Chapter 1
 INTRODUCTION
[image: image1.png]. Oracle Enterprise Manager Console Administrator: SYSMAN Management Server:stc-sun04.us.oracle.com

guration Help QRACLE

sehamager

General

2 ——

Host: ste-sun3.us.oracle.com

| pre— [Tuning Session] - Oracle Expert

0 e e v (B e e ST o
£ @amstu -

- orewond S | X B x|
500 Dabase

| 5@ dattusoncecon
HTTP Serverg 23 0L HistoySession S

4G Turing Session 9

[hen Sesions 7 Check orIntance Optiizaons

£ ed2us oacle.com
{2 50L History Session T~ Check for 5L Reuse Opportunities

Turing Session
omsl workd I~ Check for Appropiate Space Mansgement

2 orclwoid

[—Cnnnecﬂnn Information

Groups Soope | otec| Reviw | Resomendstions | S|

Turing Session Cheracterstics

™ Check forOptinal Dt Acoess ... =

oo compretensive ndey)

alifcn o 50s [efeenzed by Baaie Toeises Bl L a0 |
st o SO sieterierts PeakLogcaWiteRate [Vodun =]

oo compreliensive ey
©alisfcr criBHEs Vol Aoty

Foms Appiications Used: [N <

“

D s i Comprehensive Ansbs: [72-

)

For Help press F1

gstart| _yCAWINN.. |) sto-sunta...| (] Evplring .| 5 My Yahoo.. | [E]Mistasolt... | 18 DrackeErt..| B Paint Sho... [IONew Se... | <0 P Hciedap 3 Shiei s 0208PM

[image: image10.wmf]Oracle

database

Report

SCRIPT

S

SCRIPT

S

Scripts

Scripts

Stored

package

 Repository

V$ views

1 Performance Tuning Overview
This chapter provides an introduction to performance tuning and contains the following sections:

· Introduction to Performance Tuning
· Introduction to Performance Tuning Features and Tools
1.1 Introduction to Data Base Performance Tuning
Performance Tuning is the improvement of system performance. This is typically a computer application, but the same methods can be applied to economic markets, bureaucracies or other complex systems. The motivation for such activity is called a performance problem, which can be real or anticipated. Most systems will respond to increased load with some degree of decreasing performance. A system's ability to accept higher load is called scalability, and modifying a system to handle a higher load is synonymous to performance tuning

One should do Performance tuning for the following reasons:

*The speed of computing might be wasting valuable human time (users waiting for response)

*Enable your system to keep-up with the speed business is conducted;
*Optimize hardware usage to save money (companies are spending millions on hardware).
Who tunes?

· Application Designers

· Application Developers

· Database Administrators

· System Administrators

This guide provides information on tuning an Oracle Database system for performance. Topics discussed in this guide include:

· Performance Planning
· Instance Tuning
· SQL Tuning
1.1.1 Performance Planning
"Performance Planning". Based on years of designing and performance experience, Oracle has designed a performance methodology. This brief section explains clear and simple activities that can dramatically improve system performance. It discusses the following topics:

· Understanding Investment Options
· Understanding Scalability
· System Architecture
· Application Design Principles
· Workload Testing, Modeling, and Implementation
· Deploying New Applications
1.1.2 Instance Tuning
"Optimizing Instance Performance" of this guide discusses the factors involved in the tuning and optimizing of an Oracle database instance.

When considering instance tuning, care must be taken in the initial design of the database system to avoid bottlenecks that could lead to performance problems. In addition, you need to consider:

· Allocating memory to database structures

· Determining I/O requirements of different parts of the database

· Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you need to monitor the database as it is running to check for performance-related problems.

1.1.3 SQL Tuning

"Optimizing SQL Statements" of this guide discusses the process of tuning and optimizing SQL statements.

Many client/server application programmers consider SQL a messaging language, because queries are issued and data is returned. However, client tools often generate inefficient SQL statements. Therefore, a good understanding of the database SQL processing engine is necessary for writing optimal SQL. This is especially true for high transaction processing systems.

Typically, SQL statements issued by OLTP applications operate on relatively few rows at a time. If an index can point to the exact rows that are required, then Oracle can construct an accurate plan to access those rows efficiently through the shortest possible path.
1.2 Performance Principles
Performance tuning requires a different, although related, method to the initial configuration of a system. Configuring a system involves allocating resources in an ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the appropriate changes to reduce or eliminate the effect of that bottleneck. Usually, tuning is performed reactively, either while the system is preproduction or after it is live.

1.2.1 Baselines
The most effective way to tune is to have an established performance baseline that can be used for comparison if a performance issue arises. Most database administrators (DBAs) know their system well and can easily identify peak usage periods. For example, the peak periods could be between 10.00am and 12.00pm and also between 1.30pm and 3.00pm. This could include a batch window of 12.00am midnight to 6am.

It is important to identify these peak periods at the site and install a monitoring tool that gathers performance data for those high-load times. Optimally, data gathering should be configured from when the application is in its initial trial phase during the QA cycle. Otherwise, this should be configured when the system is first in production.

Ideally, baseline data gathered should include the following:
· Application statistics (transaction volumes, response time)

· Database statistics

· Operating system statistics

· Disk I/O statistics

· Network statistics

.

1.2.2 The Symptoms and the Problems

A common pitfall in performance tuning is to mistake the symptoms of a problem for the actual problem itself. It is important to recognize that many performance statistics indicate the symptoms, and that identifying the symptom is not sufficient data to implement a remedy. For example:

· Slow physical I/O

Generally, this is caused by poorly-configured disks. However, it could also be caused by a significant amount of unnecessary physical I/O on those disks issued by poorly-tuned SQL.

· Latch contention

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch contention usually is resolved through application changes.

· Excessive CPU usage

Excessive CPU usage usually means that there is little idle CPU on the system. This could be caused by an inadequately-sized system, by untuned SQL statements, or by inefficient application programs.
1.2.3 Query Optimizer and Execution Plans
When a SQL statement is executed on an Oracle database, the Oracle query optimizer determines the most efficient execution plan after considering many factors related to the objects referenced and the conditions specified in the query. This determination is an important step in the processing of any SQL statement and can greatly affect execution time.

During the evaluation process, the query optimizer reviews statistics gathered on the system to determine the best data access path and other considerations. You can override the execution plan of the query optimizer with hints inserted in SQL statement

1.3 When to Tune?
There are two distinct types of tuning:

· Proactive Monitoring
· Bottleneck Elimination
 Proactive Monitoring

Proactive monitoring usually occurs on a regularly scheduled interval, where a number of performance statistics are examined to identify whether the system behavior and resource usage has changed. Proactive monitoring can also be considered as proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless the monitoring exposes a serious problem that is developing. In some situations, experienced performance engineers can identify potential problems through statistics alone, although accompanying performance degradation is usual.

Experimenting with or tweaking a system when there is no apparent performance degradation as a proactive action can be a dangerous activity, resulting in unnecessary performance drops. Tweaking a system should be considered reactive tuning, and the steps for reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource consumption is examined to see changes in the way the application is being used, and the way the application is using the database and host resources.
Bottleneck Elimination

Tuning usually implies fixing a performance problem. However, tuning should be part of the life cycle of an application—through the analysis, design, coding, production, and maintenance stages. Oftentimes, the tuning phase is left until the system is in production. At this time, tuning becomes a reactive fire-fighting exercise, where the most important bottleneck is identified and fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the elapsed time for an operation to complete. Either way, the goal is to improve the effective use of a particular resource. In general, performance problems are caused by the over-use of a particular resource. That resource is the bottleneck in the system. There are a number of distinct phases in identifying the bottleneck and the potential fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by making changes in the following places:

· Changes in the application, or the way the application is used

· Changes in Oracle

· Changes in the host hardware configuration
1.4 Introduction to Performance Tuning Features and Tools
Effective data collection and analysis is essential for identifying and correcting performance problems. Oracle provides a number of tools that allow a performance engineer to gather information regarding database performance. In addition to gathering data, Oracle provides tools to monitor performance, diagnose problems, and tune applications.

The Oracle gathering and monitoring features are mainly automatic, managed by an Oracle background processes. To enable automatic statistics collection and automatic performance features, the STATISTICS_LEVEL initialization parameter must be set to TYPICAL or ALL. You can administer and display the output of the gathering and tuning tools with Oracle Enterprise Manager, or with APIs and views. For ease of use and to take advantage of its numerous automated monitoring and diagnostic tools, Oracle Enterprise Manager Database Control is recommended.

1.5 Oracle Methodology

System performance has become increasingly important as computer systems get larger and more complex as the Internet plays a bigger role in business applications. In order to accommodate this, Oracle has produced a performance methodology based on years of designing and performance experience. This methodology explains clear and simple activities that can dramatically improve system performance.

Performance strategies vary in their effectiveness and systems with different purposes—such as operational systems and decision support systems—require different performance skills. This book examines the considerations that any database designer, administrator, or performance expert should focus their efforts on. System performance is designed and built into a system. It does not just happen.Performance problems are usually the result of contention for, or exhaustion of, some system resource. When a system resource is exhausted, the system is unable to scale to higher levels of performance. This new performance methodology is based on careful planning and design of the database, to prevent system resources from becoming exhausted and causing down-time. By eliminating resource conflicts, systems can be made scalable to the levels required by the business

1.5.1 Overview of Oracle Expert Tuning Methodology

· Tuning Methodology

· Specify tuning scope

· Collect data

· View and edit data and rules

· Analyze data

· Review recommendations

· Implement recommendations
1.5.2 Tuning using Oracle Expert
[image: image13.wmf]Oracle

database

report.txt

1

4

5

6

11:00 am

2:00 pm

utlbstat.sql

utlestat.sql

3

2

Tuning can be divided into different phases:
•Application design and programming

•Database configuration

•Adding a new application to an existing database

•Troubleshooting and tuning
 Tuning goals are usually specified in terms of:

•Minimizing response time

•Increasing throughput

•Increasing load capabilities

•Decreasing recovery time
Chapter[image: image11.wmf]Oracle

database

report.txt

1

4

5

6

11:00 am

2:00 pm

utlbstat.sql

utlestat.sql

3

2

 2 STATISTICAL TOOLS: STATSPACK

[image: image12.wmf]Oracle

database

Report

SCRIPT

S

SCRIPT

S

Scripts

Scripts

Stored

package

 Repository

V$ views

2.1. STATSPACK Tools

· Provides the following benefits:

· Ease of use: is simple to use to gather statistics
· Cost: is free with Oracle9i (requires no additional licensing fees)
· Historical snapshots: captures and stores every reading in its repository for future comparisons and trend analysis
· Reports: provides reports that are well organized and formatted
· Procedure and scripts: provides several procedures for administering the repository of this tool
· Multiple databases: supports more than one database

The STATSPACK schema contains several control tables. The stats$ parameter tables controls the thresholds for collection of detailed information, and a table called stats$ level_ description provides information regarding the level of detail collected with a snapshot.

The main anchor for STATSPACK is the table called stats $ snapshot. This table contains the snapshot ID for all of the subordinate tables and the snap_ time indicating when the snapshot was taken. Oracle also implements all of the subordinate tables with referential integrity, using the on cascade delete option. This means that the stats$ snapshot table can be deleted in order to delete rows from all of the subordinate tables after they have passed their useful lives within the database. Underneath the stats$ snapshot table, we see several categories of system tables. These categories include event tables, parallel server tables, SGA summary tables, system tables, and transaction tables:

· Event tables—These tables contain information about system, session, and idle events within the Oracle region.

· Parallel server tables—These tables are used in an OPS environment to store information about row caching in the Integrated Distributed Lock Manager (IDLM), as well as SGA information.

· SGA summary tables—These tables store information about latches, SGA statistics, SQL statements, and the background events within Oracle.
· System tables—The system table section of the STATSPACK utility contains information on enqueue stats, waits stats, latch stats, as well as system and session statistics, including information on the library cache and rollback statistics.

· Transaction tables—The STATSPACK transaction tables contain information about the buffer pool, the buffer pool statistics, and most importantly, the I/O activity against every file within the system.

Taken together, these 25 STATSPACK tables provide a huge amount of information regarding the performance of the Oracle database. It is the challenge of the Oracle administrator to understand these tables and the value of the information they contain and then to understand how to apply this information to their own performance-tuning needs.

Towards an expert system for automated tuning analysis
A work-in-progress, the StatspackAnalyzer tool is already the best STATSPACK analyzer in the world, and we hope to continue to expand and refine the decision rules as the site sponsors get feedback from actual users and DBA's.
The Statspack Analyzer already does an excellent job of locating obvious bottlenecks for server resources (disk, RAM, CPU, Network) and it has many sophisticated decision rules for analysis of Oracle internal performance
As the the Statspack Analyzer effort gains momentum, the team of experts will continuously refine and expand the decision rules, working towards a software solution that will mimic the analysis of a human expert.
The web site (www.statspackanalyzer.org), is the result of hundreds of hours of work by a consortium of Oracle performance tuning experts, all working to create valid decision rules that might be applied to any time-series Oracle report
· File-level statistics—As mentioned, the STATSPACK stats$filestatxs table contains I/O data collected by snapshots taken at consistent intervals. I/O data captured includes the actual number of physical reads, physical writes, block reads, block writes, and the time required for each operation.

· Disk-level statistics—By extending STATSPACK to capture disk I/O from the UNIX iostat command and placing the data in a newly created STATSPACK extension table (stats$iostat), we create a repository for expanded data reporting. The stats$iostat table will contain overall disk-level read and write information with corresponding timestamps. Using a script, we call get_iostat.ksh, and we collect the disk-level information displayed by the iostat command at regular intervals and insert it into the stats$iostat table.

The STATSPACK data can also be summarized by day of the week to show overall trend on a daily basis. The script shown below to aggregate the average daily data buffer hit ratio.

2.2 Understanding the STATSPACK features:

The best feature of STATSPACK is that it stores Oracle performance information in a set of 25 tables that can be used to develop historical trends. By interrogating these tables, Oracle professionals can gain tremendous insight into the relative performance of their databases.

The STATSPACK utility is the evolution of Oracle's utlbstat.sql and utlestat.sql utilities. In Oracle7, these utilities were used to gather an elapsed time report of Oracle performance. In Oracle8, this concept has been enhanced by STATSPACK to allow for the capture of the elapsed time report into a set of tables. As seem below, the 25 STATSPACK tables provide a complete picture of everything that's going on within the Oracle database.

Install and configure STATSPACK for peak performance
*Extend STATSPACK to capture server statistics
*Tune the server environment, including the CPU and RAM
*Configure your Oracle database for better network performance
 *Monitor and tune the disk I/O subsystem
*Detect and correct instance performance problems
 *Tune Oracle database tables and indexes
*Locate and tune SQL statements
 *Tune with Oracle parallel query and parallel DML
 *Perform trend analysis with STATSPACK data
STATSPACK INSTALLATION
•Installation of Statspack using the spcreate.sql script
•Collection of statistics execute statspack.snap
•Automatic collection of statistics using the spauto.sql script
•Produce a report using the spreport.sql script
•To collect timing information, set
TIMED_STATISTICS = True
2.3 How STATSPACK works
The Oracle STATSPACK utility was the natural outgrowth of Oracle's earlier utilities that compared beginning snapshots with ending snapshots. The original script called for utlbstat.sql and utlestat.sql. The only shortcoming to using these utilities was that the output from the elapsed time report was not stored in any type of Oracle table, and it was cumbersome to compare elapsed-time reports. Starting with STATSPACK in Oracle 8.1.6, the STATSPACK utility can take the output of elapsed-time reports and store the results in Oracle tables, where they can be used for time-series analysis. The STATSPACK tables are easy to create and define, and it's also easy to set up collection mechanisms for your Oracle system STATSPACK data can also produce wonderful trend reports.
Use the Oracle STATSPACK utility as the foundation for a comprehensive Oracle tuning environment. Officially authorized by Oracle Corporation, Oracle High-Performance Tuning with STATSPACK explains how to use this powerful tool to diagnose--and optimize—system performance. You'll get full details on server, network, and disk tuning, as well as instance, object, and SQL tuning. Plus, the book contains ready-to-use STATSPACK scripts throughout. Make informed performance and tuning decisions for your system based on the data you collect with Oracle STATSPACK
Information found in the remainder of the document:

•Complete list of wait events

•Information on SQL statements currently in the pool

•Instance activity statistics

•Tablespace and file I/O

•Buffer pool statistics Information found in the remainder of the document:

•Rollback or undo segment statistics

•Latch activity

•Dictionary cache statistics

•Library cache statistics

•System Global Area (SGA) statistics
2.4 STATSPACK Architecture

 (STATSPACK Oracle Data base architecture model)

STATISTICS TOOLS UTLBSTAT/UTLESTAT

The data collection mechanism for STATSPACK corresponds closely with the behavior of the utlbstat.sql and utlestat.sql (commonly called BSTAT-ESTAT) utilities that have been used for many years with Oracle. As we may recall from many years of using BSTAT-ESTAT, the utility samples data directly from the v$ views. If we look inside utlbstat.sql, we see the SQL that samples directly from the view:

utlbstat.sql insert into stats$begin_stats select * from v$sysstat;

utlestat.sql insert into stats$end_stats select * from v$sysstat;

It is critical to your understanding of the STATSPACK utility that you realize that the information captured by a STATSPACK snapshot are accumulated values. The information from the v$ views collects database information at startup time and continues to add to the values until the instance is shut down
The report includes statistical readings in this specific order:

· Library cache

· Sessions and users

· System statistics

· System events

· Wait events

· Latch statistics

· Rollback segments statistics

· Modified initialization parameters

· Data dictionary

· Tablespace statistics
Chapter 3 STATSPACK VIEWS & SCRIPTS

3.1 STATSPACK Scripts

Overview of the STATSPACK Scripts

The STATSPACK scripts have completely changed. All of the STATSPACK scripts are located in the $ORACLE_HOME/rdbms/admin directory.

	Oracle 8.1.7 and Oracle9i Script Name
	Pre Oracle 8.1.7 Script Name
	Script Function

	 spdoc.txt
	statspack.doc
	Installation documentation

	 spcreate.sql
	statscre.sql
	Create user, tables & install packages

	 spreport.sql
	statsrep.sql
	Standard STATSPACK report

	 spauto.sql
	statsauto.sql
	Schedule automatic data collection

	 spuexp.par
	statsuexp.par
	Parameter file for full STATSPACK export

	 sppurge.sql
	- new file -
	Purge SQL for removing old snapshots

	 sptrunc.sql
	- new file -
	Script to truncate all STATSPACK tables

	 spup816.sql
	- new file -
	Upgrade script to moving to 8.1.6

	 spup817.sql
	- new file -
	Upgrade script to moving to 8.1.7

	 spdrop.sql
	statsdrp.sql
	Script to drop all STATSPACK tables

	 spcpkg.sql
	statspack.sql
	Script to create statspack package

	 spctab.sql
	statsctab.sql
	Creates STATSPACK tables

	 spcusr.sql
	statscusr.sql
	Creates STATSPACK user & assigns grants

	 spdtab.sql
	statsdtab.sql
	Drops all STATSPACK tables

	 spdusr.sql
	statsdusr.sql
	Drops the statspack user

Next, let’s take a closer look at these scripts and see details on how to install STATSPACK. Because of the differences between versions, we will have two sections: one for pre-8.1.7 and another for Oracle 8.1.7 and Oracle9i STATSPACK.

STATSPACK scripts for post 8.1.6 STATSPACK
You can see all of the scripts by going to the $ORACLE_HOME/rdbms/admin directory and listing all files that begin with “sp”:

>cd $ORACLE_HOME/rdbms/admin
server1*db01-/u01/app/oracle/product/8.1.6_64/rdbms/admin

>ls -al sp*

-rw-r--r-- 1 oracle oinstall 1771 May 10 2001 spauto.sql
-rw-r--r-- 1 oracle oinstall 82227 May 10 2001 spcpkg.sql
-rw-r--r-- 1 oracle oinstall 877 May 10 2001 spcreate.sql
-rw-r--r-- 1 oracle oinstall 42294 May 10 2001 spctab.sql
-rw-r--r-- 1 oracle oinstall 7949 May 10 2001 spcusr.sql
-rw-r--r-- 1 oracle oinstall 69074 May 10 2001 spdoc.txt
-rw-r--r-- 1 oracle oinstall 758 May 10 2001 spdrop.sql
-rw-r--r-- 1 oracle oinstall 4342 May 10 2001 spdtab.sql
-rw-r--r-- 1 oracle oinstall 1363 May 10 2001 spdusr.sql
-rw-r--r-- 1 oracle oinstall 7760 May 10 2001 sppurge.sql
-rw-r--r-- 1 oracle oinstall 113753 May 10 2001 sprepins.sql
-rw-r--r-- 1 oracle oinstall 1284 May 10 2001 spreport.sql
-rw-r--r-- 1 oracle oinstall 26556 May 10 2001 sprepsql.sql
-rw-r--r-- 1 oracle oinstall 2726 May 10 2001 sptrunc.sql
-rw-r--r-- 1 oracle oinstall 588 May 10 2001 spuexp.par
-rw-r--r-- 1 oracle oinstall 30462 May 10 2001 spup816.sql
-rw-r--r-- 1 oracle oinstall 23309 May 10 2001 spup817.sql
Let's begin by reviewing the functions of each of these files. Several of the files call subfiles, so it helps if we organize the files as a hierarchy:

 spcreate.sql This is the first install script run after you create the tablespace. It calls several subscripts:

 spcsr.sql This script creates a user called PERFSTAT with the required permissions.

 spctab.sql This creates the STATSPACK tables and indexes, owned by the PERFSTAT user.

 spcpkg.sql This creates the PL/SQL package called STATSPACK with the STATSPACK procedures.
 spauto.sql This script contains the dbms_job.submit commands that will execute a STATSPACK snapshot every hour.

 spdrop.sql This script is used to drop all STATSPACK entities. This script calls these subscripts:

 spdtab.sql This drops all STATSPACK tables and indexes.

 spdusr.sql This script drops the PERFSTAT user.

 spdoc.txt This is a generic read-me file explaining the installation and operation of the STATSPACK utility.

 spreport.sql This is the shell for the only report provided in STATSPACK. It prompts you for the start and end snapshots, and then produces an elapsed-time report.

 sprepins.sql This is the actual SQL that produces the STATSPACK report.

 sppurge.sql This is a script to delete older unwanted snapshots.

 spuexp.par This is a export parameter file to export all of the STATSPACK data.

 sptrunc.sql This is a script to truncate all STATSPACK tables.

 spup816.sql This is a script to upgrade pre-8.1.7 STATSPACK tables to use the latest schema. Note that you must export the STATSPACK schema before running this script.

 spup817.sql This is a script to upgrade to Oracle 8.1.7 from Oracle 8.1.6.

3.2 Installation procedures

Step 1: Create the perfstat Tablespace

The STATSPACK utility requires an isolated tablespace to contain all of the objects and data. For uniformity, it is suggested that the tablespace be called perfstat, the same name as the schema owner for the STATSPACK tables. Note that I have deliberately not used the AUTOEXTEND option. It is important for the Oracle DBA to closely watch the STATSPACK data to ensure that the stats$sql_summary table is not taking an inordinate amount of space

Next, we create a tablespace called perfstat with at least 180 megabytes of space in the datafile:

>sqlplus /

SQL*Plus: Release 8.1.6.0.0 - Production on Tue Dec 12 14:08:11 2000

Connected to:
Oracle8i Enterprise Edition Release 8.1.6.1.0 - 64bit Production
With the Partitioning option
JServer Release 8.1.6.1.0 - 64bit Production

SQL> create tablespace perfstat
 2 datafile '/u03/oradata/prodb1/perfstat.dbf'
size 500m;

1 Step 2: Run the create Scripts

Now that the tablespace exists, we can begin the installation process of the STATSPACK software.

Because of the version differences, we will break this section into one for pre-8.1.7 installation and another for post-8.1.7 installs.

1.1 Run the pre-8.1.7 install scripts

The statscre.sql script creates a user called PERFSTAT, executes the script to create all of the STATSPACK tables, and installs the STATSPACK PL/SQL package. When you run this script, you will be prompted for the following information:

 Specify PERFSTAT user's default tablespace: perfstat

 Specify PERFSTAT user's temporary tablespace: temp

 Enter tablespace where STATSPACK objects will be created: perfstat

1.2 Install Prerequisites

Note that you must have performed the following before attempting to install STATSPACK:

1. Run catdbsyn.sql when connected as SYS.

2. Run dbmspool.sql when connected as SYS.

3. Allocate a tablespace called perfstat with at least 180 megabytes of storage.

NOTE: The STATSPACK scripts are designed to stop whenever an error is encountered. The statsctab.sql script contains the SQL*Plus directive whenever sqlerror exit;. This means that the script will cease execution if any error is encountered. If you encounter an error and you need to restart the script, just comment out the whenever sqlerror exit line and run the script again. Also, note that the STATSPACK install script contains SQL*Plus commands. Hence, be sure you run it from SQL*Plus and do not try to run it in SVRMGRL or SQL*Worksheet.

Once you have completed running the spcreate.sql script, you will need to ensure that you do not have errors. The STATSPACK utility creates a series of files with the .lis extension as shown here:

prodb2-/u01/app/oracle/product/8.1.6_64/rdbms/admin

>ls -al *.lis
-rw-r--r-- 1 oracle oinstall 4170 Dec 12 14:28 spctab.lis
-rw-r--r-- 1 oracle oinstall 3417 Dec 12 14:27 spcusr.lis
-rw-r--r-- 1 oracle oinstall 201 Dec 12 14:28 spcpkg.lis
To check for errors, you need to look for any lines that contain “ORA-” or the word “error”, since the presence of these strings indicates an error. If you are using Windows NT, you can check for errors by searching the output file in MS Word. However, most Oracle administrators on NT get a freeware grep for DOS, which is readily available on the Internet.

The code here shows the UNIX grep commands that are used to check for creation errors.

mysid-/u01/app/oracle/product/9.0.2/rdbms/admin> grep ORA- *.lis

mysid-/u01/app/oracle/product/9.0.2/rdbms/admin> grep -i error *.lis

spctab.lis:SPCTAB complete. Please check spctab.lis for any errors.
spcusr.lis:STATSCUSR complete. Please check spcusr.lis for any errors.
spcpkg.lis:No errors.
Now that we have installed the user, tables, indexes, and the package, we are ready to start collecting STATSPACK data. We will begin by testing the STATSPACK functionality and then schedule a regular STATSPACK collection job.

2 Step 3: Test the STATSPACK Install

To ensure that everything is installed correctly, we can demand two snapshots and then request an elapsed-time report. To execute a STATSPACK snapshot, we enter the statspack.snap procedure. If we do this twice, we will have two snapshots, and we can run the statsrep.sql report to ensure that everything is working properly. Here is the test to ensure that the install works properly. If you get a meaningful report after entering statsrep, then the install was successful. Also, note that the statsrep.sql script has an EXIT statement, so it will return you to the UNIX prompt when it has completed:

SQL> execute statspack.snap
PL/SQL procedure successfully completed.
SQL> execute statspack.snap
PL/SQL procedure successfully completed.
SQL> @spreport
. . .

3 Step 4: Schedule Automatic STATSPACK Data Collections

Now that we have verified that STATSPACK is installed and working, we can schedule automatic data collection. By using the statsauto.sql script we can automatically schedule an hourly data collection for STATSPACK. The statsauto.sql script contains the following directive:

SQL> execute dbms_job.submit(:jobno, 'statspack.snap;',
trunc(sysdate+1/24,'HH'), 'trunc(SYSDATE+1/24,''HH'')', TRUE, :instno);
The important thing to note in this call to dbms_job.submit is the execution interval. The SYSDATE+1/24 is the interval that is stored in the dba_jobs view to produce hourly snapshots. You can change this as follows for different sample times. There are 1,440 minutes in a day, and you can use this figure to adjust the execution times.

Table 1 gives you the divisors for the snapshot intervals.

	3.1.1 Minutes per Day
	3.1.2 Minutes between Snapshots
	3.1.3 Required Divisor

	1,440
	60
	24

	1,440
	30
	48

	1,440
	10
	144

	1,440
	5
	288

Table 1: Determining the Snapshot Interval

Hence, if we want a snapshot every ten minutes we would issue the following command:

SQL> execute dbms_job.submit(:jobno, 'statspack.snap;',
trunc(sysdate+1/144,'MI'), 'trunc(SYSDATE+1/144,''MI'')', TRUE, :instno);
In the real world, you may have times where you want to sample the database over short time intervals. For example, if you have noticed that a performance problem happens every day between 4:00 p.m. and 5:00 p.m., you can request more frequent snapshots during this period.

For normal use, you probably want to accept the hourly default and execute a snapshot every hour. Below is the standard output from running the statsauto.sql script:

SQL> connect perfstat/perfstat;
Connected.
SQL> @statsauto
PL/SQL procedure successfully completed.

Job number for automated statistics collection for this instance
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note that this job number is needed when modifying or removing
the job:

      JOBNO
----------
         1

Job queue process
~~~~~~~~~~~~~~~~~
Below is the current setting of the job_queue_processes init.ora
parameter - the value for this parameter must be greater
than 0 to use automatic statistics gathering:

NAME TYPE VALUE
------------------------------------ ------- -----------------------------
job_queue_processes integer 1

Next scheduled run
~~~~~~~~~~~~~~~~~~
The next scheduled run for this job is:

       JOB NEXT_DATE NEXT_SEC
---------- --------- --------
         1 12-MAY-02 16:00:00
We can now see that a STATSPACK snapshot will automatically be executed every hour. We see that this is scheduled as job number 1, and we can use this job number to cancel this collection at any time using the dbms_job.remove procedure:

SQL> execute dbms_job.remove(1);

PL/SQL procedure successfully completed.
Oracle STATSPACK reports are inherently complex and many of their metrics are convoluted and completely undocumented.  
Nevertheless, STATSPACK (and the Oracle 10g AWR reports) and the de-facto standard for Oracle tuning tools, and all Oracle professionals should understand how to use STATSPACK reporting tools.
This script will prompt you for the snapshot to remove and then issue the appropriate SQL to remove the specified snapshot.  When sppurge.sql is executed, all available snapshots are displayed. You are then prompted for the low Snap Id and high Snap Id. All snapshots which fall within this range will be purged. Note that purging may require the use of a large rollback segment, as all data relating each snapshot to be purged will be deleted. You can get around the issue by issuing the alter session set rollback segment command before running sppurge.sql. The example below shows a sample execution of this script:

SQL> connect perfstat/perfstat
Connected.

SQL> set transaction use rollback segment big_rbs;
Session altered.

SQL> @$ORACLE_HOME/rdbms/admin/spurge

Manually removing STATSPACK snapshots
 
Fortunately, STATSPACK uses foreign-key referential integrity constraints with the ON CASCADE DELETE option. This means that all information for a given snapshot can be deleted by deleting the corresponding stats$snapshot record. For example, suppose that you wanted to delete all snapshots for 2002, and these were snapshots that have a snap_id of less than 10,000. The following DELETE would remove all of these snapshots, and all subordinate detail rows:
 
SQL > delete from stats$snapshot where snap_id < 10000;
28923563 rows deleted.
  For example, you might want to keep all of the system statistics and delete all of the SQL statements that were more than six months old. In this case, you could selectively remove the rows from stats$sql_summary:

SQL > delete from stats$sql_summary where snap_time < sysdate - 180;
2888363 rows deleted.

 Removing ranges of snapshots
The STATSPACK utility provides a batch mode purging function. To run the sppurge.sql script in batch mode, you must assign SQL*Plus variables to identify the low snapshot and the high snapshot for purging.


#!/bin/ksh

# First, we must set the environment . . . .
ORACLE_SID=$1
export ORACLE_SID
ORACLE_HOME=`cat /etc/oratab|grep ^$ORACLE_SID:|cut -f2 -d':'`
export ORACLE_HOME
PATH=$ORACLE_HOME/bin:$PATH
export PATH

$ORACLE_HOME/bin/sqlplus system/manager<<! 
select * from v\$database;
connect perfstat/perfstat
define losnapid=$2
define hisnapid=$3
@sppurge
exit
!

3.3 STATSPACK –Statistics Level
STATSPACK supports several levels of statistics collection. The levels are listed here with a   description of the information each captures:

· Level 0: general statistics, including rollback segment, row cache, SGA, system events, background events, session events, system statistics, wait statistics, lock statistics, and latch information

· Level 5: high resource usage SQL statements, along with all data captured by lower levels

· Level 6: SQL plan and SQL plan usage information for high resource usage SQL statements, along with all data captured by lower levels          

· Level 7: segment-level statistics, including logical and physical reads, row lock, and buffer busy waits, along with all data captured by lower levels  

· Level 10: child latch statistics, along with all data captured by lower levels        
                            [image: image2.jpg]move Outliers ] Piot Delr.

/,5\

[ Generate Trandiine Averages ® Day of We

HOM wwwion-dba.com

nteligent Tuning
ByDesign

physical reads

1,610,000,000

1,600,000,000

Value

1,590,000,000
1,580,000,000

1,570,000,000

Series Name. X
1,578,055,24

/ 1,584,086,21
v 1,595,850,80
day 1,607,271,88
sy 1,616,324,05




          

The Ion tool is the easiest way to display STATSPACK and AWR data in Oracle and Ion is inexpensive and allows you to spot hidden STATSPACK trends.

Most Oracle professionals can install and configure STATSPACK in a matter of a few hours.You can use the information gathered in the STATSPACK tables in several general areas of Oracle reporting

  CHAPTER 4                  Automatic Workload Repositories (AWR)

4.1Automatic Workload Repository (AWR) in Oracle Database 10g

Oracle have provided many performance gathering and reporting tools over the years. Originally the UTLBSTAT/UTLESTAT scripts were used to monitor performance metrics. Oracle8i introduced the Statspack functionality which Oracle9i extended. In Oracle 10g statspack has evolved into the Automatic Workload Repository.

It is important that you create baselines from the Automatic Workload Repository to capture typical performance periods. The baselines, which are specified by a range of snapshots, are preserved for comparisons with other similar workload periods when performance problems occur.

The STATISTICS_LEVEL initialization parameter must be set to the TYPICAL or ALL to enable the Automatic Workload Repository. If the value is set to BASIC, you can manually capture AWR statistics using procedures in the DBMS_WORKLOAD_REPOSITORY package. However, because setting the STATISTICS_LEVEL parameter to BASIC turns off in-memory collection of many system statistics, such as segments statistics and memory advisor information, manually captured snapshots will not contain these statistics and will be incomplete.

AWR capability is best explained quickly by the report it produces from collected statistics and metrics, by running the script awrrpt.sql in the $ORACLE_HOME/rdbms/admin directory. This script, in its look and feel, resembles Statspack; it shows all the AWR snapshots available and asks for two specific ones as interval boundaries. It produces two types of output: text format, similar to that of the Statspack report but from the AWR repository, and the default HTML format, complete with hyperlinks to sections and subsections, providing quite a user-friendly report. Run the script and take a look at the report now to get an idea about capabilities of the AWR
4.2 Workload Repository Views

The following workload repository views are available:

· V$ACTIVE_SESSION_HISTORY - Displays the active session history (ASH) sampled every second. 

· V$METRIC - Displays metric information. 

· V$METRICNAME - Displays the metrics associated with each metric group. 

· V$METRIC_HISTORY - Displays historical metrics. 

· V$METRICGROUP - Displays all metrics groups. 

· DBA_HIST_ACTIVE_SESS_HISTORY - Displays the history contents of the active session history. 

· DBA_HIST_BASELINE - Displays baseline information. 

· DBA_HIST_DATABASE_INSTANCE - Displays database environment information. 

· DBA_HIST_SNAPSHOT - Displays snapshot information. 

· DBA_HIST_SQL_PLAN - Displays SQL execution plans. 

· DBA_HIST_WR_CONTROL - Displays AWR settings

Accessing the Automatic Workload Repository with Oracle Enterprise Manager

To access Automatic Workload Repository through Oracle Enterprise Manager Database Control:

On the Administration page, select the Workload Repository link under Workload. From the Automatic Workload Repository page, you can manage snapshots or modify AWR settings.

To manage snapshots, click the link next to Snapshots or Preserved Snapshot Sets. On the Snapshots or Preserved Snapshot Sets pages, you can:

View information about snapshots or preserved snapshot sets (baselines). 

Perform a variety of tasks through the pull-down Actions menu, including creating additional snapshots, preserved snapshot sets from an existing range of snapshots, or an ADDM task to perform analysis on a range of snapshots or a set of preserved snapshots.

To modify AWR settings, click the Edit button. On the Edit Settings page, you can set the Snapshot Retention period and Snapshot Collection interval. 

  Chapter 5              ANALYSIS AWR FEATURES AND REPORTS

5.1 AWR Features

The AWR is used to collect performance statistics including:

· Wait events used to identify performance problems. 

· Time model statistics indicating the amount of DB time associated with a process from the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views. 

· Active Session History (ASH) statistics from the V$ACTIVE_SESSION_HISTORY view. 

· Some system and session statistics from the V$SYSSTAT and V$SESSTAT views. 

· Object usage statistics. 

· Resource intensive SQL statements.

The repository is a source of information for several other Oracle 10g features including:

· Automatic Database Diagnostic Monitor 

· SQL Tuning Advisor 

· Undo Advisor 

· Segment Advisor

5.2 Access AWR Through OEM Database control.

    On the Administration page, select the Workload Repository link under Workload. From the Automatic Workload Repository page, you can manage snapshots or modify AWR settings.
          

To manage snapshots, click the link next to Snapshots or Preserved Snapshot Sets. On the Snapshots or Preserved Snapshot Sets pages, you can:
                + View information about snapshots or preserved snapshot sets (baselines).
                + Perform a variety of tasks through the pull-down Actions menu, including creating additional snapshots, preserved snapshot sets from an existing range of snapshots, or an ADDM task to perform analysis on a range of snapshots or a set of preserved snapshots.
To modify AWR settings, click the Edit button. On the Edit Settings page, you can set the Snapshot Retention period and Snapshot Collection interval.


Both the snapshot frequency and retention time can be modified by the user. To see the present settings,
: 
select snap_interval, retention from dba_hist_wr_control;

SNAP_INTERVAL       RETENTION
------------------- -------------------
+00000 01:00:00.0   +00007 00:00:00.0
or
select dbms_stats.get_stats_history_availability from dual;
select dbms_stats.get_stats_history_retention from dual;

This SQL shows that the snapshots are taken every hour and the collections are retained for 7 days

If you want to extend that retention period you can execute:

execute dbms_workload_repository.modify_snapshot_settings(
      interval => 60,        -- In Minutes. Current value retained if NULL.
      retention => 43200);   -- In Minutes (= 30 Days). Current value retained if NULL


In this example the retention period is specified as 30 days (43200 min) and the interval between each snapshot is 60 min. 

1)The AWR is the next evolution of the STATSPACK utility.

2) The AWR repository holds all of the statistics available in STATSPACK as well as some additional statistics which are not.

3) STATSPACK does not store the Active Session History (ASH) statistics which are available in the AWR dba_hist_active_sess_history view.

4) An important difference between STATSPACK and the AWR is that STATSPACK does not store history for new metric statistics introduced in Oracle10g. The key AWR views, dba_hist_sysmetric_history and dba_hist_sysmetric_summary.

5) The AWR also contains views such as dba_hist_service_stat , dba_hist_service_wait_class and dba_hist_service_name , which store history for performance cumulative statistics tracked for specific services.

6) The latest version of STATSPACK included with Oracle10g contains a set of specific tables, which track history of statistics that reflect the performance of the Oracle Streams feature. These tables are stats$streams_capture , stats$streams_apply_sum , stats$buffered_subscribers , stats$rule_set , stats$propagation_sender , stats$propagation_receiver and stats$buffered_queues . The AWR does not contain the specific tables that reflect Oracle Streams activity; therefore, if a DBA relies heavily on the Oracle Streams feature, it would be useful to monitor its performance using STATSPACK utility.

7) Statspack snapshots must be run by an external scheduler (dbms_jobs, CRON, etc.). AWR snapshots are scheduled every 60 minutes by default. Administrators can manually adjust the snapshot interval if so desired. 

8) ADDM captures a much greater depth and breadth of statistics than Statspack does. During snapshot processing, MMON transfers an in-memory version of the statistics to the permanent statistics tables.

9) Statspack snapshot purges must be scheduled manually. When the Statspack tablespace runs out of space, Statspack quits working. AWR snapshots are purged automatically by MMON every night. MMON, by default, tries to keep one week's worth of AWR snapshots available. If AWR detects that the SYSAUX tablespace is in danger of running out of space, it will free space in SYSAUX by automatically deleting the oldest set of snapshots. If this occurs, AWR will initiate a server-generated alert to notify administrators of the out-of-space error condition. Administrators can manually adjust the amount of information retained by invoking the MODIFY_SNAPSHOT_SETTINGS PL/SQL stored procedure and specifying the RETENTION parameter input variable.

10) AWR snapshots provide a persistent view of database statistics. They are stored in the system-defined schema, which resides in a new tablespace called SYSAUX. A snapshot is a collection of performance statistics that are captured at a specific point in time. The snapshot data points are used to compute the rate of change for the statistic being measured. A unique SNAP_ID snapshot identifier identifies each snapshot.

  

5.3 Workload Repository Reports
Oracle provide two scripts to produce workload repository reports (awrrpt.sql and awrrpti.sql). They are similar in format to the statspack reports and give the option of HTML or plain text formats. The two reports give essential the same output but the awrrpti.sql allows you to select a single instance. The reports can be generated as follows:
    @$ORACLE_HOME/rdbms/admin/awrrpt.sql
    @$ORACLE_HOME/rdbms/admin/awrrpti.sql

The scripts prompt you to enter the report format (html or text), the start snapshot id, the end snapshot id and the report filename. This script looks like Statspack; it shows all the AWR snapshots available and asks for two specific ones as interval boundaries. It produces two types of output: text format, similar to that of the Statspack report but from the AWR repository, and the default HTML format, complete with hyperlinks to sections and subsections, providing quite a user-friendly report. Run the script and take a look at the report now to get an idea about capabilities of the AWR.

AWR repository, feel free to do so. The AWR consists of a number of tables owned by the SYS schema and stored in the SYSAUX tablespace. All AWR table names starts with the identifier “WR.” Following WR is a mnemonic that identifies the type designation of the table followed by a dollar sign ($).
AWR tables come with three different type designations:
· Metadata (WRM$) 

· Historical data (WRH$) 

· AWR tables related to advisor functions (WRI$) 

Most of the AWR table names are pretty self-explanatory, such as WRM$_SNAPSHOT or WRH$_ACTIVE_SESSION_HISTORY.
Also Oracle Database 10g offers several DBA tables that allow you to query the AWR repository. The tables all start with DBA_HIST, followed by a name that describes the table. These include tables such as DBA_HIST_FILESTATS, DBA_HIST_DATAFILE, or DBA_HIST_SNAPSHOT. The AWR history tables capture a lot more information than Statspack, including tablespace usage, filesystem usage, even operating system statistics. A complete list of these tables can be seen from the data dictionary through:
select view_name from user_views 
where view_name like 'DBA\_HIST\_%' escape '\';

5.4 AWR Snapshots


create a snapshot manually using


EXEC dbms_workload_repository.create_snapshot; 

You can see what snapshots are currently in the AWR by using the DBA_HIST_SNAPSHOT view as seen in this example:
SELECT snap_id, to_char(begin_interval_time,'dd/MON/yy hh24:mi') Begin_Interval, 
       to_char(end_interval_time,'dd/MON/yy hh24:mi') End_Interval
FROM dba_hist_snapshot
ORDER BY 1;

   SNAP_ID BEGIN_INTERVAL  END_INTERVAL
---------- --------------- ---------------
       954 30/NOV/05 03:01 30/NOV/05 04:00
       955 30/NOV/05 04:00 30/NOV/05 05:00
       956 30/NOV/05 05:00 30/NOV/05 06:00
       957 30/NOV/05 06:00 30/NOV/05 07:00
       958 30/NOV/05 07:00 30/NOV/05 08:00
       959 30/NOV/05 08:00 30/NOV/05 09:00

Each snapshot is assigned a unique snapshot ID that is reflected in the SNAP_ID column. The END_INTERVAL_TIME column displays the time that the actual snapshot was taken. 

Sometimes you might want to drop snapshots manually. The dbms_workload_repository.drop_snapshot_range procedure can be used to remove a range of snapshots from the AWR. This procedure takes two parameters, low_snap_id and high_snap_id, as seen in this example:
EXEC dbms_workload_repository.drop_snapshot_range(low_snap_id=>1107, high_snap_id=>1108);


The following workload repository views are available:
    * V$ACTIVE_SESSION_HISTORY - Displays the active session history (ASH) sampled every second.
    * V$METRIC - Displays metric information.
    * V$METRICNAME - Displays the metrics associated with each metric group.
    * V$METRIC_HISTORY - Displays historical metrics.
    * V$METRICGROUP - Displays all metrics groups.
    * DBA_HIST_ACTIVE_SESS_HISTORY - Displays the history contents of the active session history.
    * DBA_HIST_BASELINE - Displays baseline information.
    * DBA_HIST_DATABASE_INSTANCE - Displays database environment information.
    * DBA_HIST_SNAPSHOT - Displays snapshot information.
    * DBA_HIST_SQL_PLAN - Displays SQL execution plans.
    * DBA_HIST_WR_CONTROL - Displays AWR settings.

Finally, use the following query to identify the occupants of the SYSAUX Tablespace
select substr(occupant_name,1,40), space_usage_kbytes 
   from v$sysaux_occupants;


5.4.1 AWR Automated Snapshots
Oracle Database 10g uses a scheduled job, GATHER_STATS_JOB, to collect AWR statistics. This job is created, and enabled automatically, when you create a new Oracle database under Oracle Database 10g. To see this job, use the DBA_SCHEDULER_JOBS view as seen in this example:

SELECT a.job_name, a.enabled, c.window_name, c.schedule_name, c.start_date, c.repeat_interval
FROM dba_scheduler_jobs a, dba_scheduler_wingroup_members b, dba_scheduler_windows c
WHERE job_name='GATHER_STATS_JOB'
 
 And a.schedule_name=b.window_group_name
  And b.window_name=c.window_name;

You can disable this job using the dbms_scheduler.disable procedure as seen in this example:
Exec dbms_scheduler.disable('GATHER_STATS_JOB');

And you can enable the job using the dbms_scheduler.enable procedure as seen in this example:
Exec dbms_scheduler.enable('GATHER_STATS_JOB');

5.4.2 AWR Baselines
It is frequently a good idea to create a baseline in the AWR. A baseline is defined as a range of snapshots that can be used to compare to other pairs of snapshots. The Oracle database server will exempt the snapshots assigned to a specific baseline from the automated purge routine. Thus, the main purpose of a baseline is to preserve typical runtime statistics in the AWR repository, allowing you to run the AWR snapshot reports on the preserved baseline snapshots at any time and compare them to recent snapshots contained in the AWR. This allows you to compare current performance (and configuration) to established baseline performance, which can assist in determining database performance problems.

Creating baselines
You can use the create_baseline procedure contained in the dbms_workload_repository stored PL/SQL package to create a baseline as seen in this example:
EXEC dbms_workload_repository.create_baseline (start_snap_id=>1109, end_snap_id=>1111, baseline_name=>'EOM Baseline');

Baselines can be seen using the DBA_HIST_BASELINE view as seen in the following example:
SELECT baseline_id, baseline_name, start_snap_id, end_snap_id
FROM dba_hist_baseline;

BASELINE_ID BASELINE_NAME   START_SNAP_ID END_SNAP_ID
----------- --------------- ------------- -----------
          1 EOM Baseline             1109        1111

In this case, the column BASELINE_ID identifies each individual baseline that has been defined. The name assigned to the baseline is listed, as are the beginning and ending snapshot IDs.

Removing baselines
The pair of snapshots associated with a baseline are retained until the baseline is explicitly deleted. You can remove a baseline using the dbms_workload_repository.drop_baseline procedure as seen in this example that drops the “EOM Baseline” that we just created.
EXEC dbms_workload_repository.drop_baseline (baseline_name=>'EOM Baseline', Cascade=>FALSE);

Note that the cascade parameter will cause all associated snapshots to be removed if it is set to TRUE; otherwise, the snapshots will be cleaned up automatically by the AWR automated processes.

5.4.3 Moving AWR information


10G R2's Enterprise Manager allows administrators to transfer Automatic Workload Repository snapshots to other 10G R2 workload repositories for offline analysis. This is accomplished by the administrator specifying a snapshot range and extracting the AWR data to a flat file. The flat file is then loaded into a user-specified staging schema in the target repository. To complete the transfer, the data is copied from the staging schema into the target repository's SYS schema. The data in the SYS schema is then used as the source for the ADDM analysis.
If the snapshot range already exists in the SYS or staging schemas, the data being imported is ignored. All data in snapshot ranges that does not conflict with existing data is loaded. 10G R2 contains a new package DBMS_SWRF_INTERNAL to provide AWR snapshot export and import functionality. 
The example below exports a snapshot range starting with 100 and ending at 105 to the output dump file 'awr_wmprod1_101_105' in the directory '/opt/oracle/admin/awrdump/wmprod1':

BEGIN
DBMS_SWR_INTERNAL.AWR_EXTRACT(
DMPFILE =>'awr_export_wmprod1_101_105',
DMPDIR => '/opt/oracle/admin/awrdump/wmprod1',
BID => 101,
EID => 105)
We then use the AWR_LOAD procedure to load the data into our target repository staging schema:
BEGIN
DBMS_SWR_INTERNAL.AWR_LOAD(
SCHNAME => 'foot',
DMPFILE =>'awr_export_wmprod1_101_105',
DMPDIR => '/opt/oracle/admin/awrdump/wmprod1')
The last step is to transfer the data from our staging schema (FOOT) to the SYS schema for analysis:
BEGIN
DBMS_SWR_INTERNAL.MOVE_TO_AWR(SCHNAME => 'foot',)


5.5 Reading the AWR Report
This section contains detailed guidance for evaluating each section of an AWR report. The main sections in an AWR report include:

Report Summary Section:
This gives an overall summary of the instance during the snapshot period, and it contains important aggregate summary information.
- Cache Sizes: This shows the size of each SGA region after AMM has changed them.  This information can be compared to the original init.ora parameters at the end of the AWR report.
- Load Profile: This section shows important rates expressed in units of per second and transactions per second.
- Instance Efficiency Percentages: With a target of 100%, these are high-level ratios for activity in the SGA.
- Shared Pool Statistics: This is a good summary of changes to the shared pool during the snapshot period.
- Top 5 Timed Events: This is the most important section in the AWR report.  It shows the top wait events and can quickly show the overall database bottleneck.


Wait Events Statistics Section
This section shows a breakdown of the main wait events in the database including foreground and background database wait events as well as time model, operating system, service, and wait classes statistics.
- Time Model Statistics: Time mode statistics report how database-processing time is spent. This section contains detailed timing information on particular components participating in database processing.
- Wait Class: 
- Wait Events: This AWR report section provides more detailed wait event information for foreground user processes which includes Top 5 wait events and many other wait events that occurred during the snapshot interval.
- Background Wait Events: This section is relevant to the background process wait events.
- Operating System Statistics: The stress on the Oracle server is important, and this section shows the main external resources including I/O, CPU, memory, and network usage.
- Service Statistics: The service statistics section gives information about how particular services configured in the database are operating.
- Service Wait Class Stats: 


SQL Statistics Section
This section displays top SQL, ordered by important SQL execution metrics.
- SQL Ordered by Elapsed Time: Includes SQL statements that took significant execution time during processing.
- SQL Ordered by CPU Time: Includes SQL statements that consumed significant CPU time during its processing.
- SQL Ordered by Gets: These SQLs performed a high number of logical reads while retrieving data.
- SQL Ordered by Reads: These SQLs performed a high number of physical disk reads while retrieving data.
- SQL Ordered by Executions: 
- SQL Ordered by Parse Calls: These SQLs experienced a high number of reparsing operations.
- SQL Ordered by Sharable Memory: Includes SQL statements cursors which consumed a large amount of SGA shared pool memory.
- SQL Ordered by Version Count: These SQLs have a large number of versions in shared pool for some reason.
- Complete List of SQL Text: 

Instance Activity Stats
This section contains statistical information describing how the database operated during the snapshot period.
- Instance Activity Stats - Absolute Values: This section contains statistics that have absolute values not derived from end and start snapshots.
- Instance Activity Stats - Thread Activity: This report section reports a log switch activity statistic.

I/O Stats Section
This section shows the all important I/O activity for the instance and shows I/O activity by tablespace, data file, and includes buffer pool statistics.
- Tablespace IO Stats 
- File IO Stats 

Buffer Pool Statistics Section

Advisory Statistics Section
This section show details of the advisories for the buffer, shared pool, PGA and Java pool.
- Instance Recovery Stats: 
- Buffer Pool Advisory: 
- PGA Aggr Summary: PGA Aggr Target Stats; PGA Aggr Target Histogram; and PGA Memory Advisory. 

- Shared Pool Advisory: 
- SGA Target Advisory
- Stream Spool Advisory
- Java Pool Advisory 

Wait Statistics Section
- Buffer Wait Statistics: This important section shows buffer cache waits statistics.
- Enqueue Activity: This important section shows how enqueue operates in the database. Enqueues are special internal structures which provide concurrent access to various database resources.

Undo Statistics Section
- Undo Segment Summary: This section gives a summary about how undo segments are used by the database.
- Undo Segment Stats: This section shows detailed history information about undo segment activity.

Latch Statistics Section:
This section shows details about latch statistics. Latches are a lightweight serialization mechanism that is used to single-thread access to internal Oracle structures.
- Latch Activity
- Latch Sleep Breakdown
- Latch Miss Sources
- Parent Latch Statistics
- Child Latch Statistics

Segment Statistics Section:
This report section provides details about hot segments using the following criteria:
- Segments by Logical Reads: Includes top segments which experienced high number of logical reads.
- Segments by Physical Reads: Includes top segments which experienced high number of disk physical reads.
- Segments by Row Lock Waits: Includes segments that had a large number of row locks on their data.
- Segments by ITL Waits: Includes segments that had a large contention for Interested Transaction List (ITL). The contention for ITL can be reduced by increasing INITRANS storage parameter of the table.
- Segments by Buffer Busy Waits: These segments have the largest number of buffer waits caused by their data blocks.

Dictionary Cache Stats Section
This section exposes details about how the data dictionary cache is operating.

Library Cache Section
Includes library cache statistics describing how shared library objects are managed by Oracle.

Memory Statistics Section
- Process Memory Summary
- SGA Memory Summary: This section provides summary information about various SGA regions.
- SGA Breakdown difference: 

Streams Statistics Section
- Streams CPU/IO Usage
- Streams Capture
- Streams Apply
- Buffered Queues
- Buffered Subscribers
- Rule Set
 STATSPACK/AWR Plotting
This report, created by querying the stats$filestatxs table, shows how you can develop a long-term trend report showing the activity within your data buffers. You can easily extract this information, paste it into a Microsoft Excel spreadsheet, and use the chart wizard to create a graph with a linear regression analysis, predicting future needs of your Oracle database. These types of reports are indispensable for the Oracle managers charged with ordering hardware resources before the Oracle database suffers any significant performance degradation. 

Chapter 6                              IMPLEMENTATION AWR REPORTS


6.1 Creating an AWR Report:

The remaining procedures in the dbms_workload_repository package are  awr_report_text andawr_report_html, which generate the AWR report for the specified snapshot range in text or HTML formats, respectively.  The following script segment shows how to retrieve the AWR text report for any snapshot range or duration:

SELECT  
 output 
FROM    TABLE(dbms_workload_repository.awr_report_text (37933856,1,2900,2911 ));
The sample output below shows the typical report generated for AWR data.  The output displays shows the four arguments to the awr_report_text stored procedure:

The database ID is 37933856.

The instance number for RAC is 1.

The starting snapshot number is 2900.

The ending snapshot number is 2911.

This standard Oracle elapsed time report has evolved over the past 12 years and had several names:

report.txt: In Oracle7 and Oracle8, this BSTAT-ESTAT was taken by running     the utlbstat.sqlfollowed by utlestat.sql in the $ORACLE-HOME/rdbms/admin directory.

spreport: From Oracle8i to Oracle10g, this is an enhanced BSTAT-ESTAT report where the user chooses the beginning and ending snapshot numbers.

AWR Report: In Oracle 10g, this is the latest time-series report, and it is produced by running a SQL*Plus script in the $ORACLE_HOME/rdbms/admin directory.  awrrpt.sql is a text-based report. awrrpti.sql is a HTML-based report for online publishing of time-series reports.

OUTPUT
-----------------------------------------------------------------
WORKLOAD REPOSITORY report for   

DB Name         DB Id    Instance     Inst Num Release     Cluster Host

------------ ----------- ------------ -------- ----------- ------

DBDABR          37933856 dbdabr              1 10.1.0.2.0  NO      Host1               

Snap Id      Snap Time      Sessions Curs/Sess            

--------- ------------------- -------- ---------

Begin Snap:      2900 19-Aug-04 11:00:29        18       5.2 

End Snap:      2911 19-Aug-04 22:00:16        18       4.6   

Elapsed:              659.78 (mins)  

DB Time:               10.08 (mins)  

Cache Sizes (end)

~~~~~~~~~~~~~~~~~

Buffer Cache: 48M Std Block Size: 8K

Shared Pool Size: 56M Log Buffer: 256K

Load Profile

~~~~~~~~~~~~          Per Second       Per Transaction                  

--------------       -----------       

Redo size: 1,766.20             18,526.31    

Logical reads:    39.21                411.30    

Block changes:    11.11                116.54   

Physical reads:     0.38                  3.95 

Physical writes:     0.38                  3.96      

User calls:     0.06                  0.64          

Parses:     2.04                 21.37     

Hard parses:     0.14                  1.45   

         Sorts:     1.02                 10.72          

Logons:     0.02                  0.21        

Executes:     4.19                 43.91
This is very similar to the old STATSPACK reports from Oracle9i, and it contains vital elapsed-time change information for what happened during the particular snapshot range.

Workload Repository Views

Typically, you would view the AWR data through Oracle Enterprise Manager screens or AWR reports. However, you can view the statistics with the following views:

· V$ACTIVE_SESSION_HISTORY 

This view displays active database session activity, sampled once every secondnV$ metric views provide metric data to track the performance of the system 

The metric views are organized into various groups, such as event, event class, system, session, service, file, and tablespace metrics. These groups are identified in the V$METRICGROUP view.

· DBA_HIST views 

The DBA_HIST views contain historical data stored in the database. This group of views includes:

· DBA_HIST_ACTIVE_SESS_HISTORY displays the history of the contents of the in-memory active session history for recent system activity. 

· DBA_HIST_BASELINE displays information about the baselines captured on the system 

· DBA_HIST_DATABASE_INSTANCE displays information about the database environment 

· DBA_HIST_SNAPSHOT displays information on snapshots in the system 

· DBA_HIST_SQL_PLAN displays the SQL execution plans 

· DBA_HIST_WR_CONTROL displays the settings for controlling AWR 

6.2 CREATING SNAPHOTS 
I have  create snapshots with the CREATE_SNAPSHOT procedure if you want to capture statistics at times different than those of the automatically generated snapshots. For example:

BEGIN

  DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();

END;

/

In this example, a snapshot for the instance is created immediately with the flush level specified to the default flush level of TYPICAL. You can view this snapshot in the DBA_HIST_SNAPSHOT view.

[image: image3.png]icrosoft Windows KP [Uersion 5.1.26001
<C> Copyright 1985-2081 Microsoft Corp.

Docunents and Settings\mahesh>sqlplus / as sysdba
SQLxPlus: Release 10.2.9.1.8 - Production on Wed Jun 23 10%

39 2010

opyright Cc) 1982, 2005, Oracle. ALl rights reserved.

onnected to:
Gracle Database 18g Enterprise Edition Release 18.2.8.1.8 - Production
ith the Partitioning, OLAP and Data Mining options

[s0L> select name.dbid from Usdatahase;
iAME DBID

ORCL 1249873992

51> exec dbns_uorkload_repository.create_snapshot;
L/SAL procedure successfully completed.
saL.> select * from dba_hist_snapshot;
DBID INSTANGE_NUMBER

[SNAP_LEUEL ERROR_COUNT
31 1249873992 1
DBID INSTANCE_NUMBER

VLC medi
player

[SNAP_LEUEL ERROR_COUNT
== [22-JUN-10 02.86.38.080 PH

SQLPlus DBID INSTANGE_NUMBER
[sTaRTUP_TIME
PITSe =
', start | ) DATABASE PERFORM... | & Tuning materials [ Microsoft PawerPaint A performance tunning. % CHWINDOWStsyste. 2 )8l 3 1101an





                                                FIG. 1 Creating snapshots 1 AWR REPORTS
6.2.1 Dropping Snapshots

You can drop a range of snapshots using the DROP_SNAPSHOT_RANGE procedure. To view a list of the snapshot Ids along with database Ids, check the DBA_HIST_SNAPSHOT view. For example, you can drop the following range of snapshots:

BEGIN

  DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE (low_snap_id => 22, 

                           high_snap_id => 32, dbid => 3310949047);

END;

/

In the example, the range of snapshot Ids to drop is specified from 22 to 32. The optional database identifier is 3310949047. If you do not specify a value for dbid, the local database identifier is used as the default value.

Active Session History data (ASH) that belongs to the time period specified by the snapshot range is also purged when the DROP_SNAPSHOT_RANGE procedure is called.

6.2.2 Modifying Snapshot Settings

You can adjust the interval and retention of snapshot generation for a specified database Id, but note that this can affect the precision of the Oracle diagnostic tools.

The INTERVAL setting affects how often in minutes that snapshots are automatically generated. The RETENTION setting affects how long in minutes that snapshots are stored in the workload repository. To adjust the settings, use the MODIFY_SNAPSHOT_SETTINGS procedure. For example:

BEGIN

  DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS( retention => 43200, 

                 interval => 30, dbid => 3310949047);

END;

/

In this example, the retention period is specified as 43200 minutes (30 days) and the interval between each snapshot is specified as 30 minutes. If NULL is specified, the existing value is preserved. The optional database identifier is 3310949047. If you do not specify a value for dbid, the local database identifier is used as the default value. You can check the current settings for your database instance with the DBA_HIST_WR_CONTROL view.

6.2.3 Creating and Dropping Baselines

A baseline is created with the CREATE_BASELINE procedure. A baseline is simply performance data for a set of snapshots that is preserved and used for comparisons with other similar workload periods when performance problems occur. 

DBA_HIST_SNAPSHOT view to determine the range of snapshots that you want to use. For example:

BEGIN

    DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE (start_snap_id => 270, 

                   end_snap_id => 280, baseline_name => 'peak baseline', 

                   dbid => 3310949047);

END;

/

In this example, 270 is the start snapshot sequence number and 280 is the end snapshot sequence. peak baseline is the name of baseline and 3310949047 is an optional database identifier. If you do not specify a value for dbid, the local database identifier is used as the default value.

The system automatically assign a unique baseline Id to the new baseline when the baseline is created. The baseline Id and database identifier are displayed in the DBA_HIST_BASELINE view.

The pair of snapshots associated with the baseline are retained until you explicitly drop the baseline. You can drop a baseline with the DROP_BASELINE procedure. For example:

BEGIN

  DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE (baseline_name => 'peak baseline',

                  cascade => FALSE, dbid => 3310949047);

END;

/

In the example, peak baseline is the name of baseline and FALSE specifies that only the baseline is dropped. TRUE specifies that drop operation should remove the pair of snapshots associated with baseline along with the baseline. 3310949047 is an optional database identifier

[image: image4.png]Hy Docurients  auen

1 i

1My Compter. Adobe Reader,
)

WINDOWS\system32\cmd.exe - sqlplus / as sysdba n
Microsoft Windous RP [Uersion 5.1.26001
'z Eﬁ <G> Copyright 1985-2681 Microsoft Corp. "

[C:\Docunents and Settings\nahesh>sqlplus / as sysdba

iy NeERork DATAEASE
Pleces | PERFORIA

sQLxPlus: Release 10.2.8.1.8 - Production on Tue Jun 22 14:52:47 2010

A1l rights reserved.

[Copyright o> 1982, 2085, Oracle.

[Connected to:
[Oracle Database 18y Enterprise Edition Release 18.2.8.1.8 - Production
iich the Partitioning. OLAP and Data Mining options

om vSdataba:

[s0L> select name.dbid from vSdatahase;
DBID
1249873992

AVGFree 9.0

A

VLC medi L T
player 31 1249873992 1

SNAP_ID DBID INSTANCE_NUMBER

o jsTaRTUP_TIME
5QLPlus

start [ aueryrn-Notepad & CAWINDOWStsyste. s DIGR) 3 - 2sem




                            FIG.2 Creating snapshots 2 AWR REPORTS

[image: image5.png]1y DoclmePts

1y Compter. Adobe Reader:
)

[SNAP_LEUEL ERROR_COUNT
19-JUN-10 01.49.22.062 PH
DBID INSTANCE_NUMBER

[SNAP_LEUEL ERROR_COUNT
19-JUN-10 01.52.19.500 PH
DBID INSTANCE_NUMBER

VLC medi
player

1
P I
77 start | @) DATABASE PERFORM... | B Tuning materisls 2 My Computer T Microsoft PowerPoint ... | g performance tunning. 5T CAWINDOWS|syste. /m &Rl g 1nosan





                                  FIG.3 Creating Snapshot 3 AWR REPORTS

OUTPUT OF AWR PERFORMANCE REPORT:

WORKLOAD REPOSITORY report for 

	DB Name
	DB Id
	Instance
	Inst num
	Release
	RAC
	Host

	ORCL
	1249873992
	orcl
	1
	10.2.0.1.0
	NO
	KK


	
	Snap Id
	Snap Time
	Sessions
	Cursors/Session

	Begin Snap:
	1
	19-Jun-10 13:49:22
	23
	10.2

	End Snap:
	2
	19-Jun-10 13:52:19
	23
	10.2

	Elapsed:
	 
	2.96 (mins)
	 
	 

	DB Time:
	 
	0.08 (mins)
	 
	 


Report Summary

Cache Sizes 

	
	Begin
	End
	
	

	Buffer Cache:
	408M
	404M
	Std Block Size:
	8K

	Shared Pool Size:
	160M
	164M
	Log Buffer:
	6,968K


Load Profile 

	
	Per Second
	Per Transaction

	Redo size:
	6,644.48
	25,630.09

	Logical reads:
	89.56
	345.48

	Block changes:
	25.77
	99.41

	Physical reads:
	0.83
	3.20

	Physical writes:
	0.32
	1.22

	User calls:
	1.54
	5.93

	Parses:
	4.13
	15.93

	Hard parses:
	0.73
	2.80

	Sorts:
	3.48
	13.43

	Logons:
	0.04
	0.15

	Executes:
	14.22
	54.87

	Transactions:
	0.26
	 


	% Blocks changed per Read:
	28.78
	Recursive Call %:
	99.06

	Rollback per transaction %:
	0.00
	Rows per Sort:
	11.81


Instance Efficiency Percentages (Target 100%) 

	Buffer Nowait %:
	100.00
	Redo NoWait %:
	100.00

	Buffer Hit %:
	99.08
	In-memory Sort %:
	100.00

	Library Hit %:
	86.93
	Soft Parse %:
	82.40

	Execute to Parse %:
	70.96
	Latch Hit %:
	100.00

	Parse CPU to Parse Elapsd %:
	85.71
	% Non-Parse CPU:
	88.22


Shared Pool Statistics 

	
	Begin
	End

	Memory Usage %:
	49.20
	51.03

	% SQL with executions>1:
	54.58
	89.26

	% Memory for SQL w/exec>1:
	76.92
	88.44


Top 5 Timed Events 

	Event
	Waits
	Time(s)
	Avg Wait(ms)
	% Total Call Time
	Wait Class

	CPU time
	 
	3
	 
	51.2
	 

	db file sequential read
	245
	1
	5
	24.6
	User I/O

	control file sequential read
	704
	1
	1
	12.1
	System I/O

	log file parallel write
	69
	0
	2
	2.6
	System I/O

	control file parallel write
	59
	0
	1
	1.7
	System I/O


Main Report 
· Report Summary 

· Wait Events Statistics 

· SQL Statistics 

· Instance Activity Statistics 

· IO Stats 

· Buffer Pool Statistics 

· Advisory Statistics 

· Wait Statistics 

· Undo Statistics 

· Latch Statistics 

· Segment Statistics 

· Dictionary Cache Statistics 

· Library Cache Statistics 

· Memory Statistics 

· Streams Statistics 

· Resource Limit Statistics 

· init.ora Parameters 


Back to Top 

Wait Events Statistics 
· Time Model Statistics 
· Wait Class 
· Wait Events 
· Background Wait Events 
· Operating System Statistics 
· Service Statistics 
· Service Wait Class Stats 
Back to Top 

  Time Model Statistics

· Total time in database user-calls (DB Time): 5s 

· Statistics including the word "background" measure background process time, and so do not contribute to the DB time statistic 

· Ordered by % or DB time desc, Statistic name 

	Statistic Name
	Time (s)
	% of DB Time

	sql execute elapsed time
	5.20
	104.49

	DB CPU
	2.55
	51.15

	parse time elapsed
	0.87
	17.39

	hard parse elapsed time
	0.83
	16.69

	PL/SQL execution elapsed time
	0.17
	3.35

	PL/SQL compilation elapsed time
	0.11
	2.24

	connection management call elapsed time
	0.01
	0.29

	repeated bind elapsed time
	0.00
	0.09

	hard parse (bind mismatch) elapsed time
	0.00
	0.05

	hard parse (sharing criteria) elapsed time
	0.00
	0.05

	sequence load elapsed time
	0.00
	0.01

	DB time
	4.98
	 

	background elapsed time
	0.31
	 

	background cpu time
	0.15
	 


Back to Wait Events Statistics 
Back to Top 

 Wait Class

· s - second 

· cs - centisecond - 100th of a second 

· ms - millisecond - 1000th of a second 

· us - microsecond - 1000000th of a second 

· ordered by wait time desc, waits desc 

	Wait Class
	Waits
	%Time -outs
	Total Wait Time (s)
	Avg wait (ms)
	Waits /txn

	User I/O
	251
	0.00
	1
	5
	5.46

	System I/O
	862
	0.00
	1
	1
	18.74

	Other
	3
	66.67
	0
	11
	0.07

	Commit
	21
	0.00
	0
	1
	0.46

	Concurrency
	1
	0.00
	0
	8
	0.02

	Application
	12
	0.00
	0
	0
	0.26

	Network
	239
	0.00
	0
	0
	5.20


Back to Wait Events Statistics 
Back to Top 

Wait Events

· s - second 

· cs - centisecond - 100th of a second 

· ms - millisecond - 1000th of a second 

· us - microsecond - 1000000th of a second 

· ordered by wait time desc, waits desc (idle events last) 

	Event
	Waits
	%Time -outs
	Total Wait Time (s)
	Avg wait (ms)
	Waits /txn

	db file sequential read
	245
	0.00
	1
	5
	5.33

	control file sequential read
	704
	0.00
	1
	1
	15.30

	log file parallel write
	69
	0.00
	0
	2
	1.50

	control file parallel write
	59
	0.00
	0
	1
	1.28

	SGA: allocation forcing component growth
	3
	66.67
	0
	11
	0.07

	log file sync
	21
	0.00
	0
	1
	0.46

	db file parallel write
	30
	0.00
	0
	0
	0.65

	os thread startup
	1
	0.00
	0
	8
	0.02

	SQL*Net break/reset to client
	12
	0.00
	0
	0
	0.26

	SQL*Net message to client
	239
	0.00
	0
	0
	5.20

	direct path write
	6
	0.00
	0
	0
	0.13

	SQL*Net message from client
	239
	0.00
	491
	2056
	5.20

	Streams AQ: waiting for time management or cleanup tasks
	3
	66.67
	184
	61278
	0.07

	Streams AQ: waiting for messages in the queue
	37
	100.00
	181
	4891
	0.80

	virtual circuit status
	6
	100.00
	180
	29999
	0.13

	wait for unread message on broadcast channel
	176
	99.43
	176
	999
	3.83

	jobq slave wait
	58
	96.55
	172
	2964
	1.26

	Streams AQ: qmn slave idle wait
	6
	0.00
	171
	28499
	0.13

	Streams AQ: qmn coordinator idle wait
	13
	53.85
	171
	13153
	0.28


Back to Wait Events Statistics 
Back to Top 

Background Wait Events

· ordered by wait time desc, waits desc (idle events last) 

	Event
	Waits
	%Time -outs
	Total Wait Time (s)
	Avg wait (ms)
	Waits /txn

	log file parallel write
	69
	0.00
	0
	2
	1.50

	control file parallel write
	59
	0.00
	0
	1
	1.28

	db file parallel write
	30
	0.00
	0
	0
	0.65

	os thread startup
	1
	0.00
	0
	8
	0.02

	rdbms ipc message
	628
	89.81
	1,409
	2244
	13.65

	Streams AQ: waiting for time management or cleanup tasks
	3
	66.67
	184
	61278
	0.07

	pmon timer
	59
	100.00
	177
	3000
	1.28

	Streams AQ: qmn slave idle wait
	6
	0.00
	171
	28499
	0.13

	Streams AQ: qmn coordinator idle wait
	13
	53.85
	171
	13153
	0.28


Back to Wait Events Statistics 
Back to Top 

Operating System Statistics

	Statistic
	Total

	AVG_BUSY_TIME
	481

	AVG_IDLE_TIME
	17,073

	AVG_SYS_TIME
	346

	AVG_USER_TIME
	130

	BUSY_TIME
	1,938

	IDLE_TIME
	68,314

	SYS_TIME
	1,401

	USER_TIME
	537

	RSRC_MGR_CPU_WAIT_TIME
	0

	VM_IN_BYTES
	162,394,112

	VM_OUT_BYTES
	0

	PHYSICAL_MEMORY_BYTES
	3,135,266,816

	NUM_CPUS
	4

	NUM_CPU_CORES
	2


Back to Wait Events Statistics 
Back to Top 

Service Statistics

· ordered by DB Time 

	Service Name
	DB Time (s)
	DB CPU (s)
	Physical Reads
	Logical Reads

	SYS$USERS
	4.80
	2.40
	248
	17,834

	orcl
	0.10
	0.10
	1
	886

	SYS$BACKGROUND
	0.00
	0.00
	0
	490

	orclXDB
	0.00
	0.00
	0
	0


Back to Wait Events Statistics 
Back to Top 

Service Wait Class Stats

· Wait Class info for services in the Service Statistics section. 

· Total Waits and Time Waited displayed for the following wait classes: User I/O, Concurrency, Administrative, Network 

· Time Waited (Wt Time) in centisecond (100th of a second) 

	Service Name
	User I/O Total Wts
	User I/O Wt Time
	Concurcy Total Wts
	Concurcy Wt Time
	Admin Total Wts
	Admin Wt Time
	Network Total Wts
	Network Wt Time

	SYS$USERS
	256
	124
	0
	0
	0
	0
	64
	0

	orcl
	1
	3
	0
	0
	0
	0
	168
	0

	SYS$BACKGROUND
	0
	0
	1
	1
	0
	0
	0
	0


Back to Wait Events Statistics 
Back to Top 

SQL Statistics 
· SQL ordered by Elapsed Time 
· SQL ordered by CPU Time 
· SQL ordered by Gets 
· SQL ordered by Reads 
· SQL ordered by Executions 
· SQL ordered by Parse Calls 
· SQL ordered by Sharable Memory 
· SQL ordered by Version Count 
· Complete List of SQL Text 
Back to Top 

SQL ordered by Elapsed Time

· Resources reported for PL/SQL code includes the resources used by all SQL statements called by the code. 

· % Total DB Time is the Elapsed Time of the SQL statement divided into the Total Database Time multiplied by 100 

	Elapsed Time (s)
	CPU Time (s)
	Executions 
	Elap per Exec (s) 
	% Total DB Time
	SQL Id
	SQL Module
	SQL Text

	4
	2
	1
	4.20
	84.26
	1uk5m5qbzj1vt
	sqlplus.exe 
	BEGIN dbms_workload_repository...

	1
	1
	1
	0.69
	13.81
	bunssq950snhf
	  
	insert into wrh$_sga_target_ad...

	0
	0
	3
	0.10
	6.21
	6gvch1xu9ca3g
	  
	DECLARE job BINARY_INTEGER := ...

	0
	0
	1
	0.24
	4.76
	7vgmvmy8vvb9s
	  
	insert into wrh$_tempstatxs ...

	0
	0
	1
	0.16
	3.18
	gz6qtapr9u99d
	emagent.exe 
	/* OracleOEM */ DECLARE l_l...

	0
	0
	7
	0.02
	2.75
	abtp0uqvdb1d3
	  
	CALL MGMT_ADMIN_DATA.EVALUATE_...

	0
	0
	1
	0.11
	2.18
	d92h3rjp0y217
	  
	begin prvt_hdm.auto_execute( :...

	0
	0
	15
	0.01
	1.96
	5ngzsfstg8tmy
	  
	select o.owner#, o.name, o.nam...

	0
	0
	1
	0.09
	1.73
	32mk33ry1g665
	  
	INSERT INTO wrh$_datafile (s...

	0
	0
	1
	0.08
	1.53
	2nkzun1gy8zm8
	emagent.exe 
	SELECT (100 - sum(percent_spac...

	0
	0
	1
	0.07
	1.49
	51vw8qf5uprrv
	emagent.exe 
	SELECT LOG_MODE, FLASHBACK_ON...

	0
	0
	1
	0.05
	1.06
	10dfqkk4brpf4
	perl.exe 
	select log_mode from v$databas...

	0
	0
	1
	0.05
	1.04
	8ux370qa6pyx9
	  
	INSERT INTO WRH$_ACTIVE_SESSIO...


Back to SQL Statistics 
Back to Top 

SQL ordered by CPU Time

· Resources reported for PL/SQL code includes the resources used by all SQL statements called by the code. 

· % Total DB Time is the Elapsed Time of the SQL statement divided into the Total Database Time multiplied by 100 

	CPU Time (s)
	Elapsed Time (s)
	Executions 
	CPU per Exec (s)
	% Total DB Time
	SQL Id
	SQL Module
	SQL Text

	2
	4
	1
	2.11
	84.26
	1uk5m5qbzj1vt
	sqlplus.exe 
	BEGIN dbms_workload_repository...

	1
	1
	1
	0.69
	13.81
	bunssq950snhf
	  
	insert into wrh$_sga_target_ad...

	0
	0
	3
	0.09
	6.21
	6gvch1xu9ca3g
	  
	DECLARE job BINARY_INTEGER := ...

	0
	0
	7
	0.02
	2.75
	abtp0uqvdb1d3
	  
	CALL MGMT_ADMIN_DATA.EVALUATE_...

	0
	0
	18
	0.00
	0.86
	2b064ybzkwf1y
	OEM.SystemPool 
	BEGIN EMD_NOTIFICATION.QUEUE_R...

	0
	0
	1
	0.03
	0.71
	0u7dgtun9x80k
	EM_PING 
	BEGIN EMD_NOTIFICATION.OMS_FAI...

	0
	0
	1
	0.03
	4.76
	7vgmvmy8vvb9s
	  
	insert into wrh$_tempstatxs ...

	0
	0
	54
	0.00
	0.57
	cb75rw3w1tt0s
	OEM.SystemPool 
	begin MGMT_JOB_ENGINE.get_sche...

	0
	0
	1
	0.02
	0.53
	1gc7umngbqyc1
	  
	SELECT /*+ ORDERED */ A.READY ...

	0
	0
	1
	0.02
	1.04
	8ux370qa6pyx9
	  
	INSERT INTO WRH$_ACTIVE_SESSIO...

	0
	0
	1
	0.02
	1.06
	10dfqkk4brpf4
	perl.exe 
	select log_mode from v$databas...

	0
	0
	1
	0.00
	2.18
	d92h3rjp0y217
	  
	begin prvt_hdm.auto_execute( :...

	0
	0
	15
	0.00
	1.96
	5ngzsfstg8tmy
	  
	select o.owner#, o.name, o.nam...

	0
	0
	1
	0.00
	1.53
	2nkzun1gy8zm8
	emagent.exe 
	SELECT (100 - sum(percent_spac...

	0
	0
	1
	0.00
	3.18
	gz6qtapr9u99d
	emagent.exe 
	/* OracleOEM */ DECLARE l_l...

	0
	0
	1
	0.00
	1.73
	32mk33ry1g665
	  
	INSERT INTO wrh$_datafile (s...

	0
	0
	1
	0.00
	1.49
	51vw8qf5uprrv
	emagent.exe 
	SELECT LOG_MODE, FLASHBACK_ON...


Back to SQL Statistics 
Back to Top 

SQL ordered by Gets

· Resources reported for PL/SQL code includes the resources used by all SQL statements called by the code. 

· Total Buffer Gets: 15,892 

· Captured SQL account for 47.9% of Total 

	Buffer Gets 
	Executions 
	Gets per Exec 
	%Total
	CPU Time (s)
	Elapsed Time (s)
	SQL Id
	SQL Module
	SQL Text

	19,539
	1
	19,539.00
	122.95
	2.11
	4.20
	1uk5m5qbzj1vt
	sqlplus.exe 
	BEGIN dbms_workload_repository...

	4,418
	3
	1,472.67
	27.80
	0.26
	0.31
	6gvch1xu9ca3g
	  
	DECLARE job BINARY_INTEGER := ...

	1,842
	7
	263.14
	11.59
	0.12
	0.14
	abtp0uqvdb1d3
	  
	CALL MGMT_ADMIN_DATA.EVALUATE_...

	662
	150
	4.41
	4.17
	0.01
	0.01
	53saa2zkr6wc3
	  
	select intcol#, nvl(pos#, 0), ...

	575
	1
	575.00
	3.62
	0.03
	0.04
	0u7dgtun9x80k
	EM_PING 
	BEGIN EMD_NOTIFICATION.OMS_FAI...

	347
	1
	347.00
	2.18
	0.02
	0.03
	1gc7umngbqyc1
	  
	SELECT /*+ ORDERED */ A.READY ...

	345
	54
	6.39
	2.17
	0.03
	0.03
	cb75rw3w1tt0s
	OEM.SystemPool 
	begin MGMT_JOB_ENGINE.get_sche...

	342
	46
	7.43
	2.15
	0.00
	0.00
	6769wyy3yf66f
	  
	select pos#, intcol#, col#, sp...

	317
	7
	45.29
	1.99
	0.00
	0.03
	fasvw7q199577
	  
	select u.name, o.name, t.upda...

	280
	32
	8.75
	1.76
	0.01
	0.01
	7ng34ruy5awxq
	  
	select i.obj#, i.ts#, i.file#,...

	258
	11
	23.45
	1.62
	0.01
	0.01
	6d64jpfzqc9rv
	  
	INSERT INTO MGMT_METRICS_RAW (...

	256
	40
	6.40
	1.61
	0.01
	0.04
	83taa7kaw59c1
	  
	select name, intcol#, segcol#,...

	236
	12
	19.67
	1.49
	0.01
	0.04
	cqgv56fmuj63x
	  
	select owner#, name, namespace...

	202
	18
	11.22
	1.27
	0.04
	0.04
	2b064ybzkwf1y
	OEM.SystemPool 
	BEGIN EMD_NOTIFICATION.QUEUE_R...

	198
	12
	16.50
	1.25
	0.00
	0.00
	8swypbbr0m372
	  
	select order#, columns, types ...

	182
	1
	182.00
	1.15
	0.01
	0.01
	7fz4p1f4ypb2r
	EM_PING 
	UPDATE MGMT_JOB_EXECUTION SET ...

	182
	1
	182.00
	1.15
	0.01
	0.01
	dn6q8hkb44jnn
	EM_PING 
	BEGIN MGMT_JOB_ENGINE.handle_d...

	170
	1
	170.00
	1.07
	0.00
	0.04
	g6wf9na8zs5hb
	  
	insert into wrh$_sysmetric_sum...

	167
	7
	23.86
	1.05
	0.01
	0.01
	fsm2qvmrhnp6u
	  
	SELECT TRIM(METRIC_NAME) FROM ...


Back to SQL Statistics 
Back to Top 

SQL ordered by Reads

· Total Disk Reads: 147 

· Captured SQL account for 36.7% of Total 

	Physical Reads
	Executions
	Reads per Exec 
	%Total
	CPU Time (s)
	Elapsed Time (s)
	SQL Id
	SQL Module
	SQL Text

	345
	1
	345.00
	234.69
	2.11
	4.20
	1uk5m5qbzj1vt
	sqlplus.exe 
	BEGIN dbms_workload_repository...

	15
	3
	5.00
	10.20
	0.26
	0.31
	6gvch1xu9ca3g
	  
	DECLARE job BINARY_INTEGER := ...

	12
	12
	1.00
	8.16
	0.01
	0.04
	cqgv56fmuj63x
	  
	select owner#, name, namespace...

	10
	1
	10.00
	6.80
	0.00
	0.11
	d92h3rjp0y217
	  
	begin prvt_hdm.auto_execute( :...

	7
	10
	0.70
	4.76
	0.01
	0.05
	cvn54b7yz0s8u
	  
	select /*+ index(idl_ub1$ i_id...

	6
	7
	0.86
	4.08
	0.12
	0.14
	abtp0uqvdb1d3
	  
	CALL MGMT_ADMIN_DATA.EVALUATE_...

	3
	1
	3.00
	2.04
	0.00
	0.04
	32wqka2zwvu65
	  
	insert into wrh$_parameter (...

	3
	1
	3.00
	2.04
	0.00
	0.04
	3kr90614kgmzt
	  
	insert into WRH$_SERVICE_STAT ...

	3
	15
	0.20
	2.04
	0.00
	0.10
	5ngzsfstg8tmy
	  
	select o.owner#, o.name, o.nam...

	3
	1
	3.00
	2.04
	0.00
	0.04
	g6wf9na8zs5hb
	  
	insert into wrh$_sysmetric_sum...

	2
	13
	0.15
	1.36
	0.00
	0.02
	04xtrk7uyhknh
	  
	select obj#, type#, ctime, mti...

	2
	7
	0.29
	1.36
	0.00
	0.04
	48sdn419b6p2q
	  
	UPDATE MGMT_METRIC_COLLECTIONS...

	2
	40
	0.05
	1.36
	0.01
	0.04
	83taa7kaw59c1
	  
	select name, intcol#, segcol#,...

	2
	7
	0.29
	1.36
	0.00
	0.03
	fasvw7q199577
	  
	select u.name, o.name, t.upda...


Back to SQL Statistics 
Back to Top 

SQL ordered by Executions

· Total Executions: 2,524 

· Captured SQL account for 31.5% of Total 

	Executions 
	Rows Processed
	Rows per Exec
	CPU per Exec (s)
	Elap per Exec (s) 
	SQL Id
	SQL Module
	SQL Text

	150
	181
	1.21
	0.00
	0.00
	53saa2zkr6wc3
	  
	select intcol#, nvl(pos#, 0), ...

	54
	54
	1.00
	0.00
	0.00
	cb75rw3w1tt0s
	OEM.SystemPool 
	begin MGMT_JOB_ENGINE.get_sche...

	46
	125
	2.72
	0.00
	0.00
	6769wyy3yf66f
	  
	select pos#, intcol#, col#, sp...

	40
	626
	15.65
	0.00
	0.00
	83taa7kaw59c1
	  
	select name, intcol#, segcol#,...

	35
	35
	1.00
	0.00
	0.00
	cuu0u9fp3ynqn
	  
	select tab.rowid, tab.msgid,...

	34
	9
	0.26
	0.00
	0.00
	2q93zsrvbdw48
	  
	select grantee#, privilege#, n...

	34
	0
	0.00
	0.00
	0.00
	6aq34nj2zb2n7
	  
	select col#, grantee#, privi...

	32
	46
	1.44
	0.00
	0.00
	7ng34ruy5awxq
	  
	select i.obj#, i.ts#, i.file#,...

	25
	25
	1.00
	0.00
	0.00
	5kyb5bvnu3s04
	  
	SELECT DISTINCT METRIC_GUID FR...

	25
	25
	1.00
	0.00
	0.00
	91h2x42zqagcm
	OEM.SystemPool 
	UPDATE MGMT_CURRENT_METRICS SE...


Back to SQL Statistics 
Back to Top 

SQL ordered by Parse Calls

· Total Parse Calls: 733 

· Captured SQL account for 37.5% of Total 

	Parse Calls
	Executions 
	% Total Parses
	SQL Id
	SQL Module
	SQL Text

	25
	35
	3.41
	cuu0u9fp3ynqn
	  
	select tab.rowid, tab.msgid,...

	12
	12
	1.64
	7gz337nuhbkrj
	OEM.SystemPool 
	BEGIN EMD_NOTIFICATION.DEQUEUE...

	12
	12
	1.64
	8swypbbr0m372
	  
	select order#, columns, types ...

	12
	12
	1.64
	cqgv56fmuj63x
	  
	select owner#, name, namespace...

	10
	10
	1.36
	39m4sx9k63ba2
	  
	select /*+ index(idl_ub2$ i_id...

	10
	10
	1.36
	c6awqs517jpj0
	  
	select /*+ index(idl_char$ i_i...

	10
	10
	1.36
	cvn54b7yz0s8u
	  
	select /*+ index(idl_ub1$ i_id...

	10
	10
	1.36
	ga9j9xk5cy9s0
	  
	select /*+ index(idl_sb4$ i_id...

	10
	10
	1.36
	grwydz59pu6mc
	  
	select text from view$ where r...

	8
	8
	1.09
	0h6b2sajwb74n
	  
	select privilege#, level from ...


Back to SQL Statistics 
Back to Top 

SQL ordered by Sharable Memory

No data exists for this section of the report. 

Back to SQL Statistics 
Back to Top 

SQL ordered by Version Count

No data exists for this section of the report. 

Back to SQL Statistics 
Back to Top 

Complete List of SQL Text

	SQL Id
	SQL Text

	04xtrk7uyhknh
	select obj#, type#, ctime, mtime, stime, status, dataobj#, flags, oid$, spare1, spare2 from obj$ where owner#=:1 and name=:2 and namespace=:3 and remoteowner is null and linkname is null and subname is null

	0h6b2sajwb74n
	select privilege#, level from sysauth$ connect by grantee#=prior privilege# and privilege#>0 start with grantee#=:1 and privilege#>0

	0u7dgtun9x80k
	BEGIN EMD_NOTIFICATION.OMS_FAILOVER(:1, :2); END;

	10dfqkk4brpf4
	select log_mode from v$database

	1gc7umngbqyc1
	SELECT /*+ ORDERED */ A.READY FROM USER_QUEUES B, GV$AQ A WHERE B.NAME = 'MGMT_NOTIFY_Q' AND A.QID = B.QID

	1uk5m5qbzj1vt
	BEGIN dbms_workload_repository.create_snapshot; END; 

	2b064ybzkwf1y
	BEGIN EMD_NOTIFICATION.QUEUE_READY(:1, :2, :3); END;

	2nkzun1gy8zm8
	SELECT (100 - sum(percent_space_used)) + sum(percent_space_reclaimable) FROM v$flash_recovery_area_usage

	2q93zsrvbdw48
	select grantee#, privilege#, nvl(col#, 0), max(mod(nvl(option$, 0), 2))from objauth$ where obj#=:1 group by grantee#, privilege#, nvl(col#, 0) order by grantee#

	32mk33ry1g665
	INSERT INTO wrh$_datafile (snap_id, dbid, file#, creation_change#, filename, ts#, tsname, block_size) SELECT /*+ ordered index(f) index(ts) */ :lah_snap_id lah, :dbid dbid, f.file# file#, f.crscnbas + (f.crscnwrp * power(2, 32)) creation_change#, v.name filename, ts.ts# ts#, ts.name tsname, ts.blocksize block_size FROM v$dbfile v, file$ f, ts$ ts WHERE f.file# = v.file# and f.status$ = 2 and f.ts# = ts.ts# and not exists (SELECT 1 from wrh$_datafile dfh WHERE dfh.file# = f.file# AND dfh.creation_change# = (f.crscnbas + (f.crscnwrp * power(2, 32))) AND dfh.dbid = :dbid2)

	32wqka2zwvu65
	insert into wrh$_parameter (snap_id, dbid, instance_number, parameter_hash, value, isdefault, ismodified) select :snap_id, :dbid, :instance_number, i.ksppihash hash, sv.ksppstvl, sv.ksppstdf, decode(bitand(sv.ksppstvf, 7), 1, 'MODIFIED', 'FALSE') from x$ksppi i, x$ksppsv sv where i.indx = sv.indx and (((i.ksppinm not like '#_%' escape '#') or (sv.ksppstdf = 'FALSE') or (bitand(sv.ksppstvf, 5) > 0)) or (i.ksppinm like '#_#_%' escape '#')) order by hash

	39m4sx9k63ba2
	select /*+ index(idl_ub2$ i_idl_ub21) +*/ piece#, length, piece from idl_ub2$ where obj#=:1 and part=:2 and version=:3 order by piece#

	3kr90614kgmzt
	insert into WRH$_SERVICE_STAT (snap_id, dbid, instance_number, service_name_hash, stat_id, value) select :snap_id, :dbid, :instance_number, service_name_hash, stat_id, value from v$service_stats

	48sdn419b6p2q
	UPDATE MGMT_METRIC_COLLECTIONS SET STATUS_MESSAGE = :B6 || ' returned ' || :B5 || ' values', LAST_COLLECTED_TIMESTAMP = :B4 WHERE TARGET_GUID = :B3 AND METRIC_GUID = :B2 AND COLL_NAME = :B1 

	51vw8qf5uprrv
	SELECT LOG_MODE, FLASHBACK_ON FROM V$DATABASE

	53saa2zkr6wc3
	select intcol#, nvl(pos#, 0), col#, nvl(spare1, 0) from ccol$ where con#=:1

	5kyb5bvnu3s04
	SELECT DISTINCT METRIC_GUID FROM MGMT_METRICS WHERE TARGET_TYPE = :B3 AND METRIC_NAME = :B2 AND METRIC_COLUMN = :B1 

	5ngzsfstg8tmy
	select o.owner#, o.name, o.namespace, o.remoteowner, o.linkname, o.subname, o.dataobj#, o.flags from obj$ o where o.obj#=:1

	6769wyy3yf66f
	Select pos#, intcol#, col#, spare1, bo#, spare2 from icol$ where obj#=:1

	6aq34nj2zb2n7
	select col#, grantee#, privilege#, max(mod(nvl(option$, 0), 2)) from objauth$ where obj#=:1 and col# is not null group by privilege#, col#, grantee# order by col#, grantee#

	6d64jpfzqc9rv
	INSERT INTO MGMT_METRICS_RAW (TARGET_GUID, COLLECTION_TIMESTAMP, METRIC_GUID, KEY_VALUE, VALUE, STRING_VALUE) VALUES (:B5 , :B4 , :B3 , :B2 , NULL, :B1 )

	6gvch1xu9ca3g
	DECLARE job BINARY_INTEGER := :job; next_date DATE := :mydate; broken BOOLEAN := FALSE; BEGIN EMD_MAINTENANCE.EXECUTE_EM_DBMS_JOB_PROCS(); :mydate := next_date; IF broken THEN :b := 1; ELSE :b := 0; END IF; END; 

	7fz4p1f4ypb2r
	UPDATE MGMT_JOB_EXECUTION SET STEP_STATUS=:B6 , DISPATCHER_ID=-1 WHERE DISPATCHER_ID=:B5 AND STEP_TYPE IN (:B4 , :B3 , :B2 ) AND STEP_STATUS=:B1 

	7gz337nuhbkrj
	BEGIN EMD_NOTIFICATION.DEQUEUE(:1, :2, :3, :4); END;

	7ng34ruy5awxq
	select i.obj#, i.ts#, i.file#, i.block#, i.intcols, i.type#, i.flags, i.property, i.pctfree$, i.initrans, i.maxtrans, i.blevel, i.leafcnt, i.distkey, i.lblkkey, i.dblkkey, i.clufac, i.cols, i.analyzetime, i.samplesize, i.dataobj#, nvl(i.degree, 1), nvl(i.instances, 1), i.rowcnt, mod(i.pctthres$, 256), i.indmethod#, i.trunccnt, nvl(c.unicols, 0), nvl(c.deferrable#+c.valid#, 0), nvl(i.spare1, i.intcols), i.spare4, i.spare2, i.spare6, decode(i.pctthres$, null, null, mod(trunc(i.pctthres$/256), 256)), ist.cachedblk, ist.cachehit, ist.logicalread from ind$ i, ind_stats$ ist, (select enabled, min(cols) unicols, min(to_number(bitand(defer, 1))) deferrable#, min(to_number(bitand(defer, 4))) valid# from cdef$ where obj#=:1 and enabled > 1 group by enabled) c where i.obj#=c.enabled(+) and i.obj# = ist.obj#(+) and i.bo#=:1 order by i.obj#

	7vgmvmy8vvb9s
	insert into wrh$_tempstatxs (snap_id, dbid, instance_number, file#, creation_change#, phyrds, phywrts, singleblkrds, readtim, writetim, singleblkrdtim, phyblkrd, phyblkwrt, wait_count, time) select :snap_id, :dbid, :instance_number, tf.tfnum, to_number(tf.tfcrc_scn) creation_change#, ts.kcftiopyr, ts.kcftiopyw, ts.kcftiosbr, ts.kcftioprt, ts.kcftiopwt, ts.kcftiosbt, ts.kcftiopbr, ts.kcftiopbw, fw.count, fw.time from x$kcftio ts, x$kcctf tf, x$kcbfwait fw where tf.tfdup != 0 and tf.tfnum = ts.kcftiofno and fw.indx+1 = (ts.kcftiofno + :db_files)

	83taa7kaw59c1
	select name, intcol#, segcol#, type#, length, nvl(precision#, 0), decode(type#, 2, nvl(scale, -127/*MAXSB1MINAL*/), 178, scale, 179, scale, 180, scale, 181, scale, 182, scale, 183, scale, 231, scale, 0), null$, fixedstorage, nvl(deflength, 0), default$, rowid, col#, property, nvl(charsetid, 0), nvl(charsetform, 0), spare1, spare2, nvl(spare3, 0) from col$ where obj#=:1 order by intcol#

	8swypbbr0m372
	select order#, columns, types from access$ where d_obj#=:1

	8ux370qa6pyx9
	INSERT INTO WRH$_ACTIVE_SESSION_HISTORY ( snap_id, dbid, instance_number, sample_id, sample_time, session_id, session_serial#, user_id, sql_id, sql_child_number, sql_plan_hash_value, force_matching_signature, service_hash, session_type, sql_opcode, blocking_session, blocking_session_serial#, qc_session_id, qc_instance_id, xid, current_obj#, current_file#, current_block#, event_id, seq#, p1, p2, p3, wait_time, time_waited, program, module, action, client_id ) (SELECT :snap_id, :dbid, :instance_number, a.sample_id, a.sample_time, a.session_id, a.session_serial#, a.user_id, a.sql_id, a.sql_child_number, a.sql_plan_hash_value, a.force_matching_signature, a.service_hash, a.session_type, a.sql_opcode, a.blocking_session, a.blocking_session_serial#, a.qc_session_id, a.qc_instance_id, a.xid, a.current_obj#, a.current_file#, a.current_block#, a.event_id, a.seq#, a.p1, a.p2, a.p3, a.wait_time, a.time_waited, substrb(a.program, 1, 64), a.module, a.action, a.client_id FROM x$ash a, (SELECT h.sample_addr, h.sample_id FROM x$kewash h WHERE ( (h.sample_id >= :begin_flushing) and (h.sample_id < :latest_sample_id) ) and (MOD(h.sample_id, :disk_filter_ratio) = 0) ) shdr WHERE shdr.sample_addr = a.sample_add r and shdr.sample_id = a.sample_id) 

	91h2x42zqagcm
	UPDATE MGMT_CURRENT_METRICS SET COLLECTION_TIMESTAMP = :B3 , VALUE = :B2 , STRING_VALUE = :B1 WHERE TARGET_GUID = :B6 AND METRIC_GUID = :B5 AND KEY_VALUE = :B4 AND COLLECTION_TIMESTAMP < :B3 

	abtp0uqvdb1d3
	CALL MGMT_ADMIN_DATA.EVALUATE_MGMT_METRICS(:tguid, :mguid, :result)

	bunssq950snhf
	insert into wrh$_sga_target_advice (snap_id, dbid, instance_number, SGA_SIZE, SGA_SIZE_FACTOR, ESTD_DB_TIME, ESTD_PHYSICAL_READS) select :snap_id, :dbid, :instance_number, SGA_SIZE, SGA_SIZE_FACTOR, ESTD_DB_TIME, ESTD_PHYSICAL_READS from v$sga_target_advice

	c6awqs517jpj0
	select /*+ index(idl_char$ i_idl_char1) +*/ piece#, length, piece from idl_char$ where obj#=:1 and part=:2 and version=:3 order by piece#

	cb75rw3w1tt0s
	begin MGMT_JOB_ENGINE.get_scheduled_steps(:1, :2, :3, :4); end;

	cqgv56fmuj63x
	select owner#, name, namespace, remoteowner, linkname, p_timestamp, p_obj#, nvl(property, 0), subname, d_attrs from dependency$ d, obj$ o where d_obj#=:1 and p_obj#=obj#(+) order by order#

	cuu0u9fp3ynqn
	select tab.rowid, tab.msgid, tab.corrid, tab.priority, tab.delay, tab.expiration, tab.retry_count, tab.exception_qschema, tab.exception_queue, tab.chain_no, tab.local_order_no, tab.enq_time, tab.time_manager_info, tab.state, tab.enq_tid, tab.step_no, tab.sender_name, tab.sender_address, tab.sender_protocol, tab.dequeue_msgid, tab.user_prop, tab.user_data from "SYSMAN"."MGMT_NOTIFY_QTABLE" tab where msgid = :1

	cvn54b7yz0s8u
	select /*+ index(idl_ub1$ i_idl_ub11) +*/ piece#, length, piece from idl_ub1$ where obj#=:1 and part=:2 and version=:3 order by piece#

	d92h3rjp0y217
	begin prvt_hdm.auto_execute( :db_id, :inst_id, :end_snap ); end;

	dn6q8hkb44jnn
	BEGIN MGMT_JOB_ENGINE.handle_dispatcher_death(:1, :2); END;

	fasvw7q199577
	select u.name, o.name, t.update$, t.insert$, t.delete$, t.enabled from obj$ o, user$ u, trigger$ t where t.baseobject=:1 and t.obj#=o.obj# and o.owner#=u.user# and bitand(property, 16)=0 and bitand(property, 8)=0 order by o.obj#

	fsm2qvmrhnp6u
	SELECT TRIM(METRIC_NAME) FROM MGMT_METRICS WHERE METRIC_GUID = :B1 

	g6wf9na8zs5hb
	insert into wrh$_sysmetric_summary (snap_id, dbid, instance_number, begin_time, end_time, intsize, group_id, metric_id, num_interval, maxval, minval, average, standard_deviation) select :snap_id, :dbid, :instance_number, begtime, endtime, intsize_csec, groupid, metricid, numintv, max, min, avg, std FROM x$kewmsmdv WHERE groupid = 2

	ga9j9xk5cy9s0
	select /*+ index(idl_sb4$ i_idl_sb41) +*/ piece#, length, piece from idl_sb4$ where obj#=:1 and part=:2 and version=:3 order by piece#

	grwydz59pu6mc
	select text from view$ where rowid=:1

	gz6qtapr9u99d
	/* OracleOEM */ DECLARE l_log_mode VARCHAR2(32); l_flashback_on VARCHAR2(32); l_flash_recovery_area VARCHAR2(512); l_usable_area NUMBER; l_oldest_flashback_time VARCHAR2(512); TYPE data_cursor_type IS REF CURSOR; data_cursor data_cursor_type; v_db_version VARCHAR2(10); db_version_102 CONSTANT VARCHAR2(10) := '10.2.0.0.0'; BEGIN -- Database version SELECT LPAD(version, 10, '0') INTO v_db_version FROM v$instance; -- Log Mode, Flashback On SELECT log_mode, flashback_on INTO l_log_mode, l_flashback_on FROM v$database; -- Flash Recovery Area SELECT value INTO l_flash_recovery_area FROM v$parameter WHERE name='db_recovery_file_dest'; -- Usable Flash Recovery Area (10gR2) l_usable_area := NULL; IF (v_db_version >= db_version_102) THEN IF (length(l_flash_recovery_area) > 0) THEN EXECUTE IMMEDIATE 'SELECT (100 - sum(percent_space_used)) + sum(percent_space_reclaimable) FROM v$flash_recovery_area_usage' INTO l_usable_area; END IF; END IF; -- Oldest Flashback Time BEGIN SELECT to_char(oldest_flashback_time, 'YYYY-MM-DD HH24:MI:SS') INTO l_oldest_flashback_time FROM v$flashback_database_log; EXCEPTION WHEN OTHERS THEN l_oldest_flashback_time := ''; END; OPEN data_cursor FOR SELECT l_log_mode, l_flash_recovery_area, l_usable_area, l_flashback_on, l_oldest_flashback_time from dual; :1 := data_cursor; END; 


Back to SQL Statistics 
Back to Top 

Instance Activity Statistics 
· Instance Activity Stats 
· Instance Activity Stats - Absolute Values 
· Instance Activity Stats - Thread Activity 
Back to Top 

Instance Activity Stats

	Statistic
	Total
	per Second
	per Trans

	CPU used by this session
	173
	0.97
	3.76

	CPU used when call started
	216
	1.22
	4.70

	CR blocks created
	31
	0.17
	0.67

	DB time
	55,957
	315.36
	1,216.46

	DBWR checkpoint buffers written
	51
	0.29
	1.11

	DBWR checkpoints
	0
	0.00
	0.00

	DBWR transaction table writes
	9
	0.05
	0.20

	DBWR undo block writes
	28
	0.16
	0.61

	IMU CR rollbacks
	15
	0.08
	0.33

	IMU Flushes
	81
	0.46
	1.76

	IMU Redo allocation size
	26,272
	148.06
	571.13

	IMU commits
	44
	0.25
	0.96

	IMU ktichg flush
	0
	0.00
	0.00

	IMU recursive-transaction flush
	0
	0.00
	0.00

	IMU undo allocation size
	166,392
	937.75
	3,617.22

	PX local messages recv'd
	0
	0.00
	0.00

	PX local messages sent
	0
	0.00
	0.00

	SQL*Net roundtrips to/from client
	232
	1.31
	5.04

	active txn count during cleanout
	41
	0.23
	0.89

	application wait time
	0
	0.00
	0.00

	background timeouts
	563
	3.17
	12.24

	buffer is not pinned count
	7,453
	42.00
	162.02

	buffer is pinned count
	1,534
	8.65
	33.35

	bytes received via SQL*Net from client
	23,841
	134.36
	518.28

	bytes sent via SQL*Net to client
	27,445
	154.67
	596.63

	calls to get snapshot scn: kcmgss
	4,020
	22.66
	87.39

	calls to kcmgas
	193
	1.09
	4.20

	calls to kcmgcs
	35
	0.20
	0.76

	change write time
	2
	0.01
	0.04

	cleanout - number of ktugct calls
	43
	0.24
	0.93

	cleanouts only - consistent read gets
	2
	0.01
	0.04

	cluster key scan block gets
	827
	4.66
	17.98

	cluster key scans
	429
	2.42
	9.33

	commit batch performed
	0
	0.00
	0.00

	commit batch requested
	0
	0.00
	0.00

	commit batch/immediate performed
	0
	0.00
	0.00

	commit batch/immediate requested
	0
	0.00
	0.00

	commit cleanout failures: callback failure
	6
	0.03
	0.13

	commit cleanouts
	286
	1.61
	6.22

	commit cleanouts successfully completed
	280
	1.58
	6.09

	commit immediate performed
	0
	0.00
	0.00

	commit immediate requested
	0
	0.00
	0.00

	commit txn count during cleanout
	13
	0.07
	0.28

	concurrency wait time
	1
	0.01
	0.02

	consistent changes
	31
	0.17
	0.67

	consistent gets
	11,843
	66.74
	257.46

	consistent gets – examination
	5,098
	28.73
	110.83

	consistent gets from cache
	11,843
	66.74
	257.46

	current blocks converted for CR
	0
	0.00
	0.00

	cursor authentications
	42
	0.24
	0.91

	data blocks consistent reads - undo records applied
	31
	0.17
	0.67

	db block changes
	4,573
	25.77
	99.41

	db block gets
	4,049
	22.82
	88.02

	db block gets direct
	2
	0.01
	0.04

	db block gets from cache
	4,047
	22.81
	87.98

	deferred (CURRENT) block cleanout applications
	112
	0.63
	2.43

	enqueue conversions
	35
	0.20
	0.76

	enqueue releases
	2,319
	13.07
	50.41

	enqueue requests
	2,319
	13.07
	50.41

	enqueue timeouts
	0
	0.00
	0.00

	enqueue waits
	0
	0.00
	0.00

	execute count
	2,524
	14.22
	54.87

	free buffer requested
	373
	2.10
	8.11

	heap block compress
	1
	0.01
	0.02

	immediate (CR) block cleanout applications
	2
	0.01
	0.04

	immediate (CURRENT) block cleanout applications
	60
	0.34
	1.30

	index fetch by key
	2,468
	13.91
	53.65

	index scans kdiixs1
	1,978
	11.15
	43.00

	leaf node 90-10 splits
	3
	0.02
	0.07

	leaf node splits
	9
	0.05
	0.20

	lob reads
	0
	0.00
	0.00

	lob writes
	149
	0.84
	3.24

	lob writes unaligned
	149
	0.84
	3.24

	logons cumulative
	7
	0.04
	0.15

	messages received
	95
	0.54
	2.07

	messages sent
	95
	0.54
	2.07

	no buffer to keep pinned count
	0
	0.00
	0.00

	no work - consistent read gets
	4,584
	25.83
	99.65

	opened cursors cumulative
	1,859
	10.48
	40.41

	parse count (failures)
	0
	0.00
	0.00

	parse count (hard)
	129
	0.73
	2.80

	parse count (total)
	733
	4.13
	15.93

	parse time cpu
	30
	0.17
	0.65

	parse time elapsed
	35
	0.20
	0.76

	physical read IO requests
	147
	0.83
	3.20

	physical read bytes
	1,204,224
	6,786.73
	26,178.78

	physical read total IO requests
	862
	4.86
	18.74

	physical read total bytes
	12,784,640
	72,051.31
	277,926.96

	physical read total multi block requests
	4
	0.02
	0.09

	physical reads
	147
	0.83
	3.20

	physical reads cache
	147
	0.83
	3.20

	physical reads cache prefetch
	0
	0.00
	0.00

	physical reads direct
	0
	0.00
	0.00

	physical reads direct temporary tablespace
	0
	0.00
	0.00

	physical reads prefetch warmup
	0
	0.00
	0.00

	physical write IO requests
	32
	0.18
	0.70

	physical write bytes
	458,752
	2,585.42
	9,972.87

	physical write total IO requests
	290
	1.63
	6.30

	physical write total bytes
	4,620,288
	26,038.89
	100,441.04

	physical write total multi block requests
	76
	0.43
	1.65

	physical writes
	56
	0.32
	1.22

	physical writes direct
	2
	0.01
	0.04

	physical writes direct (lob)
	2
	0.01
	0.04

	physical writes from cache
	54
	0.30
	1.17

	physical writes non checkpoint
	26
	0.15
	0.57

	process last non-idle time
	0
	0.00
	0.00

	recovery blocks read
	0
	0.00
	0.00

	recursive calls
	28,777
	162.18
	625.59

	recursive cpu usage
	171
	0.96
	3.72

	redo blocks read for recovery
	0
	0.00
	0.00

	redo blocks written
	2,444
	13.77
	53.13

	redo entries
	2,229
	12.56
	48.46

	redo ordering marks
	73
	0.41
	1.59

	redo size
	1,178,984
	6,644.48
	25,630.09

	redo synch time
	1
	0.01
	0.02

	redo synch writes
	136
	0.77
	2.96

	redo wastage
	17,604
	99.21
	382.70

	redo write time
	13
	0.07
	0.28

	redo writes
	69
	0.39
	1.50

	rollback changes - undo records applied
	0
	0.00
	0.00

	rollbacks only - consistent read gets
	31
	0.17
	0.67

	rows fetched via callback
	1,176
	6.63
	25.57

	session connect time
	0
	0.00
	0.00

	session cursor cache hits
	1,449
	8.17
	31.50

	session logical reads
	15,892
	89.56
	345.48

	session pga memory
	4,037,372
	22,753.71
	87,768.96

	session pga memory max
	6,068,988
	34,203.43
	131,934.52

	session uga memory
	12,885,014,000
	72,616,992.98
	280,109,000.00

	session uga memory max
	4,901,812
	27,625.49
	106,561.13

	shared hash latch upgrades - no wait
	1,935
	10.91
	42.07

	shared hash latch upgrades - wait
	0
	0.00
	0.00

	sorts (memory)
	618
	3.48
	13.43

	sorts (rows)
	7,296
	41.12
	158.61

	sql area purged
	0
	0.00
	0.00

	switch current to new buffer
	3
	0.02
	0.07

	table fetch by rowid
	3,045
	17.16
	66.20

	table fetch continued row
	9
	0.05
	0.20

	table scan blocks gotten
	883
	4.98
	19.20

	table scan rows gotten
	41,327
	232.91
	898.41

	table scans (short tables)
	86
	0.48
	1.87

	total number of times SMON posted
	0
	0.00
	0.00

	transaction rollbacks
	0
	0.00
	0.00

	undo change vector size
	308,196
	1,736.92
	6,699.91

	user I/O wait time
	86
	0.48
	1.87

	user calls
	273
	1.54
	5.93

	user commits
	46
	0.26
	1.00

	user rollbacks
	0
	0.00
	0.00

	workarea executions - optimal
	357
	2.01
	7.76


Back to Instance Activity Statistics 
Back to Top 

Instance Activity Stats - Absolute Values

· Statistics with absolute values (should not be diffed) 

	Statistic
	Begin Value
	End Value

	session cursor cache count
	829
	937

	opened cursors current
	234
	234

	logons current
	23
	23


Back to Instance Activity Statistics 
Back to Top 

Instance Activity Stats - Thread Activity

· Statistics identified by '(derived)' come from sources other than SYSSTAT 

	Statistic
	Total
	per Hour

	log switches (derived)
	0
	0.00


Back to Instance Activity Statistics 
Back to Top 

IO Stats 
· Tablespace IO Stats 
· File IO Stats 
Back to Top 

Tablespace IO Stats

· ordered by IOs (Reads + Writes) desc 

	Tablespace
	Reads
	Av Reads/s
	Av Rd(ms)
	Av Blks/Rd
	Writes
	Av Writes/s
	Buffer Waits
	Av Buf Wt(ms)

	SYSAUX
	217
	1
	4.24
	1.00
	8
	0
	0
	0.00

	SYSTEM
	51
	0
	8.82
	1.00
	8
	0
	0
	0.00

	UNDOTBS1
	0
	0
	0.00
	0.00
	16
	0
	0
	0.00


Back to IO Stats 
Back to Top 

File IO Stats

· ordered by Tablespace, File 

	Tablespace
	Filename
	Reads
	Av Reads/s
	Av Rd(ms)
	Av Blks/Rd
	Writes
	Av Writes/s
	Buffer Waits
	Av Buf Wt(ms)

	SYSAUX
	E:\ORADATA\ORCL\SYSAUX01.DBF
	217
	1
	4.24
	1.00
	8
	0
	0
	0.00

	SYSTEM
	E:\ORADATA\ORCL\SYSTEM01.DBF
	51
	0
	8.82
	1.00
	8
	0
	0
	0.00

	UNDOTBS1
	E:\ORADATA\ORCL\UNDOTBS01.DBF
	0
	0
	 
	 
	16
	0
	0
	0.00


Back to IO Stats 
Back to Top 

Buffer Pool Statistics

· Standard block size Pools D: default, K: keep, R: recycle 

· Default Pools for other block sizes: 2k, 4k, 8k, 16k, 32k 

	P
	Number of Buffers
	Pool Hit%
	Buffer Gets
	Physical Reads
	Physical Writes
	Free Buff Wait
	Writ Comp Wait
	Buffer Busy Waits

	D
	50,399
	99
	17,419
	194
	54
	0
	0
	0



Back to Top 

Advisory Statistics 
· Instance Recovery Stats 
· Buffer Pool Advisory 
· PGA Aggr Summary 
· PGA Aggr Target Stats 
· PGA Aggr Target Histogram 
· PGA Memory Advisory 
· Shared Pool Advisory 
· SGA Target Advisory 
· Streams Pool Advisory 
· Java Pool Advisory 
Back to Top 

Instance Recovery Stats

· B: Begin snapshot, E: End snapshot 

	
	Targt MTTR (s) 
	Estd MTTR (s)
	Recovery Estd IOs
	Actual Redo Blks
	Target Redo Blks
	Log File Size Redo Blks
	Log Ckpt Timeout Redo Blks
	Log Ckpt Interval Redo Blks 

	B
	0
	24
	480
	2170
	184320
	184320
	 
	 

	E
	0
	24
	731
	4561
	184320
	184320
	 
	 


Back to Advisory Statistics 
Back to Top 

Buffer Pool Advisory

· Only rows with estimated physical reads >0 are displayed 

· ordered by Block Size, Buffers For Estimate 

	P
	Size for Est (M)
	Size Factor
	Buffers for Estimate
	Est Phys Read Factor
	Estimated Physical Reads

	D
	40
	0.10
	4,990
	1.06
	8,252

	D
	80
	0.20
	9,980
	1.00
	7,785

	D
	120
	0.30
	14,970
	1.00
	7,785

	D
	160
	0.40
	19,960
	1.00
	7,785

	D
	200
	0.50
	24,950
	1.00
	7,785

	D
	240
	0.59
	29,940
	1.00
	7,785

	D
	280
	0.69
	34,930
	1.00
	7,785

	D
	320
	0.79
	39,920
	1.00
	7,785

	D
	360
	0.89
	44,910
	1.00
	7,785

	D
	400
	0.99
	49,900
	1.00
	7,785

	D
	404
	1.00
	50,399
	1.00
	7,785

	D
	440
	1.09
	54,890
	1.00
	7,785

	D
	480
	1.19
	59,880
	1.00
	7,785

	D
	520
	1.29
	64,870
	1.00
	7,785

	D
	560
	1.39
	69,860
	1.00
	7,785

	D
	600
	1.49
	74,850
	1.00
	7,785

	D
	640
	1.58
	79,840
	1.00
	7,785

	D
	680
	1.68
	84,830
	1.00
	7,785

	D
	720
	1.78
	89,820
	1.00
	7,785

	D
	760
	1.88
	94,810
	1.00
	7,785

	D
	800
	1.98
	99,800
	1.00
	7,785


Back to Advisory Statistics 
Back to Top 

PGA Aggr Summary

· PGA cache hit % - percentage of W/A (WorkArea) data processed only in-memory 

	PGA Cache Hit %
	W/A MB Processed
	Extra W/A MB Read/Written

	100.00
	13
	0


Back to Advisory Statistics 
Back to Top 

  PGA Aggr Target Stats

· B: Begin snap E: End snap (rows dentified with B or E contain data which is absolute i.e. not diffed over the interval) 

· Auto PGA Target - actual workarea memory target 

· W/A PGA Used - amount of memory used for all Workareas (manual + auto) 

· %PGA W/A Mem - percentage of PGA memory allocated to workareas 

· %Auto W/A Mem - percentage of workarea memory controlled by Auto Mem Mgmt 

· %Man W/A Mem - percentage of workarea memory under manual control 

	
	PGA Aggr Target(M)
	Auto PGA Target(M)
	PGA Mem Alloc(M) 
	W/A PGA Used(M) 
	%PGA W/A Mem
	%Auto W/A Mem
	%Man W/A Mem
	Global Mem Bound(K)

	B
	194
	160
	31.51
	0.00
	0.00
	0.00
	0.00
	39,731

	E
	194
	160
	31.33
	0.00
	0.00
	0.00
	0.00
	39,731


Back to Advisory Statistics 
Back to Top 

PGA Aggr Target Histogram

· Optimal Executions are purely in-memory operations 

	Low Optimal
	High Optimal
	Total Execs
	Optimal Execs
	1-Pass Execs
	M-Pass Execs

	2K
	4K
	354
	354
	0
	0

	64K
	128K
	1
	1
	0
	0

	512K
	1024K
	16
	16
	0
	0


Back to Advisory Statistics 
Back to Top 

PGA Memory Advisory

· When using Auto Memory Mgmt, minimally choose a pga_aggregate_target value where Estd PGA Overalloc Count is 0 

	PGA Target Est (MB)
	Size Factr
	W/A MB Processed
	Estd Extra W/A MB Read/ Written to Disk 
	Estd PGA Cache Hit %
	Estd PGA Overalloc Count

	24
	0.13
	48.12
	0.00
	100.00
	0

	49
	0.25
	48.12
	0.00
	100.00
	0

	97
	0.50
	48.12
	0.00
	100.00
	0

	146
	0.75
	48.12
	0.00
	100.00
	0

	194
	1.00
	48.12
	0.00
	100.00
	0

	233
	1.20
	48.12
	0.00
	100.00
	0

	272
	1.40
	48.12
	0.00
	100.00
	0

	310
	1.60
	48.12
	0.00
	100.00
	0

	349
	1.80
	48.12
	0.00
	100.00
	0

	388
	2.00
	48.12
	0.00
	100.00
	0

	582
	3.00
	48.12
	0.00
	100.00
	0

	776
	4.00
	48.12
	0.00
	100.00
	0

	1,164
	6.00
	48.12
	0.00
	100.00
	0

	1,552
	8.00
	48.12
	0.00
	100.00
	0


Back to Advisory Statistics 
Back to Top 

Shared Pool Advisory

· SP: Shared Pool Est LC: Estimated Library Cache Factr: Factor 

· Note there is often a 1:Many correlation between a single logical object in the Library Cache, and the physical number of memory objects associated with it. Therefore comparing the number of Lib Cache objects (e.g. in v$librarycache), with the number of Lib Cache Memory Objects is invalid. 

	Shared Pool Size(M)
	SP Size Factr
	Est LC Size (M)
	Est LC Mem Obj
	Est LC Time Saved (s)
	Est LC Time Saved Factr
	Est LC Load Time (s)
	Est LC Load Time Factr
	Est LC Mem Obj Hits

	64
	0.39
	22
	2,875
	1,629
	0.99
	41
	1.37
	35,699

	84
	0.51
	40
	5,063
	1,640
	1.00
	30
	1.00
	36,108

	104
	0.63
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	124
	0.76
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	144
	0.88
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	164
	1.00
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	184
	1.12
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	204
	1.24
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	224
	1.37
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	244
	1.49
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	264
	1.61
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	284
	1.73
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	304
	1.85
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	324
	1.98
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111

	344
	2.10
	50
	6,630
	1,640
	1.00
	30
	1.00
	36,111


Back to Advisory Statistics 
Back to Top 

SGA Target Advisory

	SGA Target Size (M)
	SGA Size Factor
	Est DB Time (s)
	Est Physical Reads

	146
	0.25
	83
	8,226

	292
	0.50
	79
	7,773

	438
	0.75
	79
	7,773

	584
	1.00
	79
	7,773

	730
	1.25
	79
	7,773

	876
	1.50
	79
	7,773

	1,022
	1.75
	79
	7,773

	1,168
	2.00
	79
	7,773


Back to Advisory Statistics 
Back to Top 

Streams Pool Advisory

No data exists for this section of the report. 

Back to Advisory Statistics 
Back to Top 

Java Pool Advisory

No data exists for this section of the report. 

Back to Advisory Statistics 
Back to Top 

Wait Statistics 
· Buffer Wait Statistics 
· Enqueue Activity 
Back to Top 

Buffer Wait Statistics

No data exists for this section of the report. 

Back to Wait Statistics 
Back to Top 

Enqueue Activity

No data exists for this section of the report. 

Back to Wait Statistics 
Back to Top 

Undo Statistics 
· Undo Segment Summary 
· Undo Segment Stats 
Back to Top 

Undo Segment Summary

· Min/Max TR (mins) - Min and Max Tuned Retention (minutes) 

· STO - Snapshot Too Old count, OOS - Out of Space count 

· Undo segment block stats: 

· uS - unexpired Stolen, uR - unexpired Released, uU - unexpired reUsed 

· eS - expired Stolen, eR - expired Released, eU - expired reUsed 

	Undo TS#
	Num Undo Blocks (K)
	Number of Transactions
	Max Qry Len (s)
	Max Tx Concurcy
	Min/Max TR (mins)
	STO/ OOS
	uS/uR/uU/ eS/eR/eU

	1
	0.15
	694
	0
	3
	15/15
	0/0
	0/0/0/0/0/0


Back to Undo Statistics 
Back to Top 

Undo Segment Stats

· Most recent 35 Undostat rows, ordered by Time desc 

	End Time
	Num Undo Blocks
	Number of Transactions
	Max Qry Len (s)
	Max Tx Concy
	Tun Ret (mins)
	STO/ OOS
	uS/uR/uU/ eS/eR/eU

	19-Jun 13:53
	151
	694
	0
	3
	15
	0/0
	0/0/0/0/0/0


Back to Undo Statistics 
Back to Top 

Latch Statistics 
· Latch Activity 
· Latch Sleep Breakdown 
· Latch Miss Sources 
· Parent Latch Statistics 
· Child Latch Statistics 
Back to Top 

Latch Activity

· "Get Requests", "Pct Get Miss" and "Avg Slps/Miss" are statistics for willing-to-wait latch get requests 

· "NoWait Requests", "Pct NoWait Miss" are for no-wait latch get requests 

· "Pct Misses" for both should be very close to 0.0 

	Latch Name
	Get Requests
	Pct Get Miss
	Avg Slps /Miss
	Wait Time (s)
	NoWait Requests
	Pct NoWait Miss

	AWR Alerted Metric Element list
	637
	0.00
	 
	0
	0
	 

	Consistent RBA
	69
	0.00
	 
	0
	0
	 

	FIB s.o chain latch
	4
	0.00
	 
	0
	0
	 

	FOB s.o list latch
	34
	0.00
	 
	0
	0
	 

	In memory undo latch
	790
	0.00
	 
	0
	179
	0.00

	JS queue state obj latch
	1,260
	0.00
	 
	0
	0
	 

	JS slv state obj latch
	3
	0.00
	 
	0
	0
	 

	KMG MMAN ready and startup request latch
	63
	0.00
	 
	0
	0
	 

	KMG resize request state object freelist
	2
	0.00
	 
	0
	0
	 

	KTF sga latch
	0
	 
	 
	0
	51
	0.00

	KWQMN job cache list latch
	40
	0.00
	 
	0
	0
	 

	MQL Tracking Latch
	0
	 
	 
	0
	4
	0.00

	Memory Management Latch
	23
	0.00
	 
	0
	62
	0.00

	OS process
	18
	0.00
	 
	0
	0
	 

	OS process allocation
	70
	0.00
	 
	0
	0
	 

	OS process: request allocation
	8
	0.00
	 
	0
	0
	 

	PL/SQL warning settings
	37
	0.00
	 
	0
	0
	 

	SQL memory manager latch
	1
	0.00
	 
	0
	59
	0.00

	SQL memory manager workarea list latch
	4,160
	0.00
	 
	0
	0
	 

	Shared B-Tree
	6
	0.00
	 
	0
	0
	 

	active checkpoint queue latch
	90
	0.00
	 
	0
	1
	0.00

	active service list
	388
	0.00
	 
	0
	59
	0.00

	alert log latch
	0
	 
	 
	0
	1
	0.00

	archive control
	3
	0.00
	 
	0
	0
	 

	begin backup scn array
	2
	0.00
	 
	0
	0
	 

	buffer pool
	2
	0.00
	 
	0
	0
	 

	cache buffer handles
	26
	0.00
	 
	0
	0
	 

	cache buffers chains
	39,727
	0.00
	 
	0
	1,498
	0.00

	cache buffers lru chain
	822
	0.00
	 
	0
	547
	0.00

	channel handle pool latch
	9
	0.00
	 
	0
	0
	 

	channel operations parent latch
	1,095
	0.00
	 
	0
	0
	 

	checkpoint queue latch
	2,260
	0.00
	 
	0
	902
	0.00

	client/application info
	94
	0.00
	 
	0
	0
	 

	commit callback allocation
	26
	0.00
	 
	0
	0
	 

	compile environment latch
	130
	0.00
	 
	0
	0
	 

	dml lock allocation
	1,029
	0.00
	 
	0
	0
	 

	dummy allocation
	14
	0.00
	 
	0
	0
	 

	enqueue hash chains
	4,841
	0.00
	 
	0
	0
	 

	enqueues
	3,761
	0.00
	 
	0
	0
	 

	event group latch
	4
	0.00
	 
	0
	0
	 

	file cache latch
	23
	0.00
	 
	0
	0
	 

	global KZLD latch for mem in SGA
	2
	0.00
	 
	0
	0
	 

	hash table column usage latch
	0
	 
	 
	0
	869
	0.00

	hash table modification latch
	32
	0.00
	 
	0
	1
	0.00

	job workq parent latch
	0
	 
	 
	0
	6
	0.00

	job_queue_processes parameter latch
	6
	0.00
	 
	0
	0
	 

	kks stats
	153
	0.00
	 
	0
	0
	 

	ksuosstats global area
	14
	0.00
	 
	0
	0
	 

	kwqbsn:qsga
	6
	0.00
	 
	0
	0
	 

	lgwr LWN SCN
	106
	0.00
	 
	0
	0
	 

	library cache
	19,659
	0.01
	0.00
	0
	426
	0.00

	library cache load lock
	962
	0.00
	 
	0
	0
	 

	library cache lock
	5,360
	0.00
	 
	0
	0
	 

	library cache lock allocation
	194
	0.00
	 
	0
	0
	 

	library cache pin
	11,674
	0.00
	 
	0
	0
	 

	library cache pin allocation
	130
	0.00
	 
	0
	0
	 

	list of block allocation
	18
	0.00
	 
	0
	0
	 

	loader state object freelist
	8
	0.00
	 
	0
	0
	 

	message pool operations parent latch
	2
	0.00
	 
	0
	0
	 

	messages
	1,388
	0.00
	 
	0
	0
	 

	mostly latch-free SCN
	106
	0.00
	 
	0
	0
	 

	multiblock read objects
	0
	 
	 
	0
	1
	0.00

	ncodef allocation latch
	3
	0.00
	 
	0
	0
	 

	object queue header heap
	115
	0.00
	 
	0
	6
	0.00

	object queue header operation
	1,810
	0.00
	 
	0
	0
	 

	object stats modification
	66
	0.00
	 
	0
	2
	0.00

	parallel query alloc buffer
	20
	0.00
	 
	0
	0
	 

	parameter table allocation management
	9
	0.00
	 
	0
	0
	 

	post/wait queue
	38
	0.00
	 
	0
	21
	0.00

	process allocation
	8
	0.00
	 
	0
	4
	0.00

	process group creation
	8
	0.00
	 
	0
	0
	 

	qmn task queue latch
	24
	0.00
	 
	0
	0
	 

	redo allocation
	639
	0.00
	 
	0
	2,344
	0.00

	redo copy
	0
	 
	 
	0
	2,344
	0.00

	redo writing
	423
	0.00
	 
	0
	0
	 

	resmgr group change latch
	20
	0.00
	 
	0
	0
	 

	resmgr:actses active list
	15
	0.00
	 
	0
	0
	 

	resmgr:actses change group
	6
	0.00
	 
	0
	0
	 

	resmgr:free threads list
	14
	0.00
	 
	0
	0
	 

	resmgr:schema config
	1
	0.00
	 
	0
	0
	 

	row cache objects
	14,366
	0.00
	 
	0
	93
	0.00

	sequence cache
	17
	0.00
	 
	0
	0
	 

	session allocation
	71,462
	0.00
	 
	0
	0
	 

	session idle bit
	669
	0.00
	 
	0
	0
	 

	session state list latch
	22
	0.00
	 
	0
	0
	 

	session switching
	3
	0.00
	 
	0
	0
	 

	session timer
	59
	0.00
	 
	0
	0
	 

	shared pool
	14,083
	0.01
	0.00
	0
	0
	 

	simulator hash latch
	927
	0.00
	 
	0
	0
	 

	simulator lru latch
	864
	0.00
	 
	0
	35
	0.00

	sort extent pool
	6
	0.00
	 
	0
	0
	 

	state object free list
	2
	0.00
	 
	0
	0
	 

	statistics aggregation
	140
	0.00
	 
	0
	0
	 

	threshold alerts latch
	32
	0.00
	 
	0
	0
	 

	transaction allocation
	12
	0.00
	 
	0
	0
	 

	transaction branch allocation
	3
	0.00
	 
	0
	0
	 

	undo global data
	485
	0.00
	 
	0
	0
	 

	user lock
	14
	0.00
	 
	0
	0
	 


Back to Latch Statistics 
Back to Top 

Latch Sleep Breakdown

No data exists for this section of the report. 

Back to Latch Statistics 
Back to Top 

Latch Miss Sources

No data exists for this section of the report. 

Back to Latch Statistics 
Back to Top 

Parent Latch Statistics

No data exists for this section of the report. 

Back to Latch Statistics 
Back to Top 

Child Latch Statistics

No data exists for this section of the report. 

Back to Latch Statistics 
Back to Top 

Segment Statistics 
· Segments by Logical Reads 
· Segments by Physical Reads 
· Segments by Row Lock Waits 
· Segments by ITL Waits 
· Segments by Buffer Busy Waits 
Back to Top 

Segments by Logical Reads

· Total Logical Reads: 15,892 

· Captured Segments account for 100.7% of Total 

	Owner
	Tablespace Name
	Object Name
	Subobject Name
	Obj. Type
	Logical Reads
	%Total

	SYS
	SYSTEM
	I_HH_OBJ#_INTCOL#
	 
	INDEX
	2,128
	13.39

	SYS
	SYSTEM
	I_CCOL2
	 
	INDEX
	1,744
	10.97

	SYS
	SYSAUX
	WRH$_SQL_PLAN_PK
	 
	INDEX
	1,408
	8.86

	SYS
	SYSTEM
	CDEF$
	 
	TABLE
	768
	4.83

	SYS
	SYSAUX
	WRH$_SQL_PLAN
	 
	TABLE
	768
	4.83


Back to Segment Statistics 
Back to Top 

Segments by Physical Reads

· Total Physical Reads: 147 

· Captured Segments account for 63.9% of Total 

	Owner
	Tablespace Name
	Object Name
	Subobject Name
	Obj. Type
	Physical Reads
	%Total

	SYS
	SYSTEM
	OBJ$
	 
	TABLE
	12
	8.16

	SYS
	SYSTEM
	HIST_HEAD$
	 
	TABLE
	5
	3.40

	SYS
	SYSAUX
	WRH$_LATCH_PK
	49873992_0
	INDEX PARTITION
	4
	2.72

	SYS
	SYSAUX
	WRH$_SQL_BIND_METADATA_PK
	 
	INDEX
	4
	2.72

	SYS
	SYSAUX
	WRH$_SQL_PLAN_PK
	 
	INDEX
	4
	2.72


Back to Segment Statistics 
Back to Top 

Segments by Row Lock Waits

No data exists for this section of the report. 

Back to Segment Statistics 
Back to Top 

Segments by ITL Waits

No data exists for this section of the report. 

Back to Segment Statistics 
Back to Top 

Segments by Buffer Busy Waits

No data exists for this section of the report. 

Back to Segment Statistics 
Back to Top 

Dictionary Cache Stats

· "Pct Misses" should be very low (< 2% in most cases) 

· "Final Usage" is the number of cache entries being used 

	Cache
	Get Requests
	Pct Miss
	Scan Reqs
	Pct Miss
	Mod Reqs
	Final Usage

	dc_awr_control
	7
	0.00
	0
	 
	2
	1

	dc_global_oids
	305
	0.00
	0
	 
	0
	49

	dc_histogram_data
	89
	0.00
	0
	 
	0
	240

	dc_histogram_defs
	1,286
	46.50
	0
	 
	0
	3,033

	dc_object_grants
	2
	0.00
	0
	 
	0
	74

	dc_object_ids
	862
	8.58
	0
	 
	0
	846

	dc_objects
	433
	15.24
	0
	 
	0
	1,206

	dc_profiles
	7
	0.00
	0
	 
	0
	2

	dc_rollback_segments
	22
	0.00
	0
	 
	0
	22

	dc_segments
	280
	26.07
	0
	 
	4
	655

	dc_sequences
	1
	100.00
	0
	 
	1
	6

	dc_tablespaces
	333
	0.00
	0
	 
	0
	6

	dc_usernames
	72
	0.00
	0
	 
	0
	11

	dc_users
	631
	0.00
	0
	 
	0
	35

	outstanding_alerts
	14
	0.00
	0
	 
	0
	13



Back to Top 

Library Cache Activity

· "Pct Misses" should be very low 

	Namespace
	Get Requests
	Pct Miss
	Pin Requests
	Pct Miss
	Reloads
	Invali- dations

	BODY
	42
	2.38
	236
	1.27
	2
	0

	CLUSTER
	3
	0.00
	6
	0.00
	0
	0

	INDEX
	11
	90.91
	11
	100.00
	1
	0

	SQL AREA
	138
	66.67
	3,618
	7.41
	86
	0

	TABLE/PROCEDURE
	359
	24.23
	1,454
	28.54
	148
	0

	TRIGGER
	4
	0.00
	38
	10.53
	4
	0



Back to Top 

Memory Statistics 
· Process Memory Summary 
· SGA Memory Summary 
· SGA breakdown difference 
Back to Top 

Process Memory Summary

· B: Begin snap E: End snap 

· All rows below contain absolute values (i.e. not diffed over the interval) 

· Max Alloc is Maximum PGA Allocation size at snapshot time 

· Hist Max Alloc is the Historical Max Allocation for still-connected processes 

· ordered by Begin/End snapshot, Alloc (MB) desc 

	
	Category
	Alloc (MB)
	Used (MB)
	Avg Alloc (MB)
	Std Dev Alloc (MB)
	Max Alloc (MB)
	Hist Max Alloc (MB)
	Num Proc
	Num Alloc

	B
	Other
	30.56
	 
	1.22
	1.71
	9
	10
	25
	25

	 
	SQL
	0.85
	0.33
	0.05
	0.03
	0
	2
	17
	14

	 
	PL/SQL
	0.37
	0.18
	0.02
	0.02
	0
	0
	23
	23

	E
	Other
	30.41
	 
	1.22
	1.70
	9
	10
	25
	25

	 
	SQL
	0.84
	0.33
	0.05
	0.03
	0
	2
	17
	14

	 
	PL/SQL
	0.40
	0.17
	0.02
	0.02
	0
	0
	23
	23


Back to Memory Statistics 
Back to Top 

SGA Memory Summary

	SGA regions
	Begin Size (Bytes)
	End Size (Bytes) (if different)

	Database Buffers
	427,819,008
	423,624,704

	Fixed Size
	1,250,428
	 

	Redo Buffers
	7,135,232
	 

	Variable Size
	176,163,716
	180,358,020


Back to Memory Statistics 
Back to Top 

SGA breakdown difference

· ordered by Pool, Name 

· N/A value for Begin MB or End MB indicates the size of that Pool/Name was insignificant, or zero in that snapshot 

	Pool
	Name
	Begin MB
	End MB
	% Diff

	java
	free memory
	4.00
	4.00
	0.00

	large
	PX msg pool
	1.02
	1.02
	0.00

	large
	free memory
	2.98
	2.98
	0.00

	shared
	ASH buffers
	8.00
	8.00
	0.00

	shared
	CCursor
	2.03
	2.04
	0.43

	shared
	Heap0: KGL
	 
	1.57
	 

	shared
	KCB Table Scan Buffer
	3.80
	3.80
	0.00

	shared
	KGLS heap
	1.57
	1.98
	25.96

	shared
	KQR M PO
	2.21
	2.54
	15.06

	shared
	KSFD SGA I/O b
	3.79
	3.79
	0.00

	shared
	PL/SQL DIANA
	1.95
	2.01
	3.20

	shared
	PL/SQL MPCODE
	3.66
	3.73
	1.93

	shared
	free memory
	81.28
	80.31
	-1.19

	shared
	kglsim hash table bkts
	2.00
	2.00
	0.00

	shared
	library cache
	4.88
	5.01
	2.55

	shared
	row cache
	3.57
	3.57
	0.00

	shared
	sql area
	9.14
	8.93
	-2.35

	 
	buffer_cache
	408.00
	404.00
	-0.98

	 
	fixed_sga
	1.19
	1.19
	0.00

	 
	log_buffer
	6.80
	6.80
	0.00


Back to Memory Statistics 
Back to Top 

Streams Statistics 
· Streams CPU/IO Usage 
· Streams Capture 
· Streams Apply 
· Buffered Queues 
· Buffered Subscribers 
· Rule Set 
Back to Top 

Streams CPU/IO Usage

No data exists for this section of the report. 

Back to Streams Statistics 
Back to Top 

Streams Capture

No data exists for this section of the report. 

Back to Streams Statistics 
Back to Top 

Streams Apply

No data exists for this section of the report. 

Back to Streams Statistics 
Back to Top 

Buffered Queues

No data exists for this section of the report. 

Back to Streams Statistics 
Back to Top 

Buffered Subscribers

No data exists for this section of the report. 

Back to Streams Statistics 
Back to Top 

Rule Set

No data exists for this section of the report. 

Back to Streams Statistics 
Back to Top 

Resource Limit Stats

No data exists for this section of the report. 


Back to Top 

init.ora Parameters

	Parameter Name
	Begin value
	End value (if different)

	audit_file_dest
	E:\ADMIN\ORCL\ADUMP
	  

	background_dump_dest
	E:\ADMIN\ORCL\BDUMP
	  

	compatible
	10.2.0.1.0
	  

	control_files
	E:\ORADATA\ORCL\CONTROL01.CTL, E:\ORADATA\ORCL\CONTROL02.CTL, E:\ORADATA\ORCL\CONTROL03.CTL
	  

	core_dump_dest
	E:\ADMIN\ORCL\CDUMP
	  

	db_block_size
	8192
	  

	db_domain
	  
	  

	db_file_multiblock_read_count
	16
	  

	db_name
	orcl
	  

	db_recovery_file_dest
	E:/flash_recovery_area
	  

	db_recovery_file_dest_size
	2147483648
	  

	dispatchers
	(PROTOCOL=TCP) (SERVICE=orclXDB)
	  

	job_queue_processes
	10
	  

	open_cursors
	300
	  

	pga_aggregate_target
	203423744
	  

	processes
	150
	  

	remote_login_passwordfile
	EXCLUSIVE
	  

	sga_target
	612368384
	  

	spfile
	E:\ORA10G\DBS\SPFILEORCL.ORA
	  

	undo_management
	AUTO
	  

	undo_tablespace
	UNDOTBS1
	  

	user_dump_dest
	E:\ADMIN\ORCL\UDUMP
	  



Back to Top 

End of Report 

Workload Repository Reports

AWR reports with Oracle Enterprise Manager or by running the following SQL scripts:

· The awrrpt.sql SQL script generates an HTML or text report that displays statistics for a range of snapshot Ids. 

· The awrrpti.sql SQL script generates an HTML or text report that displays statistics for a range of snapshot Ids for a specified database and instance.

To run an AWR report, a user must be granted the DBA role.

The reports are divided into multiple sections. The HTML report includes links that can be used to navigate quickly between sections. The content of the report contains the workload profile of the system for the selected range of snapshots.

Note: 

If you run a report on a database that does not have any workload activity during the specified range of snapshots, calculated percentages for some report statistics can be less than 0 or greater than 100. This result simply means that there is no meaningful value for the statistic.



Running the awrrpt.sql Report

To generate a text report for a range of snapshot Ids, run the awrrpt.sql script at the SQL prompt:

@$ORACLE_HOME/rdbms/admin/awrrpt.sql

First, you need to specify whether you want an HTML or a text report.

Enter value for report_type: text

Specify the number days for which you want to list snapshot Ids.

Enter value for num_days: 2

After the list displays, you are prompted for the beginning and ending snapshot Id for the workload repository report.

Enter value for begin_snap: 150

Enter value for end_snap: 160

Next, accept the default report name or enter a report name. The default name is accepted in the following example:

Enter value for report_name: 

Using the report name awrrpt_1_150_160

The workload repository report is generated.

Running the awrrpti.sql Report

If you want to specify a database and instance before entering a range of snapshot Ids, run the awrrpti.sql script at the SQL prompt to generate a text report:

@$ORACLE_HOME/rdbms/admin/awrrpti.sql

First, specify whether you want an HTML or a text report. After that, a list of the database Ids and instance numbers displays, similar to the following:

Instances in this Workload Repository schema

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

 DB Id Inst Num DB Name Instance Host

----------- -------- ------------ ------------ ------------

 3309173529 1 MAIN main dlsun1690

 3309173529 1 TINT251 tint251 stint251

Enter the values for the database identifier (dbid) and instance number (inst_num) at the prompts.

Enter value for dbid: 3309173529

Using 3309173529 for database Id

Enter value for inst_num: 1

7. CONCLUSION AND FUTURE WORK

CONCLUSION

Introduced in Oracle 10g, the AWR is a more advanced and convenient feature that has many additional, useful features. It is much like a next generation of STATSPACK. Of course, AWR is more automated and stores more information than STATSPACK.

 Furthermore, performance data gathered by the AWR is extensively used by a number of automatic facilities such as the Automatic Database Diagnostic Monitor (ADDM), SQL Tuning Advisor, etc. Thus, Oracle Corporation documentation recommends the use of the AWR functionality over that of STATSPACK in Oracle10g databases.

The scope of Performance tuning tools to go into all of the possible uses of the STATSPACK utility, suffice it to say that STATSPACK can be used to measure every area within the Oracle database. Even more exciting, you can easily create STATSPACK extension tables to monitor the behavior of the database server, the network, and the disk I/O subsystem, thereby providing a complete picture of the performance of the entire Oracle environment. ",

One of the most tedious and time-consuming jobs for Oracle DBAs is monitoring the performance of their Oracle databases. By using STATSPACK to automate the collection of performance information, you're relieved of this burden—and you can create excellent trend reports to both measure and predict Oracle database performance.
FUTURE WORK:

IN future WISE (Workload Interface Statistical Engine) is the premier product for Oracle time-series tuning. With full version support, WISE provides an intelligent interfaces to all STATSPACK Oracle10g Automated Workload Repository (AWR) data. Contains advanced trend reports for AWR
WISE contains intelligent utilities with an easy-to-use graphical interface allow to Oracle professionals and Oracle tuning experts to see hidden trends and signatures

 8. Software Requirements

[image: image6.png]

Client operating systems: Windows 95/98/ME, Windows NT 4.0, Windows XP, Windows 2000/2003/2008, Windows Vista, Windows 7
[image: image7.png]

Oracle database version: AWR - 10.1.0, 10.2.0, 11.1.0, 11.2.0, STATSPACK - 8.1.7, 9.0.1, 9.2.0
[image: image8.png]

Oracle client software version: 8.1.7 or later

[image: image9.png]

Oracle repository database version: 10.2.0 or later

· bstat- estat reports - Oracle6 through Oracle8

· STATSPACK reports - Oracle8i to present

· Automated Workload Repository reports - Oracle 10g.

 REFERENCES

 [1]
Oracle Database Performance Tuning Guide, 10g Release 2 (10.2)BE03

 [2]
[ORSP2] Oracle Corporation: Diagnosing Performance Using[GA96] Gartner Group: Tota l Cost of Ownership: The Impact of Stats pack ,Oracle White Paper, System

 Management Tools, 1996

 .http://www.oracle.com/technology/deploy/performance/pdf/statspack.pdf

[3]
IBG8] IBM Corporation: DB2 Universal Database Version 8 International Conference on Very Large Data Bases, Hong Guide to GUI Tools for Administration and Development, IBM Kong, China, 2002.

[4]
[IBP8] IBM Corporation: DB2 Universal Database Version 8 Administration Guide: Performance, IBM Corpora tion, 2003.

[5]
[CH97] S. Chaudhuri, V. Narasayya : An Efficient, Cost-driven International Conference on Very Large Data Bases, Athens, Guided Application and SQL Tuning, Oracle White Paper, Greece, 1997

[6]
[ORM9] Oracle Corporation: Oracle 9i Database Manageability, Oracle White Paper, Acknowledgements

 http://www.oracle.com/technology/products/manageability/database/pdf/Oracle9iManageabilityBWP.pdf

[7]
Oracle Wait Interface: A Practical Guide to Performance Diagnostics & Tuning (Osborne ORACLE Press Series
[8]
Oracle Database 10g Performance Tuning Tips & Techniques (Osborne ORACLE Press Series) 2009
[9]
High-Performance Tuning with STATSPACK Oracle Press Oracle Tuning: The Definitive Reference, Rampant TechPress 2005
[10]
Oracle9i Database Performance Tuning D11299GC21 Edition 2.1 Oracle university June 2003 D38323

 [11]
K. Kabalan, W. Smari, and J. Hakimian, “Adaptive Load Sharing in Heterogeneous Systems: Policies, Modifications, and Simulation,” Int’l J. Simulation Systems Science and Technology, vol. 3, nos. 1-2, pp. 89-100, June 2002.

[12]
Kafil M. and Ahmed I., "Optimal Task Assignment in Heterogeneous Distributed Computing Systems", IEEE Concurrency, May 1998.

[13] Oracle High-performance Tuning with STATSPACK - Oracle Press, by Donald K. Burleson.

[14] Oracle9i High-performance Tuning with STATSPACK - Oracle Press, by Donald K.
 Burleson

� EMBED Unknown ���

� EMBED Unknown ���

PAGE
1

_1327462259.vsd
�

�

Oracle
database�

�

SCRIPTS�

�

SCRIPTS�

�

Stored
package�

Scripts�

Scripts�

Report�

�

 Repository�

V$ views�

_1327461683.vsd
�

�

Oracle
database�

utlestat.sql�

�

�

�

utlbstat.sql�

report.txt�

1�

2�

3�

5�

4�

6�

11:00 am�

2:00 pm�

�

