d d

m

d N d d
K I C H T A H

dt F dt dt

   
                              ---------------- (4.3) 

                         
2

2 2 1

1 1 2 2T d d

m

d N d d
K I C H T A H

dt F dt dt

   
                          --------------- (4.4) 

where 

   1I , 2I = currents in torquer coils 

  1 , 2 = pickoff angles (rotor position relative to the case) 

 
1d

dt


, 

2d

dt


 = precession rates of rotor (inertial) 

TK = torquer constant   

      dC  = viscous damping coefficient 

      H  = angular momentum 

     N  = Difference between actual rotor rate and tuned rotor rate 

       mF = Figure of merit of the rotor system 
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        dT = Drag torque due to windage effects from gas around rotor 

  A = Transverse inertia 

A simple second order transfer function with f Hz bandwidth of the form 

 

   

2

22

( . ) 2
( )

2 2 2
gyro

scale factor f
G s

s f s f



  

  


        
 may be used to model the gyro response in each 

of the rate feedback channels (azimuth and elevation) [2]. 

 

4.3 GIMBAL DYNAMICS 

 A gimbal is a pivoted support that allows the rotation of an object about a single axis. A set 

of two gimbals, one mounted on the other with pivot axes orthogonal, may be used to allow 

an object mounted on the innermost gimbal to remain vertical regardless of the motion of its 

support. The gimbal dynamics model can be derived from the torque relationships about the 

inner and outer gimbal body axes based on rigid body dynamics. A two-axis gimbal rigid 

model dynamics is formulated in APPENDIX. 

 

4.4 MODELING OF DC MOTOR 

Motors play the role of actuators that drive the gimbal assembly. Two motors will be used, 

one for driving the azimuth gimbal assembly and one for elevation. Consider the 

mathematical modeling of DC motor, 

 

 

                                       Fig. 4.3 A Simple DC Motor     
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Nomenclature:   

 L=armature inductance, R=armature resistance, Va =armature voltage, 

 ia= armature current, eb=back emf,  =angular speed, T=motor torque 

 J=load inertia, Ka=motor torque constant, kb=back emf constant 

Figure 4.3 shows a simple electromechanical model of a DC motor. The armature voltage is 

the input. The mathematical equations representing the model (excluding drive electronics) 

are: 

                                                         bb ke                                                     ----------------- (4.5) 

                                                         aaiKT                                                    ----------------- (4.6) 

Using Newton‟s law combined with Kirchhoff‟s law  

                                                    a a
d

J b k i
dt


                                   ---------------- (4.7) 

                                          0 ba
a

a eRi
dt

di
LV                                     ----------------- (4.8) 

In Laplace domain using Eq. (4.5) and (4.6) in (4.8) and (4.7), 

                                                               )()()( sksV
RLs

K
sT ba

a 


                   --------------- (4.9) 

                                                   ( ) ( ) ( )Js b s T s                                   --------------- (4.10)         

    Eliminating ( )s from Eq. (4.9) and (4.10) deriving the transfer function between 

T(s) and Va(s),                               
( )

( )a

T s

V s
 = 

( )
( )

^ 2 ( ) ( )

a

a b

k Js b

LJs Lb JR s Rb k k



   
               ------

- (4.11) 

4.5 OVERALL SYSTEM (TRACKER) OPERATION 

The laser and track sensor (i.e., telescope, camera, etc.) are mounted on the inner axis of a 

multi-axis mechanical gimbal; or below the gimbal, coupled to the line of sight (LOS) via a 

stabilized pointing mirror. Pointing control is implemented via two servo loops, the outer 

track or pointing loop and an inner stabilization or rate loop. The track sensor detects the 

laser returns from the target location. The track processor uses this information to generate 

rate commands that direct the gimbal bore-sight toward the target LOS. The stabilization loop 
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isolates the laser and sensor from platform motion and disturbances that would otherwise 

perturb the aim-point. The track loop must have sufficient bandwidth to track the LOS 

kinematics. The stabilization loop bandwidth must be high enough to reject the platform 

disturbance spectrum. A typical configuration is shown in fig.4.5.1 

 

 

 

                                 Fig 4.4 Two-axis tracker configuration 

In this work we concentrate on the inner stabilization loop (rate loop) of the azimuthal axis.  

 

4.6 CONTROLLER DESIGN FOR LOS STABILIZATION 

The plant under consideration consists of a gimbaled payload that is driven by DC motor. A 

servo power amplifier amplifies the controller output before being fed to the DC torque 

motor. A high performance dual axis dynamically tuned gyro (DTG) is used to sense the 

inertial angular rate of the gimbal azimuth and elevation axis. 

The relevant parameters of gimbal/electronic system are as follows: 

1. Gimbal inertia, 0.5 kg m
2
 

2. Weight of pay load, 35 kg 
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3. Load pole, 1 Hz 

4. Gimbal resonance, 140 Hz 

5. Torquer rating, 3.5 nm (peak) 

6. Torque sensitivity (Kt), 0.786 nm/A 

7. Back emf constant (Kb), 0.786 V/rad s
-1

 

8. Gyro scale factor, 5.73 V/rad 

9. Gyro dynamics, single pole at 100 Hz 

10. Data acquisition resolution, 16 bits (max. input= 10 V) 

12. dead band due to stiction friction, 10% of the peak torque 

13. digital-to-analog converter resolution, 16 bits (max output= 10 V) 

and the design is carried out for the following design specifications: 

1. Steady state error for step response,  0.1% 

2. Percent overshoot,  40% 

3. Rise time, 50 msec 

4.6.1 Conventional Controller 

The Bode plot technique is used for the design. A linear model of the plant is used for this 

purpose. Lead and Lag compensator design procedures are used in the design process [16]. 

The transfer function of the controller designed is as follows: 

  

                            
( / 80 1)

( /1.5 1)

s

s





( / 91 1)

( / 400 1)

s

s




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( / 5 1)

s

s





(9200)

( / 400 1)s 
             ------------- (4.12) 

The analog controller is transformed to digital domain using “Tustin” method. The synthesis 

of the control law in the digital domain is carried out with a 4-kHz sampling frequency. The 

four stages of the z transform of the controller is given as follows: 

(0.018934 0.018559)

( 0.9963)

z

z





(4.2239 4.1387)

( 0.90476)

z

z





(0.25047 0.249922)

( 0.99875)

z

z





(438.1 438.1)

( 0.90476)

z

z




--(4.13) 
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4.6.2 Fuzzy Controller 

                       For the system under study, seven linguistic variables for each of the input and 

output variables with one normalized universe of discourse (-1, +1) are used to describe them. 

These are NB (negative big), NM (negative medium), NS (negative small), ZO (zero), PS 

(positive small), PM (positive medium), PB (positive big). Each fuzzy variable is a member 

of the subsets with a degree of membership µ. After specifying the fuzzy sets, it is required to 

determine the membership functions for these sets. For inputs and output Gaussian 

membership functions have been used. For input variables of error and change of error the 

output of the fuzzy controller is the incrementel control force. The membership functions 

were defined using the standard Gaussian function.                                   

                                              f(x,ζ,c)= exp(-(x-c))^2/2*ζ^2)                               

                                  Table 4.1 Parameters of fuzzy membership fiunctions 

variables                                e                                                                  u 

function parameters      c              ζ              c               ζ                      c                 ζ 

fuzzy sets 

nb                                -1.0          0.35        -1.0            0.141               -1.0             0.141    

nm                               -0.25        0.1          -0.66          0.141               -0.57           0.142 

ns                                -0.1          0.04        -0.2             0.12                -0.15            0.1  

z                                  0.0           0.013      0.0              0.05                  0.0              0.007 

ps                                0.1           0.04        0.2              0.12                  0.15            0.1  

pm                              0.25         0.1          0.66             0.141                0.57            0.142 

pb                               1.0           0.35        1.0               0.141                1.0              0.141 

  Having specified the inputs from the simulation, a set of rules have to be defined using the 

linguistic variables. For a system with two inputs and with each input universe defined with 

seven linguistic variables, 49 rules can be formed considering all the combinations of inputs. 

A proper way to show these rules is given in Table 4.2 where all the symbols are defined in 

the basic of fuzzy logic terminology. 
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Table 4.2: Fuzzy rules 

 
 The fuzzy controller can be programmed in C, FORTRAN, MATLAB, or virtually 

any other programming language. There may be some advantage to programming it in C 

since it is then sometimes easier to transfer the code directly to an experimental setting for 

use in real-time control. At other times it may be advantageous to program it in MATLAB 

since plotting capabilities and other control computations may be easier to perform there.  

Pseudo-code: 

    The pseudo-code for a simple fuzzy controller [4] that is used to compute the fuzzy 

controller output given its two inputs: 

1. Obtain x1 and x2 values. (Get inputs to fuzzy controller) 

2. Compute mf1[i] and mf2[j] for all i,j. (Find the values of all membership functions given 

the values for u1 and u2) 

3. Compute prem [i,j]=min[mf1[i],mf2[j]] for all i, j (Find the values for the premise 

membership functions for a given x1 and x2 using the AND(minimum) operation) 

4. Implication method of min is used, implies the minimum values of the AND operation in 

the previous step is carried forward.  

e/e NB NM NS ZR PS PM PB 

NB NB NB NB NB NM NS ZR 

NM NB NB NB NM NS ZR PS 

NS NB NB NM NS ZR PS PM 

ZR NB NM NS ZR PS PM PB 

PS NM NS ZR PS PM PM PB 

PM NS ZR PS PM PB PB PB 

PB ZR PS PM PB PB PB PB 
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5. Compute agg [i,j] = agg[rule[i,j],prem[i,j]] for all i, j (Find the aggregate of each output 

linguistic variable by evaluating all rules by using „max‟ operator) 

6. Let Num=0, Den=0 (Initialize the COG numerator and denominator values) 

7. For all i , j (Cycle through all areas to determine COG) 

Num=Num+agg[i,j]*center[rule[i,j]] (Compute numerator for COG) 

Den=Den+agg[i,j] (Compute denominator for COG) 

8. Output Crisp=Num/Den (Output the value computed by the fuzzy controller) 

9. Go to Step 1. 

4.6.3 Neuro-fuzzy controller: 

Using Eq 4.12 or 4.13 the conventional controller is implemented in MATLAB and the 

control law is saved in workspace and used as training data for the neuro-fuzzy algorithm and 

the model is properly trained.  
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CHAPTER 5 

IMPLEMENTATION IN MATLAB 

5.1 IMPLEMENTATION OF MODEL TO NON-LINEAR SYSTEM DATA 

Consider the input-output data of a non-linear system [7] as shown in table 5.1 

                                       Table 5.1 Input output data of a non-linear system 

                              Group A                                                     Group B

 

No         x1             x2        x3        x4          y                  No      x1           x2       x3        x4          y

 

1         1.40      1.80    3.00    3.80      3.70               26      2.00    2.06   2.25    2.37      2.52     

2         4.28      4.96    3.02    4.39      1.31               27      2.71    4.13   4.38    3.21      1.58  

3         1.18      4.29    1.60    3.80      3.35               28      1.78    1.11   3.13    1.80      4.71 

4         1.96      1.90    1.71    1.59      2.70               29      3.61    2.27   2.27    3.61      1.87 

5         1.85 1.43    4.15    3.30      3.52               30      2.24    3.74   4.25    3.26      1.79 

6         3.66      1.60    3.44    3.33      2.46               31      1.81    3.18   3.31    2.07      2.20 

7         3.64      2.14    1.64    2.64      1.95               32      4.85    4.66   4.11    3.74      1.30 

8        4.51       1.52    4.53    2.54      2.51               33      3.41    3.88   1.27    2.21      1.48     

9        3.77       1.45    2.50    1.86      2.70               34      1.38    2.55   2.07    4.42      3.14 

10      4.84       4.32    2.75    1.70      1.33               35      2.46    2.12   1.11    4.44      2.22 

11      1.05       2.55    3.03    2.02      4.63               36      2.66    4.42   1.71    1.23      1.56  

12      4.51       1.37    3.97    1.70      2.80               37      4.44    4.71   1.53    2.08      1.32 

13      1.84       4.43    4.20    1.38      1.97               38      3.11    1.06   2.91    2.80      4.08 

14      1.67       2.81    2.23    4.51      2.47               39      4.47    3.66   1.23    3.62      1.42 

15      2.03       1.88    1.41    1.10      2.66               40      1.35    1.76   3.00    3.82      3.91 

16      3.62       1.95    4.93    1.58      2.08               41      1.24    1.41   1.92    2.25      5.05 

17      1.67       2.23    3.93    1.06      2.75               42      2.81    1.35   4.96    4.04      1.97 

18      3.38       3.70    4.65    1.28      1.51               43      1.92    4.25   3.24    3.89      1.92 



36 

 

19      2.83       1.77    2.61    4.50      2.40               44      4.61    2.68   4.89    1.03      1.63 

20      1.48       4.44    1.33    3.25      2.44               45      3.04    4.97   2.77    2.63      1.44 

21      3.37       2.13    2.42   3.95       1.99              46      4.82    3.80   4.73    2.69      1.39 

22      2.84       1.24    4.42   1.21       3.42              47      2.58    1.97   4.16    2.95      2.29 

23      1.19       1.53    2.54   3.22       4.99              48      4.14    4.76   2.63    3.88      1.33 

24      4.10       1.71    2.54   1.76       2.27              49      4.35    3.90   2.55    1.65      1.40 

25      1.65       1.38    4.57   4.03       3.94              50      2.22    1.35   2.75    1.01      3.39

 

The data of x3 and x4 are put as dummy inputs to check the appropriateness of the model 

algorithm. 

Model algorithm is evaluated on the data and the results are shown in the figures below. 

Fig. 5.1 shows the actual output value for each data point. 

Fig. 5.2 shows the fuzzy curves drawn for the data. 

Fig. 5.3 shows the modeled output for each data point. 

  

              

                                        Fig 5.1: Output data for data points (50) 
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                                    Fig. 5.2: Fuzzy Curves for the non-linear system data 

 

 

                                        Fig.5.3: Modeled output for each data point 
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5.2 IMPLEMENTATION OF LOS STABILIZATION LOOP CONTROL 

     Implementation of LOS stabilization loop control (in azimuthal axis) is explained in 

chapter 4. Stabilization loop is controlled using conventional controllers and intelligent 

controllers.  

5.2.1 CONVENTIONAL CONTROLLER 

        Conventional controller designed for LOS stabilization loop [2] in discrete domain is 

given by Eq. 4.13. Complete simulink diagram as given by [2] is shown in Fig.5.4 

 

                                     Fig. 5.4: LOS stabilization loop using a conventional controller 

5.2.2 FUZZY CONTROLLER 

       Fuzzy controller designed for LOS stabilization loop is explained in Chapter 4. As 

explained in pseudo-code fuzzy controller was coded in MATLAB m-file and linked to 

simulation environment. Complete simulink diagram is shown in Fig.5.5 
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                           Fig. 5.5: LOS stabilization loop using a fuzzy logic controller 

 

5.2.3 NEURO-FUZZY CONTROLLER 

      Neuro-fuzzy controller design process for LOS stabilization loop is explained in Chapter 

4. As explained, the control law of conventional controller is taken as training data for the 

neuro-fuzzy model and the model is properly trained. Finally the computation process is 

coded in MATLAB m-file and linked to the simulation environment. Complete simulink 

diagram is shown in Fig.5.6. 



40 

 

 

                 Fig. 5.6: LOS stabilization loop using a neuro-fuzzy logic controller 
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                                              CHAPTER 6 

                                               RESULTS  

        Neuro-fuzzy model algorithm is evaluated on the non-linear data presented in table 5.1 

and the plot of actual data and modeled data is shown in Fig. 6.1 

 

                       Fig. 6.1 : Comparison of Actual and Modeled output data of non-linear system 

 

       Implementation of LOS stabilization loop using conventional, fuzzy and neuro-fuzzy 

controllers is presented in chapter 5. The simulation results for step command are shown in 

the following figures: 
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                       Fig. 6.2: Step response using conventional controller 

 

 

 

                                          Fig. 6.3: Step response using fuzzy controller 
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                                   Fig. 6.4: Step response using neuro-fuzzy controller 
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                           Fig. 6.5: Comparison of step response using three controllers 

 

 

                   Fig. 6.6 Error comparison of conventional and neuro-fuzzy controller 
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                                                               CHAPTER 7 

                         CONCLUSIONS & FUTURE SCOPE 

7.1 CONCLUSIONS 

From the results obtained in chapter 6 

- The neuro-fuzzy model implemented in MATLAB can be used for system identification and 

it can model non-linear data appropriately by properly choosing the number of neurons in 

each layer. 

- Neuro-fuzzy controller implemented has given satisfactory results and it is a simple non-

linear controller that performs well even in the presence of non-linearities. Since the training 

data is from conventional controller designed for the linear model of the system, design 

specifications are also considered in the neuro-fuzzy controller design process.  

- Intelligent (Fuzzy and neuro-fuzzy) controllers have performed well in the presence of non-

linearities and provide more robust control and have less complex design process than the 

conventional non-linear controllers. 

7.2 FUTURE SCOPE 

- Off-line training is used in training the neuro-fuzzy model, a better model can be built with 

on-line training.       

- The controller modeled can be extended to control the overall stabilization loop of two-axis 

gimbal and also for position control. 
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APPENDIX 

MATLAB PROGRAM TO IMPLEMENT NEURO-FUZZY MODEL 

Inputs = size(x,1);                         % determination of inputs 
datasets = size(x,2);                       % determination of samples 
a=1;                                   % Setting the parameter 'a'     
lij=1.5;                                    % Setting the parameter 'l' 
sumN=0;  
sumD=0; 
point_old = 0; 

  
%------ Fuzzy Curve Generation ---------------------c--------------- 

  
for inp=1:Inputs 
    r = range(x(inp,:)); 
    for i=1:datasets 
        for k=1:datasets 
            phi(inp,i,k)= exp(-(((x(inp,i)-x(inp,k))/(0.2*r))^2)); 
            sumN = sumN + (phi(inp,i,k))*y(k); 
            sumD = sumD + (phi(inp,i,k)); 
        end 
        c(inp,i)= sumN/sumD; 
        sumN=0; 
        sumD=0; 
    end 
    clear r; 
rc(inp) = range(c(inp,:)); 
    fprintf('\n Range of Curve %d is %d',inp,rc(inp))  
    % Range display on console 
end 
fprintf('\n'); 
maxrc = max(rc); 
leftinp=0; 
reminp=0; 
for inp=1:Inputs 
    if(rc(inp)<(0.5*maxrc))      % Change the dropping criterion here 
        fprintf('\n Curve %d is dropped',inp) 
    else 
        leftinp = leftinp + 1; 
        reminp(leftinp)= inp; 
    end 
end 
fprintf('\n \n \n'); 
rules = input('Total No. of Rules: '); 

  
fprintf('\n Total number of neurons in the Input layer = %d',leftinp) 
fprintf('\n Total number of neurons in the Inference layer = %d',rules) 
fprintf('\n Total number of neurons in the Fuzzification Layer layer = 

%d',(leftinp*rules)) 
fprintf('\n \n '); 

 
minY = min(y); 
centY=0; 
initcent=0; 
intY=0; 
intvalY= range(y)/rules; 
initcent= min(y) + ( (range(y)/(2*rules)) ); 

  



 fprintf('\n The centers of the the output \n ---------------------------') 
for j=1:rules 
    centY(j)= initcent + ((j-1)*intvalY); 
        fprintf('\n Interval %d = %f',(j),centY(j)) 
    intY(j) = min(y)+ (j*intvalY); 
end 

  
 fprintf('\n \n '); 

  

  
%-----------------Centers of Input Intervals----------c---------- 
centX=0; 
for i=1:leftinp 

     
    rangeX(i)= range(ins(i,:)); 
    minX(i) = min(ins(i,:)); 

     
    initcent = 0; 

     
    %deltaXi(i) = rc(reminp(i)); 

     
 deltaXi(i) = 0.72; %rangeX(i);         % DELTA Xi 
%deltaXi(i) = rc(reminp(i)); 
    % deltaXi(i) = rangeX(i)/rules; 
    initcentX(i) = minX(i) + (rangeX(i)/(2*rules)); 
    fprintf('\n The centers of the the Input %d \n ------------------------

---',i)     
    for j=1:rules 
        centX(i,j) = initcentX(i) + ((j-1)*deltaXi(i)); 

         
        fprintf('\n  interval %d = %f',(j),centX(i,j)) 
    end 
    fprintf('\n \n ');     
end 

  
%------------------------------------------------------------------- 

  

  
    end 
%-------------------------- Setting up initial weights 

  
    for i=1:leftinp 
        for j=1:rules 
            w1(i,j) = -( centXn(i,cvC(i,j,2))./(a*deltaXi(i)) ); 
        end 
    end 

 
for j=1:rules 
v(j) = centY(j); 
end 

  

 
% ------------ FORWARD PROPAGATION OF SIGNAL ------------------------------

------- 
% Output and weights calculation  

  
hold on 
Nsum = 0; 



Dsum = 0; 
maxError = 0.001; 

  
 eta =0.1; % Learning Rate 

  
epochs =1000; 
% PI = zeros(1,epochs); 
%----------------------------------------------------------- 

  
for t=1:epochs 
    mape = zeros(epochs)'; 

     
    for k=1:datasets 

         
        inplay = 0; 
        fuzlay = 0; 
        inflay = 0; 
% ----------------------Input Layer 

         
        for i=1:leftinp 
            for j=1:rules 
                inplay(i,j)= (w0(i,j)+(ins(i,k)*w1(i,j))); 
            end 
        end 
  % ---------------------Inference Layer 

         

         
        for j=1:rules 
            mult = 1; 
            for i=1:leftinp 
                mult = mult * fuzlay(i,j);      
            end 
            inflay(j) = mult; 
        end 

         
        %-----------------------Output Layer 

         
        sum =0; 
        for j=1:rules 
            sum = sum + (inflay(j)* v(j)); 
        end 
        out(k)=sum; 

         
        err=0; 
err = (y(k)-out(k)); 
        errorsig(k) = err; 
%          err2  = err * out(k) * (1-out(k)); 
        % --------------------- ERROR CHECK ------------------------------ 
        many = 0;      

         
        if( abs(err) < maxError) 
            many = many+1; 
            % fprintf('\n the process converged successfully') 

             
        else 
ierr = 0; 
            for j=1:rules 
%                 ierr(j) =  (err*v(j)); 
                  ierr(j) = err; 



            end 
ferrsum=0; 
            for j=1:rules 
                for i=1:leftinp 
                end 
            end 
   % ----- Input layer Error 
            inerrsum1 = 0; 
            for i = 1:leftinp 
                for j =1:rules 

                     
                    inerrsum1(i,j) = err * inflay(j)* v(j) * inplay(i,j)* 

abs(inplay(i,j))^(l(i,j)-2); 

                    
                end 
            end          
%------- Updating First Layer weights ---------------------------- 

             
            for i = 1:leftinp 
                for j=1:rules                     
                    w1(i,j) = w1(i,j) - (eta* inerrsum1(i,j) * ins(i,k)) ; 
                    if(w1(i,j) > 50) 
                        w1(i,j) = 50; 
                    end 
                    if(w1(i,j) < -50) 
                        w1(i,j) = -50; 
                    end 
                end 
            end 

             
            for i = 1:leftinp 
                for j=1:rules 
                    w0(i,j) = w0(i,j) - (eta* inerrsum0(i,j)) ; 
                    if(w0(i,j) > 50) 
                        w0(i,j) = 50; 
                    end 
                    if(w0(i,j) < -50) 
                        w0(i,j) = -50; 
                    end 
                end 
            end 
for j=1:rules 
%                 v(j) = v(j) + (0.01 * err * inflay(j));  
                  v(j) = v(j) + (0.01 * err * inflay(j)*inflay(j)); 
            end 
end 
if(y(k) > 0) 
         mape(t)  = mape(t) + abs((y(k) - out(k))/y(k)); 
        end 
        mape(t) = (mape(t)*100)/datasets; 
    end 
    %PI(t) = sqrt(Nsum)/Dsum; 
    plot(t,mape(t)); 
end 

 

for k=1:datasets 

  
        fuzlay = 0; 
        inflay = 0; 



         
        % ---------------------Fuzzification Layer 

         
        for i=1:leftinp 
            for j=1:rules 
                fuzlay(i,j)= (exp(-((abs( w0(i,j)+(ins(i,k)*w1(i,j)) 

))^l(i,j)))); 
            end 
        end 

  
        % ---------------------Inference Layer 

         
        for j=1:rules 
            mult = 1; 
            for i=1:leftinp 
                mult = mult * fuzlay(i,j);      
            end 
            inflay(j) = mult; 
        end 

         
        %-----------------------Output Layer 

         
        sum =0; 
        for j=1:rules 
            sum = sum + (inflay(j)* v(j)); 
        end 
        out(k)=sum; 
        % ----------------------- ERROR CALCULATION -----------------------

- 
        %         Nsum =  Nsum +(y(k) - out(k))^2; 
        %         Dsum = Dsum + abs(y(k)) ; 
        %         err = ((y(k)-out(k)))/y(k); 

         
        %             PI(k) = sqrt(Nsum)/Dsum;   Performance Index 
        %         hold on 
        %             plot(k,PI(k),'.'); 
        err=0; 
        err = (y(k)-out(k)); % Error propagation   *out(k)*(1-out(k)) 
        errorsig(k) = err; 

        
end 

 
plot(y,'b'); 
    hold on 
plot(out,'r'); 

     
    mape = 0; 
    for k=1:datasets 
        if(y(k) > 0) 
         mape  = mape + abs((y(k) - out(k))/y(k)); 
        end 
    end 

     
    fprintf(' mape = %f \n\n',(100*mape)/datasets); 

 

 

 



MATLAB PROGRAM TO IMPLEMENT FUZZY-LOGIC CONTROLLER 

liv=7; 

  
% STANDARD DEVIATION OF INPUT CURVES 
sigma=[0.35 0.1 0.04 0.013 0.04 0.1 0.35; 
       0.141 0.141 0.12 0.05 0.12 0.141 0.141]; 
sigmau=[0.141 0.142 0.1 0.007 0.1 0.142 0.141]; 

  
% CENTERS OF INPUT CURVES 
% ctrs=[-100 -25 -10 0.0 10 25 100; 
%       -100 -66 -20 0.0 20 66 100]; 
% ctru = [-200 -114 -30 0.0 30 114 200]; 

  
ctrs=[-1.0 -0.25 -0.1 0.0 0.1 0.25 1.0; 
      -1.0 -0.66 -0.2 0.0 0.2 0.66 1.0]; 
ctru = [-1.0 -0.57 -0.15 0.0 0.15 0.57 1.0]; 

  
% GENERATING GAUSSIAN MEMBERSHIP FUNCTIONS 

  
for i=1:2 
    for j=1:liv 
         mi(i,j)= exp((-((u(i)-ctrs(i,j))^2))/(2*((sigma(i,j)^2)))); 
    end 

          
end 

  
% AND METHOD OF EVALUATION 
for j=1:liv 
        for k=1:liv    
            miinf(j,k) = min(mi(1,j),mi(2,k)); 
          %  mu(j,k,i)= exp((-((u(i)-ctrs(i,k))^2))/(2*((sigma(i,k)^2)))); 
        end 
end 
%RULE BASE 
rij=[1 1 1 1 2 3 4; 
    1 1 1 2 3 4 5; 
    1 1 2 3 4 5 6; 
    1 2 3 4 5 6 7; 
    2 3 4 5 6 7 7; 
    3 4 5 6 7 7 7; 
    4 5 6 7 7 7 7]; 

  
% AGGREGATION 
agg=zeros(1,7); 
i=0; 
hold on 
for j=1:liv 
    maxm=0; 
    for k=1:liv 
        for l=1:liv 
            if(rij(k,l)==j) 
                maxm = max(maxm,miinf(k,l)); 
               i=i+1; 
               plot(i,miinf(k,l),'.'); 
            end 
        end 
    end 
agg(j) = maxm; 



end 

  
% DEFUZZIFICATION 
num=0; 
den=0; 
for j=1:liv 
        num = num + (agg(j)*ctru(j));   
        den = den + agg(j); 
end 
deout = num/den; 
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