
1

�EURAL CO�TROLLER OF ROBOTIC MA�IPULATOR

A Major Project

Submitted In Partial Fulfillment of Requirements

For The Award of the Degree of

MASTER OF E�GI�EERI�G

(CO�TROL & I�STRUME�TATIO�)

Submitted by

ASURJEET SHARMA
University Roll No. 12232

Under the Supervision of

PROF. MADHUSUDA� SI�GH
Electrical Engineering Department

Department of Electrical Engineering

Delhi College of Engineering

University of Delhi

Delhi-110042

2009

2

CERTIFICATE

It is certified that Mr. ASURJEET SHARMA, Roll No. 03/C&I/07, a student of

M.E., Control and Instrumentation, Department of Electrical Engineering, Delhi

College of Engineering, has submitted the dissertation entitled “NEURAL

CONTROLLER OF ROBOTIC MANIPULATOR” under our guidance towards

partial fulfillment of the requirements for the award of the degree of Master of

Engineering. This dissertation is a bonafide record of project work carried out

by him under our guidance and supervision.

(Dr. MADHUSUDA� SI�GH) (Mr. BHARAT BHUSHA�)

Professor Asst. Professor

 Electrical Engineering Department Electrical Engineering Department

Delhi College of Engineering Delhi College of Engineering

Delhi-110042 Delhi-110042

3

 ACKNOWLEDGEMENT

I am thankful to the Almighty because without his blessings this work was not possible. It is a

great pleasure to have the opportunity to extent my heartfelt gratitude to everybody who

helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my project

supervisor Prof. Madhusudan Singh for his invaluable guidance, encouragement and patient

reviews. His continuous inspiration has made me complete this dissertation. He kept on

boosting me time and again for putting an extra ounce of effort to realize his work.

I would also like to take this opportunity to present my sincere regards to Prof. Parmod

Kumar, Head Electrical Engineering Department, DCE for his support and encouragement.

I am grateful to my parents and my brother, for their moral support all the time; they have

been always around on the phone to cheer me up in the odd times of this work.

 ASURJEET SHARMA

 College Roll �o. 03/C&I/07

University Roll �o: 12232
M.E (C&I)

4

 CO�TE�TS

CERTIFICATE ii

ACKNOWLEDGEMENT iii

LIST OF FIGURES vii

LIST OF SYMBOLS ix

ABSTRACT xii

CHAPTER-I INTRODUCTION 1-5

 1.0 General 1

1.1 Types of Robotic manipulator 2

1.1.0 JIRA (Japanese Industrial Robot Association) classification 2

1.1.1 Classification based on Drive Technologies 2

1.1.2 Classification based on Work- Envelope Geometry 3

1.1.3 Classification based on Motion Control Methods 3

1.2 Control of robotic manipulator 4

1.3 Conventional versus intelligent control 4

1.4 Objective of present work 5

1.5 Conclusion 5

CHAPTER -II LITERATURE REVIEW 6-10

 2.0 General 6

 2.1 Literature review on neural controller for robotic manipulator 6

 2.2 Literature review on fuzzy logic controller for robotic manipulator 7

 2.3 Literature review on intelligence system 8

 2.4 Literature review on the importance of neural control 9

 2.5 Literature review on the neural network design and environment

for simulation 10

 2.6 Conclusion 10

5

CHAPTER-III DYNAMICS AND CONTROLLER OF ROBOTIC

 MANIPULATOR 11-22

 3.0 General 11

3.1 Robot’s kinematics, dynamics 11

3.1.1 Kinematics 11

3.1.2 Dynamic 11

3.2 Robot dynamics 12

 3.2.1 Euler-lagrange formulation 13

3.3 Equation of motion 13

3.4 Dynamics of a one-link 14

3.5 Dynamic of a 2-link robot arm 15

 3.6 Controller of robotic manipulator 16

 3.6.1 Conventional controller 17

 3.6.1.1 Proportional –integral- derivative controller or PID controller 17

 3.6.1.2 Feed forward inverse dynamics control 18

 3.6.1.3 Computed torque control 19

 3.6.1.4 Critically damped inverse dynamics control 19

 3.6.2 Intelligent controller 19

3.6.2.1 Fuzzy logic control 19

3.6.2.2 Neural control 20

 3.7 Advantage of neural controller 21

 3.8 Conclusion 22

CHAPTER-IV NEURAL NETWORKS 23-28

 4.0 General 23

 4.1 conventional computers approach versus neural networks approach 23

 4.2 Biological and artificial neural systems 24

4.3 Neuron model 24

4.4 Transfer functions 26

4.5 Learning rule 26

6

4.6 The back-propagation algorithm 27

4.7 Implementations of neural networks 28

4.8 Conclusion 28

CHAPTER-V RESULTS AND OBSERVATON 29-70

5.0 General 29

5.1 Neural controller for one-link manipulator simulation 29

5.2 Effect of the variation of first layer transfer function of neural network 30

5.2.1 Summary 39

5.3 Effect of the variation of second layer transfer function of neural network 38

5.3.1 Summary 48

5.4 Effect of the variation of constant of continuous uncertainties(c) 49

5.4.1 Summary 54

5.5 Effect of the variation of robot arm length 55

5.5.1 Summary 60

5.6 Effect of the variation of robotic manipulator mass (m) 61

5.6.1 Summary 64

5.7 Two-link manipulator simulation 64

5.8 Effect of the variation of learning rate 65

5.8.1 Summary 69

5.9 Conclusion 70

CHAPTER-VI CONCLUSION AND FUTURE SCOPE OF WORK 71

6.1 Conclusion 71

6.2 Future scope of work 71

REFRENCES 72-73

7

 LIST OF FIGURES

Fig. 3.1 One-link robot arm 14

Fig. 3.2 Two-link robot arm 15

Fig. 3.3 General structure of robot control system 16

Fig. 3.4 Feed forward inverse dynamics controller 18

Fig. 3.5 Block diagram of a fuzzy controller 20

Fig. 3.6 Scheme for learning dynamics model 21

Fig. 4.1 Single input neuron 25

Fig. 5.1 Performance with “compet,tansig” transfer function 30

Fig. 5.2 Performance with “hardlim,tansig” transfer function 31

Fig. 5.3 Performance with “hardlims,tansig” transfer function 32

Fig. 5.4 Performance with “purelin,tansig” transfer function 33

Fig. 5.5 Performance with “satlin,tansig” transfer function 34

Fig. 5.6 Performance with “logsig,tansig” transfer function 35

Fig. 5.7 Performance with “tansig,tansig” transfer function 36

Fig. 5.8 Performance with “poslin,tansig” transfer function 37

Fig. 5.9 Performance with “satlins,tansig” transfer function 38

Fig. 5.10 Performance with “purelin,compet” transfer function 40

Fig. 5.11 Performance with “purelin,hardlim” transfer function 41

Fig. 5.12 Performance with “purelin,hardlims” transfer function 42

Fig. 5.13 Performance with “purelin,purelin” transfer function 43

Fig. 5.14 Performance with “purelin,satlin” transfer function 44

Fig. 5.15 Performance with “purelin,logsig” transfer function 45

Fig. 5.16 Performance with “purelin,tansig” transfer function 46

Fig. 5.17 Performance with “purelin,poslin” transfer function 47

Fig. 5.18 Performance with “purelin,satlins” transfer function 48

Fig. 5.19 Performance with c = 0.0001 49

Fig. 5.20 Performance with c = 0.001 50

Fig. 5.21 Performance with c = 0.01 51

8

Fig. 5.22 Performance with c = 1 52

Fig. 5.23 Performance with c = 2 53

Fig. 5.24 Performance with c = 3 54

Fig. 5.25 Performance with l = 0.1 55

Fig. 5.26 Performance with l = 0.3 56

Fig. 5.27 Performance with l = 2 57

Fig. 5.28 Performance with l = 3 58

Fig. 5.29 Performance with l = 3.1 59

Fig. 5.30 Performance with l = 3.5 60

Fig. 5.31 Performance with m = 0.08 61

Fig. 5.32 Performance with m = 3 62

Fig. 5.33 Performance with m = 4 63

Fig. 5.34 Performance with m = 4.5 64

Fig. 5.35 Performance with learning rate = 0.00000000001 65

Fig. 5.36 Performance with learning rate = 0.001 66

Fig. 5.37 Performance with learning rate = 1 67

Fig. 5.38 Performance with learning rate = 2 68

Fig. 5.39 Performance with learning rate = 2.1 69

9

 LIST OF SYMBOLS
S.No. Symbols Descriptions

1 L Lagrangian multiplier

2 T Kinetic energy of the robotic manipulator

3 U Potential energy of the robotic manipulator

4 �� i Generalized co-ordinates due to applied forces corresponding to

the generalized co-ordinates

5 n Number of independent generalized co-ordinates

6 ϕi Generalized forces due to applied forces corresponding to the

generalized co-ordinates

7 I n×n generalized inertia matrix.

8 q n-dimensional vector of joint positions.

9 �� n-dimensional vector of joint velocities.

10 �� n-dimensional vector of joint accelerations.

11 h n-dimensional vector of centrifugal and coriolis acceleration.

12 ϒ n-dimensional vector of gravitational accelerations.

13 ζ n-dimensional vector of generalized forces.

14 Fc Vector of uncertainties effect is decomposed as continuous part

15 Fd Vector of uncertainties effect is decomposed as discontinuous

part

16 m Mass of arm of the one-link manipulator

17 l Length of arm of the one-link manipulator

18 g Acceleration due to gravity

10

19 l1 Length of first arm of two-link manipulator

20 l2 Length of second arm of two-link manipulator

21 m1 Mass of first arm of two-link manipulator

22 m2 Mass of second arm of two-link manipulator

23 ζPID Vector of PID joint torques

24 KD Derivative constant

25 KP Proportional constant

26 KI Integral constant

27 e Error between reference trajectory and actual trajectory

28 ζffid Vector of feed forward inverse dynamic torque

29 ζCTC Vector of computed torque control torque

30 p Scalar input apply to neuron model

31 w Scalar weight of neuron model

32 b Bias of the neuron model

33 a Scalar neuron output

34 n Net input of neuron model

35 f Transfer function of neuron model

36 c Co-efficient of the continuous uncertainties

37 qr Reference trajectory of first arm of one link manipulator

38 taur Reference torque of first arm of one link manipulator

39 qsim Simulated output trajectory of first arm of one link manipulator

40 tausim Simulated output torque of first arm of one link manipulator

41 lv Learning rate of the training method of neural network used in

two link manipulator simulation

11

42 qr1 Reference trajectory of first arm of two link manipulator

43 qr2 Reference trajectory of second arm of one link manipulator

44 qsim1 Simulated trajectory of first arm of one link manipulator

45 qsim2 Simulated trajectory of second arm of one link manipulator

46 error1 Error between first arm reference trajectory and simulated

trajectory of two link manipulator

47 error2 Error between second arm reference trajectory and simulated

trajectory of two link manipulator

12

 ABSTRACT

In this project, the design and simulation of a neural controller for robotic manipulator is

carried out. The simulation study is carried out on one-link and two-link manipulators. This

project develops a neural controller designing for the proper choice of the transfer function by

the using of the back-propagation function “trainlm” for the one link manipulator. It describes

the effect of the variation of parameters related to one-link manipulator with the neural

controller. The range of the robotic manipulator parameter where a neural controller performs

with tracking capability and identification capability is described in detail. This all

performance is done on the basis of the coding which is developed by us.

MATLAB coding for the neural controller for the two link manipulator is developed. The

effects of the learning rate of the training method on the neural controller performance and

the learning rate variations are also presented.

13

 CHAPTER I

 I�TRODUCTIO�

1.0 GE�ERAL

The name robot came the Czechoslovakian word “Robota” which means a worker or a slave

doing heavy work [19]. Robotic manipulators are very complicated nonlinear system. Based

on the Robotics Institute of America (RIA) definition: “A robot is a reprogrammable

multifunctional manipulator design to move material, parts, tools, or specialized devices

through variable programmed motions for the performance of a variety of tasks”[18]. From

the engineering point of view, robots are complex, versatile devices that contain a mechanical

structure, a sensory system, and an automatic control system. Theoretical fundamentals of

robotics rely on the results on the results of research in mechanics, electric, electronics,

automatic control, mathematics, and computer sciences.

Robots find a vast variation of industrial applications and are used for various technological

operations. Robots enhance productivity in industry and deliver relief from tiresome,

monotonous, or hazardous works. Moreover, robots perform many operations better than

people do, and they provide higher accuracy and repeatability. In many fields, high

technological standard are hardly attainable without robots. Apart from industry, robots are

used in extreme environments. They can work at low and high temperatures; they don’t even

need lights, rest, fresh air, a salary, or promotions. Today, more complicated applications,

such as welding, paining, assembling, require much more motion capability and sensing.

Hence, a robot is multi-disciplinary engineering device. Mechanical engineers deal with the

design of mechanical components, arms, end-effectors, and also are responsible for

kinematics, dynamics and control analyses of robots. Electrical engineers work on robot

actuators, sensors, power, and control systems. System design engineering deals with

perception, sensing, and control methods of robots. Programming, or software engineering, is

responsible for logic, intelligence, communication, and networking.

1.1 TYPES OF ROBOTIC MA�IPULATORS

In order to refine the general notion of a robotic manipulator, it is necessary to classify

manipulators according to various criteria such as robot association, drive technology, work

envelope geometrics, and motion control methods.

14

1.1.0 JIRA (Japanese Industrial Robot Association) classification

Class 1: manual handling devices: a device with multi degrees of freedom that is actuated by

an operator.

Class 2: fixed sequence robot: a device that performs the successive stages of task according

to a predetermined and fixed program.

Class 3: variable sequence robot: a device that performs the successive stages of a task

according to a predetermined but programmable method.

Class 4: playback robot: a human operator performs the task manually by leading the robot,

which records the motions for later playback. The robot repeats the same motions according

to the recorded information.

Class 5: numerical control robot: the operator supplies the robot with a motion program rather

than the teaching it task manually.

Class 6: intelligent robot: a robot with the ability to understand its environment and the

ability to successfully complete a task despite changes in the surrounding conditions under

which it is to be performed.

1.1.1 Classification based on Drive Technologies

 One of the most fundamental classification schemes is based upon the source of power used

to drive the joint of the robot. The two most popular drives technologies are electric and

hydraulic. Most robotic manipulators today use electric drives in the form of either DC

servomotors or DC stepper motors. However, when high speed manipulation of substantial

loads is required, such as molten steel handling or auto body part handling, hydraulic-drive

robots are preferred. One serious drawback of hydraulic-drive robots lies in their lack of

cleanliness, a characteristic that is important for many assembly applications.

1.1.2 Classification based on Work-Envelope Geometry

A robot is called a serial or open-loop manipulator if its kinematic structure does not make a

loop chain. It is called a parallel or closed-loop manipulator if its structure consists of both

open and closed-loop chains.

15

Most industrial manipulators have six degree of freedom (DOF). The open-loop manipulators

can be classified based on their joints starting from the grounded joint. Only six different

lower-pair joints are possible: revolute (rotary), prismatic (sliding), cylindrical, spherical and

planar. Of these, only rotary (R) and prismatic (P) joints are common in manipulator. From

the two types of joints there mathematically 72 different manipulator configurations, simply

because each joint can be P or R, and the axes of two adjacent joints can be parallel,

orthogonal, or perpendicular. Two orthogonal joint axes intersect at a right-angle; however

two perpendicular joint axes are in right-angle with respect to their common normal. Two

perpendicular joint axes become parallel if one axis turns 90 degree about the common

normal. Two perpendiculars joint axes become orthogonal if the length of their common

normal tends zero.

Out of the 72 possible manipulators, the important ones are:

1) Selective compliant robot for assembly (SCARA)

2) Elbow, revolute, articulated, or anthropomorphic

3) Spherical

4) Cylindrical

5) Cartesian

1.1.3 Classification based on Motion Control Methods

Another fundamental classification criterion is the method used to control the movement of

the end-effecter or tool. The first type is point-to-point motion, where the tool moves to a

sequence of discrete points in the workspace. The path between the points is not explicitly

controlled by the user. Point-to-point motion is useful for operations which is discrete in

nature. For example, spot welding is an application for which point-to-point motion of the

tool is all that require.

The other type of motion is continuous-path motion, sometimes called controlled-path

motion. Here the end-effecter must follow a prescribed path in three-dimensional space, and

the speed of motion along the path may vary. Different applications of robots with

continuous-path motion control include paint spraying, arc welding, and the application of

glue or sealant.

1.2 CO�TROL OF ROBOTIC MA�IPULATOR

16

The robot control problem may be characterized as the described motion of the end-effecter.

A described motion is specified as a trajectory in Cartesian coordinates while the control

system requires input in joint coordinates.

The robot control comprises three computational problems:

1) Determination of the trajectory in Cartesian space

2) Transformation of the Cartesian trajectory into equivalent joint coordinates spaces,

and

3) Generation of the motor torque commands to realize the trajectory.

There are many control strategy that can be applied for control of robotic manipulators. These

range from conventional to adaptive and intelligent controllers. The controller or control unit

has three roles:

1) Information role, which consists of collecting and processing the information

provided by the robot’s sensors.

2) Decision role, which consists of planning the geometric motion of the robot structure.

3) Communication role, which consists of organizing the information between robot and

its environment. The control unit includes the processor and software.

1.3 CO�VE�TIO�AL VERSUS I�TELLIGE�T CO�TROL

The conventional control is generally based on the assumption of exact knowledge about the

system. This assumption is often not valid since the development of any practical system may

not include precise information of factors such as friction, backless, un-modelled dynamics

and uncertainty arising from any of the source. This control is generally used for linear

system and some specified non-linear system.

To the robotics point of view, the use of conventional controllers demands the availability of

an accurate dynamic robot model. However, this is rarely achievable because of un-modelled

dynamics (neglected time-delays, non-linear friction etc.) and parameter uncertainties

(deviation of link length etc. from nominal values).

Intelligent control is a control technology that replaces the human mind in making decisions,

planning control strategies, and learning new functions whenever the environment does not

allow or does not justify the presence of human operator. Artificial neural network and fuzzy

logic are potential tools for intelligent control engineering. Intelligent controllers are Fuzzy

logic, neural control, and hybrid control (Neuro-fuzzy). Neural networks are best known for

17

their learning capabilities. Fuzzy logic is a method of using human skills and thinking

processes in a machine. This control is more adaptable for non-linear system.

To the robotics point of view, the emergence of neural networks (type of intelligent control)

has provided an alternative means of controlling high-speed robot motion. Neural networks

can perform combined system identification and adaptive control function, and the yield a

good manipulator trajectory tracking performance without requiring an analytical dynamic

model.

1.4 OBJECTIVE OF PRESE�T WORK

One of the major difficulties in neural networks application is the selection of the parameters

in network configuration and the coefficients in learning rule for fast convergence. This

project includes analysis of one link manipulator and two link manipulator by the variation of

transfer function and learning methods for minimum path and torque error. Also showed, the

effect on path trajectory and torque by the variation of the robot parameter such as length,

mass and friction.

1.5 CO�CLUSIO�

In this chapter, definition, application, classification, control of the robot is discussed. The

brief discussion about conventional and intelligent control is also presented. At the last, the

objective of project is briefly described.

18

 CHAPTER II

 LITERATURE SURVEY

2.0 GE�ERAL

Over the past few years, the use of neural controller in control system has been going

widespread popularity. A large number of articles and numerous associations have been

devoted to the study on design and implementation of neural controllers. Robotic manipulator

is also of critical importance since they are very useful in automation and industries. It is a

topic of research due to its wide spectrum of applications. Numerous papers have been

written which present different control strategies to control the robotic manipulator. An

extensive literature survey on the robotic manipulator and its control was carried out.

2.1 LITERATURE REVIEW O� �EURAL CO�TROLLER FOR ROBOTIC

MA�IPULATORS

Debbache et al. [1] described the motion control of two link robot manipulators with

structured and unstructured uncertainties. This paper also described the basic idea of neural

network and neural state feedback also demonstrated about asymptotic stability of the control

system using Lyapnov’s approach.

Toplov et al. [2] described the dynamical on-line learning algorithm for neuro-adaptive

control of a class of non-linear system with uncertain dynamics. In this paper, a closed loop

control is used, simultaneously with a conventional PD controller and an adaptive variable

structure neural controller. Also show the real-time trajectory tracking control of the first

three joints of an articulated five degrees-of-freedom (DOF) robot manipulator.

Talebi et al. [3] described the controlling of a non-linear non-minimum phase system using

neural controller, it also described the output redefinition strategy and where it used. At last it

proved that the redefinition strategy based on neural network was proposed that does not need

any a prior knowledge about the non linearity of the system. For prove it, assumed a non-

minimum single-link flexible link robotic manipulator.

Efrati and Flashner [4] described the tracking control of mechanical systems (assuming

example of robotic link manipulators) based on artificial neural conjunction with a PD

controller. Here the neural network is used to approximate the system dynamics in presence

of parameter uncertainties and disturbances and the PD controller is designed to ensure

19

convergence of the tracking error. This paper presents, the neural network configuration and

the tuning algorithm are simple and thus can be implemented on-line with low computational

and storage requirements. At last shown that the closed loop tracking tends to zero in

presence of model uncertainties and disturbances while minimizing the control effort.

Takahashi and Yamada [5] described a neural- network controller for a flexible robot arm and

also described the neural controller design using state-space representation. At last,

experimental confirmation of the neural controller can control the flexible arm by learning

ability of the neural network without exact a prior knowledge of the system even under

existing nonlinear disturbances such as solid friction is shown.

Kosmatopoulos et al. [6] solved the identification problem of a robotic manipulator using

dynamic distributed multi-layer back propagation network and a novice algorithm is used. By

the simulation results, it is shown that the algorithm can handle abrupt changes in input data

with the error converges quickly to zero.it is described that the network can effectively

perform after training stops even when the input waveforms have been never been presented

before.

Fukunda and Shibata [7] described the control of robotic manipulator using neural controller

which has been integrated time delays elements. By simulation results proved that the ‘active

time delay neural network’ can obtain desirable gains of the control system by learning,

therefore, the active time delay neural network is more applicable and adaptable than the

general neural network to the system which has strong non-linearity and whose dynamics are

complex, for example, hybrid control of robotic manipulators which can handle unknown

objects and its force control suffering collisions.

2.2 LITERATURE REVIEW O� FUZZY LOGIC CO�TROLLER FOR ROBOTIC

MA�IPULATOR

Jnifene and Andrews [8] presented with the design and implementation of active vibration

control based on fuzzy logic and neural networks (NNs). The controller is used to dampen the

end point vibration in a single-link flexible manipulator mounted on two degrees freedom

platform. The inputs of the fuzzy logic controller (FLC) are the angular position of the hub

and the end point deflection of the flexible beam. A NN predicting the defection was obtained

using a set of three strain gauge pairs mounts on the beam and a linear- variable differential

transformer placed on the tip. This paper also discussed how to build the rule base of the

flexible beam based on the relation between angular displacement of the hub and the end-

20

point deflection as well as the approach that presented several experimental results to validate

the NN’s mode and showed the effectiveness of the FLC in reducing the end point vibration.

Yoo and Ham [9] presented adaptive control schemes for robotic manipulator which has the

parametric uncertainties. To compensate these uncertainties, fuzzy logic system (FLS) is used

because that has capability to approximate any nonlinear function over the compact input

space. Here, the adaptive control is used for decreasing the effect of approximation error. For

reducing the rules FLS, assumed some properties of robot dynamics and the decomposition of

the uncertainties function. The presented controller, in this paper, is robust not only to the

structured uncertainty such as pay load parameter, but also to the unstructured one such a

friction model and disturbance. At last, by the simulation of a two-link manipulator proved

the validation of the controller.

2.3 LITERATURE REVIEW O� I�TELLIGE�T SYSTEMS

Wilamowski [10] presented the comparison of various methods of computational intelligence

and it is illustrated with examples. The concerned methods in this paper are neural networks,

fuzzy system and genetic systems. The main focussed topic in this paper is neural networks.

It present learning algorithms and their special architectures. Learning rule such as hebian

learning, LMS-least mean square learning, delta learning, WTA-winner take all learning and

PCA-principal component analysis are presented. Architecture specific learning algorithms

for cascade correlation networks, Sarajenidi and Hecht-Nierlren networks, functional link

networks, polynomial networks. Counter propagation networks, RBF-radial basis function

networks are described.

Melin and Castillo [11] described the soft computing techniques to controlling non-linear

dynamical systems in real world problem. This is described that nonlinear dynamical system

are difficult to control due to the instable and even chaotic behaviours that they may occur in

these systems. Here, the soft computing consists of fuzzy logic, neural network etc. it is also

demonstrated that computational techniques result good performances, the two techniques

may also used simultaneously for a system, known as hybrid control. The described

applications include robotics aircraft systems, biochemical reactors and manufacturing

batteries.

Shoureshi [12] presented an introduction to and appreciation for intelligent control system,

their application areas and justifies their need. Specific problem related to automated human

control is discussed. Some analytical derivations related to neural networks and fuzzy optimal

21

control as elements of proposed intelligent control systems, along with experimental results

are presented.

2.4 LITERATURE REVIEW O� THE IMPORTA�CE OF �EURAL CO�TROL

Ng and Cook [13] presented a neural network controller use more robust than classical and

adaptive controllers for a plant with unknown time-delay. Recursive least squares (RLS)

algorithm is used for the training in given neural networks. By the simulation results, it

proved that NN controller with the on line is better than PID controller and self tuning pole

assignment controller when the plants time delays are unknown and varying. Hence, the

unknown NN controller with the on-line learning algorithm is suitable for real time

application to unknown and varying time delay plants. Simulation results have also shown

that NN controller is better at its optimum network size than an over parameterized or under

parameterized network.

Jin et al. [14] discussed about dynamic recurrent neural networks (DRNNs) which provides

the potential for the learning and control of a general class of unknown discrete time

nonlinear system which are treated as “black boxes” with multi inputs and multi outputs

(MIMO). The DRNNs is described by asset of nonlinear difference equations and suitable

analysis for the input output dynamics of the model is performed to obtain the inverse

dynamics. Also described about the ability of a DRNN structure.

Chen [15] described about back propagation neural network which is applied to a nonlinear

self-tuning tracking problem. Since the traditional self tuning adaptive control techniques can

only deal with linear system or some special nonlinear systems. It also limited to unknown

nonlinear system. This problem is overcome by introducing back-propagation neural network

into the self-tuning control scheme. It is also demonstrated that the new control method has

the potential to deal with unknown linearizable nonlinear systems.

Narendra and Parthasarathy [16] demonstrated the application of neural network which are

effectively used for the identification and control of nonlinear dynamics systems. Static and

dynamic back-propagation methods for the adjustments of parameter are discussed. The

model of NN is used, here, is multilayer and recurrent network. At the last, the simulation

results reveal that the identification and adaptive control schemes suggested the practical

feasible.

22

2.5 LITERATURE REVIEW O� THE �EURAL �ETWORKS DESIG� A�D

E�VIRO�ME�T FOR SIMULATIO�

Yang and Lee [17] describes the selection of the parameters in network configuration and the

coefficient in learning rule for fast convergence of the neural network. This paper develops a

network design by combining the Taguchi method and the back-propagation network with an

adaptive learning rate for minimum training time & effective vibration suppression. The

analysis & experiments is shown that the optimal design can be determined in a systematic

way thereby avoiding the length trail-and-error.

Tokhi [18] presents the development of an interactive and user friendly environment for

simulation and control of flexible manipulator systems. A constrained planer single-link

flexible manipulator is considered. Finite-difference algorithm for simulation of a single-link

flexible manipulator is used in presented paper. Several open-loop and closed-loop control

strategies are developed and incorporated into the environment. Several case studies,

demonstrating the utilisation and potential of the environment are presented and discussed. At

the last, it is concluded that the environment provides a valuable computer-aided education

and research facility for understanding the behaviour of flexible manipulator systems and

development of various controller designs.

 2.6 CO�CLUSIO�

An extensive literature review of neural controller and fuzzy controller for robotic

manipulator is presented. Intelligent control has accelerated the new technological

advancement. The importance of the neural controller and its development for an interactive

user friendly environment are also described.

23

 CHAPTER III

 DY�AMICS A�D CO�TROLLERS OF

 ROBOTIC MA�IPULATOR

3.0 GE�ERAL

Kinematics and dynamics is two main branch of science and its related equation is very

important for the robot and its controller. Generally, for robot design, the kinematics equation

is very important but the controller design of given system dynamics equation play more

important role. System modelling is also necessary for the choosing the proper controller for

the robotic system. All controllers have its own equation or logic and criteria for fulfilment

the robot control.

3.1 ROBOT’S KI�EMATICS A�D DY�AMICS

3.1.1 Kinematics

Kinematics is a branch of science that analyzes motion with no attention to what causes the

motion. By motion mean any type of displacement, which includes changes in position and

orientation. Therefore, displacement, and the successive derivatives with respect to time,

velocity, acceleration, and jerk, all combine into kinematics.

The forward kinematics problem is when the kinematical data are known for the joint

coordinates and are utilized to find the data in the base coordinates frame. The inverse

kinematics problem is when the kinematics data are known for the end- effecter in Cartesian

space. Inverse kinematics is highly nonlinear and usually a much more difficult problem than

the forward kinematics problem. The inverse velocity and acceleration problems are linear,

and much simpler, once the inverse position problem has been solved. An inverse position

solution is said to have a closed form if it not iterative.

3.1.2 Dynamic

Dynamics is the study of systems that undergo changes of state as time evolves. In

mechanical systems such as robots, the change of states involves motion. Derivation of the

equations of motion for the system is the main step in dynamic analysis of the system, since

equations of motion are essential in the design, analysis, and control of the system.

24

The dynamic equations of motion describe dynamic behaviour. They can be used for

computer simulation of the robot’s motion, design of suitable control equations, and

evaluation of the dynamic performance of the design.

The problem of robot dynamics may be considered as direct and inverse dynamics problems.

In direct dynamics, we should predict the motion of the robot for a given set of initial

conditions and torques at active joints. In the inverse dynamics problem, we should compute

the forces and torques necessary to generate the prescribed trajectory for a given set of

positions, velocities, and accelerations.

3.2 ROBOT DY�AMICS

A set of equations that describe the dynamical behaviour of a robot, also referred to as the

dynamical model of the robot, will be developed. This development is important in several

ways, namely,

1) A dynamical model can be used to develop the suitable control strategies. A

sophisticated controller requires the use of a realistic dynamical model to achieve an

optimal performance of the robot under high-speed operations. Some control schemes

rely directly on a dynamic model to compute actuator torques and forces required to

follow a desired trajectory.

2) The dynamical model can be used for computer simulation of a robotic system. By

examining the model under various operating conditions, it is possible to predict how

a robotic system will behave when it will be built.

3) The dynamic analysis of a robot gives all the joint reaction forces and moments

needed for the design and sizing of links, bearings, and actuators.

There are many methodologies to solve robot dynamics as following:

1) Euler –lagrange method

2) Newton-euler method

3) D’alembart principle

4) Kane’s equations of motion

5) Decoupled natural orthogonal complement (DeNOC) method

Here only euler-lagrange used for modelling. The advantage of employing the lagrangian

approach is that it eliminates the forces of constraint from the dynamic equations of motion if

the generalised coordinates are independently chosen. The elimination makes it suitable for

25

motion control and simulation. However, these eliminated constraint forces can be recovered

using lagrange multiplies, if they are to be used for the purpose of design.

3.2.1 Euler-Lagrange formulation

The dynamic model of a robot can be derived in a systematic way using the concept of

generalised coordinates and a scalar function called lagragian. The lagrangian is defined as

the difference between the kinetic and potential energy of the mechanical system under study,

i.e.

 L = T-U (3.1)

Where L denotes the lagrangian, and T and U are respectively the total kinetic and potential

energy of the system at hand. Note that the kinetic energy depends on both configuration, i.e.

position and orientation, and the velocity of the links of a robotic system, whereas the

potential energy depends only on the configuration of the links. Euler –lagrange equations of

motion are then given by,

�
�� � �	

�
��� − �	
�
�� =�i, for i=1, 2...n. (3.2)

Where, n is number of independent generalised coordinates used to define the system’s

configuration, and �� i‘s and �i s are the generalised coordinates and generalised forces due to

applied forces due to applied forces corresponding to the generalised coordinates,

respectively.

3.3 EQUATIO� OF MOTIO�

The generalised equation for n-link arm, assumed all joints are revolute, is following:

 ��� + ℎ + γ = ζ (3.3)
Where,

 I = the n×n generalised inertia matrix.

q = the n-dimensional vector of joint positions.

� � = the n-dimensional vector of joint velocities.
�� = the n-dimensional vector of joint accelerations.
h = the n-dimensional vector of centrifugal and coriolis acceleration.

γ= the n-dimensional vector of gravitational accelerations.

ζ= the n-dimensional vector of generalised forces.

If we considered uncertainties effect, the equation would be as followed:

��� + ℎ + γ +Fc + Fd = ζ (3.4)

26

Where, Fc and Fd vectors representing the dynamic effects as nonlinear frictions, small joint

and link elasticities, backless and bounded torque disturbances. Here, the uncertainties effect

is decomposed as continuous part Fc and discontinuous part Fd.

According to gravitational acceleration, we could describe the following the following model

of robotic manipulator:

1) If gravitational accelerations, γ is a linear function, γ = Nq, then we have the “linear

oscillator” model:

 ��� + ℎ + Nq +Fc + Fd = ζ (3.5)
2) If gravitational accelerations, γ is a linear function, γ = Nq2, then we have the “quadratic

oscillator” model:

 ��� + ℎ + Nq2 +Fc + Fd = ζ (3.7)
3) If gravitational accelerations, γ is a linear function, γ = Nsin(q), then we have the

“sinusoidally oscillator” model:

 ��� + ℎ + Nsin(q) +Fc + Fd = ζ (3.8)
5.4 DY�AMICS OF A O�E-LI�K

The dynamic equation of motion of the one-link one –DOF arm derived using the EULER-

Lagrange (EL) formulation. Using the EL formulation, the generalised coordinate is q,

whereas l/2 is the distance of the link from its joint origin O. Moreover, let the mass of the

link be m, and its inertia tensor about the mass centre is denoted by I.

 Fig. 3.1 One-link robot arm

 ζ l

Y
 q

g

 Y

 x X

27

The scalar inertia term I is given by,

I=ma
2
/3;

The elements of the vectors h and γ, i.e. h and γ respectively, are obtained as follows;

The elements of the vectors h and γ respectively,

h=0;

γ = mgasq/2 ;

Where, g = acceleration due to gravity.

And, sq represents sin q.

Now by using general equation, we can find

�
�ma

2�� + ��mgasq =ζ (3.8)
Above equation is one link manipulator equation.

The above equation is general equation, if we take uncertainties in consideration and use

linear oscillator in gravitational oscillator, the equation will be followed:

�
�ma

2� � + ��mgasq+ Fc + Fd =ζ (3.9)
5.5 DY�AMIC OF A 2-LI�K ROBOT ARM

The dynamic equations of the 2-link 2-DOF robot, based on euler-lagrange equations are

derived. The vector of generalised coordinates is:

 q= [q1 q2]
T

 Fig. 3.2 Two-link robot arm

 q2

 l2

 l1
 q

28

Whereas l1/2 and l2/2, are the distances of the centre of masses of the two links from their

respective joint origins, namely at O1 and O2. Moreover, let the masses of the two links be m1

and m2. With the chosen coordinate frame, i.e. the fixed frame F.

The standard equation of two link robotic manipulator not including uncertainties as follows:

 ��� + ℎ + γ = ζ (3.10)
Where,

I = [m1l1
2
 + m2 (l1

2
 + l2

2
+ 2l1l2cos(q2)) m2l2

2
 + m2l1l2cos (q2)

 m2l2
2
 + m2l1l2cos (q2) m2l2

2
];

h = [-m2l1l2sin (q2)�� 22 – 2m2l1l2sin (q2)�� 1�� 2
 m2l1l2sin(q2)�� 12];

γ = [m2l2gcos(q1+q2) + (m1+m2)l1gcos(q1)

 m2l2gcos (q1+q2)];

 3.6 CO�TROLLER FOR ROBOTIC MA�IPULATOR

There are many control strategies that can applied for control of robotic manipulator. These

strategies are conventional or adaptive and intelligent control strategies. The general structure

of a robot manipulator with controller is shown in Fig.3.3 below. The trajectory generator

provides the controller with information about the desired position, velocity and acceleration

(q, �� , ��) for each joint and keeps updating this information at the path update rate. The
controller takes this information and compares it with the present (actual) position and

velocity (sometimes acceleration also) of joints (q, �� , ��), which are provides as feedback
through the sensors.

 ζ qact

Trajectory

Generator

(q, �� , ��)

Controller

Robot

Manipulato

r

29

 Fig. 3.3 General structure of robot control system

Based upon the error between the desired and actual values. The controller calculates a vector

of torques (ζ) , which should be applied at respective joints by the actuators to minimize these

errors. The torques is calculated using control law. The goal of the controller is thus,

minimization of error, e and its first derivative e. The dynamic model of robotic manipulator

is described (previously defined) as below;

��� + ℎ + γ = ζ
There are two type controller is used for the control of the robotic manipulator:

3.6.1 Conventional Controller

 The use of conventional control (linear control techniques) for any system is valid only when

the system to be controlled can be modelled by differential equations. Thus, the conventional

control robot manipulator is essentially an approximation, as the manipulator dynamics is

described by highly non-linear equations. The linear control strategies for robots give

excellent performance for manipulators having highly geared joints.

There are many conventional controller are used in robotic manipulator, some of them are

described below:

3.6.1.1 Proportional-Integral-Derivative controller (PID controller)

It is a generic controller widely used in industrial control system. A PID controller attempts

to correct the error between a measured process variable and a set-point by calculating and

then out putting a corrective action that can adjust the process accordingly and rapidly, to

keep the error minimal. It is one common linear control strategy is PID (proportional-

derivative and integral) control. The control law used for this strategy is given by:

ζPID = KDe +KPe + KI � ��� (3.11)
KD, KP and KI are control gain matrices. ζPID is the vector of joint torques. It is possible to

get the desired performance from the system by choosing the appropriate values of

parameters of PID controller. Hand tuning method is used for selection of PID control gains.

30

A robotic control system cannot be allowed to have an oscillatory response for obvious

reasons. For instance, in a pick-n-place operation, an oscillating end-effecter may strike

against the object before picking it to manipulate. Hence, highest possible speed of response

and yet non-oscillatory response, dictates that the controller design parameters shall be

chosen to have the damping ratio equal to unity or least close to it but not less than unity.

3.6.1.2 Feed Forward Inverse Dynamics Control

Feed forward inverse dynamics control is a model based non-linear technique. Scheme for

Feed Forward Inverse Dynamics control is shown below Fig. 3.4. This scheme is uses the

inverse dynamics equations of robotic manipulator in feed forward mode. As can be seen

from this figure, the sum of the outputs of the inverse model and feedback controller (i.e. PID

controller) will be the actual input torque to robot.

 +

 + qact

 Fig. 3.4 Feed forward inverse dynamics controller

In this strategy the torque is calculated as

ζffid = ��� + ℎ + γ (3.12)
ζPID = KDe +KPe + KI � ��� (3.13)
Total control torque is ζ = ζffid + ζPID. The feedback controller plays a role in making the

whole system stable.

Inverse

model

Trajector

y

Generato

r

PID

Controlle

r

Robot

Manipulato

r

31

3.6.1.3 Computed Torque Control

 The most common nonlinear control technique for manipulator control is the computed

torque control. Scheme is similar to feed forward inverse control. Here the computed torque

is given by:

 ζCTC = ζPID + I [��+KDe +KPe] +h + γ (3.14)

If the manipulator model is known exactly then this scheme results in asymptotically stable

and provides asymptotically exact tracking.

3.6.1.4 Critically Damped Inverse Dynamics Control

This control strategy is almost same as inverse dynamics except that the feed forward torque

is calculated using reference velocity and reference acceleration instead of the desired values.

These reference values are defined as:

 qR = qd + KP (qd - q) (3.15)

��R = �� d + KD (qd-q) (3.16)
In this strategy the torque is calculated as:

ζCDID = ζPID + I��R +h��R+ γ (3.17)
Since the robotic manipulator is highly nonlinear system that why the conventional controller

does not give the response with accurately and desirably as well as intelligent controller. In

spite of this the conventional controller is used for robotic manipulator because these are

cheap and required minimal technical knowledge from the engineer or technician.

3.6.2 Intelligent Controller

Since conventional controller does not respond with accuracy for where the high accuracy is

required, there generally intelligent controller. Artificial neural networks and fuzzy logic are

potential tools for intelligent control engineering. It is briefly described below:

3.6.2.1 Fuzzy Logic Control

A fuzzy control system is a control system based logic- a mathematical system that analyzes

analog input values in terms of logical variables that can take continuous values between 0

and1, in contrast to classical or digital logic, which operates on discrete values of either 0

32

and1 (true and false). Just as fuzzy logic can be described as simply as “computing with

words rather than number”. Fuzzy control can described simply as “control with sentences

rather than equations”. There are specific components characteristics of a fuzzy controller to

support a design procedure. In the block diagram in Fig 3.5, the controller is between a pre-

processing block and a post-processing block.

 Fig. 3.5

 Fig.3.5 Block diagram of a fuzzy controller

3.6.2.2 �eural Control

The key element of this control is the novel structure of the information processing system. It

is composed of a large number of highly interconnected processing element (neurons)

working in unison to solve specific problems. Artificial neural network’s, like people,

learning by example. An ANN is configured for a specific application, such as pattern

recognition or data classification, through a learning process. Learning is biological systems

involves adjustment to synaptic connections that exists between the neurons. This is true of

ANN’s as well. Neural networks, with their remarkable ability to drive meaning from

complicated or imprecise data, can be used to extract patterns and detect trends that are too

complex to noticed by either human are computer techniques. A trained neural network can

be thought of as an “expert” in the category of information it has been given to analyze.

Pre-

processin

g

Fuzzifi-

cation

De-

fuzzific

a-tion

Post-

proce-

ssing

Rule

Base

Infere

nce

Engine

33

The neural network has been trained off line to approximate the inverse dynamic model of

the robot manipulator. The learning scheme is shown in Fig.3.6.

Torque, ζ Trajectory

 +

 -

 Fig. 3.6 Scheme for learning dynamics model

The manipulator receives the torque ζ and outputs of resulting trajectory q. Inverse dynamic

model is set in the opposite input-output direction to that of the manipulator. That is, it

receives the trajectory as an input and produces the torque ζNN as its output. The error signal

is the difference between the actual torque and estimated torque. It is expected that this

difference tends to zero as learning proceeds. Once the neural network finishes learning, it

produces an approximate inverse dynamical model.

The entire controller described above has some limitation, for overcome this limitations;

generally, nom-a-days used two or more than two controller simultaneously for a given

system. This type of controller is known as hybrid controller. For example, the neural

controller with PID controller is used for increase the stability of the whole system.

3.7 ADVA�TAGE OF �EURAL CO�TROLLER

There are several advantages of neural controller.

1) Ability learning: an ability to learn how to do tasks based on the data given for

training or initial experience.

Robot

manipulator

 Neural

networks

34

2) Self-organization: an ANN can create its own organization or representation of the

information it receives during learning time.

3) Real time operation: ANN computation may be carried out parallel, and special

hardware devices are being designed and manufactured which take advantage of this

capability.

4) Fault tolerance via redundant information coding: partial destruction of a network

leads to the corresponding degradation of performance. However, some network

capabilities may be retained even with major network damage.

The advantage of neural controller as mentioned above, to make the interest for researcher

and scholars. Now-a-days the research on neural controller is very fluent topic for many

fields and many discipline.

3.8 CO�CLUSIO�

In this chapter, a brief discussion presented about kinematics and dynamics. Secondly, the

equation of first link and two link manipulator is derived. After that, various type of

controller which generally used for the robotic manipulator is described.

35

 CHAPTER IV

 �EURAL �ETWORKS

4.0 GE�ERAL

Neural networks provide a unique computing architecture which can be used to realise

intelligent controllers. Neural network approach is more capable to conventional computers

approach. It may be compared to the human brain. In any neural network design, neuron,

transfer function and learning rule play a more important role.

4.1 CO�VE�TIO�AL COMPUTERS APPROACH VERSUS �EURAL �ETWORKS

APPROACH

Conventional computers use an algorithm approach i.e. the computer follows a set of

instructions in order to solve the problem. That restricts the problem solving capability of

conventional computers to problems that we already understand and know to solve. But

computers would be so more useful if they could do things that we don’t exactly know how

to do.

Neural networks process information in a similar way the human brain does. The network is

compared of a large number of a highly interconnected processing element (neurons) working

in parallel to solve a specific problem. Neural networks learn by example. They cannot

program to perform a specific task. The example must be selected carefully otherwise useful

time is wasted or even worse the network might be functioning incorrectly. The disadvantage

is that because the networks finds out how to solve the problem by itself, its operation can be

unpredictable. On the other hand, conventional computers use a cognitive approach to

problem solving; the way the problem is to solved must be known and stated in small

unambiguous instructions. These instructions are then converted to high level language

program and into machine code that the computer can understand. These machines are totally

predictable; if anything goes wrong is due to the software or hardware fault. Neural networks

and conventional algorithmic computer are not in competition but complement each other.

There are tasks are more suited to an algorithmic approach like arithmetic operations and

tasks that are more suited to neural networks. Even more, a large number of tasks, require

system that use a combination of the two approaches (normally a conventional computer is

36

used to supervise the neural networks) in order to perform at maximum efficiency. Neural

networks do not perform miracles. But if used sensibly they can produce some amazing

results.

4.2 BIOLOGICAL A�D ARTIFICIAL �EURAL SYSTEMS

The brain consists of a large number (approximately10��) of highly connected elements

(approximately 10� connections per element) called neurons. For our purpose these neurons

have three principal components: the dentries, the cell body and the axon. The dentries are

tree-like respective networks of nerve fibres that carry electrical signal into the cell body. The

cell body effectively sum and thresholds these incoming signals. The axon is single long

fibre that carries the signal from the cell body out to other neurons. The point of contact

between an axon of a cell and a dentrie of another cell is called synapse. It is the arrangement

of neurons and the strengths of the individual synapses, determined by a complex chemical

process that establishes the function of the neuron networks.

Artificial neural networks do not approach the complexity of the brain. There are, however,

two key similarities between biological and artificial neural networks. First, the building

blocks of the both networks are simple computational devices (although artificial neurons are

much simpler than biological neurons) that are highly interconnected. Second, the

connections between neurons determine the function of the network.

4.3 �EURO� MODEL

A single- input neuron model is shown in Fig. 4.1. The scalar input p is multiplied by the

scalar weight w to form wp, one of the terms that is sent to the summer. The other input, 1, is

multiplied by a bias b and then passed to the summer. The summer output n, often referred to

as the net input, goes into a transfer function f, which produces the scalar neuron output a.

The actual output depends on the particular transfer function that is chosen. (Some authors

use the term “activation function” rather than transfer function and “offset” rather than bias.)

37

input General Neuron

 w n a

p

 b

 b

 1

 Fig. 4.1 Single input neuron

The neuron output is calculated as,

a=f (wp+b)

If relate this simple model to the biological neuron. The weight w corresponds to the strength

of the synapse, the cell body is represented by the simulation and the transfer function, and

the neuron output a represents the signal on the axon.

This is the simplest neuron model; we can make the complicated neuron by many ways as

following methods-

1) By the increasing the number of the inputs

2) By the increasing numbers neurons in each layer

3) By the increasing of layers (cascading of two or more neuron model).

 In spite of these simple methods, to make a very complicated neural network by various

others complicated methods.

Here the most important thing is that w and b are both adjustable scalar parameters of the

neuron. Typically the transfer function is chosen by the designer and then the parameters w

and b will be adjusted by the some learning rule so that the neuron input/output relationship

meet some specific goal.

 ∑

 f

38

4.4 TRA�SFER FU�CTIO�

The transfer function may be linear or a nonlinear function of net input, n. A particular

transfer function is chosen to satisfy some specification of the problem that the neuron is

attempting to solve. A variety of standard transfer functions is followed:

 Name Input/output relation MATLAB

Hard limit a=0; n<0

a=1; n≥0

hardlim

Symmetrical Hard Limit a=-1; n<0 hardlims

Linear a=+1; n≥0 purelin

Saturating linear a=n satlin

Symmetric Saturating

Linear

a=0; n<0

a=n; 0≤n≤1

a=1; n>1

satlins

Log-Sigmoid a=1/(1+e
-n
) logsig

Hyperbolic Tangent

Sigmoid

a=(e
n
-e
-n
)/(e

n
+e

-n
) tansig

Positive Linear a=0; n<0

a=n: 0≤n

poslin

Competitive a=1; neuron with max n

a=0; all other neuron

compet

 Table 4.1 Standard transfer function

4.5 LEAR�I�I�G RULE

By learning rule means a procedure for modifying the weights and biases of a network. (This

procedure may also be referred to as a training algorithm). The purpose of the learning rule is

to the train the network to perform some specific task. There are many types of neural

network learning rules, but the back-propagation algorithm is the most popular learning rule.

39

4.6 THE BACK-PROPAGATIO� ALGORITHM

 In order to train a neural network to perform some task, we must adjust the weights of each

unit in such a way that the error between the desired output and the actual output is reduced.

This process requires that the neural network compute the error derivative of the weights

(dW). In other words, it must calculate how the error changes as each weight is increased or

decreased slightly. The back propagation algorithm is the most widely used method for

determining the dW.

The back-propagation algorithm is easiest to understand if all the units in the network are

linear. The algorithm computes each dW by the first computing the error derivative (EA), the

rate at which the error changes as the activity level of a unit is changed. For output units, the

EA is simply the difference between the actual and the desired output. To compute the EA for

a hidden unit in the layer just before the output layer, we first identify all the between that

hidden unit and the output units to which it is connected. We then multiply those weights by

the EAs of those output units and add the products. This sum equals the EA for the chosen

hidden unit. After calculating all EAs in hidden layer just before the output layer, we can

compute in like fashion the EAs for other layers, moving from layer to layer in a direction

opposite to the way activities propagate through the network. This is what gives back

propagation its name. Once the EAs has been computed for a unit. It is straight forward to

compute the dW for each incoming connection of the unit. The dW is the product of the EA

and the activity through the incoming connection. Note that for non-linear units, the back-

propagation algorithm includes an extra step. Before back-propagation, the EA must be

converted into EI, the rate at which the error changes as the total input received by a unit is

changed. There are various training function which is used in back-propagation is following:

1) Traingd: gradient descent back propagation

2) Traingda: gradient descent with adaptive learning rate back propagation

3) Traingdm: gradient descent with momentum back propagation

4) Traingdx: gradient descent with momentum and adaptive learning rate back propagation

5) Trainlm: levenberg-marquardt back propagation

40

4.7 IMPLEME�TATIO�S OF �EURAL �ETWORKS

Implementations of neural networks come in many forms. The most widely used

implementations of neural networks today are software simulators, computer programs that

stimulate the operation of neural networks. The speed of the simulation depends on the speed

of the hardware upon which the simulation is executed. A variety of accelerator boards are

available for individual computers to speed the computations; math processors, and the

parallel processors may also be used.

Simulation is key to the development of neural network technology. With a simulator, one

can establish most of the design choices in a neural network system. The choice of inputs and

out puts can be tested as well as the capabilities of the particular paradigm used. Realistic

training sets can be tested in simulated mode.

An implementation could be an individual calculating the changing parameters of the

network using pencil and paper. Another implementation would be a collection of people,

each one acting as a processing unit, using a hand-held calculator. Although these

implementations are not fast enough to be effective for applications, they are nevertheless

methods for emulating a parallel computing structure based on neural architectures. The

response of an artificial neural networks simulation may be accelerated through the use of

specialized hardware. Such hardware may be designed using analog computing technology or

a combination of analog and digital.

4.8 CO�CLUSIO�

In this chapter, the neural network is related with neural network. A simple neuron model and

its related term such as transfer function and learning rule is also described. At the last, the

back-propagation and importance of simulation for neural network is presented.

41

 CHAPTER V

 RESULTS A�D DISCUSSIO�

5.0 GE�ERAL

The performance of the inverse dynamic model of one-link and two-link robotic manipulator

is studied with neural controller through simulation in MATLAB. Various performances of

robotic manipulator are analyzed in detail by the variation of neural controller parameter and

robotic manipulator.

A high performance system consists of a robot and a controller integrated to perform a

precise mechanical manoeuvre. This requires the end-effecter speed and/or position of the

robot to clearly follow a specified trajectory (may be say reference trajectory) regardless of

unknown load variations and other parameter uncertainties.

A back-propagation neural network can be trained to emulate the unknown nonlinear plant

dynamics by presenting a suitable set of input/output patterns generated by the plant. Once

system dynamics have been identified using a neural network, many conventional control

techniques can be applied to achieve the desired objective of trajectory tracking.

5.1 �EURAL CO�TROLLER FOR O�E-LI�K MA�IPULATOR SIMULATIO�

For simulation of neural controller of one-link manipulator, a robotic manipulator with linear

oscillator and uncertainties is considered. MATLAB coding is done on the basis of the

inverse dynamics of the robotic manipulator. Effect of parameter variation of neural

controller and robotic manipulator is presented.

The following parameters values are used for simulation.

Mass of the robotic manipulator =1kg

Length of the robotic manipulator = 1 metre

Coefficient of the continuous uncertainties, c = 0.2

Coefficient of the discontinuous uncertainties, Fd = 0.03

Transfer function of the first layer of neural network = purelin

Transfer function of the second layer of neural network = satlins

Number of the neuron in first layer of neural network = 5

Number of the neuron in second layer of neural network = 1

Training method used in neural network = trainlm

42

5.2 EFFECT OF THE VARIATIO� OF FIRST LAYER TRA�SFER FU�CTIO� OF

�EURAL �ETWORK

For designing point of view, the neural network for robotic manipulator, the proper transfer

function for each layer is very important. Since MATLAB coding for neural controller of

one-link robotic manipulator with two layer neural networks is used. The first layer transfer

function is changed as standard transfer function as mentioned in table. 1 and second layer

assumed as hyperbolic tangent sigmoid transfer function (in MATLAB coding it is

represented by ‘tansig’), the following performance characteristics are obtained, by the

choosing transfer function as mentioned below.

a) The first layer transfer function of the neural network is competitive transfer function

“compat” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”.

The following performance is obtained.

 Fig. 5.1 Performance with “compet,tansig” transfer function

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u
r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-6

-4

-2

0

2

time(sec)

q
s
im
 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0

time(sec)

ta
u
s
im
 (
N
M

)

0 10 20 30 40 50 60 70 80 90 100
-2

0

2

4

6

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time (sec)

e
rr
o
r(
N
M

)

43

In the above performance, the reference trajectory (qr) and the reference torque (taur) is not

followed by the simulated trajectory (qsim) and simulated torque (tausim). Its means this

mechanism is not effective.

b) The first layer transfer function of the neural network as the hard limit transfer function

“hardlim” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”.

The following performance is obtained.

 Fig. 5.2 Performance with “hardlim,tansig” transfer function

In the above performance, the reference trajectory (qr) and the reference torque (taur) is not

followed by the simulated trajectory (qsim) and simulated torue (tausim). Its shows that

tracking capability and identification capability are not satisfactory.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u
r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

time(sec)

ta
u
s
im

 (
N
M

)

0 10 20 30 40 50 60 70 80 90 100
-60

-40

-20

0

20

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

time (sec)

e
rr
o
r(
N
M

)

44

c) The first layer transfer function of the neural network as the symmetrical hard limit

transfer function “hardlims” and the second layer is hyperbolic tangent sigmoid transfer

function “tansig”. The following performance is obtained.

 Fig. 5.3 Performance with “hardlims,tansig” transfer function

In the above performance, the reference trajectory (qr) and the reference torque (taur) is not

followed by the simulated trajectory (qsim) and simulated torue (tausim). This is also not

appropriate tracking and identification capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u

r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-0.05

0

0.05

0.1

0.15

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

e
rr
o
r(

ra
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time (sec)

e
rr
o
r(
N

M
)

45

d) The first layer transfer function of the neural network as the linear transfer function

“purelin” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”. The

following performance is obtained.

 Fig. 5.4 Performance with “purelin,tansig” transfer function

In the above performances, the simulated trajectory is almost followed the reference

trajectory, its means it has very good tracking capability but the simulated torque is not

followed the reference torque sharply, its means it does not have very good identification

capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r

(N
M

)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

20

time (sec)

e
rr

o
r(

N
M

)

46

e) The first layer transfer function of the neural network as the saturating linear transfer

function “satlin” and the second layer is hyperbolic tangent sigmoid transfer function

“tansig”. The following performance is obtained.

 Fig. 5.5 Performance with “satlin,tansig” transfer function

In the above performance, the simulated trajectory is almost followed the reference trajectory,

its means neural controller show good tracking capability but the simulated torque is not

followed the reference torque sharply, its means it does not have very good identification

capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r

(N
M

)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

time (sec)

e
rr

o
r(
N

M
)

47

f) The first layer transfer function of the neural network as the log-sigmoid transfer function

“logsig” and the second layer is hyperbolic tangent sigmoid transfer function “tansig”.

The following performance is obtained.

 Fig. 5.6 Performance with “logsig,tansig” transfer function

In the above performance, the simulated trajectory is almost followed the reference trajectory,

its means neural controller show good tracking capability but the simulated torque is not

followed the reference torque sharply, its means it does not have very good identification

capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u

r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

20

time (sec)

e
rr
o
r(
N

M
)

48

g) The first layer transfer function of the neural network as the hyperbolic tangent sigmoid

transfer function “tansig” and the second layer is hyperbolic tangent sigmoid transfer function

“tansig”. The following performance is obtained.

 Fig. 5.7 Performance with “tansig,tansig” transfer function

In the above performance, the simulated trajectory is almost followed the reference trajectory,

its means neural controller show good tracking capability but the simulated torque is not

followed the reference torque sharply, its means it does not have very good identification

capability.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r
(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u
r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u
s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 20 40 60 80 100
-20

0

20

time (sec)

e
rr
o
r(
N

M
)

49

h) The first layer transfer function of the neural network as the positive linear transfer

function “poslin” and the second layer is hyperbolic tangent sigmoid transfer function

“tansig”. The following performance is obtained.

 Fig. 5.8 Performance with “poslin,tansig” transfer function

In the above performance, the simulated trajectory is almost followed the reference trajectory,

its means neural controller show good tracking capability but the simulated torque is not

followed the reference torque sharply, its means it does not have very good identification

capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u
r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

20

time (sec)

e
rr
o
r(
N

M
)

50

i) The first layer transfer function of the neural network as the symmetrical hard limit transfer

function “satlins” and the second layer is hyperbolic tangent sigmoid transfer function

“tansig”. The following performance is obtained.

 Fig. 5.9 Performance with “satlins,tansig” transfer function

In the above performance, the simulated trajectory is almost followed the reference trajectory,

its means neural controller show good tracking capability but the simulated torque is not

followed the reference torque sharply, its means it does not have very good identification

capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

20

time (sec)

e
rr
o
r(
N

M
)

51

5.2.1 SUMMARY

For the second layer with “tansig” transfer function and change the first layer, it is observed

that:

a) “compet”, “hardlim”, “hardlims” has very bad tracking capability as well as very bad Neural

network identification capability.

b) “purelin”, “satlin”, “logsig”, “tansig”, “satlins”, “poslin” has good tracking capability and

approximate good neural network identification capability.

It may conclude that the first layer of neural network for given system should not be

“compat”, “hardlim”, “hardlims” transfer function. We may be used “purelin”, “satlin”,

“logsig”, “tansig”, “satlins”, “poslin” as first layer of transfer function.

5.3 EFFECT OF THE VARIATIO� OF SECO�D LAYER TRA�SFER FU�TIO� OF

�EURAL �ETWORK

In neural controller design the transfer function and training function method play an

important role. Self defined function or the standard function for transfer function and

training method of neural controller are used for simulation study. A neural controller design

the training method “trainlm” is the first choice of the any designer due to its fast response.

But the choice of the transfer function of the neural controller is a complicated work for any

designer.

As previously mentioned, for designing point of view for neural network, the transfer

function of each layer must be properly chosen. Since a MATLAB coding for neural

controller of one-link manipulator, there are two layer neural networks is used. The variation

and effect of the first layer transfer function is shown in the previous section, in this we will

see the effect of the variation of the second layer transfer function. If we change the second

layer transfer function as standard transfer function as mentioned in table. 1 and the first layer

assumed as linear transfer function (in MATLAB coding it is represented by ‘purelin’), the

following graph is displayed, by the choosing transfer function as mentioned below.

52

a) The second layer transfer function of the neural network as the competitive transfer

function “compet” and the first layer is linear transfer function “purelin”. The following

performance is obtained.

 Fig. 5.10 Performance with “purelin,compet” transfer function

In the above performance, the reference trajectory (qr) and the reference torque (taur) is not

followed by the simulated trajectory (qsim) and simulated torque (tausim). Its means has not

satisfactory tracking capability as well as identification capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r

(N
M

)

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-60

-40

-20

0

20

time(sec)

e
rr

o
r(

ra
d
)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

time (sec)

e
rr

o
r(

N
M

)

53

b) The second layer transfer function of the neural network as the hard limit transfer function

“hardlim” and the first layer is linear transfer function “purelin”. The following performance

is obtained.

 Fig. 5.11 Performance with “purelin,hardlim” transfer function

In the above performance, the reference trajectory (qr) and the reference torque (taur) is not

followed by the simulated trajectory (qsim) and simulated torque (tausim). Its means has not

satisfactory tracking capability as well as identification capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r

(N
M

)

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-60

-40

-20

0

20

time(sec)

e
rr

o
r(

ra
d
)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

time (sec)

e
rr

o
r(

N
M

)

54

c) The second layer transfer function of the neural network as the symmetrical hard limit

transfer function “hardlims” and the first layer is linear transfer function “purelin”. The

following performance is obtained.

 Fig. 5.12 Performance with “purelin,hardlims” transfer function

In the above performance, the reference trajectory (qr) and the reference torque (taur) is not

followed by the simulated trajectory (qsim) and simulated torque (tausim). Its means has not

satisfactory tracking capability as well as identification capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-20

0

20

40

60

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-60

-40

-20

0

20

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

150

200

time (sec)

e
rr
o
r(
N

M
)

55

d) The second layer transfer function of the neural network as the linear transfer function

“purelin” and the first layer is linear transfer function “purelin”. The following performance

is obtained.

 Fig. 5.13 Performance with “purelin,purelin” transfer function

In above performance, both error graphs show zero value. Its means it has very good tracking

capability as well as identification capability. This pair of transfer function for neural

controller gives the very good response for robotic manipulator.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(

ra
d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr
o
r(

N
M

)

56

e) The second layer transfer function of the neural network as the saturating linear transfer

function “satlin” and the first layer is linear transfer function “purelin”. The following

performance is obtained.

 Fig. 5.14 Performance with “purelin,satlin” transfer function

In the above performance is shown that the tracking capability as well as identification

capability of neural network is bad. This pair should not be used for the given robotic

manipulator.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

time(sec)

ta
u
s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

time (sec)

e
rr
o
r(
N

M
)

57

f) The second layer transfer function of the neural network as the log-sigmoid transfer

function “logsig” and the first layer is linear transfer function “purelin”. The following

performance is obtained.

 Fig. 5.15 Performance with “purelin,logsig” transfer function

This performance is also show that the unsatisfactory tracking and identification capability as

previously mentioned pair of transfer function that why it should not be used for neural

network.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u

r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1.5

-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

time (sec)

e
rr
o
r(
N

M
)

58

g) The second layer transfer function of the neural network as the hyperbolic tangent sigmoid

transfer function “tansig” and the first layer is linear transfer function “purelin”. The

following performance is obtained.

 Fig. 5.16 Performance with “purelin,tansig” transfer function

The above performance, the error between reference trajectory between and simulated

trajectory is almost zero, hence the tracking capability of neural network is good but the

identification capability is not very satisfactory.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r
(r

a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u

r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N

M
)

59

h) The second layer transfer function of the neural network as the positive linear transfer

function “poslin” and the first layer is linear transfer function “purelin”. The following

performance is obtained.

 Fig. 5.17 Performance with “purelin,poslin” transfer function

For this combination of transfer function for neural controller show unsatisfactory response

for the tracking as well as identification. Therefore it is not used for the combination for the

one link manipulator.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a
d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)
ta

u
r

(N
M

)

0 10 20 30 40 50 60 70 80 90 100
-0.5

0

0.5

1

1.5

time(sec)

q
s
im

 (
ra

d
)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1.5

-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d
)

0 10 20 30 40 50 60 70 80 90 100
-50

0

50

100

time (sec)

e
rr

o
r(

N
M

)

60

i) The second layer transfer function of the neural network as the symmetrical saturating

linear transfer function “satlins” and the first layer is linear transfer function “purelin”. The

following performance is obtained.

 Fig. 5.18 Performance with “purelin,satlins” transfer function

These combinations of transfer function, neural controller show the unsatisfactory response

for both tracking and identification for the one link manipulator.

5.3.1 SUMMARY

For the first layer with “purelin” transfer function and the change the second layer, it is

observed that:

a) The transfer function “compet”, “hardlim”, “hardlims”, “satlin”, “logsig”, “poslin” has

very poor tracking capability as well as bad neural network identification capability.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r
(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u
r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u
s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N

M
)

61

b) The transfer function “purelin” and “satlins” has almost good tracking capability as well

as neural network identification. But for “tansig”, it has good tracking capability but bad

neural network identification capability.

It may conclude that for second layer, we may be used “purelin”, “satlins”and “tansig”.

5.4 EFFECT OF THE VARIATIO� OF CO�STA�T OF CO�TI�UOUS

U�CERTAI�TIES (c)

There are many parameters in the continuous uncertainties. Here, the continuous uncertainties

are assumed as c.signq. Therefore, the value of c is also a factor that may change the response

of the system. To see the effect of the variation of it, we vary the value of c step by step.

a) For the value of c = 0.0001. The following performance is obtained.

 Fig. 5.19 Performance with c = 0.0001

 At this value of c, the neural controller show the good tracking capability for the robotic

manipulator but it gives unsatisfactory response for the identification of the robotic

manipulator.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r
(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u
r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im
 (
ra
d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u
s
im
 (
N
M

)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra
d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N
M

)

62

b) For the value of c = 0.001. The following performance is obtained.

 Fig. 5.20 Performance with c = 0.001

For the value of c = 0.001, the neural controller response is satisfactory for the robotic arm

tracking, neural controller also show the almost satisfactory identification capability.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

63

c) For the value of c = 0.01. The following performance is obtained.

 Fig. 5.21 Performance with c = 0.01

Neural controller at this value of c gives satisfactory response for both the tracking and

identification of the robot arm.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a

d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s

im
 (

ra
d

)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d

)

0 20 40 60 80 100
-15

-10

-5

0

time (sec)

e
rr

o
r(

N
M

)

64

d) For the value of c = 1. The following performance is obtained.

 Fig. 5.22 Performance with c = 1

For the value of c = 1, neural controller control the robotic arm trajectory in well manner but

identification of it show a little deviation.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a

d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s

im
 (

ra
d

)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d

)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

65

e) For the value of c = 2. The following performance is obtained.

 Fig. 5.23 Performance with c = 2

Neural controller at the value of c equal to two show the some variation in tracking of

reference trajectory as well as also show the some variation to follow the reference torque.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a

d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s

im
 (

ra
d

)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d

)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

66

f) For the value of c = 3. The following performance is obtained.

 Fig. 5.24 Performance with c = 3

At the value of c = 3, the tracking capability as well as identification capability of neural

controller is not satisfactory. It shows a lot variation.

5.4.1 SUMMARY

It is observed from the variation of continuous uncertainties c that from the value between

0.01 to 2 the neural controller show very good tracking capability as well as good capability

of the identification of the robotic manipulator, but beyond this region neural controller show

bad response for the both tracking as well as identification of the robotic manipulator.

Therefore, for the proper operation of the neural controller, the value of c should be selected

between 0.01 and 2.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r
(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u
r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u
s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N

M
)

67

5.5 EFFECT OF THE VARIATIO� OF ROBOT ARM LE�GHT (l)

Length of the robotic manipulator is one of more important factor for designing point of

view. For particular range of the length, the neural controller gives satisfactory response:

beyond this range it will show variation in tracking as well as identification capability. For

finding that range the length of robotic manipulator, length is changed in suitable step.

a) For the length of robotic manipulator, l = 0.1. The following performance is obtained.

 Fig. 5.25 Performance with l = 0.1

For the length of 0.1, simulated trajectory of the arm show a lot of variation from the

reference trajectory of the robotic arm. Its means at this length, neural controller fail to

control the robotic arm, but neural controller has satisfactory identification capability at this

value.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r
(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u
r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u
s
im

 (
N
M

)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N
M

)

68

b) For the length of robotic manipulator, l = 0.3. The following performance is obtained.

 Fig. 5.26 Performance with l = 0.3

For this length of the robotic manipulator, neural controller work properly for both the

tracking and identification of the robotic manipulator.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a

d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s

im
 (

ra
d

)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d

)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

69

c) For the length of robotic manipulator, l = 2. The following performance is obtained.

 Fig. 5.27 Performance with l = 2

For this arm length of the robotic manipulator, neural controller also works properly for both

the tracking and identification of the robotic manipulator.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a

d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s

im
 (

ra
d

)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

time(sec)

e
rr

o
r(

ra
d

)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

70

d) For the length of robotic manipulator, l = 3. The following performance is obtained.

 Fig. 5.28 Performance with l = 3

For this length of the robotic manipulator, neural controller is satisfactory for tracking of the

robotic manipulator; it also has satisfactory identification capability.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

71

e) For the length of robotic manipulator, l = 3.1. The following performance is obtained.

 Fig. 5.29 Performance with l = 3.1

For this value the neural controller has satisfactory tracking capability but does not have

satisfactory identification capability.

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
r

(r
a

d
)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

 time(sec)

ta
u

r
(N

M
)

0 10 20 30 40 50 60 70 80 90 100
-2

-1

0

1

2

time(sec)

q
s

im
 (

ra
d

)

0 10 20 30 40 50 60 70 80 90 100
-100

-50

0

50

100

time(sec)

ta
u

s
im

 (
N

M
)

0 10 20 30 40 50 60 70 80 90 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d

)

0 10 20 30 40 50 60 70 80 90 100
-20

-10

0

10

20

time (sec)

e
rr

o
r(

N
M

)

72

f) For the length of robotic manipulator, l = 3.5. The following performance is obtained.

 Fig. 5.30 Performance with l = 3.5

At this value the neural controller has good tracking capability but it has unsatisfactory

identification capability of the robotic manipulator.

5.5.1 SUMMARY

By the variation of the length of robotic manipulator, it is observed that neural controller

respond very well for tracking and identification of the robotic manipulator between 0.3

and 3. Beyond the length between o.3 and 3 the neural controller response in tracking

capability is satisfactory but it loses its identification capability.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

73

5.6 EFFECT OF THE VARIATIO� OF ROBOTIC MA�IPULATOR MASS (m)

Mass of the robotic manipulator performance also plays an important role for this system.

The mass is also affected the controller performance. For a certain range, the neural controller

would do its job properly beyond this range it shows the bad result. For finding that range the

mass of robotic manipulator, mass is changed in suitable step.

a) For the mass of robotic manipulator, m = 0.08. The following performance is obtained.

 Fig. 5.31 Performance with m = 0.08

 For this value of mass of robotic manipulator, the neural controller is working properly. Its

means the tracking error as well as torque error is almost zero.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r
(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u
r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im

 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u
s
im

 (
N
M

)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr
o
r(
ra

d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N
M

)

74

b) For the mass of robotic manipulator, m = 3. The following performance is obtained.

 Fig. 5.32 Performance with m = 3

For this value of robotic manipulator, neural controller responds very well for both tracking

as well as identification of the robotic manipulator.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a

d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s

im
 (

ra
d

)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

0.5

time(sec)

e
rr

o
r(

ra
d

)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

75

c) For the mass of robotic manipulator, m = 4. The following performance is obtained.

 Fig. 5.33 Performance with m = 4

Neural controller is worked properly both tracking as well as identification of the robotic

manipulator at mass of robotic manipulator is equal to 4.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r

(r
a

d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u

r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s

im
 (

ra
d

)

0 20 40 60 80 100
-100

0

100

time(sec)

ta
u

s
im

 (
N

M
)

0 20 40 60 80 100
-1

-0.5

0

time(sec)

e
rr

o
r(

ra
d

)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr

o
r(

N
M

)

76

d) For the mass of robotic manipulator, m = 4.5. The following performance is obtained.

 Fig. 5.34 Performance with m = 4.5

For this value, the neural controller has good tracking capability but identification capability

is unsatisfactory for the robotic manipulator.

5.6.1 SUMMARY

For variation of the mass of the robotic manipulator, it is observed that the neural controller

controls the robotic manipulator to its desired trajectory as well as has good identification

capability for robotic manipulator at the value of mass of the robotic manipulator between

0.08 and 4.

5.7 TWO-LI�K MA�IPULATOR SIMULATIO�

For simulation of neural controller of two-link manipulator, the continuous and discontinuous

uncertainties are assumed to be neglected. MATLAB coding is done on the basis of the

inverse dynamics of the robotic manipulator. There is only presented the learning rate

variation of training function of neural controller and observed its effect on the tracking

capability of the neural controller.

0 20 40 60 80 100
-2

0

2

time(sec)

q
r
(r
a
d
)

0 20 40 60 80 100
-100

0

100

 time(sec)

ta
u
r
(N

M
)

0 20 40 60 80 100
-2

0

2

time(sec)

q
s
im
 (
ra

d
)

0 20 40 60 80 100
-100

0

100

time(sec)
ta

u
s
im
 (
N
M

)

0 20 40 60 80 100
-1

-0.5

0

time(sec)

e
rr
o
r(
ra

d
)

0 20 40 60 80 100
-20

-10

0

10

time (sec)

e
rr
o
r(
N
M

)

77

The following parameters are considered for simulation study.

Mass of the first arm of the robotic manipulator = 4 kg

Mass of the second arm of the robotic manipulator = 2 kg

Length of the first arm of the robotic manipulator = 1 metre

Length of the second arm of the robotic manipulator = 0.5 metre

Value of the continuous uncertainties, Fc = 0

Value of the discontinuous uncertainties, Fd = 0

Here the transfer function and training method of neural controller is self defined function.

Standard transfer function and training method is not used here.

5.8 EFFECT OF THE VARIATIO� OF LEAE�I�G RATE

Learning rate is one important factor for neural network due to the reason of the stability of

the neural network. Since, one major problem in neural network system is the stability. It may

be overcome by the properly choosing of learning rate of given learning algorithm. To see the

effect of learning rate in the neural network, we vary the learning rate step by step.

a) For the value of learning rate = 0.00000000001. The following performance is obtained.

 Fig. 5.35 Performance with learning rate = 0.00000000001

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r1
(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s
im
1
(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.2

0

0.2

0.4

0.6

time(sec)

e
rr
o
r 1
(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r2
(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s
im
2
(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.6

-0.4

-0.2

0

0.2

time(sec)

e
rr
o
r 2
(r
a
d
)

78

 In the above performance, the error between desired trajectory and simulated trajectory for

both first arm and second arm is almost zero. Therefore, neural controller for this value of

learning rate performed satisfactory tracking capability.

b) For the value of learning rate = 0.001. The following performance is obtained.

 Fig. 5.36 Performance with learning rate = 0.001

For this value the first arm and second arm trajectory follow their desired trajectory, its

means the neural controller control the robotic manipulator very well.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r1

(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s
im

1
(r

a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.2

0

0.2

0.4

0.6

time(sec)

e
rr

o
r 1

(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r2

(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s
im

2
(r

a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.6

-0.4

-0.2

0

0.2

time(sec)

e
rr

o
r 2

(r
a
d
)

79

c) For the value of learning rate = 1. The following performance is obtained.

 Fig. 5.37 Performance with learning rate = 1

At this value of the learning rate at 1, the neural controller control the robotic first and second

arm properly as we seen from the error curve of first arm and second arm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r1

(r
a

d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s

im
1
(r

a
d

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.2

0

0.2

0.4

0.6

time(sec)

e
rr

o
r 1

(r
a

d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r2

(r
a

d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s

im
2
(r

a
d

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.6

-0.4

-0.2

0

0.2

time(sec)

e
rr

o
r 2

(r
a

d
)

80

d) For the value of learning rate = 2. The following performance is obtained.

 Fig. 5.38 Performance with learning rate = 2

For this value of learning rate, neural controller show satisfactory tracking capability for first

arm as well as second arm of the two-link manipulator.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r1

(r
a

d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s

im
1
(r

a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.2

0

0.2

0.4

0.6

time(sec)

e
rr

o
r 1

(r
a
d

)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r2

(r
a

d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-2

-1

0

1

2

time(sec)

q
s

im
2
(r

a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-0.6

-0.4

-0.2

0

0.2

time(sec)

e
rr

o
r 2

(r
a
d

)

81

e) For the value of learning rate = 2.1. The following performance is obtained.

 Fig. 5.39 Performance with learning rate = 2.1

For this value of the learning rate, the neural controller show drastic change for the two-link

manipulator. From above results, it is observed that neural controller perform unsatisfactory

tracking capability because it is not properly trained at this value.

5.8.1 SUMMARY

For value of the learning rate till two neural network give good response because it is

properly, but the value more than two, the neural controller is not trained properly. That why

neural controller is giving unsatisfactory response.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r1

(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1
x 10

248

time(sec)

q
s
im

1
(r

a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1
x 10

248

time(sec)

e
rr
o
r 1

(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
-1

-0.5

0

0.5

1

time(sec)

q
r2

(r
a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4
x 10

248

time(sec)

q
s
im

2
(r

a
d
)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

1

2

3

4
x 10

248

time(sec)

e
rr
o
r 2

(r
a
d
)

82

5.9 CO�CLUSIO�

In this chapter the various simulation results are shown which is carried out in MATLAB

simulink. The performance of the one-link manipulator and two-link manipulator with neural

controller is presented. From this simulation results, it is concluded that one link manipulator

for neural controller give good response for following parameters:

1) Length of robotic manipulator should be between 0.3 metre and 3 metre.

2) Mass of robotic manipulator m, should be between 0.08 kg and 4 kg.

3) Continuous uncertainties constant c, should be between 0.01 and 2.

4) For neural network design, we may use “logsig”, “purelin”, “satlins”, “poslin”, “

tansig” transfer function, but the “poslin” and “purelin” give better result for the first

layer of the neural network.

5) For neural network design, we may use “purelin”, “satlins”, “tansig” transfer function,

but “purelin” give better result for the second layer of the neural network.

It can say that from point 4 and point 5, for neural controller design for one link

robotic manipulator, “poslin” and “purelin” or “purelin” and “purelin” transfer

function combination should be used for find out satisfactory performance.

It is also concluded for the given two-link manipulator with neural controller that for proper

training and satisfactory tracking capability the learning rate should be 2 or less than two.

83

 CHAPTER VI

 CO�CLUSIO� A�D FUTURE SCOPE OF WORK

6.0 CO�CLUSIO�

In this project, dynamics and performance simulation with neural controller for one-link and

two-link manipulator through neural controller is described in details. Effect of parameter

variation which is related to the robotic manipulator or neural controller has been studied and

simulation performance is obtained and analyzed in detail. Neural networks and various

controller of robotic manipulator are also discussed in brief.

6.1 FUTURE SCOPE OF WORK

There are many other learning rules for neural controller which could be use for comparison

of the response of one-link and two-link manipulator. Effect of parameters of two-link

manipulator by which variation and analysis could be further analyse. Variation in the

reference trajectory may be split way and necessary analysis of performance with the neural

controller could be determined. Neural controller identification quality may be also analyzed

for the two link manipulator.

84

 REFERE�CES

1. Ghania Debbache, Abdelhak Bennia, Noureddeine Golea, “Neural Networks-based

Adaptive State Feedback Control of Robot Manipulators”, International Journal of

Computers, Communication & control, Vol. 2, No.4,200,pp.328-339.

2. Andon V. Topalov, Okyay Kaynak, Gokhan Aydin, “Neuro-adaptive sliding-mode

tracking control of robot manipulators”, International Journal of Adaptive Control and

Signal Processing, Int.J.Adapt. Control Signal Process. 2007,27:674-691.

3. H.A.Talebi,R.V.Patel,K.Khorasani, “A Neural Network Controller for a Class of

Nonlinear Non-minimum phase systems with application to a Flexible-Link

Manipulator”, Journal of Dynamic Systems, Measurement, and Control, Vol. 127,

June 2005, pp. 289-294.

4. T. Efrati, H. Flashner, “Neural network based tracking control of mechanical

systems”, Transactions of the ASME, Vol.121, March 1999, pp. 148-154.

5. Kazuhiku Takahashi, Ichiro Yamada, “Neural-Network Based Learning Control of

Flexible Mechanism with Application to a Single-Link Flexible Arm”, Transactions

of the ASME, Vol. 116, December 1994, pp. 792-795.

6. E.B.Kosmatopoulos, A.K. Chassiakos, M.A.Cchrisodoulou, “Robot Identification

using Dynamical Neural Networks”, Proceeding of the 30
th
 Conference on Decision

and Control Brighton, England, December 1991, pp.2934-2935.

7. Toshio Fukunda, Takanori Shibata, “Neuromorphic Control for Robotic

manipulators”, IEEE, 1990, pp.310-315.

8. Amor Jnifene, William Andrews, “Experimental Study on Active Vibration Control

of a Single-link Flexible Manipulator Using Tolls of Fuzzy Logic and Neural

Networks”, IEEE Transactions on Instrumentation and Measurement, Vol. 54, No.3,

June 2005, pp. 1200-1208.

9. Byung Kook Yoo, Woon Chul Ham, “Adaptive Control of Robotic Manipulator

Using Fuzzy Compensator”, IEEE Transactions on Fuzzy Systems, Vol.8, No.2,

April2000,pp. 186-199.

10. Bogdan M. Wilamowsaki, “Methods of Computational Intelligence”, IEEE

International Conference on Industrial Technology (ICIT), 2004.

85

11. Patrica Melin, Oscar Castillo, “Soft Computing for Intelligent Control of Nonlinear

Dynamical Systems”, International Journal of Computational Cognition, Vol.2, No. 1,

March 2004, pp. 45-78.

12. Rahmat Shoureshi, “Intelligent Control Systems: Are They for Real?”, Transactions

of the ASME, Vol. 115, June 1993, pp. 392-401.

13. G.W.Ng, P.A.Cook, “Neural Networks in Control of Systems with Unknown and

Varying Time-Delays”, UKACC International Conference on Control, Sep. 1996,

pp.188-193.

14. Liang Jin, Peter N. Nikiforuk, Madan M. Gupta, “Dynamic Recurrent Neural

Networks for Control of Unknown Nonlinear System”, Journal of Dynamic Systems,

Measurement, and Control,Vol.116, December 1994, pp.567-576.

15. Fu-Chuang Chen, “Back-Propagation Neural Networks for Nonlinear Networks Self-

Tuning Adaptive Control”, IEEE Control Systems Magazine,1990, pp. 44-48.

16. Kumpati S. Narendra, Kannan Parthasarathy, “Identification and Control of

Dynamical Systems Using Neural Networks”, IEEE Transactions on Neural

Networks, Vol.1, March 1990, pp. 4-26.

17. S.M.Yang, G.S.Lee, “Neural Networks Design by Using Taguchi Method”,

Transactions of the ASME, Vol.121, Sep. 1999, pp.560-563.

18. M.O.Tokhi, A.K.M.Azad, H.Poerwanto, “SCEFMAS: An Environment for Dynamic

Characterisation and Control of Flexible Robot Manipulators”, Int.J. Engng. Ed.,

Vol.15, No.3, 1999, pp.213-226.

19. K.S.Fu, R.C.Gonzalez, C.S.G.Lee, “Robotics”, McGraw-Hill Book Company.

20. S.R.Deb, “Robotics Technology and Flexible Automation”, Tata McGraw-Hill

Publication Company Limited.

21. Robin R. Murfy, “Introduction to AI Robotics”, Prentice Hall of India Private

Limited.

22. Martin T. Hagan, Howard B. Demuth, Mark Beale, “Neural Network Design”, Vikas

Publication House.

