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SYNOPSIS   

 
 
DESIGN OF DIGITAL IIR FILTER USING MATRIX OPERATION 

 
 
 
The transfer function H(z) of the desired Digital Infinite Impulse Response 
Filter can be obtained from the normalized transfer function Ha(s) of the 
analog low pass filter .Recently it has been shown that Pascal Matrix allows 
the appropriate transformation for design of the low pass, high pass , and 
band pass digital filters . Unfortunately, this method is difficult to use in 
case of transforming Ha(s) to the High order bandpass filter. This project 
discusses the design of digital IIR filter using frequency transformation by 
matrix operation . This method uses two matrices one for frequency 
transformation and another for bilinear transformation, obviously second 
matrix is the Pascal matrix. Combination of the matrices described here 
with the Pascal matrix allows the design of the digital IIR filters from the 
continuous time prototypes. After designing IIR Digital filter using above 
method we will design same filter  by using other well known frequency 
transformation methods, after that we will try to apply some 
implementations , and at the  last, we will compare these methods with  the 
method given at beginning to see which one is better. All approaches 
described above will use matlab commands, a mathematical software 
package, to design, manipulate, and analyze digital filters. 
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INTRODUCTION 
 
The Digital Filter Design problem involves the determination of a set of filter coefficients 
to meet a set of design specifications. These specifications typically consist of the width 
of the passband and the corresponding gain, the width of the stopband(s) and the 
attenuation therein; the band edge frequencies (which give an indication of the transition 
band) and the peak ripple tolerable in the passband and stopband(s). 
 
Two types of digital filters exist – the IIR (Infinite Impulse Response) and the FIR (Finite 
Impulse Response). FIR filters possess certain properties ,which make them the preferred 
design choices in numerous situations over IIR filters. Most notably, FIR filters (all zero 
system function) are always stable, with a realization existing for each FIR filter. Another 
feature exclusive to FIR filters is that of a linear phase response. 
 
The design of IIR filters is closely related to the design of analog filters, which is a 
widely studied topic. An analog filter is usually designed and a transformation is carried 
out into the digital domain. Two transformations – the impulse invariant transformation 
and the bilinear transformation are widely used till now. This project ‘Design of 
Digital IIR Filter using Matrix operation’ discusses the design of digital IIR filter 
using frequency transformation by matrix operation . This method uses two matrices one 
for frequency transformation and another for bilinear transformation, obviously second 
matrix is the Pascal matrix. Combination of the matrices described here with the Pascal 
matrix allows the design of the digital IIR filters from the continuous time prototypes. 
After designing IIR Digital filter using above method we will design same filter  by using 
other well known frequency transformation methods, after that we will try to apply some 
implementations , and at the  last, we will compare these methods with  the method given 
at beginning to see which one is better. All approaches described above will use Matlab 
commands, a mathematical software package, to design, manipulate, and analyze digital 
filters . 
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CHAPTER 1 
 

Introduction to Basic Digital Filter 
 
1.1. IIR filters 
 
The output from an IIR digital filter is made up from previous inputs and previous 
outputs, as described by the difference equation 
 

                                        
    1.11 

 
 
In order to compute the impulse response two convolutions are involved: one with the 
previous inputs, and one with the previous outputs. In each case the convolving function is 
called the filter coefficients.  
 
If such a filter is subjected to an impulse then its output need not necessarily become zero 
after the impulse has run through the summation. So the impulse response of such a filter can 
be infinite in duration. Such a filter is called an Infinite Impulse Response filter or IIR 
filter.  
 
Note that the impulse response needs not necessarily be infinite: if it were, the filter would be 
unstable. In fact for most practical filters, the impulse response will converge to zero. One 
might argue that mathematically the response can go on for ever, getting smaller and smaller: 
but in a digital world once a level gets below one bit it might as well be zero. The Infinite 
Impulse Response refers to the ability of the filter to have an infinite impulse response and 
does not imply that it necessarily will have one: it serves as a warning that this type of filter 
is prone to feedback and instability.  
 
Note that equation (1.11) describes a linear time-invariant system, which is causal and 
physically realizable. It is easy to demonstrate that its frequency response is 
 
 
 

 
 

     1.12 
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While it is nice to be able to calculate the frequency response given the filter coefficients, in 
practice the inverse operation is done more frequently: that is, to calculate the filter 
coefficients (ak and bk) having first defined the desired frequency response, but there is one 
problem, so far, it has not been discovered a general inverse solution to the frequency 
response equation.  
Usually, engineers design digital filters with the idea that they will be implemented on some 
piece of hardware. This means that the filter must meet some requirements by using the least 
possible amount of computation, in other words, using the smallest number of coefficients. 
So one is facing with an insoluble inverse problem, efficiency in term of hardware and the 
need of additional constraints.  
 
Matlab has several design algorithms that can be used to create and analyze directly both IIR. 
The IIR filters that can be created in Matlab are Butterworth, Chebyshev type 1 and 2, and 
Elliptic. 
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1.2. FIR Filters  
It is much easier to approach the problem of calculating the filter coefficients if one 
simplify the filter equation so that one only has to deal with previous inputs. The filter 
equation is then simplified: 
 
 
 

 
         1.21 

 
 
If such a filter is subjected to an impulse then its output must necessarily become zero 
after the impulse has run through the summation. So the impulse response of such a filter 
must necessarily be finite in duration. Such a filter is called a Finite Impulse Response 
filter or FIR filter.  
The filter's frequency response is also simplified, because all the bottom half  goes away: 
 
 

 
                                                                                                                                      

          1.22 
Equation (1.22) is just the Fourier transform of the filter coefficients. So the coefficients 
for an FIR filter can be calculated simply by taking the inverse Fourier Transform of the 
desired frequency response.  
There are several ways to design an FIR filter as described by the next two sections 
 
 
Selection of Using FIR and IIR Filter 
 

• If linear phase is required →FIR 
• If stability is required → FIR (since it can be non-recursive technique) 
• Finite word-length effect to FIR less than to IIR. 
• If sharp cut-off frequencies are required → FIR requires more coefficients, 

processing time, and memory size than IIR. (However, FFT algorithm or multirate 
technique may be used for FIR to compensate these disadvantages.) 

• IIR can be used analog filter as prototype, but FIR can be synthesized more easily 
for any required frequency response. (However, in general, to synthesize FIR is 
required CAD because its algebraic design technique is very difficult.) 
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CHAPTER 2 
 

Analog to Digital Domain Mapping Techniques 
 
Digital Filters are designed by using the values of both the past outputs and the present 
input, an operation brought about by convolution. If such a filter is subjected to an 
impulse then its output need not necessarily become zero. The impulse response of such a 
filter can be infinite in duration. Such a filter is called an Infinite Impulse Response filter 
or IIR filter. The infinite impulse response of such a filter implies the ability of the filter 
to have an infinite impulse response. This indicates that the system is prone to feedback 
and instability. The report studies several different types of IIR filters including the 
Butterworth Filter, Chebyshev I & II Filters and Elliptic Low, High and Bandpass filters. 
Here IIR filters are designed essentially by the  Frequency transformation by using 
Matrix operations , Impulse Invariant and Bilinear Z-Transformation. 
 
 
Reasons of Design of Discrete-Time IIR Filters from Continuous-Time Filters 
 

• The art of continuous-time IIR filter design is highly advanced and, since useful 
results can be achieved, it is advantageous to use the design procedures already 
developed for continuous-time filters. 

• Many useful continuous-time IIR design methods have relatively simple closed-
form design formulas. Therefore, discrete-time IIR filter design methods based on 
such standard continuous-time design formulas are rather simple to carry out. 

• The standard approximation methods that work well for continuous-time IIR 
filters do not lead to simple closed-form design formulas when these methods are 
applied directly to the discrete-time IIR case. 

 
 
 
2.1 Frequency Transformation by Matrix operations. 
 
It is known that the transfer function H (z )of the desired  digital infinite-impulse 
response filter can be obtained from the normalized transfer function Ha( s) of the analog 
low-pass filter. It has been shown that Pascal matrix allows the appropriate 
transformation for design of the low-pass, high-pass, and bandpass digital filters. 
Unfortunately, this method is difficult to use in case of transforming Ha ( s) to the high-
order bandpass filter. This project is based on a similar method, especially suitable for  
design of the bandpass and bandstop filters without order limitation .We will also try to 
design lowpass and highpass digital IIR filters by this method. 
 
Introduction: 
 
One of the  popular digital infinite impulse response (IIR) filters design method bases on 
the procedures for digitizing a continuous-time filter into discrete-time filter. Usually, 
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two steps are performed. First, the frequency transformation is applied to the normalized 
analog low-pass transfer function . Second, the bilinear transformation is used to obtain 
the transfer function of the desired digital filter. Recently, it has been shown that Pascal 
matrix allows executing  these two steps at the same time for design the low-pass, high-
pass , and bandpass  digital filters. 
 
This project  aims to obtain the same transformation from Ha ( s) to H(z) by mean of two 
matrices; one for frequency transformation and second for bilinear transformation. The 
second matrix remains the Pascal matrix.  
 
Let us assume the normalized transfer function of an analog low-pass filter is in the form 

     

 
………………(1) 

 
During the first step, the coefficients Bi and Ai  are transformed to the coefficients 

    Which form the transfer function of the desired filter type 
 

 
…………..(2) 

If HD(s) describes the band-pass or band- stop filter then  m  = 2n,  where for  low-pass 
and high-pass  filters m = n . 
 
Finally , from HD(s) , the transfer function H(z) of the digital  filter must be obtained  
                                                                                                                 

 
                                                                                                                              (3) 

By  using Pascal Matrix P, as follows: 

 
 
 

(4) 
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(5) 

 
The coefficient   c  depends on the  sampling period  Ts  i.e. c  =  2/ Ts and  p is the 
 m + 1 x m + 1  matrix formed by the following  algorithm. 
 
 
• First row of the matrix contains only ones. 
 
• The elements of the last column can be calculated  by 

 
Pi,n  =  (-1)i m!/ (m – i )! i!                                                (6) 

 
Where i = 0,1………….,m. 

 
• All the others elements can be computed on the basis of previous one , as follows: 

Pi,j =  Pi-1,j + P i-1,j+1 + Pi,j+1                                                                     (7) 
 

Where i = 1,2,3………m  and  j = m-1, m-2, ……..0 
 

Analog  frequency transformations 
 
The well-known analog frequency transformations  from a normalized low-pass filter to 
the desired filter type are summarized in the second column of Table 1. Let us now 
consider the case n = 3 . After substituting of the appropriate expression for in (1) and 
comparing of the result obtained with (2), we observe 
that the denominator coefficients can be calculated from by use of the matrices presented 
in the last column of the Table I. The same holds for the transformation in the numerator. 
The problem is how to construct the desired matrices for the arbitrary filter order. The 
analysis of the data for  n  =  3 leads to conclusion that the problem becomes trivial in 
case of the low-pass-to-low-pass and low-pass-to-high-pass transformations 
 

 
 

(8) 
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And 

 
(9) 

                                                                  
Let us notice that in case of the low-pass to band-pass transformation, all the nonzero 
elements  in   each   column   refer   to  the expansion of the expression (K1 + 1 )r , where 
r is the column number  ( r= 0,1,2………….n) and K1 = ΩlΩu. Therefore, matrix Q(B) can 
be formed by means of the following simple algorithm. 
 
 
• Create matrix with 2n + 1 rows and  n + 1 columns. 
• Calculate nonzero elements by use of  equation (3) recurrently for  j = 0,1,…n 
 

 
                     (10) 

 
 
The similar algorithm is valid for the low-pass-to-bandstop transformation because 
matrix  Q(s)  can be obtained from Q(B) by the column order reversion. Thus, (3) must be 
replaced with (4) 
 
 

 
                                                                                (11)         
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Table for analog frequency transformation from a normalized low-pass 
filter to the desired filter type 
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2.2 Impulse Invariant 
 
This procedure involves choosing the response of the digital filter as an equi-spaced 
sampled version of the analog filter. 
 
Impulse Invariant Algorithm: 

• Step 1: define specifications of filter 
– Ripple in frequency bands 
– Critical frequencies: passband edge, stopband edge, and/or cutoff 

frequencies. 
– Filter band type: lowpass, highpass, bandpass, bandstop. 

• Step 2: linear transform critical frequencies as follow 
   Ω = ω/Ts 

• Step 3: select filter structure type and its order: Butterworth, Chebyshev type I, 
Chebyshev type II or inverse Chebyshev, elliptic. 

• Step 4: convert Ha(s) to H(z) using linear transform in step 2. 
• Step 5: verify the result. If it does not meet requirement, return to step 3. 

 
 
 
The impulse invariance method maps the left hand portion of the s-plane into the interior 
of the unit circle and the right hand portion of the s-plane to the exterior of the unit circle; 
hence each horizontal strip in the s-plane is overlaid onto the z-plane to form the digital 
system function from the analog system function. Since any practical analog filter can 
never be band limited interference is a major consideration. Due to the aliasing that arises 
in the sampling process the digital frequency response is distinct from the analog filter 
frequency response. Hence distortion in the frequency response is one of the major 
limiting factors of this implementation while its advantage lies in the fact that there is a 
linear relationship between the analog and digital frequency response. Hence in order to 
prevent sever distortion due to the band limiting this method is restricted to the design of 
Low and Bandpass Filters. 
 
 
 
2.3 Bilinear Transformation: 
 
The Billinear Transformation method overcomes the effect of aliasing that is caused to 
due the analog frequency response containing components at or beyond the Nyquist 
Frequency. The bilinear transform is a method of compressing the infinite, straight 
analogue frequency axis to a finite one long enough to wrap around the unit circle once 
only. This is also sometimes called frequency warping. This introduces a distortion in the 
frequency. This is undone by pre-warping the critical frequencies of the analog filter 
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(cutoff frequency, center frequency) such that when the analog filter is transformed into 
the digital filter, the designed digital filter will meet the desired specifications. IIR digital  
filters  can  be  designed  by  using  bilinear  transformation method which is as follows. 
 
Design of Lowpass IIR Digital Filter: 
 
First we illustrate the development of a lowpass IIR digital  transfer meeting given 
specifications by the bilinear transformation method .To  this end , we  first  obtain 
the specification for a prototype lowpass analog  filter  from  the specifications of 
the lowpass digital  filter  using  the  inverse  transformation. We    then   determine   
the   analog   transfer   function   Ha (s)  meeting   the specifications of  the  
prototype  analog  filter .  Finally,  the  analog  transfer function Ha (s)  is  
transformed  into a digital  transfer function H(z) using the bilinear transformation.  
 
The  bilinear  transformation from  the s – plane  to the z – plane is given  by  
         
 

s =    2 (1- z-1) 

       T(1+z-1) 
 
 
Here T represents the sampling interval, the parameter T has no effect  on  the 
expression  for H(z).For convenience , we choose T=2. 
 
 
The relation between the digital transfer H(z) and the  parent analog transfer function 
Ha(s) is then given by 
 

H(z)  = Ha(s)|s =       2(1- z-1 ) 
                                               T(1+ z-1) 

 
 

Fig:2.1 bilinear transformation mapping from s- plane to z- plane 
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The corresponding inverse transformation for T =2 is given by 
 

z =         1 + s 
             1 - s 

 
The exact relation between the imaginary axis in the s-plane (s =jΩ ) and the unit circle in the z- 
plane (z = ejω ) is of interest, therefore the relation between 3db cut off frequency in digital and 
analog domain is given by 
 

Ω  = tan(ω/2) 
 
                 
Design of  Highpass, Bandpass, and Bandstop IIR Digital Filters: 
 

Follow are the steps to design Highpass, Bandpass, and Bandstop IIR digital Filters 

Approach I  
 

1.)Pre-wrap the specified digital frequency specification of the desired digital filter to 
analog frequency specifications using equation 
 

Ω = tan(ω/2) 
 

2.)Convert the frequency specification into a prototype analog lowpass filter with 
appropriate frequency transformation as mention earlier.  
 

  3.)Design analog lowpass filter HLp (s) with Chebyshev, Elliptic, Butterworth or other 
appropriate methods.  

  4.)Convert the transfer function  HLp (s)    into   HD(s)  using the inverse of the frequency 
transformation used in step 2.    

5.) Transform the transfer function HD(s) using bilinear transformation to arrive the desire 
digital IIR transfer function.  

 

Approach II  

1)Prewarp the specified digital frequency specification of the desired digital filter to 
analog frequency specifications using equation .  

Ω   = tan(ω/2) 
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• Frequency warping inherent in the bilinear transformation of a continuous-time 

lowpass filter into a discrete-time lowpass filter. To achieve the desired discrete-
time cutoff frequencies, the continuous-time cutoff frequencies must be 
prewarped. Here Td=T=2 

 

 
Fig.2.2: Illustration of the frequency warping effect 

 

2) Convert the frequency specification into a prototype analog lowpass filter with 
appropriate frequency transformation as shows below.  
 

3) Design analog lowpass HLp (s)    filter with Chebyshev, Elliptic, Butterworth or other 
appropriate methods.   
 

4) Convert transfer function HLp (s) into  transfer function of IIR digital filter using 
bilinear transformation. 
 
 

5) Transform transfer function of IIR digital filter to desired transfer function using 
appropriate spectral transformation as shown earlier.  
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CHAPTER 3 

 
Filter Types 

 
3.1 Butterworth Filters 
Butterworth filters are causal in nature and of various orders, the lowest order being the 
best (shortest) in the time domain, and the higher orders being better in the frequency 
domain. Butterworth or maximally flat filters have a monotonic amplitude frequency 
response which is maximally flat at zero frequency response (Fig 3.1) and the amplitude 
frequency response decreases logarithmically with increasing frequency. The butterworth 
filter has minimal phase shift over the filter's band pass when compared to other 
conventional filters 
 

 

 
 

Fig.3.1 
 

3.2 Chebyshev Filters 
Chebyshev filters are of two types: Chebyshev I filters are all pole filters which are 
equiripple in the passband and are monotonic in the stopband. (Fig 3.2) 
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Fig.3.2 

 
 

Chebyshev II filters contain both poles and zeros exhibiting a monotonic behavior in the 
passband and equi-ripple in the stopband.(Fig 3.3) 
 

 
Fig.3.3 

 
The frequency response of the filter is given by 
 

 
 

where є is a parameter related to the ripple present in the passband 
 

 
 

 
3.3 Elliptic Filters 
Elliptic filters are characterized by equi-ripples in both their stop and their passbands. 
(Fig3.4) They provide a realization with the lowest order for a particular set of 
conditions. 
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Fig.3.4 

 
Frequency transformations: 
This is one of the more common techniques employed in the design of filters. A low pass 
analog or digital filter may be designed first and then transformed into digital high or 
bandpass filters. 
 
Analog frequency transformations: 
The frequency transformations that can be used to obtain a high pass, low pass, bandpass 
or band reject filter are indicated below in Table 1. 

Here which is defined as the cutoff frequency for a low or highpass and 
the center frequency for the bandpass and band reject filter 
 

 
where Ω1 and Ω2are the upper and lower cutoff frequencies respectively.Ω2   -  Ω1denotes 
the bandwidth.  
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CHAPTER 4 

 
 Design and Implementations 

 
The Signal Processing Toolbox in MATLAB includes several useful functions for 
designing both FIR and IIR digital filters as well as traditional analog filters. The 
MATLAB functions used are listed in the appendix. The design techniques for the digital 
filters were briefly described in the previous chapters. The basic characteristics of the 
common analog filter types were also summarized .The filters considered in this project 
are the Butterworth and Chebyshev Type I  .  
 
All four types of design problems are now considered. Lowpass IIR filter, is the subject 
of Chapter 4.1,here I have designed three LP filters. As mentioned earlier, IIR filter 
design proceeds by conversion of digital specifications to analog specifications and an 
analog filter is then designed prior to conversion to the required digital filter using the 
appropriate frequency transformation. In this problem we have taken two IIR Lowpass 
Digital filters, making the problem a useful example for comparison of different design 
options. 
 
In Chapter 4.2, Highpass Chebyshev Type I filter is designed. This design problems is 
approached in two ways. The first approach uses the prescribed MATLAB command  and 
frequency transformation by matrix operation  by constructing a low-pass analog 
prototype, followed by a transformation to the respective high-pass by using two matrices 
. Second approach designs same filter by using Bilinear Z-Transform.  
 
Chapter 4.3 and 4.4 comprises of designing IIR Bandpass and Bandstop filters first by 
Matrix  Operations then by Bilinear Z-Transform. 
 
All the examples are accompanied by the corresponding frequency response 
characteristics (both magnitude and phase plots), with close-ups given wherever required, 
impulse response diagrams (truncated to a significant number of terms – in our examples 
60 when infinite), and pole-zero diagrams. All the magnitude response plots are in dB 
and phase response plots in degree. The frequency axis is in terms of normalized 
frequency. 
 
Assumptions: 
 

• Here frequencies are taken in normalized form. 
• Phase angle are taken in degree. 
• c =2/Ts, here I have taken Ts=2 in the all the filter design problems, it simplifies 

the equation (5) given in chapter 2.1. 
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4.1. Design of Lowpass Filter 
 
 
In this section we will design digital IIR lowpass filters by using different design 
techniques .Matlab code for these design techniques are also given after each design.  
The following  Frequency Transformation  techniques are used to design Digital IIR 
Lowpass  Filters  : 
 

• Matrix operations 
• Bilinear Z −transform 
• Impulse Invariant. 
 

First filter:    Specifications(Matlab codes are given in A1 to A3) 
 
Filter Type Digital IIR Butterworth Lowpass  
Sampling frequency 8000Hz 
Passband edge frequency 0-500Hz 
Stopband frequency 2000-4000Hz 
Pasband Ripple(Rp) 3dB 
Minimum Stopband Attenuation(Rs) 20dB 
Filter order 2 
 
 

 
 

 
 
 

 

Fig 4.11 Magnitude response of Digital IIR Lowpass filter by Matrix 
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A1 
Matlab Code of Digital Butterworth IIR Lowpass filter by Matrix 

 
%Filter specifications 
Fs=8000;%sampling frequency 
Fpb =500;fpb=Fpb/Fs;%Passband edge frequency 
Fsb1=2000;fsb1=Fsb1/Fs;%Lower stopband edge frequency 
Fsb2=4000;%Upper stopband edge frequency 
Rp=3;%maximum passband ripple 
Rs=20;%minimum stopband attenuation 
 
[N,Wn]=buttord(fpb,fsb1,Rp,Rs); 
disp(N);%Order of LP Filter is 2 
[z,p,k1]=buttap(N); 
disp(z); 
disp(p); 
%A=[1 1.414 1]  B=[1 0 0] 
 
Opb=tan(pi*(Fpb)/Fs); 
disp(Opb); 
capA=[1 0 0;0 1/(Opb) 0;0 0 1/(Opb^2);]*[1 1.414 1]'; 
disp(capA); 
capB=[1 0 0;0 1/(Opb) 0;0 0 1/(Opb^2);]*[1 0 0]'; 
disp(capB); 
%-------------------------------------------------------------------------- 
m=2;%here m=n(order of  LP Filter) 
 for i=0:m 
     f(i+1)=(-1)^i*factorial(m)/(factorial(i)*factorial(m-i)); 
 end 
 f 
%-------------------------------------------------------------------------- 
%Calculating the Denominator and Numerator coefficients of Digital LowPass Filter  
a1=[1 1 1;2 0 -2;1 -1 1]*[1 7.1087 25.274]'; 
disp(a1); 
a=a1/33.3827; 
disp(a); 
b1=[1 1 1;2 0 -2;1 -1 1]*[1 0 0]'; 
b=b1/33.3827; 
disp(b); 
[h,f]=freqz(b,a,512,1); 
 
 fvtool(b,a); 
%Plotting the Magnitude Response 
plot(f,20*log10(abs(h))),grid 
ylabel('Magnitude(dB)'); 
xlabel('Normalized Frequency'); 
title('Magnitude response of Butterworth LowPass Filter By Matrix'); 
 
% Plotting the phase response 
plot(f,angle(h)); 
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title('Phase response of Butterworth LowPass Filter By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
%  Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Butterworth LowPass Filter By Matrix'); 
 
%  Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Butterworth LowPass Filter By Matrix'); 
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COMPARISONS  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
Fig:4.12.Comparison of the Magnitude responses of LPF designed by Matrix with 
Bilinear –Z Transform and Impulse Invariant. 
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Fig:4.13. Zoom in of the passband 
 

 
 
 

      
 

     Fig.4.14.Phase response 
 



 27

    
                                                                  

         Fig.4.15 Impulse response 
 
 

  
 

 
                                                                Fig.4.16.Pole-Zero plot 
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A2 
 

Matlab Code for Digital IIR Lowpass filter by Bilinear Z-transform 
 
%Filter Specifications 
 
Fs = 8000; fs = Fs/2; %Sampling Frequency 
Fpb = 500; fpb = Fpb/fs; %Passband edge frequency 
Fsb = 2000; fsb = Fsb/fs; %Stopband edge frequency 
Rp = 3; %Passband Ripple 
Rs = 20; %Stopband Attenuation 
%-------------------------------------------------------------------------- 
%Butterworth Filter 
[N,Wn] = buttord(fpb,fsb,Rp,Rs); 
disp(N); 
 
%Order of LPF is 2 
[b,a] = butter(N,Wn); 
%fvtool(b,a); 
[h,f] = freqz(b,a,512,1); 
figure; 
 
% Plotting the Magnitude Response 
plot(f, 20*log10(abs(h))); 
grid on; 
title(' Magnitude response of Digital Butterworth LowPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title(' Phase response of Digital Butterworth LowPass Filter By BZT '); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
%Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Digital Butterworth LowPass Filter By BZT'); 
 
% plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Digital Butterworth LowPass Filter By BZT'); 
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A3 
 

Matlab Code for Digital Butterworth IIR Lowpass filter by Impulse Invariant 
 

%Filter specifications 
Fs=8000;%Sampling frequency 
fc=500;%Passband edge frequency 
Rp=3;%Maximum Passband Ripple 
Rs=20;%Minimum Stopband Attenuation 
Wc=2*pi*fc;%Cutoff frequency in radian 
N=2;%Order of Low pass filter 
[b1,a1]=butter(N,Wc,'s');%Create an analog filter 
[z,p,k]=butter(N,Wc,'s'); 
[b,a]=impinvar(b1,a1,Fs); 
 %fvtool(b,a); 
%[h,f]=freqz(b,a,512,1); 
[h,f]=freqz(b,a,512,1); 
 
%Plotting the Magnitude Response 
plot(f,20*log10(abs(h))),grid 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
title('Magnitude response of Butterworth Digital LowPass Filter By Impulse Invariant '); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title('Phase response of Butterworth Digital LowPass Filter By Impulse Invariant  '); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Butterworth Digital LowPass Filter By Impulse Invariant  '); 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Butterworth Digital LowPass Filter By Impulse Invariant  '); 
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Second Filter: Filter specifications(Matlab codes are given in A4 to A6) 
 
 
 
 
 
 
 
 
 
 
Filter Type Digital IIR Butterworth Lowpass  
Sampling frequency 20000Hz 
Passband edge frequency 0-700Hz 
Stopband frequency 4000-10000Hz 
Pasband Ripple(Rp) 3dB 
Minimum Stopband Attenuation(Rs) 20dB 
Filter order 2 
 
 
 
 
 
 
 
 

 
 

Fig.4.17.Magnitude response of Digital IIR Lowpass filter by Matrix 
 
 
 



 31

A4 
 

Matlab Code for Digital Butterworth IIR Lowpass filter by Matrix 
 

%Filter specifications 
 
Fs=20000;%sampling frequency 
Fpb =700;fpb=Fpb/Fs;%Passband edge frequency 
 
Fsb=4000;fsb=Fsb/Fs;% Stopband edge frequency 
Rp=3;%maximum passband ripple 
Rs=20;%minimum stopband attenuation 
 
[N,Wn]=buttord(fpb,fsb,Rp,Rs); 
disp(N); 
[z,p,k1]=buttap(N); 
disp(z); 
disp(p); 
%A=[1 1.414 1] B=[1 0 0] 
OmegaP=tan(pi*(Fpb)/Fs); 
disp(OmegaP); 
capA=[1 0 0;0 1/(OmegaP) 0;0 0 1/(OmegaP^2)]*[1 sqrt(2) 1]'; 
disp(capA); 
%capA=[1.0000  12.8098 82.0453] 
 
capB=[1 0 0;0 1/k 0;0 0 1/(k^2)]*[1 0 0 ]'; 
disp(capB); 
 
%------------------------------------------------------------ 
m=2;%here m=n(order of  LP Filter) 
 for i=0:m 
     f(i+1)=(-1)^i*factorial(m)/(factorial(i)*factorial(m-i)); 
 end 
 f 
%------------------------------------------------------------ 
a1=[1 1 1;2 0 -2;1 -1 1]*[1 12.8098 82.0453]'; 
disp(a1); 
a=a1/95.8551; 
disp(a); 
b1=[1 1 1;2 0 -2;1 -1 1]*[1 0 0]'; 
b=b1/95.8551; 
disp(b); 
[h,f]=freqz(b,a,512,1); 
 
 %fvtool(b,a); 
%Plotting Magnitude Response 
plot(f,20*log10(abs(h))),grid 
ylabel('Magnitude(dB)'); 
xlabel('Normalized Frequency'); 
title('Magnitude response of Butterworth LowPass Filter By Matrix'); 
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% Plotting the phase response 
plot(f,angle(h)); 
title('Phase response of Butterworth LowPass Filter By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Butterworth LowPass Filter By Matrix'); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Butterworth LowPass Filter By Matrix'); 
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COMPARISONS 

 
 
 
 

 
 
 

 

                                      

 
 
 

Fig:4.18.Comparison of Magnitude responses of LPF designed by Matrix with Bilinear –
Z Transform and Impulse Invariant. 
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              Fig.4.19.Zoom in of  the passband 
 
 

    
 

    Fig.4.1.1.Phase response 
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   Fig.4.1.2.Impulse response 
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Fig.4.1.3.Pole-Zero plot 
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A5 
 
 

Matlab Code for IIR Digital Lowpass filter by Bilinear Z-transform 
 
%Filter Specifications 
 
Fs = 20000; fs = Fs/2; %Sampling Frequency 
Fpb =700; fpb = Fpb/fs; %Passband edge frequency 
Fsb = 4000; fsb = Fsb/fs; %Stopband edge frequency 
Rp = 3; %Passband Ripple 
Rs = 20; %Stopband Attenuation 
 
[N,Wn] = buttord(fpb,fsb,Rp,Rs); 
disp(N); 
 
%Order of LPF is 2 
[b,a] = butter(N,Wn); 
%fvtool(b,a); 
[h,f] = freqz(b,a,512,1); 
figure; 
 
% Plotting the Magnitude Response 
plot(f, 20*log10(abs(h))); 
grid on; 
title(' Magnitude response of Digital Butterworth LowPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title(' Phase response of Digital Butterworth LowPass Filter By BZT '); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
%Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Digital Butterworth LowPass Filter By BZT'); 
 
% plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Digital Butterworth LowPass Filter By BZT'); 
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A6 
 

 
Matlab Code for Digital Butterworth IIR Lowpass filter by Impulse Invariant 

 
%Filter specifications 
 
Fs=20000;%Sampling frequency 
fc=700;%Passband edge frequency 
Rp=3;%Maximum Passband Ripple 
Rs=20;%Minimum Stopband Attenuation 
Wc=2*pi*fc;%Cutoff frequency in radian 
N=2;%Order of Low pass filter 
[b1,a1]=butter(N,Wc,'s');%Create an analog filter 
[z,p,k]=butter(N,Wc,'s'); 
[b,a]=impinvar(b1,a1,Fs); 
 fvtool(b,a); 
%[h,f]=freqz(b,a,512,1); 
[h,f]=freqz(b,a,512,1); 
 
%Plotting the Magnitude Response 
plot(f,20*log10(abs(h))),grid 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
title('Magnitude response of Butterworth Digital LowPass Filter By Impulse Invariant '); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title('Phase response of Butterworth Digital LowPass Filter By Impulse Invariant  '); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Butterworth Digital LowPass Filter By Impulse Invariant  '); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Butterworth Digital LowPass Filter By Impulse Invariant  '); 
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Third Filter: Filter Specifications (Matlab codes are given in A7 to A9) 
 
 
 
 
 
 
 
 
 
 
Filter Type Butterworth LP Filter 
Passband edge frequency 0-60Hz 
Stopband edge frequency 85-128Hz 
Sampling frequency(Fs) 256Hz 
Passband Ripple(Rp) 3dB 
Stopband Attenuation(Rs) 15dB 
Order(N) 3 

 
 
 
 
 
 
 
 
 
 

 
 

Fig.4.1.4 Magnitude response of Digital IIR Lowpass filter by Matrix 
 
 
 
 
 



 40

A7 
 
 

Matlab Code for Digital Butterworth IIR Lowpass filter by Matrix 
 
 %Filter Specifications 
Fs=256;%Sampling frequency 
Fpb = 60;fpb=Fpb/Fs; % passband edge frequency 
Fsb = 85;fsb=Fsb/Fs;% stopband edge frequency  
Rp=3;%Maximum passband ripple 
Rs=15;%Minimum stopband attenuation 
 
[N,Wn]=buttord(.906347,1.7158,3,15,'s'); 
disp(N);%Order of LPF is 3 
[z,p,k]=buttap(N);%Find zero,pole and gain of normalized analog lowpass filter 
%B=[1 0 0 0]  Numerator coefficient of analog low pass filter 
%here we are using Matrix(described in Table 1) for  frequency transformation from analog 
%low pass to desired analog lowpass filter 
capB=[1 0 0 0;0 1.103155 0 0;0 0 1.2173 0;0 0 0 1.342486]*[1 0 0 0]'; 
disp(capB); 
%capB=[1    0     0     0] 
%A=[1 2 2 1] Denominator coefficients of analog lowpass filter 
capA=[1 0 0 0;0 1.103155 0 0;0 0 1.2173 0;0 0 0 1.342486]*[1 2 2 1]'; 
disp(capA); 
%capA=[1.0000 2.2063 2.4346  1.3425] 
%-------------------------------------------------------------------------- 
 m=3;%here m=n(order of  LP Filter) 
 for i=0:m 
     f(i+1)=(-1)^i*factorial(m)/(factorial(i)*factorial(m-i)); 
 end 
 f 
 %f =     1    -3     3    -1 
%--------------------------------------------------------------------------- 
%Calculating the coefficients of Numerator and Denominator for digital IIR Lowpass filter. Here 
we are 
%using pascal matrix for analog frequency transformation from analog 
%lowpass to desired digital lowpass filter 
b1=[1 1 1 1;3 1 -1 -3;3 -1 -1 3;1 -1 1 -1]*[1 0 0 0]'; 
% disp(B); 
b=b1/6.9834; 
disp(b); 
%b=[0.1432 0.4296  0.4296   0.1432] Numerator coefficients of desired digital LP filter 
 
a1=[1 1 1 1;3 1 -1 -3;3 -1 -1 3;1 -1 1 -1]*[1 2.2063 2.4346 1.3425]'; 
% disp(A); 
%  6.9834    -1.2558     2.3866    -0.1142 
a=a1/6.9834; 
disp(a); 
%a=[1.0000  -0.1798   0.3418   -0.0164] Denominator coefficients of desired digital LP filter 
fvtool(b,a); 
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%[h,f]=freqz(b,a,512,256); 
[h,f]=freqz(b,a,512,1); 
 
%Plotting the Magnitude Response 
plot(f,20*log10(abs(h))),grid 
xlabel('Normalized Frequency') 
ylabel('Magnitude(dB)') 
title('Magnitude response of Digital Butterworth  LowPass Filter By Matrix'); 
 
% Plotting the Phase response 
plot(f,angle(h)); 
title('Phase response of Digital Butterworth  LowPass Filter By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Digital Butterworth  LowPass Filter By Matrix'); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Digital Butterworth  LowPass Filter By Matrix'); 
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COMPARISONS 
 

 
 

 
 

 
Fig.4.1.5 Comparison of Magnitude responses of LPF designed by Matrix with Bilinear –
Z Transform and Impulse Invariant. 
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    Fig.4.1.6 Phase response 
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       Fig.4.1.7 Impulse response 
 
 
 
 
 
 

    
 

Fig.4.1.8 Pole-Zero plot 
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A8 
 
 
Matlab Code for Digital Butterworth  IIR Lowpass filter by Bilinear Z-transform 
 
%Filter Specifications 
 
Fs = 256; fs = Fs/2; %Sampling Frequency 
Fpb = 60; fpb = Fpb/fs; %Passband edge frequency 
Fsb = 85; fsb = Fsb/fs; %Stopband edge frequency 
Rp = 3; %Passband Ripple 
Rs = 15; %Stopband Attenuation 
%-------------------------------------------------------------------------- 
[N,Wn] = buttord(fpb,fsb,Rp,Rs); 
disp(N); 
 
%Order of LPF is 2 
[b,a] = butter(N,Wn);sss 
fvtool(b,a); 
[h,f] = freqz(b,a,512,1); 
figure; 
 
% Plotting the magnitude Response 
plot(f, 20*log10(abs(h))); 
grid on; 
title(' Magnitude response of Digital Butterworth  LowPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title(' Phase response of Digital Butterworth  LowPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
%Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Digital Butterworth  LowPass Filter By BZT'); 
% plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Digital Butterworth  LowPass Filter By BZT'); 
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A9 
 

Matlab Code for Digital Butterworth IIR Lowpass filter by Impulse Invariant 
 

%Filter specifications 
 
Fs=256;%Sampling frequency 
fc=60;%Passband edge frequency 
Rp=3;%Maximum Passband Ripple 
Rs=15;%Minimum Stopband Attenuation 
Wc=2*pi*fc;%Cutoff frequency in radian 
N=3;%Order of Low pass filter 
[b1,a1]=butter(N,Wc,'s');%Create an analog filter 
[z,p,k]=butter(N,Wc,'s'); 
[b,a]=impinvar(b1,a1,Fs); 
 
 fvtool(b,a); 
%[h,f]=freqz(b,a,512,1); 
[h,f]=freqz(b,a,512,1); 
 
%Plotting the Magnitude Response 
plot(f,20*log10(abs(h))),grid 
xlabel('Normalized Frequency'); 
ylabel('Magnitude (dB)'); 
title('Magnitude response of Digital Butterworth LowPass Filter By Impulse Invariant '); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title('Phase response of Digital Butterworth LowPass Filter By Impulse Invariant '); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Digital Butterworth LowPass Filter By Impulse Invariant'); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Digital Butterworth LowPass Filter By Impulse Invariant'); 
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4.2.Design of Highpass Filter 
 
This section comprises , the design of a digital IIR highpass filter  with BZT and Matrix 
method,after designing we will compare the results .Specification of chebyshev highpass 
filter are given below .Matlab codes for this filter are given in programs A10 and A11. 
 
 
 
 
 
Filter Chebyshev Type 1 HPF 
Passband edge frequency 700Hz 
Stopband edge frequency 500Hz 
Passband ripple(Rp) 1dB 
Stopband attenuation(Rs) 32dB 
Sampling frequency(Fs) 2000Hz 
Order(N)  4 
 
 
 
 

 
 

Fig.4.21 Magnitude response of Digital IIR Highpass filter by Matrix 
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A10 
 
 

Matlab Code for Digital IIR Chebyshev Type 1 Higpass filter by Matrix 
 

%Filter specifications 
 
Fs=2000; % Sampling Frequency 
Rp=1; % Passband Ripple 
Rs=32; % Stopband Attenuations 
Fstop=500; % Stopband Cutoff Frequency 
Fpass=700; % Passband Cutoff Frequency 
 
%------------------------------------------------------------------------------ 
Wp=2*pi*Fpass/Fs;  
Ws=2*pi*Fstop/Fs;  
OmegaP=tan(Wp/2); % Normalized angular passband edge frequency of analog Highpass filter 
%disp(OmegaP); 
OmegaS=tan(Ws/2); % Normalized angular stopband edge frequency of analog Highpass filter 
 
[N,Wn]=cheb1ord(OmegaS,OmegaP,1,32,'s');%Calculate order  
[B,A]=cheby1(N,1,Wn,'s'); 
disp(A); 
%A=[.2756 .7426 1.4539 .9528 1]  
%B=[.2457 0 0 0 0] 
disp(B); 
disp(N);%Order of HPF is equal to LPF which is 4 
w=1.9626%w=Omega 
 
capA=[0 0 0 0 w^4;0 0 0 w^3 0;0 0 w^2 0 0;0 w 0 0 0;1 0 0 0 0]*[.2756 .7426 1.4539 .9528 1]'; 
capB=[0 0 0 0 w^4;0 0 0 w^3 0;0 0 w^2 0 0;0 w 0 0 0;1 0 0 0 0]*[.2457 0 0 0 0]'; 
disp(capA); 
%capA=[14.8367 7.2028 5.6002 1.4574 0.2756] 
 
disp(capB); 
 
%capB=[ 0 0 0 0 .2457] 
 
%....................................................... 
m=4;%here m=n(order of  LP Filter) 
 for i=0:m 
     f(i+1)=(-1)^i*factorial(m)/(factorial(i)*factorial(m-i)); 
 end 
 f 
 %f =     1    -4     6    -4     1 
 %............................................................ 
 %Calculating the Numerator and Denominator coefficients of Digital Highpass Filter 
 a1=[1 1 1 1 1;4 2 0 -2 -4;6 0 -2 0 6;4 -2 0 2 -4;1 -1 1 -1 1]*[14.8367 7.2028 5.6002 1.4574 
0.2756]'; 
 disp(a1); 
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%a1=[29.3727 69.7352  79.4734  46.7536   12.0523] 
a=a1/29.3727; 
disp(a); 
%a=[1.0000  2.3742   2.7057   1.5917   0.4103] 
b1=[1 1 1 1 1;4 2 0 -2 -4;6 0 -2 0 6;4 -2 0 2 -4;1 -1 1 -1 1]*[ 0 0 0 0 .2457]'; 
b=b1/29.3727; 
disp(b); 
%b=[0.0836  -0.3346   0.5019  -0.3346   0.0836] 
 fvtool(b,a); 
[h,f] = freqz(b,a,512,1); 
figure; 
 
% Plotting the magnitude Response 
plot(f, 20*log10(abs(h))); 
grid on; 
title('Magnitude response of Chebyshev Type 1 HighPass Filter By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title('Phase response of Chebyshev Type 1 HighPass Filter By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Chebyshev Type 1 HighPass Filter By Matrix'); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero Plot of Chebyshev Type 1 HighPass Filter By Matrix'); 
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COMPARISONS 
 

 
 

 
 

Fig.4.22.Magnitude response 
 
 

   
 

Fig.4.23.Zoom in of the passband 
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Fig.4.24.Phase response 
 

  
 

Fig.4.25. Impulse response 
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Fig.4.26. Pole-Zero plot 
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A 11 
 
 

Matlab Code for Digital Chebyshev Type 1 IIR  Highpass filter by BZT 
 
% Filter specifications 
  
Fs=2000; % Sampling Frequency 
Rp=1; % Passband Ripple 
Rs=32; % Stopband Attenuations 
Fstop=500; % Stopband Cutoff Frequency 
Fpass=700; % Passband Cutoff Frequency 
 
%------------------------------------------------------------------------------ 
Wp=2*pi*Fpass/Fs;  
Ws=2*pi*Fstop/Fs;  
OmegaP=tan(Wp/2); % Normalized angular passband edge frequency of analog Highpass filter 
OmegaS=tan(Ws/2); % Normalized angular stopband edge frequency of analog Highpass filter 
% Wn=1-Fpass/(Fs/2); % Find Cutoff frequency 
 
[N,Wn]=cheb1ord(OmegaS,OmegaP,1,32,'s');%Calculate order  
[B,A]=cheby1(N,1,Wn,'s'); 
disp(N);%Order of HPF is equal to LPF which is 4 
[BT,AT]=lp2hp(B,A,OmegaP); % Lowpass to Highpass Filter 
[b,a]=bilinear(BT,AT,.5); % Bilinear Transformation 
 
%fvtool(b,a); 
%Plotting the Magnitude response 
[h,f] =freqz(b,a,512,1); % Find Frequency Response 
plot(f,20*log10(abs(h))),grid 
 
grid on; 
title('Magnitude response of Chebyshev Type 1  HighPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
 
% Plotting the phase response 
plot(f,angle(h));grid 
title('Phase response of Chebyshev Type 1  HighPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Chebyshev Type 1  HighPass Filter By BZT'); 
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% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero Plot of Chebyshev Type 1  HighPass Filter By BZT'); 
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4.3 Design of Bandpass Filter 
 
In this section we will design two IIR Bandpass filters by using both bilinear 
transformation and Pascal matrix operation. Then we will compare the magnitude 
response ,phase response , impulse response and location of poles and zeros by using 
both techniques. 
 
First Filter:  Specifications (Matlab codes are given in A12 to A13) 
 
 
 
 
Filter Type Butterworth BP Filter 
Sampling frequency(Fs) 10 Hz 
Lower Passband edge frequency 2Hz 
Upper passband  edge frequency 4Hz 
Passband Ripple(Rp) 1dB 
Order(N) 6 
 

 
 
 
 
 
 
 
 

    
 

Fig.4.31.Magnitude response of Digital Butterworth Bandpass filter by Matrix 
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A12 
 

Matlab Code for Digital Butterworth IIR Bandpass filter by Matrix 
 

%Filter Specifications 
Fs = 10;fs = Fs/2; %Sampling Frequency 
Fpb1 = 2;fpb1 = Fpb1/fs; %Lower Passband edge frequency 
Fpb2= 4;fpb2 = Fpb2/fs; %Upper passband edge frequency 
Rp = 1; %Passband Ripple 
N=3;  % For band pass filter m=2N=6 
 
[z,p,k1]=buttap(3);%Calculate pole-zero of analog lowpass filter 
disp(p); 
disp(k1); 
% B=[ 1 2 2 1],Denominator coefficients for normalized analog lowpass filter   
% A=[1 0 0 0],Numerator coefficients for normalized analog lowpass filter  
%k=tan(pi*(Fpb1)/Fs)*tan(pi*(Fpb2)/Fs); 
%disp(k); 
k=2.23593; 
c=.42532; 
capA=[0 0 0 k^3;0 0 k^2 0;0 k 0 3*k^2;1 0 2*k 0;0 1 0 3*k;0 0 1 0;0 0 0 1]*[1 2*c 2*c^2 
1*c^3]'; 
disp(capA); 
%capA =[0.8600  1.8087   3.0559   2.6179   1.3667  0.3618  0.0769] 
capB=[0 0 0 k^3;0 0 k^2 0;0 k 0 3*k^2;1 0 2*k 0;0 1 0 3*k;0 0 1 0;0 0 0 1]*[1 0 0 0]'; 
disp(capB); 
%capB=[0  0 0 1 0 0 0] 
%-------------------------------------------------------------------------- 
m=6;%here m=2N 
 for i=0:m 
     f(i+1)=(-1)^i*factorial(m)/(factorial(i)*factorial(m-i)); 
 end 
 f 
 %------------------------------------------------------------------------- 
  
%Calculating the Numerator and Denominator coefficients of digital bandpass filter 
a1=[1 1 1 1 1 1 1;6 4 2 0 -2 -4 -6;15 5 -1 -3 -1 5 15; 
    20 0 -4 0 4 0 -20;15 -5 -1 3 -1 -5 15; 
    6 -4 2 0 -2 4 -6;1 -1 1 -1 1 -1 1]*[0.8600  1.8087   3.0559   2.6179   1.3667  0.3618  0.0769]'; 
disp(a1); 
a=a1/10.1479; 
%a1=[10.1479  13.8646 12.6297  8.9052  6.6321   2.2894   0.5711] 
b1=[1 1 1 1 1 1 1;6 4 2 0 -2 -4 -6;15 5 -1 -3 -1 5 15; 
    20 0 -4 0 4 0 -20;15 -5 -1 3 -1 -5 15; 
    6 -4 2 0 -2 4 -6;1 -1 1 -1 1 -1 1]*[0 0 0 1 0 0 0]'; 
disp(b1); 
%b1=[1  0   -3    0    3    0   -1] 
b=b1/10.1479; 
%fvtool(b,a); 
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[h,f]=freqz(b,a,512,1); 
 
%Plotting Magnitude Response 
plot(f,20*log10(abs(h))),grid 
title('Magnitude Response of Butterworth BandPass Filter By Matrix'); 
ylabel('Magnitude(dB)'); 
xlabel('Normalized Frequency'); 
 
% Plotting the phase response 
 
plot(f,angle(h)); 
title('Phase Resopnse of Butterworth BandPass Filter  By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
 
title('Impulse Response of Butterworth BandPass Filter  By Matrix'); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Butterworth BandPass Filter By Matrix'); 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 58

COMPARISONS 
 

 
 

  
 

Fig.4.32. Magnitude response 
 

     
 

Fig.4.33.Zoom in of the passband 
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Fig.4.34. Phase response 
 

     
 

Fig.4.35 Impulse response 
 

      
 

Fig.4.36. Pole – Zero plot 
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A13 
 

 
Matlab Code for Butterworth IIR Bandpass filter by  Bilinear  Z -Transform 

 
%Filter Specifications 
 
Fs = 10;fs = Fs/2;             %Sampling Frequency 
Fpb1 = 2;fpb1 = Fpb1/fs;       %Lower Passband edge frequency 
Fpb2= 4;fpb2 = Fpb2/fs;        %Upper Passband edge frequency 
Rp = 1;                        %Passband Ripple 
N = 3;                         %Order of digital bandpass filter =6 
wo = 2*pi*sqrt(Fpb1*Fpb2);     %Centre Frequency rad/s 
bw = (Fpb2-Fpb1)*2*pi;         %Bandwidth rad/s 
 
[z,p,k] = buttap(N);           %Calculate pole-zero of analog lowpass filter 
 
b = k*poly(z);                 % Numerator polynomial of analog lowpass filter 
a = poly(p);                   % Denominator polynomial of analog lowpass filter 
[bt,at] = lp2bp(b,a,wo,bw);    % Low Pass to Bandpass Transformation 
[b2,a2] = bilinear(bt,at,Fs,Fpb1); % Bilinear Transformation matching lower pass frequency 
%fvtool(b2,a2); 
[H,w] = freqz(b2,a2,512,1); 
figure; 
 
% Plotting the magnitude Response 
plot(w, 20*log10(abs(H))); 
grid on; 
title('Magnitude response of Butterworth BandPass Filter  By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude dB'); 
 
% Plotting the phase response 
 
plot(w,angle(H)); 
title('Phase Response of Butterworth BandPass Filter By BZT'); 
xlabel('Normalized'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b2,a2,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
 
title('Impulse Response of Butterworth BandPass Filter By BZT'); 
 
% plotting  the Pole-Zero Plot 
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z = roots(b2);%zeros 
p = roots(a2);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Butterworth BandPass Filter By BZT'); 
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Second Filter:  
  
Specification of second IIR Bandpass filter are as follow. Matlab code for this filter are 
given in A14 to A15 
 
 
 
Filter Type Butterworth IIR BPF 
Passband edge frequency 200-300Hz 
Lower stopband edge frequency 50Hz 
Upper stopband edge frequency 450Hz 
Sampling frequency(Fs) 1000Hz 
Passband ripple(Rs) 3dB 
Stopband attenuation(Rp) 20dB 
Order(N) 2 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 

 
Fig.4.37. Magnitude response of  Butterworth IIR Bandpass filter by Matrix          
                                                         
 
 
 
 
 
 
 
 
 



 63

A14 
 

Matlab code for Digital Butterworth IIR Bandpass Filter By using Matrix 
 

%Filter Specifications 
Fs = 1000;fs = Fs/2; %Sampling Frequency 
Fpb1 = 200;fpb1 = Fpb1/fs; %Lower passband edge frequency 
Fpb2= 300;fpb2 = Fpb2/fs; %Upper passband edge frequency 
Fsb1=50;%Lower stopband edge frequency 
Fsb2=450;%Upper stopband edge frequency 
Rp = 3; %Passband Ripple in dB 
Rs=20;%Stopband Attenuation in dB 
N = 1;%For bandpass filter Order is 2 
%Calculate edge frequencies for the bandpass analog filter by using 
OmegaP1=tan(pi*(Fpb1)/Fs); 
OmegaP2=tan(pi*(Fpb2)/Fs); 
OmegaS1=tan(pi*(Fsb1)/Fs); 
OmegaS2=tan(pi*(Fsb2)/Fs); 
 
[z,p,k1]=buttap(N) 
disp(p); 
disp(z); 
%We obtain analog low pass filter with Denominator coefficients A=[1 1] and 
%numerator coefficients B=[1 0] 
A=[1 1]; 
B=[1 0]; 
k=OmegaP1*OmegaP2; 
c=1/(OmegaP2-OmegaP1); 
disp(c); 
capA=[0 1;1 0;0 1]*[1 1*c]'; 
disp(capA); 
%capA=[1.5388  1.0000  1.5388] 
capB=[0 1;1 0;0 1]*[1 0]'; 
disp(capB); 
%capB=[0  1   0] 
%-------------------------------------------------------------------------- 
m=2;%here m=2N 
 for i=0:m 
     f(i+1)=(-1)^i*factorial(m)/(factorial(i)*factorial(m-i)); 
 end 
 f 
 %------------------------------------------------------------------------- 
%Calculate the Numerator and denominator coefficients of digital bandpass filter 
a1=[1 1 1;2 0 -2;1 -1 1]*[1.5388  1.0000  1.5388]'; 
 disp(a1); 
a=a1/4.0776; 
disp(a); 
b1=[1 1 1;2 0 -2;1 -1 1]* [0 1 0]'; 
% disp(b1); 
b=b1/4.0776; 
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disp(b); 
 %fvtool(b,a); 
[h,f]=freqz(b,a,512,1); 
 
% Plotting the magnitude Response 
plot(f, 20*log10(abs(h)));grid on; 
title('Magnitude response of Butterworth IIR BandPass Filter By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude dB'); 
 
% Plotting the phase response 
plot(f,angle(h)); 
title(' Phase response of Butterworth IIR BandPass Filter By Matrix'); 
xlabel('Normalized frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Amplitude'); 
ylabel('Samples'); 
title('Impulse response of Butterworth IIR BandPass Filter By Matrix'); 
 
% plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Butterworth IIR BandPass Filter By Matrix'); 
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COMPARISONS 
 

 
 
 
 
 
 
 
 
 
 

 
 
 

    
 

Fig.4.38. Magnitude response 
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Fig.4.39. Phase response 
 

                 
 

Fig.4.3.1. Impulse response 
 

                   
 

Fig.4.3.2.Pole-Zero plot 
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A 15 
 

Matlab code for Digital IIR Bandpass Filter by Bilinear Z-transform 
 

%Filter Specifications 
 
Fs = 1000;fs = Fs/2; %Sampling Frequency 
Fpb1 = 200;fpb1 = Fpb1/fs; %Lower passband edge frequency 
Fpb2= 300;fpb2 = Fpb2/fs; %Upper assband edge frequency 
Rp = 3; %Passband Ripple 
N = 1;%For bandpass filter Order is 2 
wo = 2*pi*sqrt(Fpb1*Fpb2);%Centre Frequency rad/s 
bw = (Fpb2-Fpb1)*2*pi; %Bandwidth rad/s 
 
[z,p,k] = buttap(N);%Calculate pole-zero for the analog lowpass filter 
b = k*poly(z); % Numerator coefficients for analog lowpass filter 
a = poly(p); % Denominator coefficients for analog lowpass filter 
[bt,at] = lp2bp(b,a,wo,bw); % Low Pass to Bandpass Transformation 
[b,a] = bilinear(bt,at,Fs,Fpb1); % Bilinear Transformation  
%fvtool(b,a); 
% [h,f] = freqz(b,a,512,1000); 
[h,f] = freqz(b,a,512,1); 
figure; 
% Plotting the magnitude Response 
plot(f, 20*log10(abs(h)));grid on; 
title(' Magnitude response of Butterworth IIR BandPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude dB'); 
 
% Plotting the phase response 
 plot(f,angle(h)); 
title('Phase response of Butterworth IIR BandPass Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
ylabel('Amplitude'); 
xlabel('Samples'); 
title('Impulse response of Butterworth IIR BandPass Filter By BZT'); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of  Butterworth IIR BandPass Filter By BZT'); 
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4.4. Design of Bandstop Filter 
 
In this section we will design digital IIR Bandstop filters by using both bilinear 
transformation and matrix operation. Then we will compare the magnitude response 
,phase response , impulse response and location of poles and zeros by using both 
techniques. Matlab code for these designs are given in A16 to A17. 
 
 
 
 
 
Filter Type Chebyshev Type 1 Bandstop Filter 
Lower Passband edge frequency .3Hz 
Upper Passband edge frequency .4Hz 
Sampling frequency(Fs) 1Hz 
Passband Ripple(Rp) 2dB 
Order(N) 4 
 
 
 
 
 
 

 
 

Fig.4.41. Magnitude response of Digital IIR Chebyshev Type1 Bandstop filter by Matrix 
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A16 
 

Matlab Code for Digital Chebyshev Type 1  BandStop Filter by Matrix 
 

%Filter specifications 
Fs=1;%Sampling frequency 
Fpb1=0.3;fpb1=Fpb1/Fs;%Lower passband edge frequency 
Fpb2=0.4;fpb2=Fpb2/Fs;%Upper passband edge frequency 
Rp=2;%Passband ripple 
N=2;%Order of analog lowpass filter 
[z,p,k1]=cheb1ap(N,Rp);%For Bandstop Filter oredr is 4 
 
disp(k1); 
disp(z); 
disp(p); 
%k1= 0.6538 p1=  -0.4019 + 0.8133i  p2=  -0.4019 - 0.8133i 
OmegaP1=tan(pi*(Fpb1)/Fs); 
OmegaP2=tan(pi*(Fpb2)/Fs); 
c=(OmegaP2-OmegaP1);%here c=c1=1.7013 
disp(c); 
k=OmegaP1*OmegaP2;%here k=k1 
disp(k);%k=  4.2361 
%k1= 0.6538 p1=  -0.4019 + 0.8133i  p2=  -0.4019 - 0.8133i 
%B=[.654 0 0] ,  A=[.823 .804  1] 
capA=[k^2 0 0 ;0 k 0 ;2*k 0 1 ;0 1 0 ;1 0 0]*[.823 .804*c 1*c^2]'; 
disp(capA); 
%capA=[14.7681 5.7943 9.8670 1.3678 0.8230] 
    
capB= [k^2 0 0 ;0 k 0 ;2*k 0 1 ;0 1 0 ;1 0 0]*[.654 0 0]'; 
disp(capB); 
%capB=[11.7355 0 5.5408 0 0.6540] 
%-------------------------------------------------------------------------- 
m=4;%here m=2N 
 for i=0:m 
     f(i+1)=(-1)^i*factorial(m)/(factorial(i)*factorial(m-i)); 
 end 
 f 
 %------------------------------------------------------------------------- 
  
%calculate the Numerator and Denominator coefficients for digital bandstop filter 
a1=[1 1 1 1 1;4 2 0 -2 -4;6 0 -2 0 6;4 -2 0 2 -4;1 -1 1 -1 1]*[14.7681 5.7943 9.8670 1.3678 
0.8230]'; 
a=a1/32.6202; 
% coeff  of denominator   1.0000  1.9814  2.2628   1.4386   0.5609 
disp(a); 
b1=[1 1 1 1 1;4 2 0 -2 -4;6 0 -2 0 6;4 -2 0 2 -4;1 -1 1 -1 1]*[11.7355 0 5.5408 0 0.6540]'; 
b=b1/32.6202; 
disp(b); 
%fvtool(b,a); 
[h,f]=freqz(b,a,512,1); 
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%Plotting Magnitude Response 
plot(f,20*log10(abs(h))),grid 
title('Magnitude response of Chebyshev Type1 BandStop Filter By Matrix'); 
ylabel('Magnitude(dB)'); 
xlabel('Normalized Frequency'); 
 
% Plotting the phase response 
 
plot(f,angle(h)); 
title('Phase response of Chebyshev Type1 BandStop Filter By Matrix'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b,a,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Chebyshev Type1 BandStop Filter By Matrix'); 
 
% Plotting the Pole-Zero Plot 
z = roots(b);%zeros 
p = roots(a);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Chebyshev Type1 BandStop Filter By Matrix'); 
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COMPARISONS 
 
 

 
 

 
 

Fig.4.42. Magnitude response 
 

   
 

Fig.4.43. Impulse response 
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Fig.4.44. Pole- Zero response 
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A 17 
 

Matlab Code for Digital Chebyshev Type1 Bandstop IIR filter by BZT 
 

%Filter specifications 
Fs = 1;fs = Fs/2; %Sampling Frequency 
Fpb1 = .3;fpb1 = Fpb1/fs; %Lower Passband edge frequency 
Fpb2= .4;fpb2 = Fpb2/fs; %Upper Passband edge frequency 
Rp = 2; %Passband Ripple 
wo = 2*pi*sqrt(Fpb1*Fpb2);%Centre Frequency rad/s 
bw = (Fpb2-Fpb1)*2*pi; %Bandwidth rad/s 
N = 2;%For Bandstop Filter order is 4 
[z,p,k] = cheb1ap(N,Rp); 
b = k*poly(z); % Numerator polynomial of normalized analog lowpass filter 
a = poly(p); % Denominator polynomial of normalized analog lowpass filter 
[bt,at] = lp2bs(b,a,wo,bw); % Low Pass to Bandstop Transformation 
[b2,a2] = bilinear(bt,at,Fs,Fpb1); % Bilinear Transformation  
% fvtool(b2,a2); 
[h,f] = freqz(b2,a2,512,1); 
figure; 
 
% Plotting the magnitude Response 
plot(f, 20*log10(abs(h))); 
grid on; 
title('Magnitude response of Chebyshev Type 1 BandStop Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Magnitude(dB)'); 
 
% Plotting the phase response 
 
plot(f,angle(h)); 
title('Phase response of Chebyshev Type 1 BandStop Filter By BZT'); 
xlabel('Normalized Frequency'); 
ylabel('Phase(rad)'); 
grid on; 
 
% Plotting the Impulse Response 
[y,t] = impz(b2,a2,60); 
figure; 
stem(t,y);grid 
xlabel('Samples'); 
ylabel('Amplitude'); 
title('Impulse response of Chebyshev Type 1 BandStop Filter By BZT'); 
 
% Pole-Zero Plot 
z = roots(b2);%zeros 
p = roots(a2);%poles 
figure; 
zplane(z,p);grid 
title('Pole-Zero plot of Chebyshev Type 1 BandStop Filter By BZT'); 
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Conclusion 
 
In this project, the design of IIR filters  using analog frequency transformation by matrix 
operation was presented. The method is simple and can be implemented by means of any 
mathematical software .Combination of the matrices described here with the pascal 
matrix allows the design of the digital IIR filters from the continuous – time prototypes. 
Several results were verified in the design. It was mentioned by Jacek Konopacki,”The 
Frequency transformation by Matrix Operation and Its Application in IIR Filters 
Design”,IEEE Signal Processing Lett.vol.12,no.1,pp.5– 8,Jan.2005, that ,this approach 
.ie the frequency transformation by using matrix operation is not highly suitable for the 
design of lowpass and highpass digital IIR filter .I have designed all four types of filters 
by using this approach ,I have given more attention to the lowpass and highpass filters. 
After designing several lowpass and highpass filters both at low and high frequency  and 
comparing them with BZT and Impulse Invariant filters several significant observations 
were made: 
 (1)During  the design of lowpass filters I found satisfactory results. when we increase or 
decrease the passband ,stopband and sampling frequency the magnitude response are not 
showing much attenuation as compared to the BZT. 
 
(2) By  this approach I got the attenuation at Nyquist frequency ,which is similar to the 
attenuation got  by  designing digital lowpass filter by the Bilinear Z-Transform method. 
 
(3)Results of the phase, Impulse, and pole zero plot are also similar and sometimes better 
than the BZT method.. I also got satisfactory results when I designed highpass ,bandpass 
and bandstop digital filters by using frequency transformation by matrix operation 
approach.  
 
Finally I came to the conclusion  that  using frequency transformation by matrix 
operation we can effectively design lowpass and highpass along with the bandpass and 
bandstop filters.  
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