
SUPERVISORY CONTROL AND DATA ACQUISITION

ON

EMBEDDED FPGA SYSTEM

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

MASTER OF ENGINEERING

IN

CONTROL & INSTRUMENTATION

SUBMITTED BY

ANKITA MAHESHWARI

(Roll NO. 2601)

UNDER THE ESTEEMED GUIDANCE

OF

Dr. PARMOD KUMAR GUPTA

(PROFESSOR & HEAD)
[image: image50.png]gates

interconnect

50 - 200 gates

DEPATRTMENT OF ELECTRICAL ENGINEERING

DELHI COLLEGE OF ENGINEERING

UNIVERSITY OF DELHI
DELHI-110042

2006-2007

CERTIFICATE

This is to certify that the project entitled “SCADA on embedded FPGA system” submitted by Ms. Ankita Maheshwari, Roll No. 2601, student of Master of Engineering (Control and Instrumentation) from Delhi college of Engineering, Delhi is a dissertation work carried out by her under my guidance during the session 2006-2007 towards partial fulfillment of the requirements for the award of the degree of Master of Engineering (Control & Instrumentation).

Her work has been found to be excellent during the course of the project. To the best of our knowledge and belief, this work has not been submitted to any other University or Institution for the award of any degree or diploma.
Date: (Dr. Parmod Kumar)

 Professor & Head

 Deptt. of Electrical Engineering

 Delhi College of Engineering

 Delhi - 110042
ACKNOWLEDGEMENT

This report, as we see today is an outcome of persistent effort and a great deal of dedication and it has drawn intellectual and moral support from various people within the institution.
It is my great pleasure to express my profound gratitude to my honorable guide Dr. PARMOD KUMAR, Professor & Head, Department of Electrical Engineering, DCE for his invaluable support and guidance throughout the development of this project. It is a matter of great pride for me to have worked under him, which in itself was a source of inspiration for me to complete the project with great enthusiasm, energy and determination. I also give extra special thanks to him for dedicating his valuable time whenever I needed to discuss project related work.

I would like to thank Mr. Vishal Verma, Assistant Professor, Department of Electrical Engineering, DCE for his valuable guidance and encouragement.

I am thankful to Mr. R.K Shukla, Librarian, DCE, for facilitating me unconditionally with various literary resources.
I humbly extend my words of gratitude to other faculty members, laboratory staff and administration of this department for providing us the valuable help and time whenever it was require.
When one owes to so many, it is almost impossible and invidious to single out names. However, I acknowledge my colleagues and friends: Aroopi Samaiya, Shikha Pandey, Priyanka Singh, Shiela Malik, Shashank Agarwal and Rohit Chawdhary for their support in all my endeavors. Their cooperation, concern and encouragement actually pulled me through the tougher and trying times.
I will be indebted to my parents for their unconditional support and love. Without their blessings, this work would not have been possible.
Lastly, I thank Almighty GOD for his countless blessings.

Date: (Ankita Maheshwari)

04/C&I/05

Roll No-2601

ABSTRACT
This dissertation describes a prototype Supervisory Control and Data Acquisition System that has been implemented on FPGA (Field Programmable Gate Array) kit. The SCADA system has been designed and programmed into ACEX50K FPGA device and has been modeled using VHDL programming environment. VHDL is a Hardware Description Language used for modeling digital systems and provides an extensive range of modeling capabilities. The designed system provides the basic facilities of the SCADA along with the advantages of high speed, high accuracy, negligible & predictable delay, no mechanical components, purely digital system facilitated by the FPGA.

The system is implemented on UVLSI-201 Trainer kit which includes an FPGA chip and a general purpose input-output board. Eight multiplexer channels on the GPIO board acquire the analog data and the data is converted into digital form using ADC 0808 provided on the GPIO board. The control signals for the operation of ADC are generated by the FPGA. The channel number and the acquired data are displayed on the GPIO board in hexadecimal form using multiplexed four digits seven segment display. Data is processed and checked for any limit violation. If any limit violation is there, output LED glows, indicating a fault in the system. Also, a 5-volt analog control signal is generated on the DAC provided on the GPIO board to check the fault. This whole process is controlled by FPGA.

CONTENTS

 Page no.

LIST OF FIGURES
LIST OF TABLES

1: INTRODUCTION
 1

1.1 Introduction to SCADA

 1

1.2 Benefits of SCADA

 3
1.3 Introduction to FPGA

 4
1.4 Advantages of FPGA

 4

1.5 Overview of SCADA on embedded FPGA system
 5
1.6 Dissection of Dissertation

 6

2: LITERATURE REVIEW

 8
2.1 SCADA: A brief history

 8
2.2 FPGA: A brief history

 9

2.3 VHDL: A brief history

 10
3: PROGRAMMABLE LOGIC DEVICES

 12
3.1 Standard Logic ICs

 12
3.2 Application Specific Integrated Circuits (ASICs) 13

3.3 Programmable Logic Devices (PLDs) 13

3.3.1 Types of PLDs
 15
3.3.1.1 Simple Programmable Logic Devices (SPLDs) 15
3.3.1.2 Complex Programmable Logic Devices (CPLDs) 15
3.3.1.3 Field Programmable Gate Arrays (FPGAs)
 15
3.3.2 Advantages & Disadvantages of PLDs

 15

3.4 Field Programmable Gate Array (FPGA) 16
3.4.1 Process Technologies

 16

3.4.1.1 Static RAM Technology

 16
3.4.1.2 Anti-Fuse Technology

 17
3.4.1.3 EPROM /EEPROM Technology
17
3.4.2 Architecture of FPGA

 17
3.4.2.1 Logic Modules

 18
3.4.2.2 Interconnects

 19
3.4.2.3 Internal RAM

 19
3.4.3 Applications of FPGAs

 19

3.4.4 FPGA Programming

 20
3.4.5 Current Trends

 20
3.4.6 Advantages of FPGAs

 20
3.4.7 Advantages of FPGAs over CPLDs
 21
4: ACEX50K FPGA DEVICE

 22
4.1 Salient Features

 22
4.2 General Description

 23

4.3 Functional Description

 25

4.3.1 Embedded Array Block

 26

4.3.2 Logic Array Block
 29

4.3.3 Logic Element

 30

4.3.4 FastTrack Interconnect Routing Structure

 34

4.3.5 I/O Element
37
4.4 ClockLock & ClockBoost Features
 39
4.5 Operating Conditions
 40
4.6 Timing Model
 40

4.7 Configuration & Operation 41
4.7.1 Operating Modes 41
4.7.2 Configuration Schemes
 42
 4.8 ACEX50K Layout

 43

5: HARDWARE

 47
5.1 UVLSI Trainer

 47
5.1.1 Introduction 47
5.1.1.1 Power Supply Unit
 47
5.1.1.2 Hardware Access Unit
 47
5.1.1.3 List of Cables 47

5.1.2 Salient Features of Universal Board (UVLSI 201) 48

5.1.2.1 Connectors
 49
5.1.2.2 Switches 49
5.1.2.3 LCD Display 50

5.1.2.4 Daughter Board Connectors 50
5.1.2.5 Jumpers 50

5.1.2.6 On Board Programmer 50

5.1.2.7 RS-232 Connector 50

5.2 Overview of GPIO Board 50

5.2.1 Introduction 50
5.2.2 Details of GPIO 401A Board 50

5.2.2.1 16 DIP Switch Inputs 51
5.2.2.2 16 LED Outputs 52

5.2.2.3 4 Key Interfaces 52
5.2.2.4 Multiplexed (4 digits) 7 Segment Display 52

5.2.2.5 8-Bit ADC Interface 52
5.2.2.6 8-Bit DAC Interface 53

6: SOFTWARE

 54
6.1 Introduction

 54
6.2 VHDL

 54

6.2.1 Introduction

 54

6.2.2 Salient Features

 54
6.2.3 Hardware Abstraction

 55
6.3 Altera Quartus II Software
 56
6.3.1 Graphical User Interface Design Flow

 56

6.3.2 Procedure

 57

7: SCADA ON EMBEDDED FPGA SYSTEM

 63
7.1 Introduction

 63
7.2 SCADA: A Real Time Programming System

 63
7.2.1 Basic Signals

 63
7.2.2 Modules in a FPGA System

 64
7.2.2.1 Analog Input Module

 64
7.2.2.2 Analog Output Module

 65
7.2.3 Information Flow in SCADA System

 65
7.2.3.1 Input Sub-system

 66
7.2.3.2 Processing Sub-system

 66
7.2.3.3 Output Sub-system

 66
7.2.3.4 Information Processing

 66

7.2.3.5 Real-time Programming

 67

7.3 Data Acquisition

 67

7.3.1 Channel Scanning

 67
7.3.2 Analog to Digital Conversion

 67

7.3.3 Seven Segment Display

 68

7.4 Data Processing

 69

7.5 Analysis and Control

 70

7.6 Pin Locking in FPGA

 71
8: RESULTS AND DISCUSSION

 73
8.1 ACEX50K Device Performance

 73
8.2 SCADA System Performance

 77
Conclusion

 82

Scope for Future Work

 83

References

 84
LIST OF FIGURES

	Figure No.
	Figure
	Page No

	3.1
	Classification of ICs
	12

	3.2
	Programmable Logic Device
	14

	3.3
	Basic Architecture of FPGAs
	18

	3.4
	Logic Cell
	18

	3.5
	Basic Interconnections in FPGAs
	19

	4.1
	ACEX 50K Block Diagram
	26

	4.2
	ACEX 50K EAB in Dual-Port RAM Mode
	27

	4.3
	ACEX 50K EAB Memory Configurations
	28

	4.4
	Examples of Combining EABs
	28

	4.5
	ACEX 50K LogicArray Block
	29

	4.6
	ACEX 50K Logic Element
	30

	4.7
	ACEX 50K Carry Chain Operation
	32

	4.8
	ACEX 50K AND Cascade Chain Operation
	33

	4.9
	ACEX 50K OR Cascade Chain Operation
	34

	4.10
	ACEX 50K LAB Connections to Row & Column Interconnect
	35

	4.11
	ACEX 50K Interconnect Resources
	37

	4.12
	ACEX 50K Row-to-IOE Connections
	38

	4.13
	ACEX 50K Column-to-IOE Connections
	39

	4.14
	ACEX 1K Device Timing Model
	41

	4.15
	ACE50K Layout
	43

	5.1
	Layout of UVLSI 201
	48

	5.2
	GPIO 401 Board Lay Out
	51

	5.3
	Input DIP Switches
	52

	5.4
	Output LEDs
	52

	6.1
	A Entity and its Model
	56

	6.2
	VLSI Design Flow
	58

	Table No.
	Table
	Page No

	6.3
	Using wizard create directory and new project
	59

	6.4
	Create directory and Project name
	59

	6.5
	Select the family of the device
	60

	6.6
	Summary of the new project wizard
	60

	6.7
	Select the VHDL file
	61

	6.8
	Write the VHDL code
	61

	6.9
	Compilation Process
	62

	6.10
	Assign pins for the device
	62

	7.1
	Analog Input Module
	65

	7.2
	Analog Output Module
	65

	7.3
	Information Flow in SCADA System
	66

	7.4
	Block Diagram of ADC0808
	68

	7.5
	Seven Segment Display
	69

	7.6
	16 LED Outputs
	70

	7.7
	Block Diagram of DAC
	70

	8.1
	Flow Elapsed Time
	74

	8.2
	Internal view of LABs
	75

	8.3
	Carry Chain Usage
	75

	8.4
	Internal View of LABs
	76

	8.5
	Resource Usage Summary
	76

	8.6
	No limit violation on channel 1
	77

	8.7
	Upper limit violation on channel 1
	78

	8.8
	Lower limit violation on channel 2
	78

	8.9
	No limit violation on channel 2
	79

	8.10
	No limit violation on channel 2
	79

	8.11
	Upper limit violation on channel 2
	80

	8.12
	No limit violation on channel 3
	80

	8.13
	Upper limit violation on channel 3
	81

LIST OF TABLES

	Figure No.
	Figure
	Page No

	4.1
	ACEX Device Features
	22

	4.2
	ACEX50K Performance
	24

	4.3
	ACEX50K FastTrack Interconnect Resources
	36

	4.4
	ACEX50K Absolute Maximum Rating
	40

	4.5
	ACEX50K Device Recommended Operating Conditions
	40

	4.6
	Sources for ACEX50K Configuration
	42

	4.7
	ACE50K Device Pin-outs
	43

	7.1
	Pin locking in FPGA
	71

CHAPTER 1

INTRODUCTION

1.1 Introduction

SCADA is acronym for Supervisory Control and Data Acquisition. SCADA system is an intelligent system which provides the facility of continuously monitoring, supervising and controlling the process plant. It is a system for gathering and analyzing real time data or a plant or equipment in industries such as telecommunications, electric power distribution, water and waste control, oil and gas refining and transportation. The main components of the SCADA system are:

(1) Master Computer Station or Master Terminal Unit (MTU)

(2) Remote Terminal Unit (RTU)

(3) Communication Media

(4) SCADA Software or Human Machine Interface (HMI)

(1) Master Terminal Unit (MTU)

The MTU, located at the operator’s central control facility, enables two-way data communication and control of remote field devices. The main incentive for the process control is the optimization of the plant’s economic performance. For performance analysis on the process plant, the information from the distributed RTUs should reach a central location where it can be consolidated and analyzed to generate the reports on the plant performance. The analysis may include histogram generation, standard deviation calculation, plotting one parameter with respect to another and so on. Depending on the performance, operator may decide to monitor any channel more frequently, change the limits etc. Software can be written depending on the type of analysis required. Many times the human operator cannot find the best operating policy for a plant which will minimize the operating cost. This deficiency is due to the enormous complexity of a typical process plant. Therefore, to analyze the situation and find out the best policy, the speed and the programmed intelligence of the digital computer is used, this computer is called Master Computer Station or Master Terminal Unit. It monitors, controls and coordinates the activities of various RTUs and provides the supervisory control facility to the process plant. The MTU is located at the operator’s central control facility and provides a man-machine software interface, two-way data communication.

(2) Remote Terminal Unit (RTU)

RTU is a field interface device which collects information from the machine that is to be monitored. The RTUs are basically nodes of the distributed SCADA system that are located at a remote site to gather data from field devices like pumps, valves, alarms etc. They are rugged and should be able to work unattended for a long duration. Since these RTUs have to operate for a long duration unattended, the basic requirements would be that they consume minimum power and have considerable self diagnostic capability. There are two modes in which remote terminal units work: Under command from central computer and stand alone mode.

The RTUs may have some special software facilities which are mentioned below:

(i) Quiescent Mode Operation: Since the transmitter consumes maximum power in RTU, it is switched on only when the RTU has some information packets ready for sending. The RTU receives all the information from the central computer. Since the receiver is kept on all the time, this information is received and proper action is initiated. Only when the RTU has to send some information to central computer which may be an urgent message or an acknowledgment of the action taken or message received, the transmitter is switched on. The quiescent mode saves considerable amount of power for RTUs.

(ii) Downloading of Limits from Central Computer: Generally the RTUs behave much like stand alone SCADA. They collect the data from various sensors, perform signal conditioning, filtering, conversion to engineering units and store them in the memory. They also perform the limit checking on these values and inform central computer on violation of limits immediately. Since these RTUs are at remote locations it should be possible to change these limits remotely from the central computer. This is called downloading of limits. The central computer makes a special request to the RTU to change the limits. The RTU then enters in a special mode for the change of basic parameters and performs the function in an interactive way.

(iii) Exceptional Reporting: The RTUs communicate to central computer mostly in receive mode and only exceptionally in transmit mode. The RTUs normally have intelligence to perform all the functions including limit checking and when the limits are violated the central computer is informed. The other message that goes regularly is regarding “all well” condition of RTUs. Thus RTUs perform self diagnosis by executing different diagnostic software.

(3) Communication Media

Communication Media is an important component of the SCADA system and has the interface available with 2-wire/4-wire communication line. The communications media transmits the information from RTU to central computer or in the reverse direction. The way the MTU/RTU transmission network or topology is set up can vary, but the system must feature uninterrupted, bi-directional communication in order to properly function. Following are the basic communication strategies that are used depending on the application need:

(i) Wireline Communications: The wireline communication may have a number of options and these options can be selected depending upon the distance between central computer and RTU. It is usually limited to low bandwidth applications. These options are enlisted below:
RS232C/442: RTU can support communication via standard RS232C/442. The I/O ports can select the average levels as well as the baud rates.

Switch Line Modem: When the user wants to use the existing telephone lines for communication, the switch line modem can be effective. Such, RTUs contain the facilities like auto answer, auto dial and auto select baud rates. The modem is ideal for data networks configured in time or event reporting RTUs.

2-Wire or 4-Wire Communication: The modem residing in the RTU can be configured to 2 or 4 wire communication on dedicated lines.

(ii) Wireless Communications:

UHF/VHF radio: The RTU may support a complete line of UHF/VHF terrestrial radios. VHF/UHF radio is an electromagnetic transmission with frequencies of 175MHz-450MHz-900MHz received by special antennas. Its coverage is limited to special geographical boundaries. The communication protocol is transparent to the user and supports error checking, and packet protocol for error free data transmission.
Satellite Communications: In the applications where wireline and terrestrial radio communications are impossible or cost prohibitive, the satellite communication may be desirable. Some of the RTUs provide the facility to be interfaced to one-way or two way satellite communication using Very Small Aperture Terminal (VSAT). These terminals use one meter antennas and have data rates from 50 to 60 KBPS (kilo bits per second).
 Fiber-Optic Communications: For applications where electromagnetic interferences or hazardous electrical potentials exist, the RTUs can be networked using fiber-optic cables.

(4) Human Machine Interface (HMI)

For efficient process monitoring and control, effective communication is necessary between the process operator and the process to be automated. The man-machine dialogue between the process operator and the automation system is carried out with the Human Machine Interface. The employment of an easy-to-use SCADA software package on PC, known as the human machine interface, provides a reliable representation of the real system at work. An HMI allows the operator to view virtually all system alerts, warnings, urgent messages and functions as well as change set points and analyze, archive or present data trends Most of the software packages use standard data manipulation/presentation tools for reporting and archiving and integrate well with Microsoft Excel, Access and Word.
1.2 Benefits of SCADA
SCADA is an industrial measurement and control system and has become the backbone for monitoring, controlling and meeting the desired objectives of the process plant. Plant automation is needed for the development of coordinated plant control system. The process industries are going for automation to maintain their competitive edge.

Some of the benefits provided with the SCADA are given below:

· A properly designed SCADA system saves time and money by eliminating the need for service personnel to visit each site for inspection, data collection/ logging or make adjustments.

· Provides the facility of real-time monitoring, system modifications, troubleshooting, automatic report generating.
· Provides immediate knowledge of system performance.

· Improves system efficiency and performance.

· Increases equipment life and reduces costly repairs.

· Reduces the number of man-hours (labor costs) required for troubleshooting or service and frees up personnel for other important tasks.

· Enable highly economical plant operation.

· Automatically control the process and plant in normal operation within the specified limits and tolerances but also permit manual operation.

· Provide at any time, the operating personnel with comprehensive information on the status of plant and process for control and maintenance purposes, fault detection and localization.

1.3 Introduction to FPGA

FPGAs are one of today’s most important digital logic implementation options. An FPGA is a general purpose, multilevel, programmable logic device that is customized in the package by the end users. An FPGA consists of an array of programmable logic blocks and a programmable routing network. The programmable interconnect between blocks allows users to implement multi level logic, removing many of the size limitations of the PLD derived two level logic structure. This extensible architecture can currently support thousands of logic gates at system speed in the tens of megahertz. The size, structure, number of logic blocks and connectivity of the interconnect vary considerably among the architectures.

FPGAs offer the benefits of both programmable logic arrays and gate arrays. They implement thousands of gates of logic in a single integrated circuit. FPGAs are programmable by designers at their site, eliminating the long delays and tooling costs. These advantages have made FPGAs very popular.
1.4 Advantages of FPGA
1) Low Tooling Costs
There is no custom tooling required for an FPGA, so there are no associated tooling costs, making FPGA cost effective for most logic designs.

2) Rapid Turnaround

An FPGA can be programmed in a few minutes. On an FPGA, a modification to correct a design flaw or to address a late specification change can be made quickly and cheaply. Faster design turnaround leads to faster product development and shorter time to market for new FPGA products.

3) Low Risks

The benefits of low initial Non Recurring Engineering (NRE) charges and rapid turnarounds mean that design iteration due to an error incurs neither a large expense nor a long delay. Low cost encourages early system integration and prototyping. The low cost of error encourages more aggressive logic design, which may yield better performance and more cost effective designs.
4) Effective Design Verification
Instead of simulating large amounts of time, FPGA user may choose to use in circuit verification. Designers can implement the design and can use any functioning part as a prototype. The prototype operates at full speed and with excellent timing accuracy. A prototype can be inserted into the system to verify functionality of the system as a whole, eliminating a class of system errors early.

5) Low Testing Cost

All ICs must be tested to verify proper manufacturing and packaging. The test program for FPGAs is the same for all design and test the FPGA for all users of the part. Because there is only one test program, it is reasonable to invest a considerable amount of effort in it. The resulting test program achieves excellent test coverage leading to high quality ICs. The manufacturer’s test program verifies that every FPGA will be functional for all possible designs that may be implemented on it. FPGA users are not required to write design specific test for their designs. Therefore, designers need not built the testability into the design eliminating “design for testability” and the design effort and overhead associated with it.

6) Life Cycle Advantages

The cost effectiveness of FPGAs in low volume and the flexibility provided by field programmability provide advantages over all phases of product lifetime. When introducing a product, an FPGA user may order a few parts at a time while testing the design for functionality and the product for market viability. During production, the FPGA user can accommodate rapid changes in sales easily because long lead times are not required. An FPGA user can make enhancements by shipping an upgraded design on the same FPGA device. This upgrade requires no inventory changes, no new hardware and does not interrupt production.

1.5 Overview of SCADA on Embedded FPGA System
In this project a SCADA on embedded FPGA system has been designed. The system utilizes the great logic capability and re-programmability of the FPGA to design the SCADA system. The system has been designed and implemented using the UVLSI 201 Trainer kit. It is possible to execute and verify digital experiments on this kit using VHDL, Verilog, AHDL, the standard hardware description languages. It is an assembled ready for various interfaces that include ADC/DAC, display, keyboard, serial communication, VGA, PS/2. For data acquisition, general purpose input-output board is used. It has almost all the primary interfaces that a PLD may be used for. Input switches are provided to give steady state inputs and LEDs can indicate high or low outputs.

GPIO board has eight channels to communicate with outside world. FPGA is a digital device, it can handle only digital data; therefore the analog data is converted into the digital form by using a successive approximation ADC0808 on the GPIO board. All the control signals of ADC e.g. start conversion, address latch enable etc. are given from the FPGA. The data is processed for control purpose, in the chip itself. Software is written depending upon the type of analysis required in the system. Any fault in the system e.g. limit violation is indicated by an LED. FPGA is programmed using the VHDL, a hardware description language.

1.6 Dissection of Dissertation
Chapter 2 presents the literature review. It explains the developments and advancements in SCADA systems in chronological order. The emergence and development of FPGAs and VHDL is also discussed in this chapter.

Chapter 3 describes the different types of ICs i.e. Standard Logic ICs, Application Specific ICs, PLDs. PLDs have been further classified and each type is briefly covered. FPGAs have been discussed further in detail. Different technologies and applications of FPGAs are explained.
Chapter 4 describes the ACEX50K device, used in this project. Salient features, architecture, functional description, operating conditions, pin configuration, configuration and operation of ACEX50K have been considered.

Chapter 5 describes the features and capabilities of UVLSI 201 trainer kit and GPIO 401 board which have been used in the implementation of SCADA system.

Chapter 6 deals with the Altera QuartusII software used for programming the ACEX device. Steps to use this software for implementing any digital logic are also stated. Salient features and hardware abstraction of VHDL are explained.

Chapter 7 deals with the designing and implementation of the Supervisory Control and Data Acquisition system by using FPGA for data acquisition, processing and control. It also describes SCADA as a real time programming system.

Chapter 8 describes the results obtained in the designing of SCADA on FPGA system in two stages. Firstly ACEX50K device performance has been considered and after that performance of SCADA system is analyzed.
Conclusion

Scope for Future Work

References

CHAPTER 2
LITERATURE REVIEW

Supervisory Control and Data Acquisition (SCADA) is a process control system that enables a site operator to monitor and control processes distributed among various remote sites.

A properly designed SCADA system saves time and money by eliminating the need for service personnel to visit each site for inspection, data collection/logging or make adjustments. Real-time monitoring, system modifications, troubleshooting, increased equipment life and automatic report generating are just a few of the benefits that come with the SCADA systems [24].

2.1 SCADA: A brief history
SCADA began in the early 1960s as an electronic system operating as input/output transmissions between a master station and a remote station. The master station would receive data through a telemetry network and then store the data on mainframe computers.
In the early 1970s, distributed control systems (DCS) were developed to control separate remote subsystems. They have similar functions to SCADA systems, but the field data gathering or control units are usually located within a more confined area. Communications may be via a local area network (LAN), normally reliable and high speed.

In 1977, John Muench, Chairman and Chief Executive Officer, Advanced Control Systems, delivered the industry's first microprocessor-based master station, and first microprocessor-based RTUs [28].

In the 1980s, with the development of the microcomputer, process control could be distributed among remote sites. Further development enabled DCS to use programmable logic controllers (PLC), which have the ability to control sites without taking direction from a master.

 In the late 1990s, SCADA systems were built with DCS capabilities and systems were customized based on certain proprietary control features built in by the designer. With the internet being utilized more as a communication tool, SCADA and telemetry systems are using automated software with certain portals to download information or control a process.
In 2000, F Morgan, T Bennett, A Shearer, M Redfern, Communications and Signal Processing Research Unit, Department of Electronic Engineering, National University of Ireland, Galway, implemented an “FPGA-based Time Resolved Data Acquisition System for Astronomical and Other Applications”. They described a programmable FPGA-based high-resolution, time resolved photon image capture system which supported current and future generations of astronomical photometry, biological and a range of SCADA applications. The system recorded and time stamped photon data arriving from a number of detectors and transmitted this data to an archive device for post processing. Its functionality was implemented and verified using the RC1000-PP Xilinx FPGA-based development platform[13].

Good SCADA systems today not only control processes but are also used for measuring, forecasting, billing, analyzing and planning. Today’s SCADA system must meet a whole new level of control automation, interfacing with yesterday’s obsolete equipment yet flexible enough to adapt to tomorrow’s changes.
2.2 FPGA: A brief history
One of the most significant components in early digital computers was the magnetic core [11]. This tiny doughnut shaped ferrite material was used from the 1950s through the 1970s to construct the main memory of large computers. Each of these cores could store a binary bit of information by using the direction of magnetization of the core to indicate a 0 or a 1. For many years, magnetic core storage was the dominant type of main memory for the computer.

As the technology for core storage was improved, the price continued to drop and some impressive computers became available. The IBM system 360 appeared in 1965 with one scientific model capable of storing about 64 million bits in its main memory. This system was sold for a price that varied between $1,000,000 and $2,000,000, depending on several options. The 64-megabit storage system added approximately $7,000,000 to the cost of the system. It was obvious that a reduction of the main memory costs would greatly reduce the overall cost of a computer. Furthermore, the core storage system required a set of high current driver circuits that lead to high power dissipation and expensive circuit components.

Ironically, this same year (1965) saw the first proposal to use semiconductor memory. The obvious size benefits of integration led some engineers to believe that perhaps the integrated circuit might be used to produce low cost storage components. The first IC memories were more expensive and had much less storage capacity than the core memory and did not immediately replace this workhorse of the computer industry. One of the first commercial uses of a small semiconductor main memory was in IBM in 1969.

As IC fabrication and design techniques improved over the years, the semiconductor memory became smaller and cheaper, leading to the demise of core storage. With this development, it was not difficult to produce the highly capable personal computers and workstations that are now available.

Before the semiconductor memory was made large enough to replace the main memory of the computer, it became obvious that the small IC memory would be useful in circuit applications. Several companies implemented small memories such as 64 bit devices that were targeted for use in digital circuits rather than in computer memories. One of the first such devices was the read only memory (ROM). Small IC read write memories, called semiconductor RAMs also appeared at the same time. As the price dropped and the size increased, semiconductor memories began replacing core memories. In the late 1970s, the semiconductor memory was used almost exclusively in the personal computer. By the early 1980s, even large mainframe computers were produced with exclusively semiconductor main memories.

It became obvious in the late 1970s that the ROMs were also useful in logic function realization. As small ROMs were used for this purpose, the combinational PLA and PAL chips were developed to reduce the number of devices needed on a chip. Fabrication methods improved to allow the inclusion of the flip-flops on PLA and PAL chips in the 1980s. As industry looked for faster methods of developing digital products, the registered PLA and PAL, and the FPGA was conceived. In 1985, Xilinx company introduced the first FPGA. After this many companies like Actel, Altera launched their FPGAs in the market. These devices became very popular in the late 1980s and continue to be significant in digital system logic design.

Today the worldwide market for programmable logic devices is about $3.5 billion, according the market researcher Gartner/Dataquest. The market for fixed logic devices is about $12 billion. However, in recent years, sales of PLDs have outpaced those of fixed logic devices built with older gate array technology. The high performance FPGAs, made with the more advanced standard cell technology are now beginning to take market share from fixed logic devices [20].

2.3 VHDL: A brief history
The requirements for the Hardware Description Language were first generated in 1981 under the VHSIV program. In this program a number of U.S companies were involved in designing VHSIC chips for the Department of Defense (DoD). At that time, most of the companies were using different hardware description languages to describe and develop their integrated circuits. As a result different vendors could not effectively exchange designs with one other. Also, different vendors provided DoD with descriptions of their chips in different hardware description languages. Thus, a need for a standardized hardware description language for the design, documentation, and verification of digital systems was generated.

A team of three companies, IBM, Texas Instruments and Intermetrics were awarded the contract by the DoD to develop a version of the language in 1983.Version 7.2 of VHDL was developed and released to the public in 1985.There was strong industry participation throughout the VHDL language development process, especially from the companies that were developing VHSIC chips. After the release of version 7.2, there was an increasing need to make the language an industry wide standard. Consequently, the language was transferred to the IEEE for standardization in1986. After a substantial enhancement to the language, made by a team of industry, university and DoD representatives, the language was standardized by the IEEE in December in 1987, this version of the language is known as IEEE Std 1067-1987. The language has also been recognized an American National Standards Institute (ANSI) standard.

According to IEEE rules, an IEEE standard has to be reballoted every five years so that it may remain a standard. Consequently, the language was upgraded with new features, the syntax of many constructs was made more uniform and many ambiguities present in the 1987 version of the language were resolved. This new version of the language is known as IEEE Std 1076-1993.

The Department of Defense, since September 1988, requires all its digital Application Specific Integrated Circuits (ASICs) suppliers to deliver VHDL descriptions of the ASICs and their sub components, at both the behavioral and structural levels. Since 1987, there has also been a great need for a standard package to aid in model interoperability. This was because different CAE (Computer Aided Engineering) vendors supported different packages on their systems, causing a major model interoperability problem. A committee was set up to standardized the package. The outcome of this committee was the development of a 9 value logic package called STD_LOGIC_1164, which was then balloted and approved to become an IEEE standard, labeled IEEE Std 1164-1993.
CHAPTER 3
 PROGRAMMABLE LOGIC DEVICES

Integrated Circuits (ICs) used for implementing digital logic can be broadly classified in the following categories:

· Standard logic ICs

· ASICs

· PLDs
[image: image1.png]FPGA

ICs

I

|
!

!

PLDS STANDARD LOGIC AsIC
CPLDs. SPLDs SEMI- CUSTOM

STANDARD CELL GATE ARRAY

FULL-CUSTOM

SEA OF GATE
ARRAYS

Figure3.1 Classification of ICs

3.1 Standard Logic ICs
Standard logic ICs have permanent circuits built in them, they perform one specific function or set of specified functions. Once manufactured, the function of standard ICs cannot be changed. A specific logic is contained in the IC package when it is purchased and it can never be changed. The operation of Standard Logic devices depends entirely on the IC chips used and the electrical connections between chips. The designer has no access to the internal interconnections of the IC chips. In designing a digital system we must specify each IC to be used and indicate a wiring diagram to show how each circuit is to be connected. Once the design is completed, the system performs the function intended. If it is desired to modify the function of the circuit, the design must be modified. New circuits may be needed and some connections will certainly require changes. This type of system is often referred to as a Hardwired System.

Examples of standard ICs include ROMs, DRAM, SRAM, Microprocessors.

With fixed logic devices, the time required to go from design, to prototypes, to a final manufacturing run can take from several months to more than a year, depending on the complexity of the device. And, if the device does not work properly, or if the requirements change, a new design must be developed. The work of designing and verifying fixed logic devices involves substantial "non-recurring engineering" costs, or NRE. NRE represents all the costs customers incur before the final fixed logic device emerges from a silicon foundry, including engineering resources, expensive software design tools, expensive photolithography mask sets for manufacturing the various metal layers of the chip, and the cost of initial prototype devices.

3.2 Application Specific Integrated Circuits (ASICs)
ASICs are the integrated circuits that are customized or tailored to a particular system or application rather than using standard ICs alone. These ASICs are specially designed to perform a function that cannot be done using standard ICs.

Microelectronic system design then can be done by implementing some functions using standard ICs and the remaining logic functions using one or more custom ICs. Examples of ASICs include a chip for a toy bear that talks, a chip for a satellite and a chip designed to handle the interface between memory and a microprocessor for a workstation CPU. ASICs are used in system design to improve the performance of a circuit, to reduce the volume, weight and power requirements so that it increases the reliability of a system by integrating a large number of functions on a single chip.
ASICs are classified into two types: Full Custom ASICs and Semi Custom ASICs. A full custom IC includes possibly all logic cells that are customized and all mask layers that are customized. A microprocessor is an example of a full custom IC. For semi custom ASICs all of the logic cells are pre designed and some of the mask layers are customized. Using pre-designed cells from a cell library makes design much easier.

There are many situations in which it is not appropriate to use a custom IC for each and every part of a microelectronic system. For example, if a large amount of memory is needed, it is still best to use standard memory ICs, either DRAM or SRAM, in conjunction with custom ICs.

3.3 Programmable Logic Devices (PLDs)
A PLD can be loosely defined as: A PLD is an IC chip that includes arrays of logic elements and allows a user to specify the connections among many of these elements.

Programmable Logic Devices (PLDs) consist of an array of identical function cells. The cell array usually contains an AND-OR network and often includes a flip-flop. Some PLDs perform only combinational logic functions, others can perform combinational and sequential functions.

In Programmable Logic Devices (PLDs), logic function is programmed by the user and in some cases, can be reprogrammed many times. Such a device includes array of logic elements on a chip and allows the user to program many internal connections between the components on the chip. The logic elements could be various gates, buffers, flip-flops. A system configuration can be created on the chip simply by programming the chip or telling the chip where the interconnections are to be made. The basic architecture of PLD is shown in figure 3.2.
[image: image51.png]1

Analog
1 for contr
1 valves

1

!

I

|

1

o o Q !

< << < |

a [a}] o 1

|

|

|

|

1

]

||||||| |

|

I

1

|

l

i

I

% 1

] I
-

g5 |

Ws =] 1

g |

3 1
©

)

1

i

A/ J0ss9001d Jojsew

indino renbiq woJj ssalppy

Figure3.2.Programmable Logic Device

With programmable logic devices, designers use inexpensive software tools to quickly develop, simulate, and test their designs. Then, a design can be quickly programmed into a device, and immediately tested in a live circuit. The PLD that is used for this prototyping is the exact same PLD that will be used in the final production of a piece of end equipment, such as a network router, a DSL modem and a DVD player. There are no NRE costs and the final design is completed much faster than that of a custom, fixed logic device. The user does not have access to every connection on the chip. Each type of PLD may specify a different set of programmable interconnections while several other interconnections on the chip are fixed.
3.3.1) Types of PLDs
Programmable logic devices can be classified into three types:

3.3.1.1) Simple Programmable Logic Devices (SPLDs)

 These are the least complex form of PLDs. An SPLD can replace several fixed function SSI or MSI devices and their interconnections. A few categories of SPLD are:

· PAL (Programmable Array Logic)

· PLA (Programmable Logic Array)

· PROM (Programmable Read only Memory)

3.3.1.2) Complex Programmable Logic Devices (CPLDs)
These have a much higher capacity than SPLDs, permitting more complex logic circuits to be programmed into them. A typical CPLD is equivalent of from 2 to 64 SPLDs. CPLDs offer logic up to about 10,000 gates. But CPLDs offer very predictable timing characteristics and are therefore ideal for critical control applications. CPLDs also require extremely low amounts of power and are very inexpensive, making them ideal for cost-sensitive, battery-operated, portable applications such as mobile phones and digital handheld assistants. A few categories of CPLDs are:

· EPLD (Erasable Programmable Logic Device)
· EEPLD (Electrically- Erasable Programmable Logic Device)
3.3.1.3) Field Programmable Gate Arrays (FPGAs)

FPGA contain a regular structure of programmable basic logic cells surrounded by programmable interconnect. The exact type, size and the number of programmable basic logic cells varies tremendously. FPGAs consist of an array of anywhere from 64 to thousands of logic gates groups that are called logic blocks. These are different from SPLDs and CPLDs in their internal organization and have greatest logic capability.

The architecture has a mesh of horizontal and vertical interconnect tracks. At each junction, there is a fuse. With the aid of software tools, the user can select which junctions will not be connected, by blowing all unwanted fuses. This is done by a device programmer. Input pins are connected to the vertical interconnect and the horizontal tracks are connected to AND-OR gates, also called product terms. These in turn connect to dedicated flip-flops whose outputs are connected to output pins.

3.3.2) Advantages & Disadvantages of PLDs
Fixed logic devices and PLDs both have their advantages and disadvantages. Fixed logic devices, for example, are often more appropriate for large volume applications because they can be mass-produced more economically and for certain applications where the very highest performance is required

However, programmable logic devices offer a number of important advantages over fixed logic devices which are listed below:

1. To allow design changes (reprogramming the PLDs is less time consuming then re-designing a complete PC board using random logic or MSI logic devices).

2. To improve reliability (fewer packages mean less interconnection and thus greater reliability).

3. To decrease PC board cost by reducing the package count (15 to 20 SSI packages can be replaced by a single package).

4. To shorten design time; PLDs do not require long lead times for prototypes or production parts. The PLDs are already on a distributor's shelf and ready for shipment.

6. PLDs do not require customers to pay for large NRE costs and purchase expensive mask sets. PLDs suppliers incur those costs when they design their programmable devices and are able to amortize those costs over the multi-year lifespan of a given line of PLDs.

7. PLDs can be reprogrammed even after a piece of equipment is shipped to a customer. Because of programmable logic devices, it is very easy to add new features or upgrade products that already are in the field.
The disadvantage of PLDs is that the interconnections between elements on the chip must be specified or programmed. Unlike conventional circuits, even after PLDs are wired into the system, they will not function properly unless they have been programmed. In this project FPGA is used for the implementation of SCADA. So detailed discussion of FPGA is given below.
3.4 Field Programmable Gate Array (FPGA)
The word Field in the name refers to the ability of the gate array to be programmed for a particular function by the user instead of by the manufacturer of the device. The word array is used to denote a series of columns and rows of gates that can be configured by the end user.

 Field-programmable gate arrays (FPGAs) are integrated circuits (ICs) that contain an array of logic cells surrounded by programmable I/O blocks. FPGAs contain as many as tens of thousands of logic cells and an even greater number of flip-flops. In FPGAs the core is a regular array of programmable basic logic cells that can implement combinational as well as sequential logic and programmable I/O cells surround the core. Other terms for FPGA include Logic Cell Array (LCAs) and Programmable Application-Specific Integrated Chip (pASIC).

3.4.1) Process Technologies

In different types of FPGAs, the method of interconnections and how they are programmed vary. A few types of process technologies used are:
3.4.1.1) Static RAM Technology

The configuration information of FPGA is stored in SRAM. In the Static RAM FPGAs, programmable connections are made using pass transistors, transmission gates or multiplexer that are controlled by SRAM cells. The advantage of this technology is that it allows fast in-circuit re-configuration. The major disadvantage is the size of the chip required by the RAM technology. The FPGAs are customized by loading configuration data into the internal memory cells. The FPGA can be programmed an unlimited number of times. In the SRAM logic cell, instead of conventional gates there is instead a look-up-table (LUT) which determines the output based on the values of the inputs.

3.4.1.2) Anti-Fuse Technology

An anti-fuse resides in a high-impedance state, and can be programmed into low impedance or fused state. Anti-fuse is similar to fuse technology in that is one-time programmable (OTP). The anti-part of anti-fuse comes from its programming method. Instead of breaking a metal connection by passing current through it, a link is grown to make a connection. Consequently, antifuse technology has benefits for creating programmable interconnect.

3.4.1.3) EPROM /EEPROM Technology

EPROM refers to Electrically Programmable Read-Only Memory and EEPROM refers to Electrically-Erasable Programmable Read-Only Memory. This method is the same as used in the EPROM memories. One advantage of EEPROM technology is that it can be reprogrammed without external storage of configuration, though the EPROM transistors cannot be re-programmed in-circuit. An EEPROM memory cell is physically larger than an EPROM cell but offers the advantage of being erased electrically.

3.4.2) Architecture of FPGA

FPGA basically consists of an array of logic modules with programmable row and column interconnecting channels surrounded by programmable I/O blocks. Many FPGA architectures are based on a type of memory called an LUT (look-up table) rather than on SOP AND/OR arrays.
The three important elements that characterize any FPGA architecture are:

1. Internal building blocks (Logic Modules)

2. Interconnect between the Logic Modules

3. Internal RAM
[image: image2.png]108

cus| | fecs] ||| [ers
cus] || [eos] |l [es
cus] || [eos] |l [ers
cus| || [eos] |l [ers
cus] || [eos] |l [es

108

Figure 3.3 Basic Architecture of FPGAs
3.4.2.1) Logic Modules

The Internal building blocks are the basic elements of FPGA. Each building block is configurable to perform a logic function. Block may include NAND gates, multiplexers or look-up-table. FPGAs are built from one basic "logic-cell", duplicated hundreds or thousands of time. A logic-cell is generally a small lookup table ("LUT"), a D-flipflop and a 2-to-1 mux (to bypass the flipflop if desired).

[image: image3.png]

Figure 3.4 Logic Cell

When necessary, two or more of these blocks maybe connected to perform the desired logic function. The interconnections between the logic modules are provided by channels of wiring segments between the rows and columns of the logic modules. Each cell can do little, but with lots of them, complex logic functions can be created. The interconnect wires also go to the boundary of the device where I/O cells are implemented and connected to the pins of the FPGAs.
[image: image4.png]

Figure 3.5 Basic Interconnections in FPGAs
3.4.2.2) Interconnects

FPGAs generally use SRAM or Antifuse methods to provide interconnections between logic modules. Antifuses involve melting a contact to form a connection between two programmable interconnect lines. The antifuse is normally open and is shorted to create a connection when programmed. The interconnections between the logic modules are provided by channels of wiring segments between the rows and columns of the logic modules.

3.4.2.3) Internal RAM

In addition to logic, all new FPGAs have dedicated block of static RAM distributed among and controlled by the logic elements. The RAM increases the FPGAs scope of application.

There are many parameters affecting RAM operation. The main parameter is the number of agents that can access the RAM simultaneously.

· “single-port” RAMs: only one agent can read/write the RAM.

· “dual-port” or “quad-port” RAMs: 2 or 4 agents can read/write.
3.4.3) Applications of FPGAs

Following are some instances:

1) Prototyping
Many times FPGAs are used in a prototype system. A small device may be present to allow the designers to change a board's glue logic more easily during product development and testing. Or a large device may be included to allow prototyping of a system-on-a-chip design that will eventually find its way into an ASIC. It allows the hardware to be flexible during product development. When the product is ready to ship in large quantities, the programmable device will be replaced with a less expensive, hard-wired alternative.

2) Embedded Cores

More and more vendors are selling or giving away their processors and peripherals in a form that is ready to be integrated into a programmable logic based design. They recognize the potential for growth in the system-on-a-chip area or want to promote the use of their particular FPGA by providing libraries of ready-to-use building blocks. Either way, lower system costs and faster time-to-market are achieved. We can buy an equivalent piece of virtual silicon, so there is no need to develop own hardware.

3) Hybrid Chips

This application combines a dedicated processor core with an area of programmable logic. A processor core embedded within a programmable logic device requires far too many gates for typical applications. So hybrid chips are created, that are part fixed logic and part programmable logic. The fixed logic contains a fully functional processor and perhaps even some on-chip memory. This part of the chip also interfaces to dedicated address and data bus pins on the outside of the chip.

4) Reconfigurable Computing

An SRAM-based programmable device can have its internal design altered on-the-fly. This practice is known as reconfigurable computing. It is finding a niche in high-end communications, military, and intelligence applications.

Besides these FPGAs are used in various applications ranging from data processing and storage, to instrumentation, telecommunications, digital signal processing, Application Specific Integrated Circuits (ASICs) and implementation of random logic.

3.4.4) FPGA Programming

FPGA programming is done using powerful software like VHDL etc.

3.4.5) Current Trends

The current trend in FPGA architectures is a move toward complete embedded systems. Recognizing this trend, FPGA manufacturers are also including embedded block RAM, hard microprocessor cores or some hardware components in several of their new FPGAs. This gives engineers the flexibility to mix hardware and software in embedded applications to achieve the maximum performance. FPGAs are highly attractive for this because the less common components can always be included as a soft core. In this project also the kits used (UVLSI-201 and GPIO board) contain some hardware components like analog to digital converter, digital to analog converter and multiplexed four segment display to achieve higher performance and the control signals for the operation of these components are generated using FPGA.

 3.4.6) Advantages of FPGAs

It is desirable to use FPGAs for the following reasons:

1. FPGAs are customized by electrical modification of a packaged part. But eliminating the customization during manufacturing, FPGAs eliminate each design’s custom mask-making, test pattern generation, wafer fabrication, packaging and testing. The electrical modification takes milliseconds or minutes depending on the programming technology and the size of the part compared to the time taken for masked PLDs. So FPGAs provide advantages of low testing costs, rapid turnaround, low risk and cost effective design verification.

2. Fastest time-to-market, lower development cost (no NRE) and long life cycles are other important advantages of FPGA.

3. FPGA provides enough logic components for the design of complex and large prototypes.

4. FPGAs provide the advantages of re programmability. Reconfigurable hardware devices offer both the flexibility of computer software, and the ability to construct custom high performance computing circuits. The hardware can swap out configurations based on the task at hand, effectively multiplying the amount of physical hardware available.

5. FPGAs are available for high frequency operation.

3.4.7) Advantages of FPGAs over CPLDs

Both are programmable digital logic chips. Both are made by the same companies. But they have different characteristics.

1. FPGAs are "fine-grain" devices. That means that they contain a lot (up to 100000) of tiny blocks of logic with flip-flops. CPLDs are "coarse-grain" devices. They contain relatively few (a few 100's max) large blocks of logic with flip-flops.

2. FPGAs have special routing resources to implement efficiently binary counters and arithmetic functions (adders, comparators...) and RAM. CPLDs do not.

3. FPGAs can contain very large digital designs, while CPLDs can contain small designs only.

CHAPTER 4
ACEX50K FPGA DEVICE

Altera is a leading company in the production and advancements of PLDs. Altera ACEX EP1K50, 144 pin, TQFP FPGA has been used in the development of this project. The general and functional characteristics of this device are given below.

4.1 Salient Features

1. ACEX50K FPGAs provide low cost System-on-Programmable-chip (SOPC) integration in a single device.

· Enhanced embedded array for implementing megafunctions such as efficient memory and specialized logic functions

· Dual-port capability with up to 16-bit width per embedded array block (EAB)

· Logic array for implementing general logic functions

2. High density

· 50,000 typical gates

· Up to 49,152 RAM bits, 4,096 bits per EAB, all of which can be used without reducing logic capacity

3. Cost-efficient programmable architecture for high-volume applications

· Cost-optimized process

· Low cost solution for high-performance communications applications
4. System-level features

· Multi Volt TM I/O pins can drive or be driven by 2.5V, 3.3V, or 5.0V devices

· Low power consumption

· Bidirectional I/O performance up to 250 MHz

· Fully compliant with the PCI Local Bus Specification

Table 4.1 ACEX Device Features

	Features
	EP1K10
	EP1K30
	EP1K50
	EP1K100

	Typical gates
	10,000
	30,000
	50,000
	100,000

	Max System Gates
	56,000
	119,000
	199,000
	257,000

	Logic elements
	576
	1,728
	2,880
	4,992

	EABs
	3
	6
	10
	12

	Total RAM bits
	12,288
	24,576
	40,960
	49,152

	Maximum user I/O pins
	136
	171
	249
	333

5. Extended temperature range

6. Fully compliant with the peripheral component interconnect Special Interest Group (PCI SIG) PCI Local Bus Specification.
· Operate with a 2.5V internal supply voltage

· In-Circuit Reconfigurability (ICR) via external configuration devices, intelligent controller or, JTAG port

· ClockLockTM and ClockBoostTM options for reduced clock delay, clock skew, and clock multiplication

· Built-in, low-skew clock distribution trees

· 100% functional testing of all devices, so test vectors or scan chains are not required

7. Flexible interconnect

· FastTrack Interconnect continuous routing structure for fast, predictable interconnect delays

· Dedicated carry chain that implements arithmetic functions such as fast adders, counters, and comparators (automatically used by software tools and megafunctions)

· Dedicated cascade chain that implements high-speed, high-fan-in logic functions (automatically used by software tools and megafunctions)

· Tri-state emulation that implements internal tri-state buses

· Up to six global clock signals and four global clear signals

8. Powerful I/O pins

· Individual tri-state output enable control for each pin

· Open-drain option on each I/O pin

· Programmable output slew-rate control to reduce switching noise

· Clamp to VCCI/O user-selectable on a pin-by-pin basis

· Supports hot-socketing

9. Software design support and automatic place-and-route provided by Altera development systems for Windows-based PCs.

10. Additional design entry and simulation support provided to popular EDA tools.

4.2 General Description

Altera ACEX50K devices provide a die-efficient, low-cost architecture by combining look-up-table (LUT) architecture with EABs. LUT-based logic provides optimized performance and efficiency for data-path, register intensive, mathematical, or digital signal processing (DSP) designs, while EABs implement RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. These elements make ACEX50K suitable for complex logic functions and memory functions such as digital signal processing, wide data path manipulation, data transformation and microcontrollers.

Based on reconfigurable CMOS SRAM elements, the ACEX50K architecture incorporates all features necessary to implement common gate array megafunctions, along with a high pin count to enable an effective interface with system components. The advanced process and the low voltage requirement of the 2.5V core allow ACEX50K devices to meet the requirements of low cost, high-volume applications ranging from DSL modems to low-cost switches.

The ability to reconfigure ACEX50K devices enables complete testing prior to shipment and allows the designer to focus on simulation and design verification. Reconfigurability eliminates inventory management for gate array designs and test vector generation for fault coverage.

Table4.2 shows ACEX50K device performance for some common designs. Special design techniques are not required to implement the applications, the designer simply infers or instantiates a function in a Verilog HDL, VHDL, Altera Hardware Description Language (AHDL), or schematic design file.
Table4.2 ACEX50K Performance

	Application

	Resources Used
	Performance

Speed grade

	
	LEs
	EABs
	-1 -2 -3 Units

	16 Bit loadable Counter
	16
	0
	285 232 185 (MHz)

	16 Bit Accumulator
	16
	0
	285 232 185 (MHz)

	16 to 1 Multiplexer
	10
	0
	3.5 4.5 6.6 (ns)

	256*16 RAM read cycle speed
	 0
	1
	278 196 143 (MHz)

	256*16 RAM write cycle speed
	 0
	1
	185 143 111 (MHz)

Each ACEX50K device contains an embedded array and a logic array. The embedded array is used to implement a variety of memory functions or complex logic functions, such as digital signal processing (DSP), microcontroller applications, and data transformation functions. The logic array performs the same function as the sea-of-gates in the gate array and is used to implement general logic such as counters, adders, state machines, and multiplexers. The combination of embedded and logic arrays provides the high performance and high density of embedded gate arrays, enabling designers to implement an entire system on a single device.

ACEX50K devices are configured at system power-up with data stored in an Altera serial configuration device or provided by a system controller. Altera offers EPC16, EPC2, EPC1, and EPC1441 configuration devices, which configure ACEX50K devices via a serial data stream. Configuration data can also be downloaded from system RAM or via the Altera MasterBlasterTM, ByteBlasterMVTM, or BitBlasterTM download cables. After an ACEX50K device has been configured, it can be reconfigured in-circuit by resetting the device and loading new data. Because reconfiguration requires less than 40 ms, real-time changes can be made during system operation.

ACEX50K devices are supported by Altera development systems, which are integrated packages that offer schematic, text (including AHDL), and waveform design entry, compilation and logic synthesis, full simulation and worst-case timing analysis, and device configuration.

 The Altera software works easily with common gate array EDA tools for synthesis and simulation. Additionally, the Altera software contains EDA libraries that use device specific features such as carry chains, which are used for fast counter and arithmetic functions.

4.3 Functional Description

Each ACEX50K device contains an enhanced embedded array that implements memory and specialized logic functions, and a logic array that implements general logic. The embedded array consists of a series of EABs. When implementing memory functions, each EAB provides 4,096 bits, which can be used to create RAM, ROM, dual-port RAM, or first-in first-out (FIFO) functions. When implementing logic, each EAB can contribute 100 to 600 gates towards complex logic functions such as multipliers, microcontrollers, state machines and DSP functions. EABs can be used independently or multiple EABs can be combined to implement larger functions.

The logic array consists of logic array blocks (LABs). Each LAB contains eight LEs and a local interconnect. An LE consists of a 4-input LUT, a programmable flip-flop, and dedicated signal paths for carry and cascade functions. The eight LEs can be used to create medium sized blocks of logic such as 8-bit counters, address decoders, or state machines or combined across LABs to create larger logic blocks. Each LAB represents about 96 usable logic gates.

Signal interconnections within ACEX50K devices (as well as to and from device pins) are provided by the FastTrack Interconnect routing structure, which is a series of fast, continuous row and column channels that run the entire length and width of the device. Each I/O pin is fed by an I/O element (IOE) located at the end of each row and column of the FastTrack Interconnect routing structure. Each IOE contains a bidirectional I/O buffer and a flip-flop that can be used as either an output or input register to feed input, output, or bidirectional signals. When used with a dedicated clock pin, these registers provide exceptional performance. As inputs, they provide setup times as low as 1.1 ns and hold times of 0 ns. As outputs, these registers provide clock-to-output times as low as 2.5 ns. IOEs provide a variety of features such as slew-rate control, tri-state buffers, and open-drain outputs.

Figure 4.1 shows a block diagram of the ACEX50K device architecture.
[image: image5.png]Embedded Array Block (EAB)

10€] [1oE] [1og] [ioE] [iog] | [1ioE] [1o€] [1og] [1oE!

A A & A K| A & A 4
¥y ¥ L2

ogic Array

ogic

L
L 1y
Block (LAB)

1oE]

Logic Element (LE)

Row
Interconnect

Logic ——
Aray

A
vV ¥V vV ¥V ¥V V| ¥ ¥V ¥V ¥

0] [1og] [1og] [iog] [iog] [iog] | [iog] [10€] [iog] [10E

Embedded Aray

Figure4.1 ACEX50K Device Block Diagram

Each group of LEs is combined into an LAB; groups of LABs are arranged into rows and columns. Each row also contains a single EAB. The LABs and EABs are interconnected by the FastTrack Interconnect routing structure. IOEs are located at the end of each row and column of the FastTrack Interconnect routing structure.
ACEX50K devices provide six dedicated inputs that drive the flip-flop’s control inputs and ensure the efficient distribution of high-speed, low skew (less than 1.0 ns) control signals. These signals use dedicated routing channels that provide shorter delays and lower skews than the FastTrack Interconnect routing structure. Four of the dedicated inputs drive four global signals. These four global signals can also be driven by internal logic, providing an ideal solution for a clock divider.
4.3.1) Embedded Array Block (EAB)
The EAB is a flexible block of RAM, with registers on the input and output ports, that is used to implement common gate array megafunctions. Because it is large and flexible, the EAB is suitable for functions such as multipliers, vector scalars, and error correction circuits. These functions can be combined in applications such as digital filters and microcontrollers.

Logic functions are implemented by programming the EAB with a read only pattern during configuration, thereby creating a large LUT. With LUTs, combinatorial functions are implemented by looking up the results rather than by computing them. This implementation of combinatorial functions can be faster than using algorithms implemented in general logic, a performance advantage that is further enhanced by the fast access times of EABs. The large capacity of EABs enables designers to implement complex functions in a single logic level without the routing delays associated with linked LEs or (FPGA) RAM blocks. For example, a single EAB can implement any function with 8 inputs and 16 outputs.

The ACEX50K enhanced EAB supports dual-port RAM. The dual-port structure is ideal for FIFO buffers with one or two clocks. The ACEX50K EAB can also support up to 16 bit wide RAM blocks. The ACEX50K EAB can act in dual-port or single-port mode. When in dual-port mode, separate clocks may be used for EAB read and write sections, allowing the EAB to be written and read at different rates. . It also has separate synchronous clock enable signals for the EAB read and write sections, which allow independent control of these sections. The EAB can also be used for bidirectional, dual-port memory applications where two ports read or write simultaneously. To implement this type of dual-port memory, two EABs are used to support two simultaneous reads or writes. Alternatively, one clock and clock enable can be used to control the input registers of the EAB, while a different clock and clock enable control the output registers.
[image: image6.png]Port A

address_af]

data_a]

clkena_a

Port B
address_b]
data_b[]

wb

clkena_b

Clock B

Figure4.2 ACEX50K EAB in Dual-Port RAM Mode
EABs can be used to implement synchronous RAM, which is easier to use than asynchronous RAM. A circuit using asynchronous RAM must generate the RAM write enable signal, while ensuring that its data and address signals meet setup and hold time specifications relative to the write enable signal. In contrast, the EAB’s synchronous RAM generates its own write enable signal and is self-timed with respect to the input or write clock. A circuit using the EAB’s self-timed RAM must only meet the setup and hold time specifications of the global clock.

When used as RAM, each EAB can be configured in any of the following sizes: 256 × 16; 512 × 8; 1,024 × 4; or 2,048 × 2. Figure 4.3 shows the ACEX50K EAB memory configurations.

[image: image7.png]256 16 512x8 1,024 x4 2048x2

Figure4.3 ACEX50K EAB Memory Configurations

Larger blocks of RAM are created by combining multiple EABs. For example, two 256 × 16 RAM blocks can be combined to form a 256 × 32 block, and two 512 × 8 RAM blocks can be combined to form a 512 × 16 block. Figure 4.4 shows examples of multiple EAB combination.

[image: image8.png]256

16

256

16

256 % 32

512

512

512

Figure4.4 Examples of Combining EABs
If necessary, all EABs in a device can be cascaded to form a single RAM block. EABs can be cascaded to form RAM blocks of up to 2,048 words without impacting timing. Altera software automatically combines EABs to meet a designer’s RAM specifications.

An EAB is fed by a row interconnect and can drive out to row and column interconnects. Each EAB output can drive up to two row channels and up to two column channels; the unused row channel can be driven by other LEs. This feature increases the routing resources available for EAB outputs.
4.3.2) Logic Array Block (LAB)
An LAB consists of eight LEs, their associated carry and cascade chains, LAB control signals, and the LAB local interconnect. The LAB provides the coarse-grained structure to the ACEX50K architecture, facilitating efficient routing with optimum device utilization and high performance. Figure 4.5 shows the ACEX50K LAB.
[image: image9.png]Son

LB Gontrl _

Dedicated Inputs &
‘Global Signals

=)
e
15
=
=
=R
=1
=[]

B 2y comous

Cascade.Out

Figure4.5 ACEX50K Logic Array Block
Each LAB provides four control signals with programmable inversion that can be used in all eight LEs. Two of these signals can be used as clocks; the other two can be used for clear/preset control. The LAB clocks can be driven by the dedicated clock input pins, global signals, I/O signals, or internal signals via the LAB local interconnect. The LAB preset and clear control signals can be driven by the global signals, I/O signals, or internal signals via the LAB local interconnect. The global control signals are typically used for global clock, clear, or preset signals because they provide asynchronous control with very low skew across the device. If logic is required on a control signal, it can be generated in one or more LEs in any LAB and driven into the local interconnect of the target LAB. In addition, the global control signals can be generated from LE outputs.

4.3.3) Logic Element
The LE, the smallest unit of logic in the ACEX50K architecture, has a compact size that provides efficient logic utilization. Each LE contains a 4-input LUT, which is a function generator that can quickly compute any function of four variables. In addition, each LE contains a programmable flip-flop with a synchronous clock enable, a carry chain, and a cascade chain. Each LE drives both the local and the FastTrack Interconnect routing structure. Figure 4.6 shows the ACEX50K LE.

[image: image10.png]Camyin Cascadedn

Register Bypass

daot ——g—l

dataz i
firscpmy T o e
datad T—»

ens
Cien

e

(—
[— <

laberz ———— pret

Logie
criptide
e ™
ok
g

s
M M

Carjout Caseads.Out

Pogrammabie
Regster

To Fastrack
Tnersomeet

To LaBLocal
Tnercomneet

Figure4.6 ACEX50K Logic Element
The programmable flip-flop in the LE can be configured for D, T, JK, or SR operation. The clock, clear and preset control signals on the flip-flop can be driven by global signals, general-purpose I/O pins, or any internal logic. For combinatorial functions, the flip-flop is bypassed and the LUT’s output drives the LE’s output.

 The LE has two outputs that drive the interconnect: one drives the local interconnect, and the other drives either the row or column FastTrack Interconnect routing structure. The two outputs can be controlled independently. For example, the LUT can drive one output while the register drives the other output. This feature, called register packing, can improve LE utilization because the register and the LUT can be used for unrelated functions.

The ACEX50K architecture provides two types of dedicated high-speed data paths that connect adjacent LEs without using local interconnect paths: carry chains and cascade chains. The carry chain supports high speed counters and adders, and the cascade chain implements wide-input functions with minimum delay. Carry and cascade chains connect all LEs in a LAB and all LABs in the same row. Intensive use of carry and cascade chains can reduce routing flexibility. Therefore, the use of these chains should be limited to speed-critical portions of a design.
1) Carry Chain
The carry chain provides a very fast (as low as 0.2 ns) carry-forward function between LEs. The carry-in signal from a lower-order bit drives forward into the higher-order bit via the carry chain, and feeds into both the LUT and the next portion of the carry chain. This feature allows the ACEX50K architecture to efficiently implement high-speed counters, adders, and comparators of arbitrary width. Carry chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry.

Carry chains longer than eight LEs are automatically implemented by linking LABs together. A carry chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd numbered LAB to odd-numbered LAB. For example, the last LE of the first LAB in a row carries to the first LE of the third LAB in the row. The carry chain does not cross the EAB at the middle of the row. For instance, in the EP1K50 device, the carry chain stops at the eighteenth LAB and a new carry chain begins at the nineteenth LAB.

Figure 4.7 shows how an n-bit full adder can be implemented in n + 1 LEs with the carry chain. One portion of the LUT generates the sum of two bits using the input signals and the carry-in signal; the sum is routed to the output of the LE. Another portion of the LUT and the carry chain logic generates the carry-out signal, which is routed directly to the carry-in signal of the next-higher-order bit. The final carry-out signal is routed to an LE, where it can be used as a general-purpose signal.
[image: image11.png]» st

Register

Carmhain

Register

» s2

az
b2

an
bn

_

Camghain

Register

Carmhain

» s

W Camout

Register

Carmhain

Figure4.7 ACEX50K Carry Chain Operation (n-Bit Full Adder)
2) Cascade Chain
With the cascade chain, the ACEX50K architecture can implement functions that have a very wide fan-in. Adjacent LUTs can be used to compute portions of the function in parallel; the cascade chain serially connects the intermediate values. The cascade chain can use a logical AND or logical OR to connect the outputs of adjacent LEs. With a delay as low as 0.6 ns per LE, each additional LE provides four more inputs to the effective width of a function. Cascade chain logic can be created automatically by the compiler during design processing, or manually by the designer during design entry.

 Cascade chains longer than eight bits are implemented automatically by linking several LABs together. For easier routing, a long cascade chain skips every other LAB in a row. A cascade chain longer than one LAB skips either from even-numbered LAB to even-numbered LAB, or from odd-numbered LAB to odd-numbered LAB (e.g. the last LE of the first LAB in a row cascades to the first LE of the third LAB). The cascade chain does not cross the center of the row (e.g., in the EP1K50 device, the cascade chain stops at the eighteenth LAB and a new one begins at the nineteenth LAB). This break is due to the EAB’s placement in the middle of the row.
Figure 4.8 and 4.9 shows how the cascade function can connect adjacent LEs to form functions with a wide fan-in. These examples show functions of 4n variables implemented with n LEs.

[image: image12.png]d[(4n = 1)..(4n — 4)] —p|

Figure4.8 ACEX50K AND Cascade Chain Operation

[image: image13.png]dl(4n —1)..(4n — 4)] =it

Figure4.9 ACEX50K OR Cascade Chain Operation

4.3.4) FastTrack Interconnect Routing Structure
In the ACEX50K architecture, connections between LEs, EABs, and device I/O pins are provided by the FastTrack Interconnect routing structure, which is a series of continuous horizontal and vertical routing channels that traverse the device. This global routing structure provides predictable performance, even in complex designs. In contrast, the segmented routing in FPGAs requires switch matrices to connect a variable number of routing paths, increasing the delays between logic resources and reducing performance.

 The FastTrack Interconnect routing structure consists of row and column interconnect channels that span the entire device. Each row of LABs is served by a dedicated row interconnect. The row interconnect can drive I/O pins and feed other LABs in the row. The column interconnect routes signals between rows and can drive I/O pins.

 Row channels drive into the LAB or EAB local interconnect. A row channel can be driven by an LE or by one of three column channels. These four signals feed dual 4-to-1 multiplexers that connect to two specific row channels. These multiplexers, which are connected to each LE, allow column channels to drive row channels even when all eight LEs in a LAB drive the row interconnect.

Each column of LABs or EABs is served by a dedicated column interconnect. The column interconnect that serves the EABs has twice as many channels as other column interconnects. The column interconnect can then drive I/O pins or another row’s interconnect to route the signals to other LABs or EABs in the device. A signal from the column interconnect, which can be either the output of a LE or an input from an I/O pin, must be routed to the row interconnect before it can enter a LAB or EAB. Each row channel that is driven by an IOE or EAB can drive one specific column channel.

Access to row and column channels can be switched between LEs in adjacent pairs of LABs. For example, a LE in one LAB can drive the row and column channels normally driven by a particular LE in the adjacent LAB in the same row and vice versa. This flexibility enables routing resources to be used more efficiently. Figure 4.10 shows the ACEX50K LAB.
[image: image14.png]Row Ch

Chamnels

six row cha
dve col

nels can
hannels.

Vi

Each LE can diive two
row channels.

ateasn nerscton — |

—

To LAB Local
Interconnect

~

Ecan switch
intercar

with an

-

Other Rows

From Adjacent LAB
To Adjacent LAB

Figure4.10 ACEX50K LAB Connections to Row & Column Interconnect
For improved routing, the row interconnect consists of a combination of full-length and half-length channels. The full-length channels connect to all LABs in a row; the half-length channels connect to the LABs in half of the row. The EAB can be driven by the half-length channels in the left half of the row and by the full-length channels. The EAB drives out to the full-length channels. In addition to providing a predictable, row-wide interconnect, this architecture provides increased routing resources. Two neighbouring LABs can be connected using a half-row channel, thereby saving the other half of the channel for the other half of the row.

Table 4.3 summarizes the FastTrack Interconnect routing structure resources available in each ACEX50K device.

Table4.3 ACEX50K FastTrack Interconnect Resources

	Device
	Rows
	Channels per Row
	Columns
	Channels per Column

	EP1K10
	3
	144
	24
	24

	EP1K30
	6
	216
	36
	24

	EP1K50
	10
	216
	36
	24

	EP1K100
	12
	312
	52
	24

In addition to general-purpose I/O pins, ACEX50K devices have six dedicated input pins that provide low-skew signal distribution across the device. These six inputs can be used for global clock, clear, preset, and peripheral output-enable and clock-enable control signals. These signals are available as control signals for all LABs and IOEs in the device. The dedicated inputs can also be used as general-purpose data inputs because they can feed the local interconnect of each LAB in the device.

Figure 4.11 shows the interconnection of adjacent LABs and EABs, with row, column, and local interconnects, as well as the associated cascade and carry chains. Each LAB is labeled according to its location: a letter represents the row and a number represents the column. For example, LAB B3 is in row B, column 3.

[image: image15.png]10 kment (105

Figure 4.11 ACEX 50K Interconnect Resources

4.3.5) I/O Element
An IOE contains a bidirectional I/O buffer and a register that can be used either as an input register for external data that requires a fast set-up time or as an output register for data that requires fast clock-to-output performance. IOEs can be used as input, output, or bidirectional pins. The compiler uses the programmable inversion option to invert signals from the row and column interconnect automatically where appropriate. For bi-directional registered I/O implementation, the output register should be in the IOE and the data input and output enable registers should be LE registers, placed adjacent to the bidirectional pin.

 On all ACEX50K devices, the input path from the I/O pad to the FastTrack Interconnect has a programmable delay element that can be used to guarantee a zero hold time. Depending on the placement of the IOE relative to what it is driving, the designer may choose to turn on the programmable delay to ensure a zero hold. Each IOE selects the clock, clear, clock enable, and output enable controls from a network of I/O control signals called the peripheral control bus. The peripheral control bus provides up to 12 peripheral control signals that can be allocated as follows:

■ Up to eight output enable signals

■ Up to six clock enable signals

■ Up to two clock signals

■ Up to two clear signals

Row-to-IOE Connections

When an IOE is used as an input signal, it can drive two separate row channels. The signal is accessible by all LEs within that row. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the row channels. Up to eight IOEs connect to each side of each row channel.

[image: image16.png]Row FastTrack
Interconnect

1OET

10E5]

ven by an

Figure4.12 ACEX50K Row-to-IOE Connections

Column-to-IOE Connections

When an IOE is used as an input, it can drive up to two separate column channels. When an IOE is used as an output, the signal is driven by a multiplexer that selects a signal from the column channels. Two IOEs connect to each side of the column channels. Each IOE can be driven by column channels via a multiplexer. The set of column channels is different for each IOE.

[image: image17.png]Colurn
Interconnect

101 [~

Figure4.13 ACEX50K Column-to-IOE Connections
4.4 ClockLock & ClockBoost Features

To support high-speed designs, ACEX50K devices offer ClockLock and ClockBoost circuitry containing a phase-locked loop (PLL) that is used to increase design speed and reduce resource usage. The ClockLock circuitry uses a synchronizing PLL that reduces the clock delay and skew within a device. This reduction minimizes clock-to-output and setup times while maintaining zero hold times. The ClockBoost circuitry, which provides a clock multiplier, allows the designer to enhance device area efficiency by sharing resources within the device. The ClockBoost feature allows the designer to distribute a low-speed clock and multiply that clock on-device. Combined, the ClockLock and ClockBoost features provide significant improvements in system performance and bandwidth.

The ClockLock and ClockBoost features in ACEX50K devices are enabled through the Altera software. External devices are not required to use these features. The output of the ClockLock and ClockBoost circuits is not available at any of the device pins.

 The ClockLock and ClockBoost circuitry lock onto the rising edge of the incoming clock. The circuit output can drive the clock inputs of registers only; the generated clock cannot be gated or inverted.The dedicated clock pin (GCLK1) supplies the clock to the ClockLock and ClockBoost circuitry. When the dedicated clock pin is driving the ClockLock or ClockBoost circuitry, it cannot drive elsewhere in the device.

4.5 Operating Conditions

Table 4.4 and 4.5 provide information on absolute maximum ratings and recommended operating conditions for 2.5V ACEX50K devices.

Table4.4 ACEX50K Absolute Maximum Rating

	Symbol
	Parameter
	Conditions
	Min
	Max
	Unit

	VCCINT
	Supply Voltage
	With respect to ground
	-0.5
	3.6
	V

	VCCIO
	
	
	-0.5
	4.6
	V

	VI
	DC input voltage
	
	-2.0
	5.75
	V

	IOUT
	DC output current
	
	-25
	25
	mA

	TSTG
	Storage temperature
	No bias
	-65
	150
	Cels

	TAMB
	Ambient temperature
	Under bias
	-65
	135
	Cels

	TJ
	Junction temperature
	PQFP, TQFP & BGA

packages, under bias
	
	135
	Cels

Table 4.5 ACEX50K Device Recommended Operating Conditions

	Symbol
	Parameter
	Conditions
	Min
	Max
	Unit

	VCCINT
	Supply voltage for internal

logic and input buffers
	
	2.375

(2.375)
	2.625

(2.625)
	V

	VCCIO
	Supply voltage for output

buffers,3.3-V operation
	
	3.00

(3.00)
	3.60

(3.60)
	V

	
	Supply voltage for output

Buffers,2.5-V operation
	
	2.375

(2.375)
	2.625

(2.625)
	V

	VI
	Input voltage
	
	-0.5
	5.75
	V

	Vo
	Output voltage
	
	0
	VCCIO
	V

	TA
	Ambient temperature
	Commercial range
	0
	70
	oC

	
	
	Industrial range
	-40
	85
	oC

	TJ
	Junction temperature
	Commercial range
	0
	85
	oC

	
	
	Industrial range
	-40
	100
	oC

	
	
	Extended range
	-40
	125
	oC

	tR
	Input rise time
	
	
	40
	ns

	tF
	Input fall time
	
	
	40
	ns

4.6 Timing Model
 The continuous, high-performance FastTrack Interconnect routing resources ensure accurate simulation and timing analysis as well as predictable performance. This predictable performance contrasts with that of other FPGAs, which use a segmented connection scheme and therefore, have an unpredictable performance.

 Device performance can be estimated by following the signal path from a source, through the interconnect, to the destination. For example, the registered performance between two LEs on the same row can be calculated by adding the following parameters:

· LE register clock-to-output delay (tCO)

· Interconnect delay (tSAMEROW)

· LE look-up table delay (tLUT)

· LE register setup time (tSU)

The routing delay depends on the placement of the source and destination LEs. A more complex registered path may involve multiple combinatorial LEs between the source and destination LEs.

 Timing simulation and delay prediction are available with the simulator and timing analyzer. The Simulator offers both pre-synthesis functional simulation to evaluate logic design accuracy and post-synthesis timing simulation with 0.1 ns resolution. The Timing Analyzer provides point-to-point timing delay information, setup and hold time analysis, and device-wide performance analysis. Figure 4.14 shows the overall timing model, which maps the possible paths to and from the various elements of the ACEX50K device.

[image: image18.png]Dadcatad
Clockinput

>
Interconnect 10 Element
-
A 4 vy
Logic Embedied Atay
Eomert Block

Figure4.14 ACEX50K Device Timing Model

4.7 Configuration & Operation

The ACEX50K architecture supports several configuration schemes. This section summarizes the device operating modes and available device configuration schemes.

4.7.1) Operating Modes

The ACEX50K architecture uses SRAM configuration elements that require configuration data to be loaded every time the circuit powers up. The process of physically loading the SRAM data into the device is called configuration. Before configuration, as VCC rises, the device initiates a Power-On Reset (POR). This POR event clears the device and prepares it for configuration. The ACEX50K POR time does not exceed 50 µs.

 During initialization, which occurs immediately after configuration, the device resets registers, enables I/O pins, and begins to operate as a logic device. Before and during configuration, all I/O pins (except dedicated inputs, clock, or configuration pins) are pulled high by a weak pull-up resistor. Together, the configuration and initialization processes are called command mode; normal device operation is called user mode.

SRAM configuration elements allow ACEX50K devices to be reconfigured in-circuit by loading new configuration data into the device. Real-time reconfiguration is performed by forcing the device into command mode with a device pin, loading different configuration data, re-initializing the device, and resuming user-mode operation. The entire reconfiguration process requires less than 40 ms and can be used to reconfigure an entire system dynamically.

4.7.2) Configuration Schemes

The configuration data for an ACEX50K device can be loaded with one of five configuration schemes, chosen on the basis of the target application. An EPC16, EPC2, EPC1 or EPC1441 configuration device, intelligent controller, or the JTAG port can be used to control the configuration of an ACEX50K device, allowing automatic configuration on system power-up.

Table4.6 Sources for ACEX50K Configuration

	Configuration Scheme
	Data Source

	Configuration device
	EPC16, EPC2, EPC1 or EPC1441 devices

	Passive serial (PS)
	BitBlaster or ByteBlasterMV download cables

or serial data source

	Passive parallel asynchronous
	Parallel data source

	Passive parallel synchronous
	Parallel data source

	JTAG
	BitBlaster or ByteBlasterMV download cables or Microprocessor with a Jam STAPL file

4.8 ACEX50K Layout

[image: image19.png]n - 'eygs EEEE:IIII;E§§=

]
L]

0l
§
0
¥ cnsressmmenzzazzes

UULST: 391-ACEXSEK

w. simstean. net

gibiii b e

5555555555’*2’

-]
[
o4
0z
g
xi4
iz
xie
ol
3
x4
&3

s

Figure 4.15 ACE50K Layout

Table 4.7 ACE50K Device Pin-outs

	Switch on UVLSI 201
	Device Pin No
	Property
	FPGA Signal

	RESET1
	56
	GCLK1
	CLRN

	RESET2
	124
	DED I/P3
	RESET_N

	
	126
	DED I/P4
	RESET

	Reference LED
	87
	I/O
	

	External Clock Input
	125
	DED CLK2
	CLK2

	On Board Clock Input
	55
	DED CLK1
	CLK1

	Connector
	Device Pin
	Property
	Signal

	P14/1
	128
	I/O
	EXT I/O 1

	P14/2
	122
	I/O
	EXT I/O 2

	P14/3
	121
	I/O
	EXT I/O 3

	P14/4
	120
	I/O
	EXT I/O 4

	P14/5
	119
	I/O
	EXT I/O 5

	P14/6
	118
	I/O
	EXT I/O 6

	P14/7
	117
	I/O
	EXT I/O 7

	P14/8
	116
	I/O
	EXT I/O 8

	P14/9
	5V
	Vcc
	Vcc

	P14/10
	GND
	GND
	GND

	P15/1
	26
	Dedicated O
	Buffered O/P 9

	P15/2
	23
	Dedicated O
	Buffered O/P 10

	P15/3
	22
	Dedicated O
	Buffered O/P 11

	P15/4
	21
	Dedicated O
	Buffered O/P 12

	P15/5
	20
	Dedicated O
	Buffered O/P 13

	P15/6
	19
	Dedicated O
	Buffered O/P 14

	P15/7
	18
	Dedicated O
	Buffered O/P 15

	P15/8
	17
	Dedicated O
	Buffered O/P 16

	P15/9
	5V
	Vcc
	Vcc

	P15/10
	GND
	GND
	GND

	P16/1
	36
	Dedicated O
	Buffered O/P 1

	P16/2
	33
	Dedicated O
	Buffered O/P 2

	P16/3
	32
	Dedicated O
	Buffered O/P 3

	P16/4
	31
	Dedicated O
	Buffered O/P 4

	P16/5
	30
	Dedicated O
	Buffered O/P 5

	P16/6
	29
	Dedicated O
	Buffered O/P 6

	P16/7
	28
	DedicatedO
	Buffered O/P 7

	P16/8
	27
	DedicatedO
	Buffered O/P 8

	P16/9
	5V
	Vcc
	Vcc

	P16/10
	Vcc
	GND
	GND

	P17/1
	9
	INPUT 1
	SW1 digital input I16

	P17/2
	8
	INPUT 2
	SW1 digital input I15

	P17/3
	7
	INPUT 3
	SW1 digital input I14

	P17/4
	144
	INPUT 4
	SW1 digital input I13

	P17/4
	144
	INPUT 4
	SW1 digital input I13

	P17/5
	143
	INPUT 5
	SW1 digital input I12

	Connector
	Device Pin
	Property
	Signal

	P17/6
	142
	INPUT 6
	SW1 digital input I11

	P17/7
	141
	INPUT 7
	SW1 digital input I10

	P17/8
	140
	INPUT 8
	SW1 digital input I9

	P17/9
	138
	INPUT 9
	SW1 digital input I8

	P17/10
	137
	INPUT 10
	SW1 digital input I7

	P17/11
	136
	INPUT 11
	SW1 digital input I6

	P17/12
	135
	INPUT 12
	SW1 digital input I5

	P17/13
	133
	INPUT 13
	SW1 digital input I4

	P17/14
	132
	INPUT 14
	SW1 digital input I3

	P17/15
	131
	INPUT 15
	SW1 digital input I2

	P17/16
	130
	INPUT 16
	SW1 digital input I1

	P17/17
	110
	OUTPUT16
	Output LED O16

	P17/18
	109
	OUTPUT15
	Output LED O15

	P17/19
	102
	OUTPUT14
	Output LED O14

	P17/20
	101
	OUTPUT13
	Output LED O13

	P17/21
	100
	OUTPUT12
	Output LED O12

	P17/22
	99
	OUTPUT11
	Output LED O11

	P17/23
	98
	OUTPUT10
	Output LED O10

	P17/24
	97
	OUTPUT 9
	Output LED O9

	P17/25
	96
	OUTPUT 8
	Output LED O8

	P17/26
	95
	OUTPUT 7
	Output LED O7

	P17/27
	92
	OUTPUT 6
	Output LED O6

	P17/28
	91
	OUTPUT 5
	Output LED O5

	P17/29
	90
	OUTPUT 4
	Output LED O4

	P17/30
	89
	OUTPUT 3
	Output LED O3

	P17/31
	88
	OUTPUT 2
	Output LED O2

	P17/32
	86
	OUTPUT 1
	Output LED O1

	P17/33
	83
	SEG A
	7 Segment O/P => ‘a’

	P17/34
	82
	SEG B
	7 Segment O/P => ‘b’

	P17/35
	81
	SEG C
	7 Segment O/P => ‘c’

	P17/36
	80
	SEG D
	7 Segment O/P => ‘d’

	P17/37
	79
	SEG E
	7 Segment O/P => ‘e’

	P17/38
	78
	SEG F
	7 Segment O/P => ‘f’

	P17/39
	73
	SEG G
	7 Segment O/P => ‘g’

	P17/40
	72
	SEG DP
	7 Segment O/P => ‘dp’

	P17/41
	36
	DISP 1
	Digit 0 select o/p

	P17/42
	33
	DISP 2
	Digit 1 select o/p

	P17/43
	32
	DISP 3
	Digit 2 select o/p

	P17/44
	31
	DISP 4
	Digit 3 select o/p

	P17/45
	114
	KEY 1
	Key k1

	P17/46
	113
	KEY 2
	Key k2

	P17/47
	112
	KEY 3
	Key k3

	P17/48
	111
	KEY 4
	Key k4

	P17/49
	5V
	Vcc
	Vcc

	P17/50
	GND
	Ground
	Ground

	P18/1
	37
	DAC0
	DAC data0 o/p from FPGA (MSB)

	P18/2
	38
	DAC1
	DAC data1 o/p from FPGA

	P18/3
	39
	DAC2
	DAC data2 o/p from FPGA

	P18/4
	41
	DAC3
	DAC data3 o/p from FPGA

	P18/5
	42
	DAC4
	DAC data4 o/p from FPGA

	P18/6
	43
	DAC5
	DAC data5 o/p from FPGA

	P18/7
	44
	DAC6
	DAC data6 o/p from FPGA

	P18/8
	46
	DAC7
	DAC data7 o/p from FPGA (LSB)

	P18/9
	47
	ADC_D0
	Data 0 from ADC 0808

	P18/10
	48
	ADC_D1
	Data 1 from ADC 0808

	P18/11
	49
	ADC_D2
	Data 2 from ADC 0808

	P18/12
	51
	ADC_D3
	Data 3 from ADC 0808

	P18/13
	54
	ADC_D4
	Data 4 from ADC 0808

	P18/14
	59
	ADC_D5
	Data 5 from ADC 0808

	P18/15
	60
	ADC_D6
	Data 6 from ADC 0808

	P18/16
	62
	ADC_D7
	Data 7 from ADC 0808

	P18/17
	63
	ADC_A0
	ADC Channel Select Bit

	P18/18
	67
	ADC_START
	Write for ADC (SOC)

	P18/19
	64
	ADC_A1
	ADC Channel Select Bit

	P18/20
	68
	ADC_ALE
	ADC ALE Signal

	P18/21
	65
	ADC_A2
	ADC Channel select Bit

	P18/22
	69
	ADC_EOC
	Interrupt Signal from ADC (EOC)

	P18/23
	125
	EXT CLK
	555 Frequency o/p to FPGA

	P18/24
	70
	ADC_OE
	ADC Output Enable (OE)

	P18/25
	5V
	Vcc
	Vcc

	P18/26
	GND
	GROUND
	GND

CHAPTER 5
HARDWARE

The SCADA system is implemented on UVLSI-201 Trainer kit and a (GPIO 401 board) general purpose input-output board. They are described below.

5.1 UVLSI Trainer
5.1.1) Introduction
Programmable Logic Devices are playing major role in system design due to their flexible architecture, re-programmability and fast time to market resulting in a smaller design-cycle period. Also lower design risk is involved with the use of PLDs.

This Universal PLD kit is an ideal trainer to implement and test the designs both for the beginner and the expert. This kit makes it possible to execute and verify basic digital experiments using VHDL and Verilog, the standard Hardware Description Languages. We can write VHDL code and verify the results on this kit using FPGA or CPLD. We can verify various experiments involving combinational and sequential logic using this kit. It is assembled ready for various interfaces that include ADC/DAC, display, keyboard, serial communication, VGA, PS /2 etc.The Universal PLD Trainer System consists of

• Power Supply Unit

• Hardware Access Unit

• Connecting cables

• Universal Board (UVLSI 201)

• FPGA Daughter Boards

5.1.1.1) Power Supply Unit

SMPS power supply: INPUT 100V to 300V, 50 Hz and Output 9.6 V dc, 1.2A

5.1.1.2) Hardware Access Unit

This is security unit use to configure the devices on the UVLSI 201.

This unit detects following things.

· Card in - when daughter card is inserted this led will glow.

· Altera - when Altera daughter board is inserted this led will glow.

· Altera sprom - This led will glow, when Altera sprom is being programmed.

· Xilinx - when Xilinx daughter board is inserted this will glow.

· Xilinx sprom - This led will glow, when Xilinx sprom is being programmed.

5.1.1.3) List of Cables

· A set of cables is provided to connect the UVLSI 201 board to the PC through the hardware access unit and to the interfacing units.

· Parallel Port of the PC to Hardware Access Unit (25 pin FRC M-M)

· Hardware Access Unit to UVLSI 201 (25 pin FRC F-F)

· 10 Pin FRC Cable to program the configuration devices

· 50 and 26 Pin FRC cables to interface with the GPIO 401A module
[image: image20.png]

Figure 5.1 Layout of UVLSI 201
5.1.2) Salient Features of Universal Board (UVLSI 201)

The printed circuit boards assembled in the enclosure Universal Board contains all the devices that are available for interfacing, assembled with the supporting hardware and the connectors for interfacing to the PLD board.

5.1.2.1) Connectors
(1) Input Port (P14)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] (pin 9), GND (pin 10)

This port can be configured as input or as output port.

(2) Output Port (P15)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] (pin 9), GND (pin 10)

This port is a dedicated output port with buffers (74LS245).

(3) Output Port2 (P16)

This is 10-pin FRC header with 8 I/O lines and Vcc [+5V] (pin 9), GND (pin 10)

This port is a dedicated output port with buffers (74LS245).

(4) I/O Port1 (P17)

This is a 50 pin header with 48 I/O lines and Vcc [+5V] (pin 49), GND (pin50). This port can be configured as input or output.

(5) I/O Port2 (P18)

This is 26 pin header with 24 I/O lines and Vcc [+5V] (pin 25), GND (pin26)

This port can be configured as input or output.

(6) P//S2 Port (P13)

This is used to interface a PS2 standard keyboard or a mouse.

(7) Serial Port (P4)

This is a RS-232 standard serial communication port.

(8) Programming Cable (P3)

This is D type 25-pin male, used to configure the PLDs and to program the Configuration Devices.

(9) VGA Port (P2)

This is used to interface VGA standard graphics devices.

(10) SPROM Programmer Connectors

Xilinx SPROM: Connect P9 and P10 through a 10-pin FRC cable when programming the Xilinx Configuration devices.

Altera SPROM: Connect P11and P12 through a 10-pin FRC cable when programming the Altera Configuration devices.

5.1.2.2) Switches
(1) Altera Mode Select: This switch is used when configuring the Altera FPGAs, through the configuration Device.

(2) Xilinx Mode Select: This switch is used to select the mode when configuring the Xilinx FPGAs.

(3) RESET1: The RESET1 switch is connected to the signal CLRN on the PLD.

(4) RESET2: The RESET2 switch generates active high (RESET_N) and active Low (RESET) signals.

5.1.2.3) LCD Display

UVLSI 201 supports on board 16X1 characters LCD display. Data has to be sent nibble by nibble from the PLD to the LCD module on its MS byte.

5.1.2.4) Daughter Board Connectors

Connectors J1, J2, J3 and J4 are provided to accommodate the daughter boards of various vendors.

5.1.2.5) Jumpers

CLK SELECT: This can be used to select different on board clock frequencies 4MHz, 16MHz, 25MHz.

5.1.2.6) On Board Programmer

UVLSI 201 features Onboard Programmer to program the Altera (EPC2) and Xilinx (XC18V01) Configuration devices.

5.1.2.7) RS-232 Connector
 RS-232 interface standard is provided for implementing serial communication to and from computer. DB9 connector is used for connection of RS-232 interface.

5.2 Overview of GPIO Board
5.2.1) Introduction
As the name says this is a Multi purpose I/O board i.e. it has almost all the primary interfaces that a PLD may be used for. This board is designed to interface PLDs of any make (Xilinx, Altera, Lattice, Actel etc), any gate count and any package. It has all input and output interfaces brought on to the two connectors on the board. The PLDs can be configured to fit on these connectors to complete the interface circuit. The interfaces depend on the device gate count and the number of I/Os used in the design.
5.2.2) Details of GPIO 401A Board

 The Universal I/O Board provides following interfaces.

· 16 digital inputs: Two 8 WAY DIP Switch with 3mm LED indication

· 16 digital outputs: 16 LEDs driven through drivers

· 4 key switches: 4 tactile key switches

· 4 digits Multiplexed 7 Segment display (common Anode type)

· 8 Channel 8 Bit ADC (Analog to Digital Converter)

· Single channel 8 bit DAC (Digital to Analog Converter)
[image: image21.png]I I I I
]

N

Z)()()()()()()()

a1 —xuue SHK

mmmmmmwu = %

11404100

2140410
11404 0/1

.&._Qm_o ?AD

21404 0/1
R

F

Figure 5.2 GPIO 401 Board Lay Out
5.2.2.1) 16 DIP Switch Inputs

 8 + 8 DIP switches, indented as (I16 ….I9, I8 ….I1) are available to give steady state inputs. They are all active high switches. The LEDs indicate the position of individual switches i.e. ON or OFF. The LED glows when the switch is ON.

[image: image22.png]alnlnimalalsls

alalnlnimilals

Figure5.3 Input DIP Switches
5.2.2.2) 16 LED Outputs

16 Red LEDs, indented as (O16…O9, O8…O1) are available to indicate the steady state outputs. A high voltage level makes the LED glow.

[image: image23.png]00000000 00000000

016 09 08 o1

Figure5.4 Output LEDs

5.2.2.3) 4 Key Interfaces

4 robust keys (K1 to K4) are arranged.

5.2.2.4) Multiplexed (4 digits) 7 Segment Display

7 segment displays are available for multiplexed interface selectable through connectors I/O port1. All the 4 digits can be used for multiplexed interface connecting I/O port 1 from UVLSI 201 to I/O port 1 on the GPIO 401A. The displays are common anode type.

A high output lights the segment. Similarly a high output also selects a digit. SEG A to SEG DP and DISP1 to DISP4 are total 12 pins of the PLD which are used for the 7 segment display function. For multiplexed displays, SEG A to SEG DP are connected to segments of all the 4 displays and DISP1 is connected to the transistor base of display DISP1. Similarly DISP3 to DISP4 are connected to other transistor bases respectively.

5.2.2.5) 8-Bit ADC Interface
To provide exposure to the projects of analog world an Analog to Digital converter device interface is provided. ADC0808 has been selected for this purpose. This is an 8-bit, successive approximation ADC with tri-state outputs.

This is an 8-bit, successive approximation ADC with tri-state outputs. SAR ADCs most commonly range in resolution from 8 to 16 bits and provide low power consumption as well as a small form factor. This combination makes them ideal for a wide variety of applications, such as portable/battery-powered instruments, pen digitizers, industrial controls, and data/signal acquisition.
 The ADC channel selection and the control signals have to come from the PLD. Analog input can be given from on board source and its value can be changed through the potentiometer (ADC I/P). External Analog input 0 to +5V can be given through the connector ADC EXT I/P with appropriate jumper settings. The Clock for ADC operation is generated on board using a 555 timer, which can be varied using the POT (timer frequency).

5.2.2.6) 8-Bit DAC Interface

Digital-to-analog converter device interface is also provided to have interface with analog world. DAC0800 is used for this purpose. DAC 0800 is a single channel 8-bit DAC. The analog output of the DAC can be observed at pin no.1 of connector J13 and can be varied using the POT DAC O/P (VR1).

CHAPTER 6
SOFTWARE

6.1 Introduction
This chapter is intended to become familiar with the VHDL for specifying programmable logic design. For serious work, use of EDA Tools like Altera is essential because PLDs contain many thousands of programmable fuses. The process of producing fuse Maps is therefore highly impossible to manage by hand. The purpose of EDA tool is to interpret the logic design and convert it into a format which may be loaded in the PLD directly, called In-System-Programming (ISP), or indirectly via a separate device programmer.

6.2 VHDL
6.2.1) Introduction
VHDL is a Hardware Description Language that can be used to model a system. The digital system can be as simple as a logic gate or as complex as a complete electronics system. VHDL is an acronym for VHSIC Hardware Description Language; VHSIC is an acronym for Very High Speed Integrated Circuits. It is a hardware description language that can be used to model a digital system at many levels of abstraction, ranging from the algorithmic level to the gate level. The digital system can also be described hierarchically. Timing can also be explicitly modeled in the same description. The VHDL language can be regarded as an integrated amalgamation of the many languages.

VHDL = Sequential language + Concurrent language + Net list language + Timing specifications + Waveform generation language

Therefore, the language has constructs that enable us to express the concurrent or sequential behavior of a digital system with or without timing. It also allows us to model the system as an interconnection of components. All the above constructs may be combined to provide a comprehensive description of the system in a single model. The models written in this language can be verified using a VHDL simulator.

It is a strongly typed language and is often verbose to write. The complete language has sufficient power to capture the descriptions of the most complex chips to a complete electronic system.
6.2.2) Salient Features
The following are the major capabilities that the language provides along with the features that differentiate it from other hardware description languages.

1. The language can be used as an exchange medium between chip vendors and CAD tool users. Different chip vendors can provide VHDL descriptions of their components to system designers. CAD tool user can use it to capture the behavior of the design at a high level of abstraction for functional simulation.

2. The language supports hierarchy, that is, a digital system can be modeled as a set of interconnected components, and each component can be modeled as a set of interconnected subcomponents.

3. The language supports flexible design methodologies; top down, bottom up or mixed.

4. The language is not technology specific, but is capable of supporting technology specific features.

5. It supports both synchronous and asynchronous timing models.

6. Various digital modeling techniques, such as finite state machine descriptions, algorithmic descriptions and boolean equations can be modeled using the language.

7. It is an IEEE and ANSI standard; therefore models described using this language is portable.

8. The language supports three basic different description styles: structural, dataflow and behavioral. A design may also be expressed in any combination of these three descriptive styles.

9. Test benches can be written using the same language to test other VHDL models.

10. The capability of defining new data types provides the power to describe and simulate a new design technique at a very high level of abstraction without any concern about the implementation details.

11. Arbitrary large designs can be modeled using the language and there are no limitations imposed by the language on the size of a design.

12. Nominal propagation delays, min-max delays, set up and hold timing, timing constraints and spike detection can be described very naturally in this language.

6.2.3) Hardware Abstraction
VHDL is used to describe the model for a digital hardware device. This model specifies the external view of the device one or more internal views. The internal view of the device specifies the functionality or the structure, while the external view specifies the interface of the device through which it communicates with the other models in its environment.

The device to device model mapping is strictly one to many, i.e a hardware device may have many device models. For example, a device modeled at a high level of abstraction may not have a clock as one of its inputs, since clock may not have been used in the description. In VHDL, each device model is treated as a distinct representation of a unique device, called an entity. Figure 6.1 shows the hardware device and the corresponding software model.

[image: image52.png]+5V

R14
ADCIP (VR2)

us

5V

4 2
EX Nt) 1
T 2
EX_IN2 3 1
p)
EX NG b 3 1
EX_IN4 3 N 01 26
EX NG T D) 1 g
EX NG N 2
T 2 3
EXINT B 1 7
EX_IN8 3, ol
o S 1
GND 1o
Variable Freq
vs [o——m
crock 9
7

IND
IN1
IN2
IN3
IN4
IN5
ING
IN7

REF+
REF-

CLK

OE
EOC

Q
o]
5

ADC0808 B}

17 ADC_DO
ADC_D1
15 ADC_D2

8 ADC_D3
18 ADC D4

(e ADCDS
20— ADCDs
1 ADC_D7
25 ADC_A0
4 ADC_A1
23 ADC_A2
6 ADC_START

ADC_EOC

ADC_OE

[image: image53.png]based scadalscada - [scada Compilation Report]]

Fle Edt Vew Projct Assgnments Processing Tools Window Help E

[osd 8| melocvrers e 966

Nurnber of LABs

Nurnber of Logic Elements

_ [FoR=w [I [

[image: image54.png]& Quartus Il

pga based scadalscada

scada Compilation Report]

Fle Edt Vew Projct Assgnments Processing Tools Window Help

DEL & R >rErT OS2 USS
ST Resource Usao
&B teosl | |Resource |Usage 1
GErow [1 T Toge ool EEE RS
SB ron 3] fegaas T0i54(0%)
o 8Bt [5] bssrootediogicole 0
i ey |4 | /0 pins 0/102(38%)
e [5] - Clock pins [i
[6] -~ Dedicatedinputpins [0/4(0%)
[] Gibatsnat .
5] Eeds 0/10(0%)
[3] Total memory bits 0/40.360(0%)
[10] Total ReM block bis|0/40.980(0%)
[F1] M omout rode st
[12] Masimmorou 70
[13] Toranans 7
[1e] tvergermon 239

= @0 assm
= Qe

®

For Helo, oress FL

fiory o> i [T

[image: image55.jpg]

[image: image56.emf]

 Device Device Model
Figure 6.1 A Entity and its Model

A hardware abstraction of the digital system is called an entity. An entity is modeled using an entity declaration and at least one architecture body. The entity declaration describes the external view of the entity, for example input and output signal names. The architecture body contains the internal description of the entity, for example, as a set of interconnected components that represents the structure of the entity, or as a set of concurrent or sequential statements that represent the behavior of the entity.

6.3 Altera Quartus II Software
3
The Altera Quartus II design software provides a complete, multi platform design environment that easily adapts to our specific design needs. It is a comprehensive environment for system on a programmable chip (SOPC) design. This software includes solutions for all phases of FPGA and CPLD design.

In addition, Quartus II software allows us to use the Quartus II graphical user interface, EDA tool interface or command line interface for each phase of the design flow. We can use one of these interfaces for the entire flow or we can use different options at different phases of the design flow.

Graphical user interface has been used for this project. We will study it in detail.
6.3.1) Graphical User Interface Design Flow
We can use the Quartus II software to perform all stages of the design flow. It is a complete, easy to use, stand alone solution. The Quartus II graphical user interface provides the following features for each stage of design flow.

(1) Design Entry

· Text Editor

· Block and Symbol Editor
· MegaWizard Plug In Manager

· Assignment Editor

· Floor plan Editor

(2) Synthesis

· Analysis and Synthesis

· VHDL, Verilog HDL & AHDL

· Design Assistant

(3) Place and Route

· Fitter

· Assignment Editor

· Floor plan Editor

· Chip Editor

· Report Window

· Incremental Fitting

(4) Timing Analysis

· Timing Analyzer

· Report Window

(5) Simulation

· Simulator

· Waveform Editor

(6) Programming

· Assembler

· Programmer

· Convert programming Files
6.3.2) Procedure
The following steps describe the basic design flow for the Quartus II graphical user interface:

1. Create a new project and specify a target device or device family by using the New Project wizard.

2. Create a VHDL, Verilog HDL or AHDL design by using the text editor. We can use the Block Editor to create a block diagram with symbols that represent other design files or to create a schematic.

3. Specify initial design constraints using the assignment editor, the setting dialogue box and the floor plan editor.

4. Create a system level design by using the SOPC builder or DSP builder.

5. Create software and programming files for Excalibur device processors by using the software builder.

6. Synthesize the design by using Analysis and Synthesis.

7. Perform functional simulation on the design by using the Simulator.

8. Perform place and route on the design by using the fitter. For a small change to the source code we can also use incremental fitting.

9. Perform timing analysis on the design by Timing Analyzer.

10. Perform timing simulation on the design by using the simulator.

11. Make timing improvements to achieve timing closure by using physical synthesis, the timing closure floor plan, the setting dialogue box and the assignment Editor.

12. Create programming files for your design by using the assembler.

13. Program the device by using programming files, the Programmer and Altera hardware or convert programming files to other file formats for use by other systems.
[image: image24.png]Design Specification

1

Behavioral Description

]

Front End

RTL Description (HDL) [+

]

Functional Verification

& Testing

i

Logic Synthesis

i

Gate - Level Netlist

]

Back End

Logical Verification &

Testing
{

Floor Planning Automatic|

Place & Route

i

Programming

Figure 6.2 VLSI Design Flow
[image: image25.png]Pl Edt Vew Projct Assinments Processing

Tools Vindow _Help

DEH|& | ska|s o
2l

Ently
Comition Hisrarchies|

" ®2 Hiewarchies | B Fies | 8 Design Units

> P @‘e

XX

New Project Wizard: Introduction

The New Project Wizard helps you ener settings that apply to your enlie project, including
the follwing:

Frsject name and disctory
Name of the toprevel design ertity

Deesign fles, other souice s, and fbrares o be used inthe projsct
Device and fami to be used for compiltion

EDA toal seltings

‘Yo can change the seltings fo an existing project and speciy addiional roject-wide
seltings with the Setings command [Assigrmens menu) You can use the varous
pages o the Settings dialog bos, including the Tining Setings, the Defauk Parameter
Setings, and the Defauk Logic Option Settings pages, to add funcionalty to the project

I Don' show me this nroduction again

) >

\Change bonager /[

ER3 Bl

CEDl Sm

Information

hitp://www.altera. com

For Helo. oress F1

TFoawe [

o

[

A

Figure 6.3 Using wizard create directory and new project
[image: image26.png]Pl Edt Vew Project Assignments Processing Toos Window Help

2l =l

Ently
Comition Hisrarchies|

DEH|& B o h|re

" ®2 Hiewarchies | B Fies | 8 Design Units

New Project Wizard: Directory, Name

‘Whatis the warking diestaryfor tisproject? This crectory will cortain design fes and
other relted fes associaled with s project. If you type a diectory name thal does ot
esist, Quatus || can creste it foryou

|C:\FPGA BASED SCADA

‘Whatis the name of this prject? i you wish, you can use the ame ofthe prject’s
toprevel desian eniiy.

=3 |

Whal s the name of the toprevel design entity i your prject? The Quatus Il software wil
automatical create Compier and Simulator setings forthe top-evel entily you specify

in this wizad, Afer you create & project, you can add more top-evel enies and create
Compler and Simlstor settngs ot them ith commands on the Assignments menu

[scada

Information

hitp://www.altera. com

Figure6.4 Create directory and Project name

[image: image27.png]Fie Edt Vew Piojct Assgnments Processing Toos Window Help

DeE|Z|imaloc || rero(ed(des
2l =l

Ently
Compiltion Hierachies,

New Project Wizard; Select a Target Dey

Avalable devices:

Use the Fiers selfings o contalthe devices that are isplayed inthe "Available
devices" st Select a device i the lis, and click Nestto contiue.

EPTKIOTCIA43
EPIK3TCT443
L}

" ®2 Hiewarchies | B Fies | 8 Design Units

2lx

Fiters
Package:

Pin count

Spesd grade: |3 ~

Volage:

T -

i =

25v

Nade Name

Quartus II
Information
| 3 http://www.altera.com
Change bamager [
e 2]

ol —

S— T

Figure6.5 Select the family of the device
[image: image28.png]Pl Edt Vew Project Assignments Processing Toos Window Help

2l =l

Ently
Comition Hisrarchies|

" ®2 Hiewarchies | B Fies | 8 Design Units

DEH|& B o h|re

oo

XX

New Project Wizard: Summary [

‘When you cick Firish, your pofect il b created with the following selfings:

Froject diectoy
pga based scadsh

Froject name:

Toplevel design enty:

Number offls acdec:

Number of user lbraries addect

EDA toaks:
Design enty/syrihesis: Custom
Simulaton: Custom VHDL
Timing analyss: Custom VHDL
Board design: <MNone>.

Device assignments:
Fami name: ACEXTK
Device: EPIKSOTC1443

Information

hitp://www.altera. com

4

Figure 6.6 Summary of the new project wizard

[image: image29.png]Fie Edt Vew Piojct Assgnents Processing Toos Window Help

DeSd|&|sBaoc|errroea¥ee

Ently
‘3 Compilation Hierarchies

T sosda

Device Desian Files

Software Files | Dther Fils

[AHDL Fie
Block Disgram/Schematic Fle:
EDIF Fie

Verlog

DL Fie

US 11

" ®2 Hiewarchies | B Fies | 8 Design Units
I

Nods Name

uartus Il
Information

£58 2
g tamgr
| ¢ ® [non

For Helo, oress FL

hitp://www.altera. com

— [Fomws [T PS——

Figure6.7 Select the VHDL file
[image: image30.png]Quartus Il

SEFle Edt ew Project Assignments Processng Toos Window Help BEE]
EE I R I
lxl

Node Name

Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_arith.all;
use ieee.std_logic_unsigned.alls

entity ade_control is port|
ret: in std_logic: —- reset input

—-1DC section
clk_ade: in std_logic; --clock imput to ADC

adar_yux: out std_logic_vector (2 downto 0);-- channel selection address to the ADC
data_ade : in std_logic_vector (7 downto D) ;--8 bit data from ADC

eoc_ade: in std_logic; | -- end of conversion from ADC

-~ ADC control signals
start_ade: buffer std_logic; -- start comversion to ADC

ale_ade: out std_logic: adaress latch ensble (latching address in adc)
oe_ade: out std_logic: - output enable

—-DISPLAY
clk_disp: in std_logic;
buffer std_logic_vector(3 downta O); -
out std_logic_vector (6 downto 0): -

display refresh clock input
hase drive to the 7 seguent display
7 Seguents of display

—-Control Signals
entr_inde: out std_logic_vector(z downta 0); --control and fault indication
dac: out std_logic_vector (7 downto 0)); input to DAC

end ade_control;

@l architecture control of ade control is
Change banay [1|

|+ & Feseamnme | o] El=)

For Help, press Fi [n1,Coz [B#@ [de [o [

Figure6.8 Write the VHDL code

[image: image31.png]& Quartus Il

pga based scadalscada

Compiler Tool]

B Fle Edt Vew Froect Asowments Processng Todk Widow Hep r

2l xl
[Logic Eels R

257

Ently
3 Compilation Hierarchies
n

5 | >

2lx
Nade Name

" B2 Historchies [B Fies | & Design Units

"2

Lo oL ¥ee

Analysis & Synthesis Assembler Timing Analyzer EDA Netlist wiiter
W 2E | 29| | B 8e
[I | | EE——

» St Compiston B Stop Procesing

Y]

For Helo, oress FL

[Fenos (A W nandd | b

Figure6.9 Compilation Process
[image: image32.png]¥ Quartus Il - C:\fpga based scadalscada - [adc_control.vhd*]

@Y Fle Edt Vew Projct Assgnments Processing oo Window belp

ssign Pins

Select a device pin and the ype of assigrment yau wish to make. You can alsa make pin assignments in the Assionment Editor and the.
Floorplan Edior. You oan reserve unsed pins on a device-wide basis with the Unused Pin tab in the Device & Fin Optons dialog bor
‘Yo must perfrm a smart complation on the desian before outing SignaPabe signals.

Changes apply to Compier setings 'soads'

Avallable Pins & Esisting Assigrmerts:

Nut.. [Name: [[1/8 Bank: [1/0 Standard: [Type: | SignalProbe Source Name | Enabled [Status (oAl
B4 addi_mux{1] o LYTTLAVC.. Columnl. off
5 addi_mux(2] o LYTTLAVC.. Columnl. off
67 start_ade 0 LVTTLAVE.. Columnl. off bl
6 deade 0 LVTTLIVE. Colmm ot
6 s 0 LVTTLIVE. Colmm ot
M e n WITAVE Com it
<) i]
I~ Show'no connect pins T Show curent and el Sinrob i
Assignment

P [| e EeAmm® |

™ SignalProbe ensble:
Clack: [r/a in ACEXTK J
T~ Reserve pin (sven if it does not exist n the desian file):

[P putitted =] Fegitos [VARAGEK

/0 stanclad: [r7ain ACERTR <

awi | Dokic | | EncboAlSiyuPuberiouing | DictllSigniobo iy |

=

DEW(&| &L
EF]
Hisde e
A
Gl
Change banay [1|
Jg § [Wessage 006

| e =] E-)

For Help, press F1

[n1,Coz [B#@ [ide

[w |

Figure6.10 Assign pins for the device
CHAPTER 7
SCADA ON EMBEDDED FPGA SYSTEM

7.1 Introduction
SCADA (Supervisory Control and Data Acquisition) system is an intelligent system, which provides the facility of continuously monitoring, supervising and controlling any process. It is the first step towards automation.

SCADA is a real time system and any real time system can be broken into number of independent sub-systems called processes which are functionally independent but communicate with each other. Thus the functioning of a SCADA system can be divided into three processes:

· Data Acquisition or Data Collection: Data Acquisition is scanning of the channels in the specified order and at the specified frequency to acquire the data. The analog data is converted to the digital form for processing and control purposes.

· Data Processing: The output of ADC should be converted to the equivalent engineering units before any analysis is done. An ADC output value will correspond to a particular engineering value based on calibration of transmitter, ADC mode and digital output line. The data read from the ADC output for various channels is processed by the FPGA to carry out limit checking. For limit checking, limits for the channels are set using software. When any limit is violated, appropriate indicator like LED, alarm etc is activated.
· Analysis and Control: If the set limit is violated by the process output variable, some corrective actions should be taken to keep the desired performance. The system performance can also be analyzed. This analysis will enable us to visualize the problems in the system, and to take decisions regarding system modification or alternate operational strategy to increase the system performance. The software for analysis and control can be written depending on the type of analysis required.

In this project the SCADA system is implemented using combination of hardware and software. The hardware consists of UVLSI 201 Trainer kit, in which an FPGA chip is embedded and a general purpose input-output (GPIO 401) board that include components like analog to digital converter and display that are used in realizing the required system. VHDL programming environment is used to model the system.

6
7.2 SCADA: A Real Time Programming System
7.2.1) Basic Signals
The basic signals in a real time system and their role in the implemented SCADA system are explained below:

Analog input signals are received from sensors and signal conditioners and represent the value of measurands like flow, position, temperature, etc. The role of a sensor is to measure the parameter for which it is constructed and present an equivalent electrical signal as output. The signal conditioner takes as input the output of sensor and suitably conditions them to be acceptable to real time system. In the realized SCADA system the dc voltage and current signals are given as input signals that represent the value of measurands.
Timer/counter input signals are important part of any real-time system. Through these signals the concept and measure of real-time is derived. These signals are used as clock input to timer/counter in real-time. The counter circuits on the other hand, may be used to count the occurrences of any defined event. The timer signals are given to the realized SCADA system in the form of on board clocks from which the other clock signals of low frequency like channel clock are also derived using counter circuits that are implemented in VHDL.

 Display output signals are used to drive the display devices like LED, LCD, VDU etc. The display of status of process, various control valves etc. is very important to the operator. In the realized SCADA system the multiplexed four digit display is used for displaying the channel number from which the data is acquired and the data acquired is shown in two digit hexadecimal form.

 Control output signals are required to drive the control valves, motors etc. to perform the control action decided by the real-time systems. The control action desired may be simple ON-​OFF control of valves/motor or fine control of motor speed, position, flow and level through control valves. The control output signals are analog signals which can drive various actuators. The 5V d.c. control signal obtained from the output of the digital to analog converter in the realized SCADA system can be used as alarm in the form of buzzer or to glow bulb to indicate the abnormal condition or to actuate valve etc for control purposes.

7.2.2) Modules in a SCADA System
The modules connect the process to the data processing unit. The various modules and their role in the realized SCADA system are discussed below:

7.2.2.1) Analog Input Module

The module continuously scans the analog input signals in the pre-defined order and frequency, converts them into the digital form and then sends these values to the data processing unit and memory module (FPGA in this case) for processing. The order of scanning of analog input signals is defined. The analog input module of Figure 7.1 operates under the command from FPGA in the following manner:

1. The FPGA initiates multiplexer by sending the address of input channel.

2. The multiplexer connect the particular channel to the ADC.

3. The FPGA sends the Start Convert signal to ADC. The ADC converts the analog signal to digital, puts it at the output and issues End of Conversion signal.

4. The FPGA on receipt of the End of Conversion signal, reads the ADC output and processes it.

5. The operation is repeated by sending the address of the next channel to multiplexer.
[image: image33.png]_|||11|||-|||||||||||
1
y |
[
Kowapy + 1
108580019 & |
m 1
A <5l 2 !
g2l 5 !
nsl 8 |
o m 0 1
(&) (73 |
Q .m 2
< w3l
<|
3 |
1
I
= 1
[0}
(=33 !
2.9 1
g e —
=
<3 I
E |
I
]

sindu; Bojeuy

[image: image34.png]

[image: image35.png]

Figure 7.1 Analog Input Module

7.2.2.2) Analog Output Module
The objective of analog output module is to provide appropriate control signals to different control​ valves. Figure 7.2 shows the structure of analog output module which is derived by reversing the analog input module shown in Figure 7.1.

 The digital to analog converter of particular channel will convert the input digital value to equivalent analog signal which is connected to control valve, motor etc or to indicate alarm so that some control action can be taken manually.

Figure 7.2 Analog Output Module

7.2.3) Information Flow in SCADA System
The most important aspect of a real-time programming system is the management of information flow. Figure 7.3 shows the basic modules of the SCADA system along with information flow between them.
[image: image36.png]Analog sensors

Output

ol Frocessirg byt

Eub bysiam Subsystem ST
| s

|Anatog| I &
Siona |

e Anciog |l

— U "
[

Memory ot

Figure 7.3 Information Flow in SCADA System
7.2.3.1) Input Sub-system

Input sub-systems are used to measure different parameters like temperature, flow, pressure etc. Analog sensors also called transducers or transmitters present at their output an electrical signal whose value changes according to the value of parameter being measured.

7.2.3.2) Processing Sub-system

The FPGA and associated modules connected bus constitute the processing sub-system. The associated modules include analog multiplexer, ADC, memory, DAC etc. The FPGA receives information from analog sensor through ADC or directly from digital sensor.

7.2.3.3) Output Sub-system

The control valve and actuator take analog signals which come from DAC. The alarm annunciator may be connected directly and requires only activation signal
7.2.3.4) Information Processing

The logic has been designed and programmed into the FPGA system that executes the control algorithm on the information received from sensors. Thus the information is received, manipulated and the output is given in hexadecimal form.
7.2.3.5) Real-time Programming

A real-time system can be broken into a number of independent sub-systems called processes. Likewise SCADA system can be broken into following three processes:

- Data acquisition

- Data processing

- Analysis and Control

Details regarding each stage are presented below.

7.3 Data Acquisition

7.3.1) Channel Scanning

The FPGA scans the multiplexed channels continuously to capture the data. There are many ways in which FPGA can address the various channels and read the data. In this project the method used is polling. In polling, the action of selecting a channel and addressing it is the responsibility of FPGA.

The channel selection may be sequential or in any particular ordered decided by the designer. It is also possible to assign priority to some channels over others i.e. some channels can be scanned more frequently than others. The FPGA may scan the channels continuously in the particular order or the channels may be scanned after every fixed time period.

In the designed SCADA system, analog data is acquired from three multiplexed channels provided on the GPIO board. The FPGA scans these three channels, channel number 1, 2 and 3, at the fixed intervals of time, to acquire the data. To introduce the delay between selection of different channels, a counter circuit is implemented using VHDL. FPGA sends the address of the selected channel to the multiplexer to interface this channel to the ADC.
7.3.2) Analog to Digital Conversion

The captured analog data is converted to the digital form using ADC0808, provided on the GPIO board. The channel scanning and reading of data requires the following actions to be taken by the FPGA:

· Sending the channel address to the multiplexer

· Sending start convert pulse to ADC

· Reading the digital data at ADC output

ADC0808 is an 8 bit, successive approximation type ADC with tri-state outputs. Channel selection and control signals come from FPGA on the UVLSI 201. Hence, ADC is controlled by the FPGA. Analog input can be given from on board source and its value can be changed through the potentiometer (ADC I/P). External analog input 0 to +5v can be given through the connector ADC EXT I/P with appropriate jumper settings. The clock for ADC operation is generated on board using a 555 timer, which can be varied using the POT .

Address of the selected channel is sent to the ADC0808 and signal ‘ale’ is sent to latch this address in ADC. A pulse to the ‘start’ pin of the ADC is required to start the conversion process and to disable the tri-state output buffer. At the end of the conversion period, ‘end of conversion’ pin becomes active and the digital output is made available at the output buffer. To read the digital data at ADC output, the end of conversion signal of ADC chip is read by the FPGA.

Figure7.4 Block Diagram of ADC0808
7.3.3) Seven Segment Display

7 segment displays are available for multiplexed interface selectable through connectors I/O port1. All the 4 digits can be used for multiplexed interface connecting I/O port1 from UVLSI 201 to I/O port1 on the GPIO 401A.

The displays are common anode type. A high output lights the segment. Similarly, a high output also selects a digit. SEG A to SEG DP and DISP1 to DISP4 are total 12 pins of the FPGA, which are used for the seven segment display function. For multiplexed displays, SEG A to SEG DP are connected to segments of all the 4 displays and DISP1 is connected to the transistor base of display DISP1. Similarly DISP3 to DISP4 are connected to other transistor bases respectively. To select a particular digit for display, its base drive is made low through programming and the segments are set accordingly. For example, to display ‘A’ on digit 1, DISP1 is made low and segments “gfedcba” are set to “1110111”.
[image: image37.png]SEGF

=23

o -

SEG G

DISP 1 for Mux display

ot oo/ WHHG = oo =y

seao —[S0 MAKFH),

SEGC >o \/\/\/\ <] < '

o oMY ‘

SEGB—>0—\/\/\/\‘—<L.;

SEGA >o - aoé
S/
So—mid]

Figure7.5 Seven Segment Display

In the designed SCADA system the address of the selected channel is displayed on the first digit and the data acquired is displayed in hexadecimal form using third and fourth digit. Second digit has not been used.

The kit has an on-board clock of 4 MHz and above. It is not possible for human eyes to observe and notice the changes at such high frequency. So, a clock divider circuit is implemented using VHDL, which generates another clock of less frequency. This circuit divides the frequency of the on board clock by any desired number and the low frequency clock is used for implementing the display logic.

7.4 Data Processing
The FPGA reads the captured data in digital form. If the captured data is less than or equal to the set limit (in case of lower limit) and greater than or equal to the set limit (in case of upper limit), it means that the process is working in the desired manner. But if the data crosses the set limit, it means that the system is behaving in an unacceptable manner and it needs to be corrected by some means. To implement this logic, a comparator is implemented in VHDL. Whenever the process output variable crosses the set limit, LED glows. The glowing LED indicates that the process behavior is not in accordance to our needs and it should be controlled by some means.

LED Outputs : 16 Red LEDs, indented as (O16..O9, O8..O1), are available on GPIO board to indicate the steady state outputs. A “high” voltage level makes the LED glow.

[image: image38.emf]
Figure 7.6 16 LED Outputs

Three of these LEDs are programmed (O16 for channel 1, O14 for channel 2 and O12 for channel 3) to glow if the data exceeds the limit.

7.5 Analysis and Control
Whenever the captured data goes beyond the specified limit, process needs to be manipulated and some corrective actions should be taken. For example, in a temperature control system, if the temperature becomes more than the set limit, fans should be switched on, or steam supply to the heater should be reduced pressure control system, if pressure becomes more than the set point, inlet valve opening should be reduced or outlet valve opening should be increased.

To actuate these mechanical devices or to take any other corrective measure, a 5-volt analog control signal is generated by the DAC0800 on the GPIO board through FPGA.

 DAC 0800 is a single channel, 8-bit DAC and converts this digital signal to analog form; this 5-volt analog signal is available at the DAC output port. It can be used to manipulate the process, so that the system behaves in the desired way.
[image: image39.png]+5V
°

+REF ————14{
REF i
pACIND 5
oo w1
bacmi el
BE—e o
DAC NG £
DAC g 2
B5 lout J13
DAC NS E
&7 1
DACINT H 3 . 3
Qv-
&1 comp 3
ol A

-5V

” VR1DAGO/P
Ref(+) £ §
Ref(-)

DACO/P

Figure7.7 Block Diagram of DAC
7.6 Pin Locking in FPGA

ACEX50K device has 144 pins out of which 40 pins have been used in designing of SCADA system: 1 reset, 2 clocks, 7 ADC control signals, 8 ADC outputs, 8 DAC inputs, 11 pins for four digit seven segment display and 3 output pins for fault indication.

Table 7.1 Pin Locking in FPGA
	PIN NAME
	DEVICE PIN NO
	PROPERTY
	SIGNALS FROM GPIO BOARD

	clk_adc
	125
	DED I/P 4
	RESET

	rst
	126
	DED CLK2
	CLK2

	ADC
	
	
	

	data_adc[0]
	47
	ADC_D0
	Data 0 from ADC 0808

	data_adc[1]
	48
	ADC_D1
	Data 1 from ADC 0808

	data_adc[2]
	49
	ADC_D2
	Data 2 from ADC 0808

	data_adc[3]
	51
	ADC_D3
	Data 3 from ADC 0808

	data_adc[4]
	54
	ADC_D4
	Data 4 from ADC 0808

	data_adc[5]
	59
	ADC_D5
	Data 5 from ADC 0808

	data_adc[6]
	60
	ADC_D6
	Data 6 from ADC 0808

	data_adc[7]
	62
	ADC_D7
	Data 7 from ADC 0808

	eoc_adc
	69
	ADC_EOC
	Interrupt signal from ADC 0808

	start_adc
	67
	ADC_START
	SOC for ADC

	ale_adc
	68
	ADC_ALE
	ADC ALE signal

	oe_adc
	70
	ADC_OE
	ADC output enable

	addr_mux[0]
	63
	ADC_A0
	ADC channel select bit

	addr_mux[1]
	64
	ADC_A1
	ADC channel select bit

	addr_mux[2]
	65
	ADC_A2
	ADC channel select bit

	PIN NAME
	DEVICE PIN NO
	PROPERTY
	SIGNALS FROM GPIO BOARD

	DISPLAY
	
	
	

	clk_disp
	55
	DED CLK1
	CLK1

	base[0]
	36
	DISP1
	Digit 0 select o/p

	base[1]
	33
	DISP 2
	Digit 1 sselect o/p

	base[2]
	32
	DISP 3
	Digit 2 sselect o/p

	base[3]
	31
	DISP 4
	Digit 3 select o/p

	segt[0]
	83
	SEG A
	Segment ‘a’

	segt[1]
	82
	SEG B
	Segment ‘b’

	segt[2]
	81
	SEG C
	Segment ‘c’

	segt[3]
	80
	SEG D
	Segment ‘d’

	segt[4]
	79
	SEG E
	Segment ‘e’

	segt[5]
	78
	SEG F
	Segment ‘f’

	segt[6]
	73
	SEG G
	Segment ‘g’

	DAC
	
	
	

	dac[0]
	37
	DAC0
	DAC data0 from FPGA

	dac[1]
	38
	DAC1
	DAC data1 from FPGA

	dac[2]
	39
	DAC2
	DAC data2 from FPGA

	dac[3]
	41
	DAC3
	DAC data3 from FPGA

	dac[4]
	42
	DAC4
	DAC data4 from FPGA

	dac[5]
	43
	DAC5
	DAC data5 from FPGA

	dac[6]
	44
	DAC6
	DAC data6 from FPGA

	dac[7]
	46
	DAC7
	DAC data7 from FPGA

	
	
	
	

	indc[0]
	110
	O/P
	Output LED O16

	indc[1]
	102
	O/P
	Output LED O14

	indc[2]
	100
	O/P
	Output LED O12

CHAPTER 8
RESULTS & DISCUSSION

The designed SCADA system provides the facility of continuously monitoring, processing and controlling the process along with the advantages facilitated by FPGA. The system has been implemented using UVLSI-201 trainer kit which includes an FPGA device and a general purpose input-output board.

The functioning of SCADA system consists of three parts: Data Acquisition, Data Processing and Analysis & Control. The external data is acquired from three channels 1, 2 and 3 and varies according to the process variable to be controlled. FPGA controls the selection of channels which is done on time division basis. The acquired data is converted into digital form using ADC and displayed in hexadecimal form using the multiplexed 4 digit seven segment display. The control signals for the operation of ADC and display are given by FPGA.

The digital data is analyzed and processed by the FPGA to check any limit violation. If the data exceeds the specified limit, three red LEDs glow one corresponding to each channel indicating the unacceptable behavior of the process. A 5-volt analog signal is also generated at the output of DAC which may be used for alarm generation or controlling valve, switch etc. to make the process behavior acceptable.

The SCADA system has been implemented in the VHDL programming environment. The ACEX device performance is discussed below.

8.1 ACEX50K Device Performance
The performance of ACEX50K device in relation to the implementation of SCADA system is shown in Figures from 8.1 to 8.5.

Time elapsed during each stage of compilation is shown in Figure 8.1. The SCADA code compilation process took only 22 seconds.

ACEX50K device has 10 rows (A,B…J) and 36 columns (1,2…36). Figure 8.2 shows the translation of logic design into the physical design and the routing of interconnections between various LABs for the implementation of SCADA. Placing and routing of the nodes like segt, cntr_indc, addr_mux, base etc. can be seen clearly.

The frequency of the onboard clock is reduced, to make the data display steady. This require counter implementations and carry chains are used for it. Figure 8.3 shows the length of carry chain versus number of carry chains.
Figure 8.4 shows the number of logic elements versus number of logic array blocks. It shows the effective utilization of LABs.

Figure 8.5 shows the resource usage summary. ACEX50K device has 360 logic array blocks, 2880 logic elements, 3468 registers, 102 general purpose input-output pins, 4 dedicated input pins, 10 embedded array blocks, 40960 total memory bits and 40960 RAM block bits. Figure 5 gives the resource usage summary. It shows that only 226 logic elements (7 %), 70 registers (2 %), 40 input-output pins (39 %), 0 dedicated input pins (0 %), 0 EABs (0 %), 0 total memory bits and RAM block bits (0 %) are utilized in the designing of this SCADA system. Hence it is proved that FPGA has great logic capabilities.
[image: image40.png]pea based scadalscada - [scada Compilation Report]

@ Pl Bt Ve Project Assgments Focessng Toos Widow i

o @ oo ererD @ (Bee
Module Name__|Elapsed Tine
1§ Analysis & Synthesis 00:00:07
2[Fiter w0010
3| Assemble w002
4| Timing Analyzer 00:00:02
5[EDA Netit Wiker 00,0001
o] o w02
U
|# @ [Feeeae oz S| o[
For Help, press F1 own & [de [um |

Figure 8.1 Flow Elapsed Time

[image: image41.png]iartus Il - C:\fpga based scada\scada - [scada Compilation Report]

@ Fie Edt Vew Project Assinments Processng Tooks Window Help BEE]

D& =] ee BeP

B chiprome: [scade EPTREDTCT83) =

Q 1 2 3 4 5 6 7 8 9 10 " 12 13 14 15 16 A
=) =] = = = = =] =] = =] =]

= z)Z:i=

" SAH | B

= | = algy

K H| BB

. o N ¥) | (o N Y |

g =) =] = = = = =] =] = =] =]

i

B

o N ¥) | (o N Y |

= = =] =
i i 0 I
xb g g g g

® L I B
ForHel, press 1 LT3 T I r——)

Figure 8.2 Internal view of LABs

Figure 8.3 Carry Chain Usage

Figure 8.4 Internal View of LABs

Figure 8.5 Resource Usage Summary
8.2 SCADA System Performance
 The data is acquired from three external channels: channel 1, 2 and 3 after fixed intervals of time and processed within the FPGA to check for any limit violation. The set limits for the three channels are different and one LED for each channel (O16 for channel 1, O14 for channel 2 and O12 for channel 3) is programmed to glow when the data exceeds the limit for that channel indicating a fault in the process.

First digit displays the channel number; third and fourth digits display the acquired data in the hexadecimal form. DC voltages are given on first and third channels.

The set limit is 66 H for first channel which corresponds to 2 V. The first LED from left (O16) glows if the data on the first channel exceeds 66 H (2 V).

On the second channel the input given is DC current and the set limit are 28 H corresponding to 4 mA and CC H corresponding to 20 mA. If the data goes below 28 H (4 mA) or exceeds above CC H (20 mA) then the third LED from left (O14) glows.

The set limit for third channel is AA H which corresponds to 3.3 V. The fifth LED from left (O16) glows if data on it exceeds AA H (3.33 V).

[image: image42.png]

Figure 8.6 No limit violation on channel 1

Channel number 1 is scanned and the acquired data is 66 H, which is equal to the set limit 66H i.e. 2 V. So no fault is indicated.

[image: image43.png]

Figure 8.7 Upper limit violation on channel 1

Channel number 1 is scanned and the acquired data is 67H, which is greater than the set limit 66 H i.e. 2 V. So fault is indicated and first LED (O16) glows.

[image: image44.png]

Figure 8.8 Lower limit violation on channel 2

Channel number 2 is scanned and the acquired data is 27 H, which is less than the set limit 28 H i.e. 4 mA. So fault is indicated and third LED (O14) glows.
[image: image45.png]

Figure 8.9 No limit violation on channel 2

Channel number 2 is scanned and the acquired data is 28H, which is equal to the set limit 28 H i.e. 4 mA. So no fault is indicated.

[image: image46.png]H
i
2
K
H
:

)

Figure 8.10 No limit violation on channel 2

Channel number 2 is scanned and the acquired data is CC H, which is equal to the set limit CC H i.e. 20 mA. So no fault is indicated.
[image: image47.png]

Figure 8.11 Upper limit violation on channel 2

Channel number 2 is scanned and the acquired data is CD H, which is greater than the set limit CC H i.e. 20 mA. So fault is indicated and third LED (O14) glows.
[image: image48.png]

Figure 8.12 No limit violation on channel 3

Channel number 3 is scanned and the acquired data is AA H, which is equal to the set limit AA H i.e. 3.3 V. So, no fault is indicated.
[image: image49.png]

Figure 8.13 Upper limit violation on channel 3

Channel number 3 is scanned and the acquired data is AB H, which is greater than the set limit AA H i.e. 3.3 V. So fault is indicated and fifth LED (O12) glows.

It is clear from the above illustrations that SCADA system is successfully implemented on the FPGA system. Also FPGA has great logic capabilities, enormous processing resources, negligible & predictable delay and very high clock speeds. So, it is suitable for real time data capturing and even a complex digital system can be easily implemented with it.

Conclusion

A Supervisory Control and Data Acquisition (SCADA) on FPGA system is successfully implemented and tested for the desired performance. The designed system provides the basic facilities of data acquisition, processing and control.

FPGA based SCADA system is an excellent means for providing process control facilities. FPGA has the greatest logic capabilities, enormous processing resources, high clock speed and negligible delay, so it is suitable for real time data capturing, processing and control. Even complex circuits can be easily implemented using FPGA. FPGA can be reprogrammed in a few milliseconds, so the designed system can be modified according to the requirements. SCADA on FPGA system is more accurate and reliable as FPGA can deal only with digital information and it is based mainly on digital components.
Scope for Future Work
The designed SCADA on FPGA system provides the facility of ON-OFF control. Any real time system like temperature control system, pressure control system can be interfaced with this system to maintain the parameter to be controlled between the desired limits. The system can be extended to provide the facility of PID control. PID control can be implemented with VHDL and then, can be programmed into FPGA.

The designed SCADA system acquires data with only three external channels. It can be extended to interface to some application in which the number of channels is quite large. For interfacing them to the FPGA we have to use multiplexers. For e.g. to interface 64 channels, we will have to use 9 multiplexers of 8 channels each. This approach will suit to the processes which are basically slow. Even if a channel is scanned only once in every scan it will be only after 255 channels have been scanned, limit checking and analysis have been performed, a particular channel will be addressed again.

The system can also be extended to applications in which data is to be shown on some PC and the processing of data takes place on PC only. Then the data from various channels can be collected and performance analysis on the process plant can be done.

References

[1] Bhasker J., “A VHDL Primer”, Pearson Education, 3rd Ed., 2004.

[2] Perry Douglas L., “VHDL Programming by Example”, Tata McGraw-Hill, 4th Ed., 2002.

[3] Roth Charles H., Jr, “Digital System Design using VHDL”, PWS Publishing Company, 2001.

[4] Kant Krishan, “Computer-Based Industrial Control”, Prentice-Hall India.

[5] Floyd L. Thomas “Electronic Devices”, Pearson Education Publications, 6th Ed., 2003.

[6] Rabaey, Chandrakasan, Nikolic, “Digital Integrated Circuits: A Design Perspective”, Pearson Education, 2nd Ed., 2003.

[7] Tocci Ronald J., Widmer Neal S., “Digital Systems Principles and Applications”, Pearson Education, 8th Ed.

[8] Razavi, Behzad, “Principles of Data Conversion System Design”, IEEE Press, 1995

[9] Smith Sebastian J. Michael, “Application Specific Integrated Circuits”, Pearson Education, 9th Ed., 2004.

[10] Silicon Micro Systems, “UVLSI-201 Technical Reference Manual”.

[11]Wakerly F. John, “Digital Design, Principles and Practices”, PHI Publications, 3rd Ed., 2003.

[12] Yarbrough M. John, “Digital Logic Applications and Design”, PWS Publishing Company, 1997

[13] Morgan F, Bennett T, Shearer A , Redfern M, “An FPGA-based Time Resolved Data Acquisition System for Astronomical and Other Applications”, National University of Ireland, Galway.

[14] www.altera.com/literature/lit-acx.jsp
[15] www.altera.com/products/devices
[16] www.simsteam.com
[17] www.webopedia.com/TERMS/S/SCADA.html
[18] www.beyondlogic.org/serial/serial1.htm
[19] www.netrino.com/articles/programmableLogic
[20] www.xilinx.com
[21] www.ref.web.cern.ch/ref/CERN/CNL/2000/003/scada
[22] www.nationjob.com/company/acns

[23] www.fpgaforfun.com
[24] www.epgco.com
		

Internal Views

 External

 View

Digital

System

PAGE

