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                                                         ABSTRACT 

 

 

 
In this project, the design and simulation of a neural controller for robotic manipulator is 

carried out. The simulation study is carried out on one-link and two-link manipulators. This 

project develops a neural controller designing for the proper choice of the transfer function by 

the using of the back-propagation function “trainlm” for the one link manipulator. It describes 

the effect of the variation of parameters related to one-link manipulator with the neural 

controller. The range of the robotic manipulator parameter where a neural controller performs 

with tracking capability and identification capability is described in detail. This all 

performance is done on the basis of the coding which is developed by us. 

MATLAB coding for the neural controller for the two link manipulator is developed. The 

effects of the learning rate of the training method on the neural controller performance and 

the learning rate variations are also presented.     
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                                          CHAPTER I  

                                     I�TRODUCTIO� 

 

 
1.0 GE�ERAL 

The name robot came the Czechoslovakian word “Robota” which means a worker or a slave 

doing heavy work [19]. Robotic manipulators are very complicated nonlinear system. Based 

on the Robotics Institute of America (RIA) definition: “A robot is a reprogrammable 

multifunctional manipulator design to move material, parts, tools, or specialized devices 

through variable programmed motions for the performance of a variety of tasks”[18]. From 

the engineering point of view, robots are complex, versatile devices that contain a mechanical 

structure, a sensory system, and an automatic control system. Theoretical fundamentals of 

robotics rely on the results on the results of research in mechanics, electric, electronics, 

automatic control, mathematics, and computer sciences. 

Robots find a vast variation of industrial applications and are used for various technological 

operations. Robots enhance productivity in industry and deliver relief from tiresome, 

monotonous, or hazardous works. Moreover, robots perform many operations better than 

people do, and they provide higher accuracy and repeatability. In many fields, high 

technological standard are hardly attainable without robots. Apart from industry, robots are 

used in extreme environments. They can work at low and high temperatures; they don’t even 

need lights, rest, fresh air, a salary, or promotions. Today, more complicated applications, 

such as welding, paining, assembling, require much more motion capability and sensing. 

Hence, a robot is multi-disciplinary engineering device. Mechanical engineers deal with the 

design of mechanical components, arms, end-effectors, and also are responsible for 

kinematics, dynamics and control analyses of robots. Electrical engineers work on robot 

actuators, sensors, power, and control systems. System design engineering deals with 

perception, sensing, and control methods of robots. Programming, or software engineering, is 

responsible for logic, intelligence, communication, and networking. 

 

1.1 TYPES OF ROBOTIC MA�IPULATORS 

In order to refine the general notion of a robotic manipulator, it is necessary to classify 

manipulators according to various criteria such as robot association, drive technology, work 

envelope geometrics, and motion control methods. 
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1.1.0 JIRA (Japanese Industrial Robot Association) classification 

Class 1: manual handling devices: a device with multi degrees of freedom that is actuated by 

an operator. 

Class 2: fixed sequence robot: a device that performs the successive stages of task according 

to a predetermined and fixed program. 

Class 3: variable sequence robot: a device that performs the successive stages of a task 

according to a predetermined but programmable method. 

Class 4: playback robot: a human operator performs the task manually by leading the robot, 

which records the motions for later playback. The robot repeats the same motions according 

to the recorded information. 

Class 5: numerical control robot: the operator supplies the robot with a motion program rather 

than the teaching it task manually. 

Class 6: intelligent robot: a robot with the ability to understand its environment and the 

ability to successfully complete a task despite changes in the surrounding conditions under 

which it is to be performed. 

1.1.1 Classification based on Drive Technologies 

 One of the most fundamental classification schemes is based upon the source of power used 

to drive the joint of the robot. The two most popular drives technologies are electric and 

hydraulic. Most robotic manipulators today use electric drives in the form of either DC 

servomotors or DC stepper motors. However, when high speed manipulation of substantial 

loads is required, such as molten steel handling or auto body part handling, hydraulic-drive 

robots are preferred. One serious drawback of hydraulic-drive robots lies in their lack of 

cleanliness, a characteristic that is important for many assembly applications. 

 

 

1.1.2 Classification based on Work-Envelope Geometry 

A robot is called a serial or open-loop manipulator if its kinematic structure does not make a 

loop chain. It is called a parallel or closed-loop manipulator if its structure consists of both 

open and closed-loop chains. 
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Most industrial manipulators have six degree of freedom (DOF). The open-loop manipulators 

can be classified based on their joints starting from the grounded joint. Only six different 

lower-pair joints are possible: revolute (rotary), prismatic (sliding), cylindrical, spherical and 

planar. Of these, only rotary (R) and prismatic (P) joints are common in manipulator. From 

the two types of joints there mathematically 72 different manipulator configurations, simply 

because each joint can be P or R, and the axes of two adjacent joints can be parallel, 

orthogonal, or perpendicular. Two orthogonal joint axes intersect at a right-angle; however 

two perpendicular joint axes are in right-angle with respect to their common normal. Two 

perpendicular joint axes become parallel if one axis turns 90 degree about the common 

normal. Two perpendiculars joint axes become orthogonal if the length of their common 

normal tends zero. 

Out of the 72 possible manipulators, the important ones are: 

1) Selective compliant robot for assembly (SCARA) 

2) Elbow, revolute, articulated, or anthropomorphic 

3) Spherical 

4) Cylindrical  

5) Cartesian 

1.1.3 Classification based on Motion Control Methods 

Another fundamental classification criterion is the method used to control the movement of 

the end-effecter or tool. The first type is point-to-point motion, where the tool moves to a 

sequence of discrete points in the workspace. The path between the points is not explicitly 

controlled by the user. Point-to-point motion is useful for operations which is discrete in 

nature. For example, spot welding is an application for which point-to-point motion of the 

tool is all that require. 

The other type of motion is continuous-path motion, sometimes called controlled-path 

motion. Here the end-effecter must follow a prescribed path in three-dimensional space, and 

the speed of motion along the path may vary. Different applications of robots with 

continuous-path motion control include paint spraying, arc welding, and the application of 

glue or sealant. 

1.2 CO�TROL OF ROBOTIC MA�IPULATOR 
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The robot control problem may be characterized as the described motion of the end-effecter. 

A described motion is specified as a trajectory in Cartesian coordinates while the control 

system requires input in joint coordinates. 

The robot control comprises three computational problems: 

1) Determination of the trajectory in Cartesian space 

2) Transformation of the Cartesian trajectory into equivalent joint coordinates spaces, 

and 

3) Generation of the motor torque commands to realize the trajectory. 

There are many control strategy that can be applied for control of robotic manipulators. These 

range from conventional to adaptive and intelligent controllers. The controller or control unit 

has three roles: 

1) Information role, which consists of collecting and processing the information 

provided by the robot’s sensors. 

2) Decision role, which consists of planning the geometric motion of the robot structure. 

3) Communication role, which consists of organizing the information between robot and 

its environment. The control unit includes the processor and software. 

 

1.3 CO�VE�TIO�AL VERSUS I�TELLIGE�T CO�TROL 

The conventional control is generally based on the assumption of exact knowledge about the 

system. This assumption is often not valid since the development of any practical system may 

not include precise information of factors such as friction, backless, un-modelled dynamics 

and uncertainty arising from any of the source. This control is generally used for linear 

system and some specified non-linear system. 

To the robotics point of view, the use of conventional controllers demands the availability of 

an accurate dynamic robot model. However, this is rarely achievable because of un-modelled 

dynamics (neglected time-delays, non-linear friction etc.) and parameter uncertainties 

(deviation of link length etc. from nominal values). 

Intelligent control is a control technology that replaces the human mind in making decisions, 

planning control strategies, and learning new functions whenever the environment does not 

allow or does not justify the presence of human operator. Artificial neural network and fuzzy 

logic are potential tools for intelligent control engineering. Intelligent controllers are Fuzzy 

logic, neural control, and hybrid control (Neuro-fuzzy). Neural networks are best known for 
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their learning capabilities. Fuzzy logic is a method of using human skills and thinking 

processes in a machine. This control is more adaptable for non-linear system. 

To the robotics point of view, the emergence of neural networks (type of intelligent control) 

has provided an alternative means of controlling high-speed robot motion. Neural networks 

can perform combined system identification and adaptive control function, and the yield a 

good manipulator trajectory tracking performance without requiring an analytical dynamic 

model. 

1.4 OBJECTIVE OF PRESE�T WORK 

One of the major difficulties in neural networks application is the selection of the parameters 

in network configuration and the coefficients in learning rule for fast convergence. This 

project includes analysis of one link manipulator and two link manipulator by the variation of 

transfer function and learning methods for minimum path and torque error. Also showed, the 

effect on path trajectory and torque by the variation of the robot parameter such as length, 

mass and friction. 

1.5 CO�CLUSIO� 

In this chapter, definition, application, classification, control of the robot is discussed. The 

brief discussion about conventional and intelligent control is also presented. At the last, the 

objective of project is briefly described.               
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                                           CHAPTER II 

                                    LITERATURE SURVEY 

 

 
2.0 GE�ERAL 

Over the past few years, the use of neural controller in control system has been going 

widespread popularity. A large number of articles and numerous associations have been 

devoted to the study on design and implementation of neural controllers. Robotic manipulator 

is also of critical importance since they are very useful in automation and industries. It is a 

topic of research due to its wide spectrum of applications. Numerous papers have been 

written which present different control strategies to control the robotic manipulator. An 

extensive literature survey on the robotic manipulator and its control was carried out. 

 

2.1 LITERATURE REVIEW O� �EURAL CO�TROLLER FOR ROBOTIC 

MA�IPULATORS 

Debbache et al. [1] described the motion control of two link robot manipulators with 

structured and unstructured uncertainties. This paper also described the basic idea of neural 

network and neural state feedback also demonstrated about asymptotic stability of the control 

system using Lyapnov’s approach. 

Toplov et al. [2] described the dynamical on-line learning algorithm for neuro-adaptive 

control of a class of non-linear system with uncertain dynamics. In this paper, a closed loop 

control is used, simultaneously with a conventional PD controller and an adaptive variable 

structure neural controller. Also show the real-time trajectory tracking control of the first 

three joints of an articulated five degrees-of-freedom (DOF) robot manipulator. 

Talebi et al. [3] described the controlling of a non-linear non-minimum phase system using 

neural controller, it also described the output redefinition strategy and where it used. At last it 

proved that the redefinition strategy based on neural network was proposed that does not need 

any a prior knowledge about the non linearity of the system. For prove it, assumed a non-

minimum single-link flexible link robotic manipulator. 

Efrati and Flashner [4] described the tracking control of mechanical systems (assuming 

example of robotic link manipulators) based on artificial neural conjunction with a PD 

controller. Here the neural network is used to approximate the system dynamics in presence 

of parameter uncertainties and disturbances and the PD controller is designed to ensure 
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convergence of the tracking error. This paper presents, the neural network configuration and 

the tuning algorithm are simple and thus can be implemented on-line with low computational 

and storage requirements. At last shown that the closed loop tracking tends to zero in 

presence of model uncertainties and disturbances while minimizing the control effort. 

Takahashi and Yamada [5] described a neural- network controller for a flexible robot arm and 

also described the neural controller design using state-space representation. At last, 

experimental confirmation of the neural controller can control the flexible arm by learning 

ability of the neural network without exact a prior knowledge of the system even under 

existing nonlinear disturbances such as solid friction is shown.  

Kosmatopoulos et al. [6] solved the identification problem of a robotic manipulator using 

dynamic distributed multi-layer back propagation network and a novice algorithm is used. By 

the simulation results, it is shown that the algorithm can handle abrupt changes in input data 

with the error converges quickly to zero.it is described that the network can effectively 

perform after training stops even when the input waveforms have been never been presented 

before. 

Fukunda and Shibata [7] described the control of robotic manipulator using neural controller 

which has been integrated time delays elements. By simulation results proved that the ‘active 

time delay neural network’ can obtain desirable gains of the control system by learning, 

therefore, the active time delay neural network is more applicable and adaptable than the 

general neural network to the system which has strong non-linearity and whose dynamics are 

complex, for example, hybrid control of robotic manipulators which can handle unknown 

objects and its force control suffering collisions. 

 

2.2 LITERATURE REVIEW O� FUZZY LOGIC CO�TROLLER FOR ROBOTIC 

MA�IPULATOR 

Jnifene and Andrews [8] presented with the design and implementation of active vibration 

control based on fuzzy logic and neural networks (NNs). The controller is used to dampen the 

end point vibration in a single-link flexible manipulator mounted on two degrees freedom 

platform. The inputs of the fuzzy logic controller (FLC) are the angular position of the hub 

and the end point deflection of the flexible beam. A NN predicting the defection was obtained 

using a set of three strain gauge pairs mounts on the beam and a linear- variable differential 

transformer placed on the tip. This paper also discussed how to build the rule base of the 

flexible beam based on the relation between angular displacement of the hub and the end-
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point deflection as well as the approach that presented several experimental results to validate 

the NN’s mode and showed the effectiveness of the FLC in reducing the end point vibration. 

 

Yoo and Ham [9] presented adaptive control schemes for robotic manipulator which has the 

parametric uncertainties. To compensate these uncertainties, fuzzy logic system (FLS) is used 

because that has capability to approximate any nonlinear function over the compact input 

space. Here, the adaptive control is used for decreasing the effect of approximation error. For 

reducing the rules FLS, assumed some properties of robot dynamics and the decomposition of 

the uncertainties function. The presented controller, in this paper, is robust not only to the 

structured uncertainty such as pay load parameter, but also to the unstructured one such a 

friction model and disturbance. At last, by the simulation of a two-link manipulator proved 

the validation of the controller. 

 

2.3 LITERATURE REVIEW O� I�TELLIGE�T SYSTEMS 

Wilamowski [10] presented the comparison of various methods of computational intelligence 

and it is illustrated with examples. The concerned methods in this paper are neural networks, 

fuzzy system and genetic systems. The main focussed topic in this paper is neural networks. 

It present learning algorithms and their special architectures. Learning rule such as hebian 

learning, LMS-least mean square learning, delta learning, WTA-winner take all learning and 

PCA-principal component analysis are presented. Architecture specific learning algorithms 

for cascade correlation networks, Sarajenidi and Hecht-Nierlren networks, functional link 

networks, polynomial networks. Counter propagation networks, RBF-radial basis function 

networks are described. 

Melin and Castillo [11] described the soft computing techniques to controlling non-linear 

dynamical systems in real world problem. This is described that nonlinear dynamical system 

are difficult to control due to the instable and even chaotic behaviours that they may occur in 

these systems. Here, the soft computing consists of fuzzy logic, neural network etc. it is also 

demonstrated that computational techniques result good performances, the two techniques 

may also used simultaneously for a system, known as hybrid control. The described 

applications include robotics aircraft systems, biochemical reactors and manufacturing 

batteries.  

Shoureshi [12] presented an introduction to and appreciation for intelligent control system, 

their application areas and justifies their need. Specific problem related to automated human 

control is discussed. Some analytical derivations related to neural networks and fuzzy optimal 
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control as elements of proposed intelligent control systems, along with experimental results 

are presented. 

 

2.4 LITERATURE REVIEW O� THE IMPORTA�CE OF �EURAL CO�TROL 

Ng and Cook [13] presented a neural network controller use more robust than classical and 

adaptive controllers for a plant with unknown time-delay. Recursive least squares (RLS) 

algorithm is used for the training in given neural networks. By the simulation results, it 

proved that NN controller with the on line is better than PID controller and self tuning pole 

assignment controller when the plants time delays are unknown and varying. Hence, the 

unknown NN controller with the on-line learning algorithm is suitable for real time 

application to unknown and varying time delay plants. Simulation results have also shown 

that NN controller is better at its optimum network size than an over parameterized or under 

parameterized network. 

Jin et al. [14] discussed about dynamic recurrent neural networks (DRNNs) which provides 

the potential for the learning and control of a general class of unknown discrete time 

nonlinear system which are treated as “black boxes” with multi inputs and multi outputs 

(MIMO). The DRNNs is described by asset of nonlinear difference equations and suitable 

analysis for the input output dynamics of the model is performed to obtain the inverse 

dynamics. Also described about the ability of a DRNN structure. 

Chen [15] described about back propagation neural network which is applied to a nonlinear 

self-tuning tracking problem. Since the traditional self tuning adaptive control techniques can 

only deal with linear system or some special nonlinear systems. It also limited to unknown 

nonlinear system. This problem is overcome by introducing back-propagation neural network 

into the self-tuning control scheme. It is also demonstrated that the new control method has 

the potential to deal with unknown linearizable nonlinear systems.  

Narendra and Parthasarathy [16] demonstrated the application of neural network which are 

effectively used for the identification and control of nonlinear dynamics systems. Static and 

dynamic back-propagation methods for the adjustments of parameter are discussed. The 

model of NN is used, here, is multilayer and recurrent network. At the last, the simulation 

results reveal that the identification and adaptive control schemes suggested the practical 

feasible. 
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2.5 LITERATURE REVIEW O� THE �EURAL �ETWORKS DESIG� A�D 

E�VIRO�ME�T FOR SIMULATIO� 

Yang and Lee [17] describes the selection of the parameters in network configuration and the 

coefficient in learning rule for fast convergence of the neural network. This paper develops a 

network design by combining the Taguchi method and the back-propagation network with an 

adaptive learning rate for minimum training time & effective vibration suppression. The 

analysis & experiments is shown that the optimal design can be determined in a systematic 

way thereby avoiding the length trail-and-error. 

Tokhi [18] presents the development of an interactive and user friendly environment for 

simulation and control of flexible manipulator systems. A constrained planer single-link 

flexible manipulator is considered. Finite-difference algorithm for simulation of a single-link 

flexible manipulator is used in presented paper. Several open-loop and closed-loop control 

strategies are developed and incorporated into the environment. Several case studies, 

demonstrating the utilisation and potential of the environment are presented and discussed. At 

the last, it is concluded that the environment provides a valuable computer-aided education 

and research facility for understanding the behaviour of flexible manipulator systems and 

development of various controller designs. 

 

 2.6 CO�CLUSIO� 

An extensive literature review of neural controller and fuzzy controller for robotic 

manipulator is presented. Intelligent control has accelerated the new technological 

advancement. The importance of the neural controller and its development for an interactive 

user friendly environment are also described. 
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                                           CHAPTER III 

                       DY�AMICS A�D CO�TROLLERS OF  

                               ROBOTIC MA�IPULATOR 

 

 

 
3.0 GE�ERAL 

Kinematics and dynamics is two main branch of science and its related equation is very 

important for the robot and its controller. Generally, for robot design, the kinematics equation 

is very important but the controller design of given system dynamics equation play more 

important role. System modelling is also necessary for the choosing the proper controller for 

the robotic system. All controllers have its own equation or logic and criteria for fulfilment 

the robot control. 

 

3.1 ROBOT’S KI�EMATICS A�D DY�AMICS 

 

3.1.1 Kinematics 

 

Kinematics is a branch of science that analyzes motion with no attention to what causes the 

motion. By motion mean any type of displacement, which includes changes in position and 

orientation. Therefore, displacement, and the successive derivatives with respect to time, 

velocity, acceleration, and jerk, all combine into kinematics. 

The forward kinematics problem is when the kinematical data are known for the joint 

coordinates and are utilized to find the data in the base coordinates frame. The inverse 

kinematics problem is when the kinematics data are known for the end- effecter in Cartesian 

space. Inverse kinematics is highly nonlinear and usually a much more difficult problem than 

the forward kinematics problem. The inverse velocity and acceleration problems are linear, 

and much simpler, once the inverse position problem has been solved. An inverse position 

solution is said to have a closed form if it not iterative. 

 

3.1.2 Dynamic 

Dynamics is the study of systems that undergo changes of state as time evolves. In 

mechanical systems such as robots, the change of states involves motion. Derivation of the 

equations of motion for the system is the main step in dynamic analysis of the system, since 

equations of motion are essential in the design, analysis, and control of the system. 
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The dynamic equations of motion describe dynamic behaviour. They can be used for 

computer simulation of the robot’s motion, design of suitable control equations, and 

evaluation of the dynamic performance of the design. 

The problem of robot dynamics may be considered as direct and inverse dynamics problems. 

In direct dynamics, we should predict    the motion of the robot for a given set of initial 

conditions and torques at active joints. In the inverse dynamics problem, we should compute 

the forces and torques necessary to generate the prescribed trajectory for a given set of 

positions, velocities, and accelerations. 

3.2 ROBOT DY�AMICS 

A set of equations that describe the dynamical behaviour of a robot, also referred to as the 

dynamical model of the robot, will be developed. This development is important in several 

ways, namely, 

1) A dynamical model can be used to develop the suitable control strategies. A 

sophisticated controller requires the use of a realistic dynamical model to achieve an 

optimal performance of the robot under high-speed operations. Some control schemes 

rely directly on a dynamic model to compute actuator torques and forces required to 

follow a desired trajectory. 

2) The dynamical model can be used for computer simulation of a robotic system. By 

examining the model under various operating conditions, it is possible to predict how 

a robotic system will behave when it will be built. 

3) The dynamic analysis of a robot gives all the joint reaction forces and moments 

needed for the design and sizing of links, bearings, and actuators. 

 

There are many methodologies to solve robot dynamics as following: 

1) Euler –lagrange method 

2) Newton-euler  method 

3) D’alembart principle 

4) Kane’s equations of motion 

5) Decoupled natural orthogonal complement (DeNOC)   method  

 

Here only euler-lagrange used for modelling. The advantage of employing the lagrangian 

approach is that it eliminates the forces of constraint from the dynamic equations of motion if 

the generalised coordinates are independently chosen. The elimination makes it suitable for 
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motion control and simulation. However, these eliminated constraint forces can be recovered 

using lagrange multiplies, if they are to be used for the purpose of design. 

3.2.1 Euler-Lagrange formulation 

The dynamic model of a robot can be derived in a systematic way using the concept of 

generalised coordinates and a scalar function called lagragian. The lagrangian is defined as 

the difference between the kinetic and potential energy of the mechanical system under study, 

i.e. 

 L = T-U                                                                                                                    (3.1) 

Where L denotes the lagrangian, and T and U are respectively the total kinetic and potential 

energy of the system at hand. Note that the kinetic energy depends on both configuration, i.e. 

position and orientation, and the velocity of the links of a robotic system, whereas the 

potential energy depends only on the configuration of the links. Euler –lagrange equations of 

motion are then given by, 

�
�� � �	

�
��� − �	
�
��  =�i, for i=1, 2...n.                                                                               (3.2) 

Where, n is number of independent generalised coordinates used to define the system’s 

configuration, and ��  i‘s  and �i s are the generalised coordinates and generalised forces due to 

applied forces due to applied forces corresponding to the generalised coordinates, 

respectively. 

3.3 EQUATIO� OF MOTIO�  

The generalised equation for n-link arm, assumed all joints are revolute, is following: 

 ��� + ℎ +  γ = ζ                                                                                                         (3.3)  
Where,   

 I = the n×n generalised inertia matrix. 

q = the n-dimensional vector of joint positions. 

� � = the n-dimensional vector of joint velocities. 
��  = the n-dimensional vector of joint accelerations. 
h = the n-dimensional vector of centrifugal and coriolis acceleration. 

γ= the n-dimensional vector of gravitational accelerations. 

ζ= the n-dimensional vector of generalised forces. 

If we considered uncertainties effect, the equation would be as followed: 

��� + ℎ +  γ +Fc + Fd = ζ                                                                                           (3.4) 
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Where, Fc and Fd vectors representing the dynamic effects as nonlinear frictions, small joint 

and link elasticities, backless and bounded torque disturbances. Here, the uncertainties effect 

is decomposed as continuous part Fc and discontinuous part Fd.  

According to gravitational acceleration, we could describe the following the following model 

of robotic manipulator: 

1) If gravitational accelerations, γ is a linear function, γ = Nq, then we have the “linear 

oscillator” model: 

       ��� + ℎ +  Nq +Fc + Fd = ζ                                                                                 (3.5) 
2) If gravitational accelerations, γ is a linear function, γ = Nq2, then we have the “quadratic 

oscillator” model: 

       ��� + ℎ +  Nq2 +Fc + Fd = ζ                                                                                (3.7) 
3)  If gravitational accelerations, γ is a linear function, γ = Nsin(q), then we have the 

“sinusoidally oscillator” model: 

 ��� + ℎ +  Nsin(q) +Fc + Fd = ζ                                                                          (3.8) 
5.4 DY�AMICS OF A O�E-LI�K 

The dynamic equation of motion of the one-link one –DOF arm derived using the EULER-

Lagrange (EL) formulation. Using the EL formulation, the generalised coordinate is q, 

whereas l/2 is the distance of the link from its joint origin O. Moreover, let the mass of the 

link be m, and its inertia tensor about the mass centre is denoted by I.  

 

 

 

 

 

 

 

 

 

              Fig. 3.1 One-link robot arm
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The scalar inertia term I is given by,
 

I=ma
2 
/3; 

The elements of the vectors h and γ, i.e. h and γ respectively, are obtained as follows; 

The elements of the vectors h and γ respectively, 

h=0; 

γ = mgasq/2 ; 

Where, g = acceleration due to gravity. 

And, sq represents sin q. 

Now by using general equation, we can find 

 
�
�ma

2��  + ��mgasq =ζ                                                                                                  (3.8) 
Above equation is one link manipulator equation.  

The above equation is general equation, if we take uncertainties in consideration and use 

linear oscillator in gravitational oscillator, the equation will be followed: 

 
�
�ma

2� � + ��mgasq+ Fc + Fd =ζ                                                                                    (3.9) 
5.5 DY�AMIC OF A 2-LI�K ROBOT ARM 

The dynamic equations of the 2-link 2-DOF robot, based on euler-lagrange equations are 

derived. The vector of generalised coordinates is: 

 q= [q1  q2]
T
 

 

 

 

 

 
 

    

 

                            Fig. 3.2 Two-link robot arm 

                                                                                       

 

                                                            

                                                                                                                           

                                                                                                                                    

                                              q2 

                                              

                                     l2 

 

 

                       l1 
                          q



28 

 

Whereas l1/2 and l2/2, are the distances of the centre of masses of the two links from their 

respective joint origins, namely at O1 and O2. Moreover, let the masses of the two links be m1 

and m2. With the chosen coordinate frame, i.e. the fixed frame F.  

The standard equation of two link robotic manipulator not including uncertainties as follows:  

 ��� + ℎ +  γ = ζ                                                                                                       (3.10) 
Where, 

I = [m1l1
2
 + m2 (l1

2
 + l2

2 
+ 2l1l2cos(q2))       m2l2

2
 + m2l1l2cos (q2) 

       m2l2
2
 + m2l1l2cos (q2)                               m2l2

2
]; 

 

h = [-m2l1l2sin (q2)�� 22 – 2m2l1l2sin (q2)�� 1�� 2 
        m2l1l2sin(q2)�� 12]; 
 

γ = [m2l2gcos(q1+q2) + (m1+m2)l1gcos(q1) 

       m2l2gcos (q1+q2)]; 

 

 

 3.6 CO�TROLLER FOR ROBOTIC MA�IPULATOR 

There are many control strategies that can applied for control of robotic manipulator. These 

strategies are conventional or adaptive and intelligent control strategies. The general structure 

of a robot manipulator with controller is shown in Fig.3.3 below. The trajectory generator 

provides the controller with information about the desired position, velocity and acceleration 

(q, �� , �� ) for each joint and keeps updating this information at the path update rate. The 
controller takes this information and compares it with the present (actual) position and 

velocity (sometimes acceleration also) of joints (q, �� , �� ), which are provides as feedback 
through the sensors. 
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                                        Fig. 3.3 General structure of robot control system 

 

 

 

Based upon the error between the desired and actual values. The controller calculates a vector 

of torques (ζ) , which should be applied at respective joints by the actuators to minimize these 

errors. The torques is calculated using control law. The goal of the controller is thus, 

minimization of error, e and its first derivative e. The dynamic model of robotic manipulator 

is described (previously defined) as below; 

��� + ℎ +  γ = ζ 
There are two type controller is used for the control of the robotic manipulator: 

 

3.6.1 Conventional Controller 

 The use of conventional control (linear control techniques) for any system is valid only when 

the system to be controlled can be modelled by differential equations. Thus, the conventional 

control robot manipulator is essentially an approximation, as the manipulator dynamics is 

described by highly non-linear equations. The linear control strategies for robots give 

excellent performance for manipulators having highly geared joints. 

There are many conventional controller are used in robotic manipulator, some of them are 

described below: 

 

3.6.1.1 Proportional-Integral-Derivative controller (PID controller) 

 

It is a generic controller widely used in industrial control system. A PID controller attempts 

to correct the error between a measured process variable and a set-point by calculating and 

then out putting a corrective action that can adjust the process accordingly and rapidly, to 

keep the error minimal. It is one common linear control strategy is PID (proportional-

derivative and integral) control. The control law used for this strategy is given by: 

 

ζPID = KDe +KPe + KI � ���                                                                                    (3.11) 
KD, KP   and KI are control gain matrices. ζPID is the vector of joint torques. It is possible to 

get the desired performance from the system by choosing the appropriate values of 

parameters of PID controller. Hand tuning method is used for selection of PID control gains. 
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A robotic control system cannot be allowed to have an oscillatory response for obvious 

reasons. For instance, in a pick-n-place operation, an oscillating end-effecter may strike 

against the object before picking it to manipulate. Hence, highest possible speed of response 

and yet non-oscillatory response, dictates that the controller design parameters shall be 

chosen to have the damping ratio equal to unity or least close to it but not less than unity. 

3.6.1.2 Feed Forward Inverse Dynamics Control 

 

Feed forward inverse dynamics control is a model based non-linear technique. Scheme for 

Feed Forward Inverse Dynamics control is shown below Fig. 3.4. This scheme is uses the 

inverse dynamics equations of robotic manipulator in feed forward mode. As can be seen 

from this figure, the sum of the outputs of the inverse model and feedback controller (i.e. PID 

controller) will be the actual input torque to robot. 
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                                   Fig. 3.4 Feed forward inverse dynamics controller 

 

In this strategy the torque is calculated as 

ζffid  =  ��� + ℎ +  γ                                                                                                  (3.12)  
ζPID = KDe +KPe + KI � ���                                                                                    (3.13) 
Total control torque is ζ = ζffid + ζPID. The feedback controller plays a role in making the 

whole system stable. 
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3.6.1.3 Computed Torque Control 

 The most common nonlinear control technique for manipulator control is the computed 

torque control. Scheme is similar to feed forward inverse control. Here the computed torque 

is given by: 

 ζCTC = ζPID + I [��+KDe +KPe] +h + γ                                                                   (3.14) 

If the manipulator model is known exactly then this scheme results in asymptotically stable 

and provides asymptotically exact tracking. 

 

3.6.1.4 Critically Damped Inverse Dynamics Control 

 

This control strategy is almost same as inverse dynamics except that the feed forward torque 

is calculated using reference velocity and reference acceleration instead of the desired values. 

These reference values are defined as: 

 

 qR = qd + KP (qd - q)                                                                                               (3.15) 

��R = �� d + KD (qd-q)                                                                                                 (3.16) 
In this strategy the torque is calculated as: 

ζCDID = ζPID + I��R +h��R+ γ                                                                                      (3.17)   
Since the robotic manipulator is highly nonlinear system that why the conventional controller 

does not give the response with accurately and desirably as well as intelligent controller. In 

spite of this the conventional controller is used for robotic manipulator because these are 

cheap and required minimal technical knowledge from the engineer or technician. 

 

3.6.2 Intelligent Controller 

Since conventional controller does not respond with accuracy for where the high accuracy is 

required, there generally intelligent controller. Artificial neural networks and fuzzy logic are 

potential tools for intelligent control engineering. It is briefly described below: 

 

3.6.2.1 Fuzzy Logic Control 

A fuzzy control system is a control system based logic- a mathematical system that analyzes 

analog input values in terms of logical variables that can take continuous values between 0 

and1, in contrast to classical or digital logic, which operates on discrete values of either 0 
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and1 (true and false). Just as fuzzy logic can be described as simply as “computing with 

words rather than number”. Fuzzy control can described simply as “control with sentences 

rather than equations”. There are specific components characteristics of a fuzzy controller to 

support a design procedure. In the block diagram in Fig 3.5, the controller is between a pre- 

processing block and a post-processing block. 

 

 

 

 

 

 

 

 

                                   Fig. 3.5  

 

 

 

 

                              

                                  Fig.3.5  Block diagram of a fuzzy controller 

 

 

 

3.6.2.2 �eural Control 

The key element of this control is the novel structure of the information processing system. It 

is composed of a large number of highly interconnected processing element (neurons) 

working in unison to solve specific problems. Artificial neural network’s, like people, 

learning by example. An ANN is configured for a specific application, such as pattern 

recognition or data classification, through a learning process. Learning is biological systems 

involves adjustment to synaptic connections that exists between the neurons. This is true of 

ANN’s as well. Neural networks, with their remarkable ability to drive meaning from 

complicated or imprecise data, can be used to extract patterns and detect trends that are too 

complex to noticed by either human are computer techniques. A trained neural network can 

be thought of as an “expert” in the category of information it has been given to analyze. 
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The neural network has been trained off line to approximate the inverse dynamic model of 

the robot manipulator. The learning scheme is shown in Fig.3.6. 

 

Torque, ζ                                                                       Trajectory 
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           - 

 

 

 

                             Fig. 3.6 Scheme for learning dynamics model 

 

The manipulator receives the torque ζ and outputs of resulting trajectory q. Inverse dynamic 

model is set in the opposite input-output direction to that of the manipulator. That is, it 

receives the trajectory as an input and produces the torque ζNN as its output. The error signal 

is the difference between the actual torque and estimated torque. It is expected that this 

difference tends to zero as learning proceeds. Once the neural network finishes learning, it 

produces an approximate inverse dynamical model. 

The entire controller described above has some limitation, for overcome this limitations; 

generally, nom-a-days used two or more than two controller simultaneously for a given 

system. This type of controller is known as hybrid controller. For example, the neural 

controller with PID controller is used for increase the stability of the whole system. 

 

3.7 ADVA�TAGE OF �EURAL CO�TROLLER 

There are several advantages of neural controller. 

1) Ability learning: an ability to learn how to do tasks based on the data given for 

training or initial experience. 
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2) Self-organization: an ANN can create its own organization or representation of the 

information it receives during learning time. 

3) Real time operation: ANN computation may be carried out parallel, and special 

hardware devices are being designed and manufactured which take advantage of this 

capability. 

4) Fault tolerance via redundant information coding: partial destruction of a network 

leads to the corresponding degradation of performance. However, some network 

capabilities may be retained even with major network damage. 

The advantage of neural controller as mentioned above, to make the interest for researcher 

and scholars. Now-a-days the research on neural controller is very fluent topic for many 

fields and many discipline. 

3.8 CO�CLUSIO� 

In this chapter, a brief discussion presented about kinematics and dynamics. Secondly, the 

equation of first link and two link manipulator is derived. After that, various type of 

controller which generally used for the robotic manipulator is described.            
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                                                CHAPTER IV 

                                          �EURAL �ETWORKS 

 

 

 

 
4.0 GE�ERAL 

Neural networks provide a unique computing architecture which can be used to realise 

intelligent controllers. Neural network approach is more capable to conventional computers 

approach. It may be compared to the human brain. In any neural network design, neuron, 

transfer function and learning rule play a more important role. 

 

4.1 CO�VE�TIO�AL COMPUTERS APPROACH VERSUS �EURAL �ETWORKS 

APPROACH 

 

Conventional computers use an algorithm approach i.e. the computer follows a set of 

instructions in order to solve the problem. That restricts the problem solving capability of 

conventional computers to problems that we already understand and know to solve. But 

computers would be so more useful if they could do things that we don’t exactly know how 

to do. 

Neural networks process information in a similar way the human brain does. The network is 

compared of a large number of a highly interconnected processing element (neurons) working 

in parallel to solve a specific problem. Neural networks learn by example. They cannot 

program to perform a specific task. The example must be selected carefully otherwise useful 

time is wasted or even worse the network might be functioning incorrectly. The disadvantage 

is that because the networks finds out how to solve the problem by itself, its operation can be 

unpredictable. On the other hand, conventional computers use a cognitive approach to 

problem solving; the way the problem is to solved must be known and stated in small 

unambiguous instructions. These instructions are then converted to high level language 

program and into machine code that the computer can understand. These machines are totally 

predictable; if anything goes wrong is due to the software or hardware fault. Neural networks 

and conventional algorithmic computer are not in competition but complement each other. 

There are tasks are more suited to an algorithmic approach like arithmetic operations and 

tasks that are more suited to neural networks. Even more, a large number of tasks, require 

system that use a combination of the two approaches (normally a conventional computer is  
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used to supervise the neural networks) in order to perform at maximum efficiency. Neural 

networks do not perform miracles. But if used sensibly they can produce some amazing 

results. 

 

4.2 BIOLOGICAL A�D ARTIFICIAL �EURAL SYSTEMS 

The brain consists of a large number (approximately10��) of highly connected elements 

(approximately 10� connections per element) called neurons. For our purpose these neurons 

have three principal components: the dentries, the cell body and the axon. The dentries are 

tree-like respective networks of nerve fibres that carry electrical signal into the cell body. The 

cell body effectively sum and thresholds these incoming signals.  The axon is single long 

fibre that carries the signal from the cell body out to other neurons. The point of contact 

between an axon of a cell and a dentrie of another cell is called synapse. It is the arrangement 

of neurons and the strengths of the individual synapses, determined by a complex chemical 

process that establishes the function of the neuron networks. 

 

Artificial neural networks do not approach the complexity of the brain. There are, however, 

two key similarities between biological and artificial neural networks. First, the building 

blocks of the both networks are simple computational devices (although artificial neurons are 

much simpler than biological neurons) that are highly interconnected. Second, the 

connections between neurons determine the function of the network. 

 

4.3 �EURO� MODEL 

A single- input neuron model is shown in Fig. 4.1. The scalar input p is multiplied by the 

scalar weight w to form wp, one of the terms that is sent to the summer. The other input, 1, is 

multiplied by a bias b and then passed to the summer. The summer output n, often referred to 

as the net input, goes into a transfer function f, which produces the scalar neuron output a. 

The actual output depends on the particular transfer function that is chosen. (Some authors 

use the term “activation function” rather than transfer function and “offset” rather than bias.) 
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                                         Fig. 4.1 Single input neuron 

 

The neuron output is calculated as, 

a=f (wp+b) 

 

If relate this simple model to the biological neuron. The weight w corresponds to the strength 

of the synapse, the cell body is represented by the simulation and the transfer function, and 

the neuron output a represents the signal on the axon. 

 

This is the simplest neuron model; we can make the complicated neuron by many ways as 

following methods- 

1) By the increasing the number of the inputs 

2) By the increasing numbers neurons in each layer 

3) By the increasing of layers (cascading of two or more neuron model). 

 In spite of these simple methods, to make a very complicated neural network by various 

others complicated methods. 

 

Here the most important thing is that w and b are both adjustable scalar parameters of the 

neuron. Typically the transfer function is chosen by the designer and then the parameters w 

and b will be adjusted by the some learning rule so that the neuron input/output relationship 

meet some specific goal. 
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4.4 TRA�SFER FU�CTIO� 

The transfer function may be linear or a nonlinear function of net input, n. A particular 

transfer function is chosen to satisfy some specification of the problem that the neuron is 

attempting to solve. A variety of standard transfer functions is followed: 

 

         Name Input/output relation     MATLAB 

Hard limit a=0; n<0 

a=1; n≥0 

hardlim 

Symmetrical Hard Limit a=-1; n<0 hardlims 

Linear  a=+1; n≥0 purelin 

Saturating linear a=n satlin 

Symmetric Saturating         

Linear 

a=0; n<0 

a=n; 0≤n≤1 

a=1; n>1 

satlins 

Log-Sigmoid a=1/(1+e
-n
) logsig 

Hyperbolic Tangent 

Sigmoid 

a=(e
n
-e
-n
)/(e

n
+e

-n
) tansig 

Positive Linear a=0; n<0 

a=n: 0≤n 

poslin 

Competitive a=1; neuron with max n 

a=0; all other neuron 

compet 

 

                                         Table 4.1 Standard transfer function 

4.5 LEAR�I�I�G RULE 

By learning rule means a procedure for modifying the weights and biases of a network. (This 

procedure may also be referred to as a training algorithm). The purpose of the learning rule is 

to the train the network to perform some specific task. There are many types of neural 

network learning rules, but the back-propagation algorithm is the most popular learning rule. 
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4.6 THE BACK-PROPAGATIO� ALGORITHM 

 In order to train a neural network to perform some task, we must adjust the weights of each 

unit in such a way that the error between the desired output and the actual output is reduced. 

This process requires that the neural network compute the error derivative of the weights 

(dW). In other words, it must calculate how the error changes as each weight is increased or 

decreased slightly. The back propagation algorithm is the most widely used method for 

determining the dW. 

  

The back-propagation algorithm is easiest to understand if all the units in the network are 

linear. The algorithm computes each dW by the first computing the error derivative (EA), the 

rate at which the error changes as the activity level of a unit is changed. For output units, the 

EA is simply the difference between the actual and the desired output. To compute the EA for 

a hidden unit in the layer just before the output layer, we first identify all the between that 

hidden unit and the output units to which it is connected. We then multiply those weights by 

the EAs of those output units and add the products. This sum equals the EA for the chosen 

hidden unit. After calculating all EAs in hidden layer just before the output layer, we can 

compute in like fashion the EAs for other layers, moving from layer to layer in a direction 

opposite to the way activities propagate through the network. This is what gives back 

propagation its name. Once the EAs has been computed for a unit. It is straight forward to 

compute the dW for each incoming connection of the unit. The dW is the product of the EA 

and the activity through the incoming connection. Note that for non-linear units, the back- 

propagation algorithm includes an extra step. Before back-propagation, the EA must be 

converted into EI, the rate at which the error changes as the total input received by a unit is 

changed. There are various training function which is used in back-propagation is following: 

1) Traingd: gradient descent back propagation 

2)  Traingda: gradient descent with adaptive learning rate back propagation 

3) Traingdm: gradient descent with momentum back propagation 

4) Traingdx: gradient descent with momentum and adaptive learning rate back propagation 

5) Trainlm: levenberg-marquardt back propagation 
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4.7 IMPLEME�TATIO�S OF �EURAL �ETWORKS 

Implementations of neural networks come in many forms. The most widely used 

implementations of neural networks today are software simulators, computer programs that 

stimulate the operation of neural networks. The speed of the simulation depends on the speed 

of the hardware upon which the simulation is executed. A variety of accelerator boards are 

available for individual computers to speed the computations; math processors, and the 

parallel processors may also be used. 

Simulation is key to the development of neural network technology. With a simulator, one 

can establish most of the design choices in a neural network system. The choice of inputs and 

out puts can be tested as well as the capabilities of the particular paradigm used. Realistic 

training sets can be tested in simulated mode. 

An implementation could be an individual calculating the changing parameters of the 

network using pencil and paper. Another implementation would be a collection of people, 

each one acting as a processing unit, using a hand-held calculator. Although these 

implementations are not fast enough to be effective for applications, they are nevertheless 

methods for emulating a parallel computing structure based on neural architectures. The 

response of an artificial neural networks simulation may be accelerated through the use of 

specialized hardware. Such hardware may be designed using analog computing technology or 

a combination of analog and digital.  

 

4.8 CO�CLUSIO� 

In this chapter, the neural network is related with neural network. A simple neuron model and 

its related term such as transfer function and learning rule is also described. At the last, the 

back-propagation and importance of simulation for neural network is presented. 
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                                                       CHAPTER V 

                                         RESULTS A�D DISCUSSIO� 

5.0 GE�ERAL 

The performance of the inverse dynamic model of one-link and two-link robotic manipulator 

is studied with neural controller through simulation in MATLAB. Various performances of 

robotic manipulator are analyzed in detail by the variation of neural controller parameter and 

robotic manipulator. 

A high performance system consists of a robot and a controller integrated to perform a 

precise mechanical manoeuvre. This requires the end-effecter speed and/or position of the 

robot to clearly follow a specified trajectory (may be say reference trajectory) regardless of 

unknown load variations and other parameter uncertainties. 

A back-propagation neural network can be trained to emulate the unknown nonlinear plant 

dynamics by presenting a suitable set of input/output patterns generated by the plant. Once 

system dynamics have been identified using a neural network, many conventional control 

techniques can be applied to achieve the desired objective of trajectory tracking.  

 

5.1 �EURAL CO�TROLLER FOR O�E-LI�K MA�IPULATOR SIMULATIO� 

For simulation of neural controller of one-link manipulator, a robotic manipulator with linear 

oscillator and uncertainties is considered. MATLAB coding is done on the basis of the 

inverse dynamics of the robotic manipulator. Effect of parameter variation of neural 

controller and robotic manipulator is presented. 

The following parameters values are used for simulation. 

Mass of the robotic manipulator =1kg 

Length of the robotic manipulator = 1 metre 

Coefficient of the continuous uncertainties, c = 0.2 

Coefficient of the discontinuous uncertainties, Fd = 0.03 

Transfer function of the first layer of neural network = purelin 

Transfer function of the second layer of neural network = satlins 

Number of the neuron in first layer of neural network = 5 

Number of the neuron in second layer of neural network = 1 

Training method used in neural network = trainlm 
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5.2 EFFECT OF THE VARIATIO� OF FIRST LAYER TRA�SFER FU�CTIO� OF 

�EURAL �ETWORK 

For designing point of view, the neural network for robotic manipulator, the proper transfer 

function for each layer is very important. Since MATLAB coding for neural controller of 

one-link robotic manipulator with two layer neural networks is used. The first layer transfer 

function is changed as standard transfer function as mentioned in table. 1 and second layer 

assumed as hyperbolic tangent sigmoid transfer function (in MATLAB coding it is 

represented by ‘tansig’), the following performance characteristics are obtained, by the 

choosing transfer function as mentioned below. 

a) The first layer transfer function of the neural network is competitive transfer function 

“compat” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”. 

The following performance is obtained. 

 

 
                          Fig. 5.1 Performance with “compet,tansig” transfer function 
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In the above performance, the reference trajectory (qr) and the reference torque (taur) is not 

followed by the simulated trajectory (qsim) and simulated torque (tausim). Its means this 

mechanism is not effective. 

b) The first layer transfer function of the neural network as the hard limit transfer function 

“hardlim” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”. 

The following performance is obtained. 

 

                    Fig. 5.2 Performance with “hardlim,tansig” transfer function 
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c) The first layer transfer function of the neural network as the symmetrical hard limit 

transfer function “hardlims” and the second layer is hyperbolic tangent sigmoid transfer 

function “tansig”. The following performance is obtained. 

 

                 Fig. 5.3 Performance with “hardlims,tansig” transfer function 

 

 

In the above performance, the reference trajectory (qr) and the reference torque (taur) is not 

followed by the simulated trajectory (qsim) and simulated torue (tausim). This is also not 

appropriate tracking and identification capability.     

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r 

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u

r 
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-0.05

0

0.05

0.1

0.15

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

e
rr
o
r(

ra
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time (sec)

e
rr
o
r(
N

M
)



45 

 

d) The first layer transfer function of the neural network as the linear transfer function 

“purelin” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”. The 

following performance is obtained. 

  

                    Fig. 5.4 Performance with “purelin,tansig” transfer function 
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e) The first layer transfer function of the neural network as the saturating linear transfer 

function “satlin” and the second layer is hyperbolic tangent sigmoid transfer function 

“tansig”. The following performance is obtained. 

 

                          Fig. 5.5 Performance with “satlin,tansig” transfer function 
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f) The first layer transfer function of the neural network as the log-sigmoid transfer function 

“logsig” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”. 

The following performance is obtained. 

 

                       Fig. 5.6 Performance with “logsig,tansig” transfer function 
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g) The first layer transfer function of the neural network as the hyperbolic tangent sigmoid 

transfer function “tansig” and the second layer is hyperbolic tangent sigmoid transfer function 

“tansig”. The following performance is obtained. 

 

                       Fig. 5.7 Performance with “tansig,tansig” transfer function 
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h) The first layer transfer function of the neural network as the positive linear transfer 

function “poslin” and the second layer is hyperbolic tangent sigmoid transfer function 

“tansig”. The following performance is obtained. 

 

                        Fig. 5.8 Performance with “poslin,tansig” transfer function 
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i) The first layer transfer function of the neural network as the symmetrical hard limit transfer 

function “satlins” and the second layer is hyperbolic tangent sigmoid transfer function 

“tansig”. The following performance is obtained. 

 

                    Fig. 5.9 Performance with “satlins,tansig” transfer function 
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5.2.1 SUMMARY 

For the second layer with “tansig” transfer function and change the first layer, it is observed 

that: 

a) “compet”, “hardlim”, “hardlims” has very bad tracking capability as well as very bad Neural 

network identification capability. 

b) “purelin”, “satlin”, “logsig”, “tansig”, “satlins”, “poslin” has good tracking capability and 

approximate good neural network identification capability. 

It may conclude that the first layer of neural network for given system should not be 

“compat”, “hardlim”, “hardlims” transfer function. We may be used “purelin”, “satlin”, 

“logsig”, “tansig”, “satlins”, “poslin” as first layer of transfer function. 

5.3 EFFECT OF THE VARIATIO� OF SECO�D LAYER TRA�SFER FU�TIO� OF 

�EURAL �ETWORK 

In neural controller design the transfer function and training function method play an 

important role. Self defined function or the standard function for transfer function and 

training method of neural controller are used for simulation study. A neural controller design 

the training method “trainlm” is the first choice of the any designer due to its fast response. 

But the choice of the transfer function of the neural controller is a complicated work for any 

designer. 

 

As previously mentioned, for designing point of view for neural network, the transfer 

function of each layer must be properly chosen. Since a MATLAB coding for neural 

controller of one-link manipulator, there are two layer neural networks is used. The variation 

and effect of the first layer transfer function is shown in the previous section, in this we will 

see the effect of the variation of the second layer transfer function. If we change the second 

layer transfer function as standard transfer function as mentioned in table. 1 and the first layer 

assumed as linear transfer function (in MATLAB coding it is represented by ‘purelin’), the 

following graph is displayed, by the choosing transfer function as mentioned below. 
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a) The second layer transfer function of the neural network as the competitive transfer 

function “compet” and the first layer is linear transfer function “purelin”. The following 

performance is obtained. 

 

                    Fig. 5.10 Performance with “purelin,compet” transfer function 
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b) The second layer transfer function of the neural network as the hard limit transfer function 

“hardlim” and the first layer is linear transfer function “purelin”. The following performance 

is obtained. 

 

                    Fig. 5.11 Performance with “purelin,hardlim” transfer function 
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c) The second layer transfer function of the neural network as the symmetrical hard limit 

transfer function “hardlims” and the first layer is linear transfer function “purelin”. The 

following performance is obtained. 

 

                 Fig. 5.12 Performance with “purelin,hardlims” transfer function 
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d) The second layer transfer function of the neural network as the linear transfer function 

“purelin” and the first layer is linear transfer function “purelin”. The following performance 

is obtained. 

 

                   Fig. 5.13 Performance with “purelin,purelin” transfer function 
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e) The second layer transfer function of the neural network as the saturating linear transfer 

function “satlin” and the first layer is linear transfer function “purelin”. The following 

performance is obtained. 

 

                    Fig. 5.14 Performance with “purelin,satlin” transfer function 
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f) The second layer transfer function of the neural network as the log-sigmoid transfer 

function “logsig” and the first layer is linear transfer function “purelin”. The following 

performance is obtained. 

 

                          Fig. 5.15 Performance with “purelin,logsig” transfer function 
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g) The second layer transfer function of the neural network as the hyperbolic tangent sigmoid 

transfer function “tansig” and the first layer is linear transfer function “purelin”. The 

following performance is obtained. 

 

                         Fig. 5.16 Performance with “purelin,tansig” transfer function 

 

The above performance, the error between reference trajectory between and simulated 

trajectory is almost zero, hence the tracking capability of neural network is good but the 

identification capability is not very satisfactory. 

 

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r 
(r

a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u

r 
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N

M
)



59 

 

h) The second layer transfer function of the neural network as the positive linear transfer 

function “poslin” and the first layer is linear transfer function “purelin”. The following 

performance is obtained. 

 

                     Fig. 5.17 Performance with “purelin,poslin” transfer function 

 

For this combination of transfer function for neural controller show unsatisfactory response 

for the tracking as well as identification. Therefore it is not used for the combination for the 

one link manipulator.  
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i) The second layer transfer function of the neural network as the symmetrical saturating 

linear transfer function “satlins” and the first layer is linear transfer function “purelin”. The 

following performance is obtained. 

                    Fig. 5.18 Performance with “purelin,satlins” transfer function 

These combinations of transfer function, neural controller show the unsatisfactory response 

for both tracking and identification for the one link manipulator. 

5.3.1 SUMMARY 

For the first layer with “purelin” transfer function and the change the second layer, it is 

observed that: 

a) The transfer function “compet”, “hardlim”, “hardlims”, “satlin”, “logsig”, “poslin” has 

very poor tracking capability as well as bad neural network identification capability. 
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b) The transfer function “purelin” and “satlins” has almost good tracking capability as well 

as neural network identification. But for “tansig”, it has good tracking capability but bad 

neural network identification capability. 

It may conclude that for second layer, we may be used “purelin”, “satlins”and “tansig”. 

5.4 EFFECT OF THE VARIATIO� OF CO�STA�T OF CO�TI�UOUS 

U�CERTAI�TIES (c)  

There are many parameters in the continuous uncertainties. Here, the continuous uncertainties 

are assumed as c.signq. Therefore, the value of c is also a factor that may change the response 

of the system. To see the effect of the variation of it, we vary the value of c step by step. 

a) For the value of c = 0.0001. The following performance is obtained. 

                                       Fig. 5.19 Performance with c = 0.0001 

 

              At this value of c, the neural controller show the good tracking capability for the robotic 

manipulator but it gives unsatisfactory response for the identification of the robotic 

manipulator. 
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b) For the value of c = 0.001. The following performance is obtained.   

                                       Fig. 5.20 Performance with c = 0.001 

 

For the value of c = 0.001, the neural controller response is satisfactory for the robotic arm 

tracking, neural controller also show the almost satisfactory identification capability. 
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c) For the value of c = 0.01. The following performance is obtained. 

 

                                   Fig. 5.21 Performance with c = 0.01 

 

Neural controller at this value of c gives satisfactory response for both the tracking and 

identification of the robot arm. 
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d) For the value of c = 1. The following performance is obtained. 

 

                                      Fig. 5.22 Performance with c = 1 

 

For the value of c = 1, neural controller control the robotic arm trajectory in well manner but 

identification of it show a little deviation. 
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e) For the value of c = 2. The following performance is obtained. 

 

                                       Fig. 5.23 Performance with c = 2 

 

Neural controller at the value of c equal to two show the some variation in tracking of 

reference trajectory as well as also show the some variation to follow the reference torque. 
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f) For the value of c = 3. The following performance is obtained. 

 

                                       Fig. 5.24 Performance with c = 3 

At the value of c = 3, the tracking capability as well as identification capability of neural 

controller is not satisfactory. It shows a lot variation. 

5.4.1 SUMMARY 

It is observed from the variation of continuous uncertainties c that from the value between 

0.01 to 2 the neural controller show very good tracking capability as well as good capability 

of the identification of the robotic manipulator, but beyond this region neural controller show 

bad response for the both tracking as well as identification of the robotic manipulator. 

Therefore, for the proper operation of the neural controller, the value of c should be selected 

between 0.01 and 2. 
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5.5 EFFECT OF THE VARIATIO� OF ROBOT ARM LE�GHT (l) 

Length of the robotic manipulator is one of more important factor for designing point of 

view. For particular range of the length, the neural controller gives satisfactory response: 

beyond this range it will show variation in tracking as well as identification capability. For 

finding that range the length of robotic manipulator, length is changed in suitable step. 

 

a) For the length of robotic manipulator, l = 0.1. The following performance is obtained. 

 

                                      Fig. 5.25 Performance with l = 0.1 

 

For the length of 0.1, simulated trajectory of the arm show a lot of variation from the 

reference trajectory of the robotic arm. Its means at this length, neural controller fail to 

control the robotic arm, but neural controller has satisfactory identification capability at this 

value. 
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b) For the length of robotic manipulator, l = 0.3. The following performance is obtained. 

 

                                       Fig. 5.26 Performance with l = 0.3 

 

For this length of the robotic manipulator, neural controller work properly for both the 

tracking and identification of the robotic manipulator. 
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c) For the length of robotic manipulator, l = 2. The following performance is obtained. 

  

                                           Fig. 5.27 Performance with l = 2 

 

For this arm length of the robotic manipulator, neural controller also works properly for both 

the tracking and identification of the robotic manipulator. 
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d) For the length of robotic manipulator, l = 3. The following performance is obtained. 

 

                                      Fig. 5.28 Performance with l = 3 

 

For this length of the robotic manipulator, neural controller is satisfactory for tracking of the 

robotic manipulator; it also has satisfactory identification capability. 
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e) For the length of robotic manipulator, l = 3.1. The following performance is obtained. 

 

                                    Fig. 5.29 Performance with l = 3.1 

For this value the neural controller has satisfactory tracking capability but does not have 

satisfactory identification capability. 
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f) For the length of robotic manipulator, l = 3.5. The following performance is obtained. 

 

                                Fig. 5.30 Performance with l = 3.5 

At this value the neural controller has good tracking capability but it has unsatisfactory 

identification capability of the robotic manipulator. 

5.5.1 SUMMARY 

By the variation of the length of robotic manipulator, it is observed that neural controller 

respond very well for tracking and identification of the robotic manipulator between 0.3 

and 3. Beyond the length between o.3 and 3 the neural controller response in tracking 

capability is satisfactory but it loses its identification capability. 
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5.6 EFFECT OF THE VARIATIO� OF ROBOTIC MA�IPULATOR MASS (m) 

Mass of the robotic manipulator performance also plays an important role for this system. 

The mass is also affected the controller performance. For a certain range, the neural controller 

would do its job properly beyond this range it shows the bad result. For finding that range the 

mass of robotic manipulator, mass is changed in suitable step. 

 

a) For the mass of robotic manipulator, m = 0.08. The following performance is obtained. 

  

                                     Fig. 5.31 Performance with m = 0.08 

 

 For this value of mass of robotic manipulator, the neural controller is working properly. Its 

means the tracking error as well as torque error is almost zero. 
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b) For the mass of robotic manipulator, m = 3. The following performance is obtained. 

 

                                  Fig. 5.32 Performance with m = 3 

 

For this value of robotic manipulator, neural controller responds very well for both tracking 

as well as identification of the robotic manipulator. 
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c) For the mass of robotic manipulator, m = 4. The following performance is obtained. 

 

                                       Fig. 5.33 Performance with m = 4 

 

Neural controller is worked properly both tracking as well as identification of the robotic 

manipulator at mass of robotic manipulator is equal to 4. 
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d) For the mass of robotic manipulator, m = 4.5. The following performance is obtained. 

                                      Fig. 5.34 Performance with m = 4.5 

 

For this value, the neural controller has good tracking capability but identification capability 

is unsatisfactory for the robotic manipulator. 

5.6.1 SUMMARY 

For variation of the mass of the robotic manipulator, it is observed that the neural controller 

controls the robotic manipulator to its desired trajectory as well as has good identification 

capability for robotic manipulator at the value of mass of the robotic manipulator between 

0.08 and 4. 

5.7 TWO-LI�K MA�IPULATOR SIMULATIO� 

For simulation of neural controller of two-link manipulator, the continuous and discontinuous 

uncertainties are assumed to be neglected. MATLAB coding is done on the basis of the 

inverse dynamics of the robotic manipulator. There is only presented the learning rate 

variation of training function of neural controller and observed its effect on the tracking 

capability of the neural controller. 
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The following parameters are considered for simulation study. 

Mass of the first arm of the robotic manipulator = 4 kg 

Mass of the second arm of the robotic manipulator = 2 kg 

Length of the first arm of the robotic manipulator = 1 metre 

Length of the second arm of the robotic manipulator = 0.5 metre 

Value of the continuous uncertainties, Fc = 0 

Value of the discontinuous uncertainties, Fd = 0 

Here the transfer function and training method of neural controller is self defined function. 

Standard transfer function and training method is not used here. 

5.8 EFFECT OF THE VARIATIO� OF LEAE�I�G RATE 

Learning rate is one important factor for neural network due to the reason of the stability of 

the neural network. Since, one major problem in neural network system is the stability. It may 

be overcome by the properly choosing of learning rate of given learning algorithm. To see the 

effect of learning rate in the neural network, we vary the learning rate step by step. 

a) For the value of learning rate = 0.00000000001. The following performance is obtained. 

                            

                                     Fig. 5.35 Performance with learning rate = 0.00000000001 
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         In the above performance, the error between desired trajectory and simulated trajectory for 

both first arm and second arm is almost zero. Therefore, neural controller for this value of 

learning rate performed satisfactory tracking capability. 

b) For the value of learning rate = 0.001. The following performance is obtained. 

 

                           Fig. 5.36 Performance with learning rate = 0.001 

 

For this value the first arm and second arm trajectory follow their desired trajectory, its 

means the neural controller control the robotic manipulator very well. 
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c) For the value of learning rate = 1. The following performance is obtained. 

 

                                  Fig. 5.37 Performance with learning rate = 1 

 

At this value of the learning rate at 1, the neural controller control the robotic first and second 

arm properly as we seen from the error curve of first arm and second arm. 
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d) For the value of learning rate = 2. The following performance is obtained. 

 

                            Fig. 5.38 Performance with learning rate = 2 

 

 

For this value of learning rate, neural controller show satisfactory tracking capability for first 

arm as well as second arm of the two-link manipulator. 
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e)  For the value of learning rate = 2.1. The following performance is obtained. 

 

                              Fig. 5.39 Performance with learning rate = 2.1 

 

For this value of the learning rate, the neural controller show drastic change for the two-link 

manipulator. From above results, it is observed that neural controller perform unsatisfactory 

tracking capability because it is not properly trained at this value. 

5.8.1 SUMMARY 

For value of the learning rate till two neural network give good response because it is 

properly, but the value more than two, the neural controller is not trained properly. That why 

neural controller is giving unsatisfactory response. 
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5.9 CO�CLUSIO� 

In this chapter the various simulation results are shown which is carried out in MATLAB 

simulink. The performance of the one-link manipulator and two-link manipulator with neural 

controller is presented. From this simulation results, it is concluded that one link manipulator 

for neural controller give good response for following parameters: 

1) Length of robotic manipulator should be between 0.3 metre and 3 metre. 

2) Mass of robotic manipulator m, should be between 0.08 kg and 4 kg. 

3) Continuous uncertainties constant c, should be between 0.01 and 2. 

4) For neural network design, we may use “logsig”, “purelin”, “satlins”, “poslin”, “ 

tansig” transfer function, but the “poslin” and “purelin” give better result for the first 

layer of the neural network. 

5) For neural network design, we may use “purelin”, “satlins”, “tansig” transfer function, 

but “purelin” give better result for the second layer of the neural network. 

It can say that from point 4 and point 5, for neural controller design for one link 

robotic manipulator, “poslin” and “purelin” or “purelin” and “purelin” transfer 

function combination should be used for find out satisfactory performance. 

It is also concluded for the given two-link manipulator with neural controller that for proper 

training and satisfactory tracking capability the learning rate should be 2 or less than two.  
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                                             CHAPTER VI 

                      CO�CLUSIO� A�D FUTURE SCOPE OF WORK 

 

6.0 CO�CLUSIO� 

In this project, dynamics and performance simulation with neural controller for one-link and 

two-link manipulator through neural controller is described in details. Effect of parameter 

variation which is related to the robotic manipulator or neural controller has been studied and 

simulation performance is obtained and analyzed in detail. Neural networks and various 

controller of robotic manipulator are also discussed in brief. 

 

6.1 FUTURE SCOPE OF WORK 

There are many other learning rules for neural controller which could be use for comparison 

of the response of one-link and two-link manipulator. Effect of parameters of two-link 

manipulator by which variation and analysis could be further analyse. Variation in the 

reference trajectory may be split way and necessary analysis of performance with the neural 

controller could be determined. Neural controller identification quality may be also analyzed 

for the two link manipulator. 
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