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Abstract 

 
 
 

In this dissertation a detailed study of Time Series Forecasting & Analysis has been 

carried out. The implementation has been done using a Neural Network that learns from 

examples or historic live data. The designing of a suitable network and its mathematical 

approach is an important area of research that has been carried out extensively in 

MATLAB’s nntool toolkit.  

The following three different new examples have been taken into consideration for 

analyzing the forecasting techniques and see its accuracy in detail: 

1. SERIES B, IBM STOCK PRICES 

2. SUNSPOTS DATA FOR 300 YEARS (approx.) ON EARTH’S 

SURFACE, 1699-1999 

3. TOTAL ANNUAL RAINFALL, INCHES, LONDON, ENGLAND, 

1813-1912 

 
 

 

 



 6

 

 

 

 

 

 

 

Contents 

_________________________________________________ 

Chapter 1:  Time-Critical Decision Modeling and Analysis 1  

1.1 Introduction  1  

1.2 Effective Modeling for Good Decision-Making 6  

1.2.1 A Model  6 

1.2.2 Need for modeling 6 

1.3 Balancing Success in Business  7 

1.4 Modeling for Forecasting  8 

1.4.1 Accuracy and Validation Assessments 8 

1.4.2 Statistical Forecasting 9 

1.4.3 Autocorrelation 10 

1.4.4 Standard Error for a Stationary Time-Series 10 

1.4.5 Performance Measures and Control Chart 11  

for Examine Forecasting Errors 



 7

1.4.6 Modeling for Forecasting with Accuracy  11 

and Validation Assessments 

1.5 Stationary Time Series 13 

1.5.1 First Order Stationary 14 

1.5.2 Second Order Stationary  14 

Chapter 2:  Causal Modeling and Forecasting 15 

2.1 A Summary of Forecasting Methods 15 

2.2 Modeling the Causal Time Series 15  

2.3 How to Do Forecasting by Regression Analysis 16 

2.4 Predictions by Regression 16   

2.5 Planning, Development, and Maintenance  17 

of a Linear Model 

2.5.1 Planning 17 

2.5.2 Development of the Model 18 

2.5.3 Validation and Maintenance of the Model  19 

2.6 Trend Analysis  19 

2.7 Modeling Seasonality and Trend 20 

2.7.1. Seasonal Index 20 

2.7.2. Deseasonalizing Process 21 

2.7.3. Forecasting 21 

2.7.4. A Numerical Application  21 

2.8 Trend Removal and Cyclical Analysis  24 

2.9 Decomposition Analysis 24 



 8

Chapter 3:   Smoothing Techniques 28 

3.1 Introduction 28 

3.2 Moving Averages and Weighted Moving Averages 29 

3.2.1 Simple Moving Averages 29 

3.2.2 Weighted Moving Average 29 

3.2.3 An illustrative numerical example  30 

3.3 Exponential Smoothing Techniques  30 

3.4 Exponenentially Weighted Moving Average  32 

3.5 Holt's Linear Exponential Smoothing Technique 32 

3.6 The Holt-Winters' Forecasting Technique  34 

3.7 Conclusion 36 

Chapter 4: Box-Jenkins Methodology 39 
4.1 Introduction 39 
4.2 Autoregressive Models  42 

Chapter 5:  Filtering Techniques 49 

5.1 Adaptive Filtering  49 

5.2 Hodrick-Prescott Filter  49 

5.3 Kalman Filter  50 

Chapter 6:   A Summary of Special Modeling Techniques 52 

6.1 Neural Network 52 

6.2 How the Human Brain Learns 52 

6.3 Definition of Neural Network 54 

6.3.1 Basic (Intuitive) Idea 54 

6.3.2 Two Modes Of Operation Of A Neuron 55 

http://home.ubalt.edu/ntsbarsh/stat-data/#rhomave
http://home.ubalt.edu/ntsbarsh/stat-data/#rhowma
http://home.ubalt.edu/ntsbarsh/stat-data/#rhowexpon
http://home.ubalt.edu/ntsbarsh/stat-data/#rexpmoving
http://home.ubalt.edu/ntsbarsh/stat-data/#rHoltLinear
http://home.ubalt.edu/ntsbarsh/stat-data/#rHoltWinter
http://home.ubalt.edu/ntsbarsh/stat-data/#rhowconclud
http://home.ubalt.edu/ntsbarsh/stat-data/#rAutorModels
http://home.ubalt.edu/ntsbarsh/stat-data/#rneural


 9

6.3.3 Basic Artificial Model 55 

6.3.4 Characterization 55 

6.4 Choosing The Network Structure 56 

6.4.1 The Input Layer 56 

6.4.2 The Output Layer 56 

6.5 Neural Network for Time Series 57 

6.6 Modeling and Simulation  58 

6.7 Probabilistic Models  59 

6.8 Event History Analysis  59 

6.9 Predicting Market Response 60 

6.10 Prediction Interval for a Random Variable  60 

6.11 Census II Method of Seasonal Analysis  61 

6.12 Delphi Analysis  61 

6.13 System Dynamics Modeling  61 

6.14 Transfer Functions Methodology  62 

6.15 Testing for and Estimation of Multiple Structural Changes  62 

6.16 Combination of Forecasts  63 

6.17 Measuring for Accuracy 64 

http://home.ubalt.edu/ntsbarsh/stat-data/#rhowsim
http://home.ubalt.edu/ntsbarsh/stat-data/#rhowprob
http://home.ubalt.edu/ntsbarsh/stat-data/#reventhis
http://home.ubalt.edu/ntsbarsh/stat-data/#rpremr
http://home.ubalt.edu/ntsbarsh/stat-data/#rpredictsamplemean
http://home.ubalt.edu/ntsbarsh/stat-data/#rsensusM
http://home.ubalt.edu/ntsbarsh/stat-data/#rdelphi
http://home.ubalt.edu/ntsbarsh/stat-data/#rsysdynamic
http://home.ubalt.edu/ntsbarsh/stat-data/#rtranfunmet
http://home.ubalt.edu/ntsbarsh/stat-data/#rtestmultiochang
http://home.ubalt.edu/ntsbarsh/stat-data/#rhowerror


 10

Chapter 7:  Learning and The Learning Curve 66 
7.1 Introduction  66 
7.2 Psychology of Learning  66 
7.3 Modeling the Learning Curve  70 
7.4 An Application 71 

Chapter 8:  Neural Network And Time Series Analysis 74 
8.1 Time Series Prediction in ST Neural Networks 74 
8.2 The Back-Propagation Algorithm - A Mathematical 

Approach 75 
8.3 Linear Perceptron Network 79 

Chapter 9:  Implementation Of Time Series Forecasting Using  83 
Three Different Examples 
 

Appendix A 94 
References and Bibliography 104 

 

 

 

 

 

 

 

 

 

 

 

 

 



 11

CHAPTER 1 

TIME-CRITICAL DECISION MODELING AND ANALYSIS 

 

1.1 Introduction 

The ability to model and perform decision modeling and analysis is an essential 

feature of many real-world applications ranging from emergency medical 

treatment in intensive care units to military command and control systems. 

Existing formalisms and methods of inference have not been effective in real-time 

applications where tradeoffs between decision quality and computational 

tractability are essential. In practice, an effective approach to time-critical 

dynamic decision modeling should provide explicit support for the modeling of 

temporal processes and for dealing with time-critical situations.  

Almost all managerial decisions are based on forecasts. Every decision becomes 

operational at some point in the future, so it should be based on forecasts of future 

conditions.  

Forecasts are needed throughout an organization -- and they should certainly not 

be produced by an isolated group of forecasters. Forecasting is never "finished". 

Forecasts are needed continually, and as time moves on, the impact of the 

forecasts on actual performance is measured; original forecasts are updated; and 

decisions are modified, and so on. This process is shown in the following figure:  
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The decision-maker uses forecasting models to assist him or her in decision-

making process. The decision-making often uses the modeling process to 

investigate the impact of different courses of action retrospectively; that is, "as 

if" the decision has already been made under a course of action. That is why the 

sequence of steps in the modeling process, in the above figure must be considered 

in reverse order. For example, the output (which is the result of the action) must 

be considered first.  

It is helpful to break the components of decision making into three groups: 

Uncontrollable, Controllable, and Resources (that defines the problem situation). 

As indicated in the above activity chart, the decision-making process has the 

following components:  

Performance measure (or indicator, or objective): Measuring business 

performance is the top priority for managers. The development of effective 

performance measures is seen as increasingly important in almost all 

organizations. However, the challenges of achieving this in the public and for 

non-profit sectors are arguably considerable. Performance measure provides the 

desirable level of outcome, i.e., objective of the decision. Objective is important 

in identifying the forecasting activity. The following table provides a few 

examples of performance measures for different levels of management:  
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Level Performance Measure 

Strategic    Return of Investment, Growth, and    
  Innovations 

Tactical   Cost, Quantity, and Customer 
satisfaction 

Operational   Target setting, and Conformance with  
  Standard 

To improve a system's performance, an operational view is required. Such a 

view gets at how a forecasting system really works; for example, by what 

correlation its past output behaviors have generated. Forecasting activity is an 

iterative process. It starts with effective and efficient planning and ends in 

compensation of other forecasts for their performance.  

  What is a System? 

Systems that are building blocks for other systems called subsystems  

The Dynamics of a System: A system that does not change is a static system. 

Many of the business systems are dynamic systems, which mean their states 

change over time. The way a system changes over time as the system's behavior. 

And when the system's development follows a typical pattern, it is said that the 

system has a behavior pattern. Whether a system is static or dynamic depends on 

which time horizon you choose and on which variables you concentrate. The time 

horizon is the time period within which you study the system. The variables are 

changeable values on the system.  

Resources: Resources are the constant elements that do not change during the 

time horizon of the forecast. Resources are the factors that define the decision 

problem.  

Forecasts: Forecasts input come from the decision maker's environment. 

Uncontrollable inputs must be forecasted or predicted.  
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Decisions: Decisions inputs ate the known collection of all possible courses of 

action one might take.  

Interaction: Interactions among the above decision components are the logical, 

mathematical functions representing the cause-and-effect relationships among 

inputs, resources, forecasts, and the outcome.  

Actions: Action is the ultimate decision and is the best course of strategy to 

achieve the desirable goal.  

Decision-making involves the selection of a course of action (means) in pursue of 

the decision maker's objective (ends). The way that our course of action affects 

the outcome of a decision depends on how the forecasts and other inputs are 

interrelated and how they relate to the outcome.  

Controlling the Decision Problem/Opportunity: Few problems in life, once 

solved, stay that way. Changing conditions tend to un-solve problems that were 

previously solved, and their solutions create new problems. One must identify and 

anticipate these new problems.  

Forecasting is a prediction of what will occur in the future, and it is an uncertain 

process. Because of the uncertainty, the accuracy of a forecast is as important as 

the outcome predicted by the forecast. A general overview of business forecasting 

techniques are classified in the following figure:  
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Progressive Approach to Modeling: Modeling for decision-making involves 

two distinct parties, one is the decision-maker and the other is the model-builder 

known as the analyst. The analyst is to assist the decision-maker in his/her 

decision-making process. Therefore, the analyst must be equipped with more than 

a set of analytical methods.  

Quantitative Decision Making: Schools of Business and Management are 

flourishing with more and more students taking up degree program at all level. In 

particular there is a growing market for conversion courses such as MSc in 

Business or Management and post experience courses such as MBAs. Specialists 

in model building are often tempted to study a problem, and then go off in 

isolation to develop an elaborate mathematical model for use by the manager (i.e., 

the decision-maker). Unfortunately the manager may not understand this model 

and may either use it blindly or reject it entirely. The specialist may believe that 

the manager is too ignorant and unsophisticated to appreciate the model, while the 

manager may believe that the specialist lives in a dream world of unrealistic 

assumptions and irrelevant mathematical language. Such miscommunication can 

be avoided if the manager works with the specialist to develop first a simple 

model that provides a crude but understandable analysis. After the manager has 

built up confidence in this model, additional detail and sophistication can be 

added, perhaps progressively only a bit at a time. This process requires an 

investment of time on the part of the manager and sincere interest on the part of 

the specialist in solving the manager's real problem, rather than in creating and 

trying to explain sophisticated models. This progressive model building is often 

referred to as the bootstrapping approach and is the most important factor in 

determining successful implementation of a decision model. Moreover the 

bootstrapping approach simplifies the otherwise difficult task of model validation 

and verification processes.  

The time series analysis has three goals: forecasting (also called predicting), 

modeling, and characterization. Modeling is again the key, though out-of-

sample forecasting may be used to test any model. Often modeling and 
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forecasting proceed in an iterative way and there is no 'logical order' in the 

broadest sense. One may model to get forecasts, which enable better control, but 

iteration is again likely to be present and there are sometimes special approaches 

to control problems.  

Outliers: Outliers can be one-time outliers or seasonal pulses or a sequential set 

of outliers with nearly the same magnitude and direction (level shift) or local time 

trends. A pulse is a difference of a step while a step is a difference of a time trend. 

In order to assess or declare "an unusual value" one must develop "the expected or 

usual value". Time series techniques extended for outlier detection, i.e. 

intervention variables like pulses, seasonal pulses, level shifts and local time 

trends can be useful in "data cleansing" or pre-filtering of observations.  

1.2 Effective Modeling for Good Decision-Making 

1.2.1  A Model  

A Model is an external and explicit representation of a part of reality, as it is seen 

by individuals who wish to use this model to understand, change, manage and 

control that part of reality.  

Descriptive and prescriptive models: A descriptive model is often a function of 

figuration, abstraction based on reality. However, a prescriptive model is moving 

from reality to a model a function of development plan, means of action, moving 

from model to the reality.  

The distinction between descriptive and prescriptive models is in the perspective 

of a traditional analytical distinction between knowledge and action. The 

prescriptive models are in fact the furthest points in a chain cognitive, predictive, 

and decision making.  

1.2.2 Need for modeling 

The purpose of models is to aid in designing solutions. They are to assist 

understanding the problem and to aid deliberation and choice by allowing to 
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evaluate the consequence of action before implementing them. The principle of 

bounded rationality assumes that the decision maker is able to optimize but only 

within the limits of his/her representation of the decision problem. Such a 

requirement is fully compatible with many results in the psychology of memory: 

an expert uses strategies compiled in the long-term memory and solves a decision 

problem with the help of his/her short-term working memory. 

Problem solving is decision making that may involves heuristics such as 

satisfaction principle, and availability. Decision-making might be viewed as the 

achievement of a more or less complex information process and anchored in the 

search for a dominance structure: the Decision Maker updates his/her 

representation of the problem with the goal of finding a case where one 

alternative dominates all the others for example; in a mathematical approach 

based on dynamic systems under three principles:  

1. Parsimony: the decision maker uses a small amount of information.  

2. Reliability: the processed information is relevant enough to justify –

personally or socially -- decision outcomes.  

3. Decidability: the processed information may change from one decision             

to another. 

4. Validation and Verification: As part of the calibration process of a model, 

the modeler must validate and verify the model. The term validation is 

applied to those processes, which seek to determine whether or not a 

model is correct with respect to the "real" system. 

1.3 Balancing Success in Business 

Without metrics, management can be a nebulous, if not impossible, exercise. A 

methodology for measuring success and setting goals from financial and 

operational viewpoints is required. With those measures, any business can 

manage its strategic vision and adjust it for any change. Setting a performance 

measure is a multi-perspective at least from financial, customer, innovation, 

learning, and internal business viewpoints processes.  
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• The financial perspective provides a view of how the shareholders see the  

   company; i.e. the company's bottom-line.  

• The customer perspective provides a view of how the customers see the  

   company.  

• While the financial perspective deals with the projected value of the company,           

   the innovation and learning perspective sets measures that help the company             

 compete in a changing business environment. The focus for this innovation is in 

the formation of new or the improvement of existing products and processes.  

• The internal business process perspective provides a view of what the 

company must excel at to be competitive. The focus of this perspective then is the 

translation of customer-based measures into measures reflecting the company's 

internal operations.  

Each of the above four perspectives must be considered with respect to four 

parameters:  

1.Goals: Targets needed to achieve to become successful.  

2.Measures: Parameters required to be known for being successful.  

3.Targets: Quantitative values used to determine success of the measure. 

4.Initiatives: Requirements needed to meet goals. 

1.4  Modeling for Forecasting: 

1.4.1 Accuracy and Validation Assessments 

Forecasting is a necessary input to planning whether in business or government. 

Often forecasts are generated subjectively and at great cost by group discussion 

even when relatively simple quantitative methods can perform just as well or, at 

least provide an informed input to such discussions.  
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The following flowchart highlights the systematic development of the 

modeling and forecasting phases:  

 

Modeling for Forecasting 

 

The above modeling process is useful to:  

• understand the underlying mechanism generating the time series. This includes  

  describing and explaining any variations, seasonality, trend, etc.  

• predict the future under "business as usual" condition.  

• control the system, which is to perform the "what-if" scenarios.  

1.4.2 Statistical Forecasting 

The selection and implementation of the proper forecast methodology has always 

been an important planning and control issue for most firms and agencies. Often, 

the financial well-being of the entire operation rely on the accuracy of the forecast 

since such information will likely be used to make interrelated budgetary and 

operative decisions in areas of personnel management, purchasing, marketing and 
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advertising, capital financing, etc. For example, any significant over-or-under 

sales forecast error may cause the firm to be overly burdened with excess 

inventory carrying costs or else create lost sales revenue through unanticipated 

item shortages. When demand is fairly stable unchanging or else growing or 

declining at a known constant rate, making an accurate forecast is less difficult. 

On the other hand if the firm has historically experienced an up-and-down sales 

pattern then the complexity of the forecasting task is compounded.  

There are two main approaches to forecasting. Either the estimate of future value 

is based on an analysis of factors which are believed to influence future values i.e. 

the explanatory method, or else the prediction is based on an inferred study of 

past general data behavior over time, i.e. the extrapolation method. It is possible 

that both approaches will lead to the creation of accurate and useful forecasts but 

it must be remembered that even for a modest degree of desired accuracy the 

former method is often more difficult to implement and validate than the latter 

approach.  

1.4.3 Autocorrelation 

 Autocorrelation is the serial correlation of equally spaced time series between its 

members one or more lags apart. Alternative terms are the lagged correlation, and 

persistence. Unlike the statistical data which are random samples allowing to 

perform statistical analysis the time series are strongly autocorrelated making it 

possible to predict and forecast. Three tools for assessing the autocorrelation of a 

time series are the time series plot, the lagged scatterplot, and at least the first and 

second order autocorrelation values.  

1.4.4 Standard Error for a Stationary Time-Series 

 The sample mean for a time-series, has standard error not equal to S / n ½, but 

S[(1-r) / (n-nr)] ½, where S is the sample standard deviation, n is the length of the 

time-series, and r is its first order correlation.  
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1.4.5 Performance Measures and Control Chart for Examine Forecasting     

Errors 

Beside the Standard Error there are other performance measures. The following 

are some of the widely used performance measures:  

 

 

If the forecast error is stable then the distribution of it is approximately normal.  If 

the forecast error is stable, then the distribution of it is approximately normal. 

With this in mind, we can plot and then analyze the on the control charts to see if 

they might be a need to revise the forecasting method being used. To do this, if 

we divide a normal distribution into zones, with each zone one standard deviation 

wide, then one obtains the approximate percentage we expect to find in each zone 

from a stable process.  

1.4.6 Modeling for Forecasting with Accuracy and Validation Assessments 

Control limits could be one-standard-error, or two-standard-error, and any point 

beyond these limits (i.e., outside of the error control limit) is an indication the 

need to revise the forecasting process, as shown below:  
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A Zone on a Control Chart for Controlling Forecasting Errors 
  

The plotted forecast errors on this chart, not only should remain with the control 

limits, they should not show any obvious pattern, collectively.  

Since validation is used for the purpose of establishing a model’s credibility it is 

important that the method used for the validation is, itself, credible. Features of 

time series which might be revealed by examining its graph, with the forecasted 

values and the residuals behavior condition forecasting modeling.  

An effective approach to modeling forecasting validation is to hold out a specific 

number of data points for estimation validation (i.e. estimation period) and a 

specific number of data points for forecasting accuracy (i.e. validation period). 

The data which are not held out are used to estimate the parameters of the model. 

The model is then tested on data in the validation period if the results are 

satisfactory and forecasts are then generated beyond the end of the estimation and 

validation periods. As an illustrative example the following graph depicts the 

above process on a set of data with trend component only:  

http://home.ubalt.edu/ntsbarsh/Business-stat/graph/TimeSeriesPlot.htm
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Estimation Period, Validation Period, and the Forecasts 
  

In general, the data in the estimation period are used to help select the model and 

to estimate its parameters. Forecasts into the future are "real" forecasts that are 

made for time periods beyond the end of the available data. The data in the 

validation period are held out during parameter estimation. These values may also 

be withhold during the forecasting analysis after model selection, and then one-

step-ahead forecasts be made. A good model should have small error measures in 

both the estimation and validation periods compared to other models and its 

validation period statistics should be similar to its own estimation period statistics. 

Holding data out for validation purposes is probably the single most important 

diagnostic test of a model: it gives the best indication of the accuracy that can be 

expected when forecasting the future. It is a rule-of-thumb that one should hold 

out at least 20% of data for validation purposes.  

1.5 Stationary Time Series 

Stationarity has always played a major role in time series analysis. To perform 

forecasting, most techniques required stationarity conditions. Therefore, it is 

needed to establish some conditions, e.g. time series must be a first and second 

order stationary process.  
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1.5.1 First Order Stationary: 

A time series is a first order stationary if expected value of X(t) remains the same 

for all t.  

For example in economic time series, a process is first order stationary when one 

removes any kinds of trend by some mechanisms such as differencing.  

1.5.2 Second Order Stationary 

 A time series is a second order stationary if it is first order stationary and 

covariance between X(t) and X(s) is function of length (t-s) only.  

Again in economic time series, a process is second order stationary when its 

variance is also stabilized by some kind of transformations such as taking square 

root.  
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CHAPTER –2 

CAUSAL MODELING AND FORECASTING 

 

2.1 A Summary of Forecasting Methods  

Organizations usually assign crucial forecast responsibilities to those departments 

and/or individuals that are best qualified and have the necessary resources at hand 

to make such forecast estimations under complicated demand patterns. A firm 

with a large ongoing operation and a technical staff comprised of statisticians, 

management scientists, computer analysts, etc. is in a much better position to 

select and make proper use of sophisticated forecast techniques than is a company 

with more limited resources. Notably, the bigger firm through its larger resources 

has a competitive edge over an unwary smaller firm and can be expected to be 

very diligent and detailed in estimating forecast Multi-predictor regression 

methods include logistic models for binary outcomes, the Cox model for right-

censored survival times, repeated-measures models for longitudinal and 

hierarchical outcomes, and generalized linear models for counts and other 

outcomes. Below are outline some effective forecasting approaches, especially for 

short to intermediate term analysis and forecasting:  

2.2 Modeling the Causal Time Series 

 With multiple regressions, one can use more than one predictor. It is always best 

however, to be parsimonious that is to use as few variables as predictors as 

necessary to get a reasonably accurate forecast. Multiple regressions are best 

modeled with commercial package such as SAS or SPSS. The forecast takes the 

form:  

Y = β0 + β1X1 + β2X2 + . . .+ βnXn,  

http://home.ubalt.edu/ntsbarsh/stat-data/SPSSSAS.htm
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where β0 is the intercept, β1, β2, . . . βn are coefficients representing the 

contribution of the independent variables X1, X2,..., Xn.  

2.3 How to do forecasting using regression analysis 

Forecasting is a prediction of what will occur in the future, and it is an uncertain 

process. Because of the uncertainty, the accuracy of a forecast is as important as 

the outcome predicted by forecasting the independent variables X1, X2,..., Xn. A 

forecast control must be used to determine if the accuracy of the forecast is within 

acceptable limits. Two widely used methods of forecast control are a tracking 

signal, and statistical control limits.  

Tracking signal is computed by dividing the total residuals by their mean absolute 

deviation (MAD). To stay within 3 standard deviations, the tracking signal that is 

within 3.75 MAD is often considered to be good enough.  

Statistical control limits are calculated in a manner similar to other quality control 

limit charts, however the residual standard deviation are used.  

Multiple regressions are used when two or more independent factors are involved 

and it is widely used for short to intermediate term forecasting. They are used to 

assess which factors to include and which to exclude. They can be used to 

develop alternate models with different factors.  

2.4 Predictions by Regression 

The regression analysis has three goals: predicting, modeling, and 

characterization. What would be the logical order in which to tackle these three 

goals such that one task leads to and /or and justifies the other tasks? Clearly, it 

depends on what the prime objective is. Sometimes you wish to model in order to 

get better prediction. Then the order is obvious. Sometimes, you just want to 

understand and explain what is going on. Then modeling is again the key, though 

out-of-sample predicting may be used to test any model. Often modeling and 
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predicting proceed in an iterative way and there is no 'logical order' in the 

broadest sense. One may model to get predictions which enable better control but 

iteration is again likely to be present and there are sometimes special approaches 

to control problems.  

The following contains the main essential steps during modeling and analysis of 

regression model building. 

Formulas and Notations:  

= Σx /n, This is just the mean of the x values.  

= Σy /n, This is just the mean of the y values.  

Sxx = SSxx = Σ(x(i) - )2 = Σx2 - ( Σx)2 / n  

Syy = SSyy = Σ(y(i) - )2 = Σy2 - ( Σy) 2 / n  

Sxy = SSxy = Σ(x(i) - )(y(i) - ) = Σx ⋅y – (Σx) ⋅ (Σy) / n  

Slope m = SSxy / SSxx  

Intercept, b = - m .  

y-predicted = yhat(i) = m⋅x(i) + b.  

Residual(i) = Error(i) = y – yhat(i).  

SSE = Sres = SSres = SSerrors = Σ[y(i) – yhat(i)]2.  

Standard deviation of residuals = s = Sres = Serrors = [SSres / (n-2)]1/2.  

Standard error of the slope (m) = Sres / SSxx
1/2.  

Standard error of the intercept (b) = Sres[(SSxx + n. 2) /(n ⋅ SS ] xx
1/2. 

2.5 Planning, Development, and Maintenance of a Linear    Model 

2.5.1 Planning:  

1. Define the problem; select response; suggest variables.  

2. Are the proposed variables fundamental to the problem, and are they variables? 

Are they measurable/countable? Can one get a complete set of observations at the 
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same time? Ordinary regression analysis does not assume that the independent 

variables are measured without error. However, they are conditioned on whatever 

errors happened to be present in the independent data set.  

3. Is the problem potentially solvable?  

4. Find correlation matrix and first regression runs (for a subset of data).  

Find the basic statistics, correlation matrix.  

How difficult is the problem? Compute the Variance Inflation Factor:  

VIF = 1/(1 -rij),     for all i, j.  

5. Establish goal; prepare budget and time table.  

a. The final equation should have Adjusted R2 = 0.8 (say).  

b. Coefficient of Variation of say; less than 0.10  

c. Number of predictors should not exceed p (say, 3), (for example for p = 3, one    

needs at least 30 points). Even if all the usual assumptions for a regression model are 

satisfied, over-fitting can ruin a model's usefulness. The widely used approach is the 

data reduction method to deal with the cases where the number of potential predictors 

is large in comparison with the number of observations.  

d. All estimated coefficients must be significant at μ = 0.05 (say).  

e. No pattern in the residuals  

6. Are goals and budget acceptable?  

2.5.2 Development of the Model 

(i) Collect date; check the quality of date; plot; try models; check the 

regression conditions.  

(ii) Consult experts for criticism.  

Plot new variable and examine same fitted model. Also transformed 

Predictor Variable may be used.  
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(iii) Are goals met?  

Have you found "the best" model 

2.5.3. Validation and Maintenance of the Model  

(i) Are parameters stable over the sample space?  

(ii) Is there a lack of fit?  

(iii) Are the coefficients reasonable? Are any obvious variables missing? Is the 

equation usable for control or for prediction?  

(iv) Maintenance of the Model.  

Need to have control chart to check the model periodically by statistical 

techniques.  

 
 

             Regression Analysis Process 

2.6  Trend Analysis 

This uses linear and nonlinear regression with time as the explanatory variable. It 

is used where pattern over time have a long-term trend. Unlike most time-series 

forecasting techniques, the Trend Analysis does not assume the condition of 

equally spaced time series. Nonlinear regression does not assume a linear 

http://home.ubalt.edu/ntsbarsh/stat-data/regression.gif
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relationship between variables. It is frequently used when time is the independent 

variable.  

 

2.7 Modeling Seasonality and Trend 

 Seasonality is a pattern that repeats for each period. For example annual seasonal 

pattern has a cycle that is 12 periods long, if the periods are months, or 4 periods 

long if the periods are quarters. We need to get an estimate of the seasonal index 

for each month, or other periods, such as quarter, week, etc, depending on the data 

availability.  

2.7.1. Seasonal Index 

 Seasonal index represents the extent of seasonal influence for a particular 

segment of the year. The calculation involves a comparison of the expected values 

of that period to the grand mean.  

A seasonal index is how much the average for that particular period tends to be 

above (or below) the grand average. Therefore, to get an accurate estimate for the 

seasonal index, we compute the average of the first period of the cycle, and the 

second period, etc, and divide each by the overall average. The formula for 

computing seasonal factors is:  

Si = Di/D, 

where: 

Si = the seasonal index for ith period, 

Di = the average values of ith period, 

D = grand average, 

i = the ith seasonal period of the cycle. 

A seasonal index of 1.00 for a particular month indicates that the expected value 

of that month is 1/12 of the overall average. A seasonal index of 1.25 indicates 
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that the expected value for that month is 25% greater than 1/12 of the overall 

average. A seasonal index of 80 indicates that the expected value for that month is 

20% less than 1/12 of the overall average.  

2.7.2. Deseasonalizing Process 

 Deseasonalizing the data, also called Seasonal Adjustment is the process of 

removing recurrent and periodic variations over a short time frame, e.g., weeks, 

quarters, months. Therefore, seasonal variations are regularly repeating 

movements in series values that can be tied to recurring events. The 

Deseasonalized data is obtained by simply dividing each time series observation 

by the corresponding seasonal index.  

Almost all time series published by the US government are already 

deseasonalized using the seasonal index to unmasking the underlying trends in the 

data, which could have been caused by the seasonality factor.  

2.7.3. Forecasting 

Incorporating seasonality in a forecast is useful when the time series has both 

trend and seasonal components. The final step in the forecast is to use the 

seasonal index to adjust the trend projection. One simple way to forecast using a 

seasonal adjustment is to use a seasonal factor in combination with an appropriate 

underlying trend of total value of cycles.  

2.7.4. A Numerical Application 

 The following table provides monthly sales ($1000) at a college bookstore. The 

sales show a seasonal pattern, with the greatest number when the college is in 

session and decrease during the summer months.  
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M 

T  

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

1 196 188 192 164 140 120 112 140 160 168 192 200 1972 

2 200 188 192 164 140 122 132 144 176 168 196 194 2016 

3 196 212 202 180 150 140 156 144 164 186 200 230 2160 

4 242 240 196 220 200 192 176 184 204 228 250 260 2592 

Mean: 208.6 207.0 192.6 182.0 157.6 143.6 144.0 153.0 177.6 187.6 209.6 221.0 2185 

Index: 1.14 1.14 1.06 1.00 0.87 0.79 0.79 0.84 0.97 1.03 1.15 1.22 12 
 

 

Suppose we wish to calculate seasonal factors and a trend, then calculate the 

forecasted sales for July in year 5.  

The first step in the seasonal forecast will be to compute monthly indices using 

the past four-year sales. For example, for January the index is:  

S(Jan) = D(Jan)/D = 208.6/181.84 = 1.14, 

where D(Jan) is the mean of all four January months, and D is the grand mean of 
all past four-year sales.  

Similar calculations are made for all other months. Indices are summarized in the 

last row of the above table. The mean (average value) for the monthly indices 

adds up to 12, which is the number of periods in a year for the monthly data.  

Next, a linear trend often is calculated using the annual sales:  

Y = 1684 + 200.4T, 
The main question is whether this equation represents the trend.  

http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/Regression.htm
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Determination of the Annual Trend for the Numerical Example  
 

Year No: Actual Sales Linear Regression Quadratic Regression
1 1972 1884 1981 
2 2016 2085 1988 
3 2160 2285 2188 
4 2592 2486 2583  

 

Often fitting a straight line to the seasonal data is misleading. By constructing the 

scatter-diagram, we notice that a Parabola might be a better fit. Using the 

Polynomial Regression, the estimated quadratic trend is:  

Y = 2169 - 284.6T + 97T2

Predicted values using both the linear and the quadratic trends are presented in the 

above tables. Comparing the predicted values of the two models with the actual 

data indicates that the quadratic trend is a much superior fit than the linear one, as 

often expected.  

We can now forecast the next annual sales; which, corresponds to year 5, or 

T = 5 in the above quadratic equation:  

Y = 2169 - 284.6(5) + 97(5)2 = 3171 

sales for the following year. The average monthly sales during next year is, 

therefore: 3171/12 = 264.25.  

Finally, the forecast for month of July is calculated by multiplying the 

average monthly sales forecast by the July seasonal index, which is 0.79; i.e., 

(264.25).(0.79) or 209.  

 

 

http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/PolynoReg.htm


 34

2.8 Trend Removal and Cyclical Analysis 

 The cycles can be easily studied if the trend itself is removed. This is done by 

expressing each actual value in the time series as a percentage of the calculated 

trend for the same date. The resulting time series has no trend, but oscillates 

around a central value of 100.  

2.9  Decomposition Analysis 

 It is the pattern generated by the time series and not necessarily the individual 

data values that offers to the manager who is an observer, a planner, or a 

controller of the system. Therefore, the Decomposition Analysis is used to 

identify several patterns that appear simultaneously in a time series. A variety of 

factors are likely influencing data. It is very important in the study that these 

different influences or components be separated or decomposed out of the 'raw' 

data levels. In general, there are four types of components in time series analysis: 

Seasonality, Trend, Cycling and Irregularity.  

Xt = St . Tt. Ct . I 

The first three components are deterministic which are called "Signals", while the 

last component is a random variable, which is called "Noise". To be able to make 

a proper forecast, we must know to what extent each component is present in the 

data. Hence, to understand and measure these components, the forecast procedure 

involves initially removing the component effects from the data (decomposition). 

After the effects are measured, making a forecast involves putting back the 

components on forecast estimates (recomposition). The time series decomposition 

process is depicted by the following flowchart:  
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 Definitions of the major components in the above flowchart:  

Seasonal variation: When a repetitive pattern is observed over some time 

horizon, the series is said to have seasonal behavior. Seasonal effects are 

usually associated with calendar or climatic changes. Seasonal variation is 

frequently tied to yearly cycles.  

Trend: A time series may be stationary or exhibit trend over time. Long-  

term trend is typically modeled as a linear, quadratic or exponential  

function.  

Cyclical variation: An upturn or downturn not tied to seasonal variation. 

Usually results from changes in economic conditions.  

(i) Seasonalities are regular fluctuations which are repeated from year to 

year with about the same timing and level of intensity. The first step of a 

times series decomposition is to remove seasonal effects in the data. 

Without deseasonalizing the data, we may, for example, incorrectly infer 

that recent increase patterns will continue indefinitely; i.e., a growth trend 

is present, when actually the increase is 'just because it is that time of the 

year'; i.e., due to regular seasonal peaks. To measure seasonal effects, we 

calculate a series of seasonal indexes. A practical and widely used method 

to compute these indexes is the ratio-to-moving-average approach. From 

such indexes, we may quantitatively measure how far above or below a 

given period stands in comparison to the expected or 'business as usual' 

data period (the expected data are represented by a seasonal index of 

100%, or 1.0).  

(ii) Trend is growth or decay that is the tendencies for data to increase or decrease 

fairly steadily over time. Using the deseasonalized data, we now wish to consider 

the growth trend as noted in our initial inspection of the time series. Measurement 

of the trend component is done by fitting a line or any other function. This fitted 
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function is calculated by the method of least squares and represents the overall 

trend of the data over time.  

(iii) Cyclic oscillations are general up-and-down data changes; due to changes 

e.g., in the overall economic environment (not caused by seasonal effects) such as 

recession-and-expansion. To measure how the general cycle affects data levels, 

we calculate a series of cyclic indexes. Theoretically, the deseasonalized data still 

contains trend, cyclic, and irregular components. Also, we believe predicted data 

levels using the trend equation do represent pure trend effects. Thus, it stands to 

reason that the ratio of these respective data values should provide an index which 

reflects cyclic and irregular components only. As the business cycle is usually 

longer than the seasonal cycle, it should be understood that cyclic analysis is not 

expected to be as accurate as a seasonal analysis.  

Due to the tremendous complexity of general economic factors on long term 

behavior, a general approximation of the cyclic factor is the more realistic aim. 

Thus, the specific sharp upturns and downturns are not so much the primary 

interest as the general tendency of the cyclic effect to gradually move in either 

direction. To study the general cyclic movement rather than precise cyclic 

changes (which may falsely indicate more accurately than is present under this 

situation), we 'smooth' out the cyclic plot by replacing each index calculation 

often with a centered 3-period moving average. The reader should note that as the 

number of periods in the moving average increases, the smoother or flatter the 

data become. The choice of 3 periods perhaps viewed as slightly subjective may 

be justified as an attempt to smooth out the many up-and-down minor actions of 

the cycle index plot so that only the major changes remain.  

(iv) Irregularities (I) are any fluctuations not classified as one of the above. This 

component of the time series is unexplainable; therefore it is unpredictable. 

Estimation of I can be expected only when its variance is not too large. 

Otherwise, it is not possible to decompose the series. If the magnitude of variation 

is large, the projection for the future values will be inaccurate. The best one can 



 37

do is to give a probabilistic interval for the future value given the probability of I 

is known.  

(v) Making a Forecast: At this point of the analysis, after we have completed the 

study of the time series components, we now project the future values in making 

forecasts for the next few periods. The procedure is summarized below.  

Step 1: Compute the future trend level using the trend equation.  

Step 2: Multiply the trend level from Step 1 by the period seasonal index to 

include seasonal effects.  

Step 3: Multiply the result of Step 2 by the projected cyclic index to include 

cyclic effects and get the final forecast result.  
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CHAPTER 3 

SMOOTHING TECHNIQUES 

 

3.1 Introduction

Smoothing Techniques: A time series is a sequence of observations, which are 

ordered in time. Inherent in the collection of data taken over time is some form of 

random variation. There exist methods for reducing of canceling the effect due to 

random variation. A widely used technique is "smoothing". This technique, when 

properly applied, reveals more clearly the underlying trend, seasonal and cyclic 

components.  

Smoothing techniques are used to reduce irregularities (random fluctuations) in 

time series data. They provide a clearer view of the true underlying behavior of 

the series. Moving averages rank among the most popular techniques for the 

preprocessing of time series. They are used to filter random "white noise" from 

the data, to make the time series smoother or even to emphasize certain 

informational components contained in the time series.  

Exponential smoothing is a very popular scheme to produce a smoothed time 

series. Whereas in moving averages the past observations are weighted equally, 

Exponential Smoothing assigns exponentially decreasing weights as the 

observation get older. In other words, recent observations are given relatively 

more weight in forecasting than the older observations. Double exponential 

smoothing is better at handling trends. Triple Exponential Smoothing is better at 

handling parabola trends.  

Exponential smoothing is a widely method used of forecasting based on the time 

series itself. Unlike regression models, exponential smoothing does not imposed 

http://home.ubalt.edu/ntsbarsh/stat-data/#rhomave
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any deterministic model to fit the series other than what is inherent in the time 

series itself.  

3.2 Moving Averages and Weighted Moving Averages 

3.2.1 Simple Moving Averages 

 The best-known forecasting methods is the moving averages or simply takes a 

certain number of past periods and add them together; then divide by the number 

of periods. Simple Moving Averages (MA) is effective and efficient approach 

provided the time series is stationary in both mean and variance. The following 

formula is used in finding the moving average of order n, MA(n) for a period t+1,  

MAt+1 = [Dt + Dt-1 + ... +Dt-n+1] / n  

where n is the number of observations used in the calculation.  

The forecast for time period t + 1 is the forecast for all future time periods. 

However, this forecast is revised only when new data becomes available.  

3.2.2 Weighted Moving Average 

 Very powerful and economical. They are widely used where repeated forecasts 

required-uses methods like sum-of-the-digits and trend adjustment methods. As 

an example, a Weighted Moving Averages is:  

Weighted MA(3) = w1.Dt + w2.Dt-1 + w3.Dt-2

where the weights are any positive numbers such that: w1 + w2 + w3 = 1. A 

typical weights for this example is, w1 = 3/(1 + 2 + 3) = 3/6, w2 = 2/6, and w3 = 

1/6.  
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3.2.3 An illustrative numerical example 

 The moving average and weighted moving average of order five are calculated in 

the following table.  

 

Week Sales ($1000) MA(5) WMA(5) 
1  105  -  -  
2  100  -  -  
3  105  -  -  
4  95  -  -  
5  100  101  100  
6  95  99  98  
7  105  100  100  
8  120  103  107  
9  115  107  111  
10  125  117  116  
11  120  120  119  
12  120  120  119  

    

 

3.3 Exponential Smoothing Techniques 

Exponential Smoothing Techniques: One of the most successful forecasting 

methods is the exponential smoothing (ES) techniques. Moreover, it can be 

modified efficiently to use effectively for time series with seasonal patterns. It is 

also easy to adjust for past errors-easy to prepare follow-on forecasts, ideal for 

situations where many forecasts must be prepared, several different forms are 

used depending on presence of trend or cyclical variations. In short, an ES is an 

averaging technique that uses unequal weights; however, the weights applied to 

past observations decline in an exponential manner.  
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Single Exponential Smoothing: It calculates the smoothed series as a damping 

coefficient times the actual series plus 1 minus the damping coefficient times the 

lagged value of the smoothed series. The extrapolated smoothed series is a 

constant, equal to the last value of the smoothed series during the period when 

actual data on the underlying series are available. While the simple Moving 

Average method is a special case of the ES, the ES is more parsimonious in its 

data usage. 

Ft+1 = α Dt + (1 - α) Ft

where:  

 

• Dt is the actual value  

• Ft is the forecasted value  

• α is the weighting factor, which ranges from 0 to 1 

• t is the current time period.  

It can be noticed that the smoothed value becomes the forecast for period t + 1.  

A small α provides a detectable and visible smoothing. While a large α provides a 

fast response to the recent changes in the time series but provides a smaller 

amount of smoothing. Notice that the exponential smoothing and simple moving 

average techniques will generate forecasts having the same average age of 

information if moving average of order n is the integer part of (2-α)/α.  

An exponential smoothing over an already smoothed time series is called double-

exponential smoothing. In some cases, it might be necessary to extend it even to 

a triple-exponential smoothing. While simple exponential smoothing requires 

stationary condition, the double-exponential smoothing can capture linear trends, 

and triple-exponential smoothing can handle almost all other business time series.  
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Double Exponential Smoothing: It applies the process described above three to 

account for linear trend. The extrapolated series has a constant growth rate, equal 

to the growth of the smoothed series at the end of the data period.  

Triple Double Exponential Smoothing: It applies the process described above 

three to account for nonlinear trend.  

3.4 Exponenentially Weighted Moving Average 

Exponenentially Weighted Moving Average: Suppose each day's forecast value 

is based on the previous day's value so that the weight of each observation drops 

exponentially the further back (k) in time it is. The weight of any individual is  

α(1 - α)k,    where a is the smoothing constant.  

An exponenentially weighted moving average with a smoothing constant α, 

corresponds roughly to a simple moving average of length n, where α and n are 

related by  

α = 2/(n+1)    OR    n = (2 - α)/α.  

Thus, for example, an exponenentially weighted moving average with a 

smoothing constant equal to 0.1 would correspond roughly to a 19 day moving 

average. And a 40-day simple moving average would correspond roughly to an 

exponentially weighted moving average with a smoothing constant equal to 

0.04878.  

This approximation is helpful, however, it is harder to update, and may not 

correspond to an optimal forecast.  

3.5 Holt's Linear Exponential Smoothing Technique 

Holt's Linear Exponential Smoothing Technique: Let the series { yt } is non-

seasonal but does display trend. Both the current level and the current trend are to 

be estimated. Here the trend Tt at time t can be defined as the difference between 

the current and previous level.  
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The updating equations express ideas similar to those for exponential smoothing. 

The equations are:  

Lt = α yt + (1 - α) Ft

for the level and  

Tt = β ( Lt - Lt-1 ) + (1 - β) Tt-1

for the trend. There are two smoothing parameters α and β; both must be positive 

and less than one. Then the forecasting for k periods into the future is:  

Fn+k = Ln + k. Tn  

Given that the level and trend remain unchanged, the initial (starting) values are  

T2 = y2 – y1,        L2 = y2,     and      F3 = L2 + T2

 

 

 

 

 

 

An Application: A company’s credit outstanding has been increasing at a 

relatively constant rate over time:  

Applying the Holt’s techniques with smoothing with parameters α = 0.7 and β = 

0.6, a graphical representation of the time series, its forecasts, together wit a few-

step ahead forecasts, are depicted below:  
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Year-end Past credit 
Year credit (in millions)  
1  133  
2  155  
3  165  
4  171  
5  194  
6  231  
7  274  
8  312  
9  313  
10  333  
11  343  
  

K-Period Ahead Forecast
K  Forecast (in millions) 
1  359.7  
2  372.6  
3  385.4  
4  398.3  
    

Demonstration of the calculation procedure, with α = 0.7 and β = 0.6  

L2 = y2 = 155,    T2 = y2 - y1 = 155 –133 = 22 

L3 = .7 y3 + (1 - .7) F3,    T3 = .6 ( L3 - L2 ) + (1 - .6) T2

F4 = L3 + T3,     F3 = L2 + T2 , L3 = .7 y3 + (1 - .7) F3,     T3 = .6 ( L3 - L2 ) + (1 - 
.6) T2 ,     F4 = L3 + T3

3.6 The Holt-Winters' Forecasting Technique:  

Now in addition to Holt parameters, suppose that the series exhibits multiplicative 

seasonality and let St be the multiplicative seasonal factor at time t. Suppose also 
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that there are s periods in a year, so s=4 for quarterly data and s=12 for monthly 

data. St-s is the seasonal factor in the same period last year.  

In some time series, seasonal variation is so strong it obscures any trends or 

cycles, which are very important for the understanding of the process being 

observed. Winters’ smoothing method can remove seasonality and makes long 

term fluctuations in the series stand out more clearly. A simple way of detecting 

trend in seasonal data is to take averages over a certain period. If these averages 

change with time it can be said that there is evidence of a trend in the series. The 

updating equations are:  

Lt = α (Lt-1 + Tt-1) + (1 - α) yt / St-s

for the level,  

Tt = β ( Lt - Lt-1 ) + (1 - β) Tt-1

for the trend, and  

St = γ St-s + (1- γ) yt / Lt

for the seasonal factor.  

There are thus three smoothing parameters α , β, and γ all must be positive and 

less than one.  

To obtain starting values, one may use the first a few year data. For example for 

quarterly data, to estimate the level, one may use a centered 4-point moving 

average:  

L10 = (y8 + 2y9 + 2y10 + 2y11 + y12) / 8  

as the level estimate in period 10. This will extract the seasonal component from a 

series with 4 measurements over each year.  
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T10 = L10 - L9  

as the trend estimate for period 10.  

S7 = (y7 / L7 + y3 / L3 ) / 2  

as the seasonal factor in period 7. Similarly,  

S8 = (y8 / L8 + y4 / L4 ) / 2,     S9 = (y9 / L9 + y5 / L5 ) / 2,     S10 = (y10 / L10 + y6 / 

L6 ) / 2  

For Monthly Data, then correspondingly one uses a centered 12-point moving 

average:  

L30 = (y24 + 2y25 + 2y26 +.....+ 2y35 + y36) / 24  

as the level estimate in period 30.  

T30 = L30 - L29  

as the trend estimate for period 30.  

S19 = (y19 / L19 + y7 / L7 ) / 2  

as the estimate of the seasonal factor in period 19, and so on, up to 30:  

S30 = (y30 / L30 + y18 / L18 ) / 2  

Then the forecasting k periods into the future is:  

Fn+k = (Ln + k. Tn ) St+k-s,    for k = 1, 2, ....,s  

3.7 Conclusion 

 A time series is a sequence of observations which are ordered in time. Inherent in the 

collection of data taken over time is some form of random variation. There exist 

methods for reducing of canceling the effect due to random variation. Widely used 

techniques are "smoothing". These techniques, when properly applied, reveals more 
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clearly the underlying trends. In other words, smoothing techniques are used to 

reduce irregularities (random fluctuations) in time series data. They provide a clearer 

view of the true underlying behavior of the series.  

Exponential smoothing has proven through the years to be very useful in many 

forecasting situations. Holt first suggested it for non-seasonal time series with or 

without trends. Winters generalized the method to include seasonality, hence the 

name: Holt-Winters Method. Holt-Winters method has 3 updating equations, each 

with a constant that ranges from (0 to 1). The equations are intended to give more 

weight to recent observations and less weight to observations further in the past. This 

form of exponential smoothing can be used for less-than-annual periods (e.g., for 

monthly series). It uses smoothing parameters to estimate the level, trend, and 

seasonality. Moreover, there are two different procedures, depending on whether 

seasonality is modeled in an additive or multiplicative way. Its multiplicative version 

is presented; the additive can be applied on an ant-logarithmic function of the data.  

The single exponential smoothing emphasizes the short-range perspective; it sets the 

level to the last observation and is based on the condition that there is no trend. The 

linear regression, which fits a least squares line to the historical data (or transformed 

historical data), represents the long range, which is conditioned on the basic trend. 

Holt’s linear exponential smoothing captures information about recent trend. The 

parameters in Holt’s model are the levels-parameter which should be decreased when 

the amount of data variation is large, and trends-parameter should be increased if the 

recent trend direction is supported by the causal some factors.  

Since finding three optimal, or even near optimal, parameters for updating equations 

is not an easy task, an alternative approach to Holt-Winters methods is to 

deseasonalize the data and then use exponential smoothing. Moreover, in some time 

series, seasonal variation is so strong it obscures any trends or cycles, which are very 

important for the understanding of the process being observed. Smoothing can 

remove seasonality and makes long term fluctuations in the series stand out more 

clearly. A simple way of detecting trend in seasonal data is to take averages over a 

http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/SeasonalTools.htm
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certain period. If these averages change with time one can say that there is evidence 

of a trend in the series.  

How to compare several smoothing methods: Although there are numerical 

indicators for assessing the accuracy of the forecasting technique, the most widely 

approach is in using visual comparison of several forecasts to assess their accuracy 

and choose among the various forecasting methods. In this approach, one must plot 

(using, e.g., Excel) on the same graph the original values of a time series variable and 

the predicted values from several different forecasting methods, thus facilitating a 

visual comparison. 
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CHAPTER 4 

BOX-JENKINS METHODOLOGY 

 

4.1 Introduction  

Forecasting Basics: The basic idea behind self-projecting time series forecasting 

models is to find a mathematical formula that will approximately generate the 

historical patterns in a time series.  

Time Series: A time series is a set of numbers that measures the status of some 

activity over time. It is the historical record of some activity, with measurements 

taken at equally spaced intervals (exception: monthly) with a consistency in the 

activity and the method of measurement.  

Approaches to time Series Forecasting: There are two basic approaches to 

forecasting time series: the self-projecting time series and the cause-and-effect 

approach. Cause-and-effect methods attempt to forecast based on underlying 

series that are believed to cause the behavior of the original series. The self-

projecting time series uses only the time series data of the activity to be forecast 

to generate forecasts. This latter approach is typically less expensive to apply and 

requires far less data and is useful for short, to medium-term forecasting.  

Box-Jenkins Forecasting Method: The univariate version of this methodology is 

a self- projecting time series forecasting method. The underlying goal is to find an 

appropriate formula so that the residuals are as small as possible and exhibit no 

pattern. The model- building process involves a few steps, repeated as necessary, 

to end up with a specific formula that replicates the patterns in the series as 

closely as possible and also produces accurate forecasts.  
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Box-Jenkins Methodology  

Box-Jenkins forecasting models are based on statistical concepts and principles 

and are able to model a wide spectrum of time series behavior. It has a large class 

of models to choose from and a systematic approach for identifying the correct 

model form. There are both statistical tests for verifying model validity and 

statistical measures of forecast uncertainty. In contrast, traditional forecasting 

models offer a limited number of models relative to the complex behavior of 

many time series, with little in the way of guidelines and statistical tests for 

verifying the validity of the selected model.  

Data: The misuse, misunderstanding, and inaccuracy of forecasts are often the 

result of not appreciating the nature of the data in hand. The consistency of the 

data must be insured, and it must be clear what the data represents and how it was 

gathered or calculated. As a rule of thumb, Box-Jenkins requires at least 40 or 50 

equally-spaced periods of data. The data must also be edited to deal with extreme 

or missing values or other distortions through the use of functions such as log or 

inverse to achieve stabilization.  

Preliminary Model Identification Procedure: A preliminary Box-Jenkins 

analysis with a plot of the initial data should be run as the starting point in 

determining an appropriate model. The input data must be adjusted to form a 

stationary series, one whose values vary more or less uniformly about a fixed 

level over time. Apparent trends can be adjusted by having the model apply a 

technique of "regular differencing," a process of computing the difference 

between every two successive values, computing a differenced series which has 

overall trend behavior removed. If a single differencing does not achieve 

stationarity, it may be repeated, although rarely, if ever, are more than two regular 

differencing required. Where irregularities in the differenced series continue to be 

displayed, log or inverse functions can be specified to stabilize the series, such 

that the remaining residual plot displays values approaching zero and without any 

pattern. This is the error term, equivalent to pure, white noise.  



 51

Pure Random Series: On the other hand, if the initial data series displays neither 

trend nor seasonality, and the residual plot shows essentially zero values within a 

95% confidence level and these residual values display no pattern, then there is no 

real-world statistical problem to solve and one goes on to other things.  

Model Identification Background  

Basic Model: With a stationary series in place, a basic model can now be 

identified. Three basic models exist, AR (autoregressive), MA (moving average) 

and a combined ARMA in addition to the previously specified RD (regular 

differencing): These comprise the available tools. When regular differencing is 

applied, together with AR and MA, they are referred to as ARIMA, with the I 

indicating "integrated" and referencing the differencing procedure.  

Seasonality: In addition to trend, which has now been provided for, stationary 

series quite commonly display seasonal behavior where a certain basic pattern 

tends to be repeated at regular seasonal intervals. The seasonal pattern may 

additionally frequently display constant change over time as well. Just as regular 

differencing was applied to the overall trending series, seasonal differencing (SD) 

is applied to seasonal non-stationarity as well. And as autoregressive and moving 

average tools are available with the overall series, so too, are they available for 

seasonal phenomena using seasonal autoregressive parameters (SAR) and 

seasonal moving average parameters (SMA).  

Establishing Seasonality: The need for seasonal autoregression (SAR) and 

seasonal moving average (SMA) parameters is established by examining the 

autocorrelation and partial autocorrelation patterns of a stationary series at lags 

that are multiples of the number of periods per season. These parameters are 

required if the values at lags s, 2s, etc. are nonzero and display patterns associated 

with the theoretical patterns for such models. Seasonal differencing is indicated if 

the autocorrelations at the seasonal lags do not decrease rapidly.  
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B-J Modeling Approach to Forecasting  

Referring to the above flow chart know that, the variance of the errors of the 

underlying model must be invariant, i.e., constant. This means that the variance 

for each subgroup of data is the same and does not depend on the level or the 

point in time. If this is violated then one can remedy this by stabilizing the 

variance. Make sure that there are no deterministic patterns in the data. Also, one 

must not have any pulses or one-time unusual values. Additionally, there should 

be no level or step shifts. Also, no seasonal pulses should be present.  

The reason for all of this is that if they do exist, then the sample autocorrelation 

and partial autocorrelation will seem to imply ARIMA structure. Also, the 

presence of these kinds of model components can obfuscate or hide structure. For 

example, a single outlier or pulse can create an effect where the structure is 

masked by the outlier.  

4.2 Autoregressive Models 

The autoregressive model is one of a group of linear prediction formulas that 

attempt to predict an output of a system based on the previous outputs and inputs, 

such as:  

Y(t) = β1 + β2Y(t-1) + β3X(t-1) + εt,  

http://home.ubalt.edu/ntsbarsh/stat-data/BJApproach.gif
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where X(t-1) and Y(t-1) are the actual value (inputs) and the forecast (outputs), 

respectively. These types of regressions are often referred to as Distributed Lag 

Autoregressive Models, Geometric Distributed Lags, and Adaptive Models in 

Expectation , among others.  

A model which depends only on the previous outputs of the system is called an 

autoregressive model (AR), while a model which depends only on the inputs to 

the system is called a moving average model (MA), and of course a model based 

on both inputs and outputs is an autoregressive-moving-average model (ARMA). 

Note that by definition, the AR model has only poles while the MA model has 

only zeros. Deriving the autoregressive model (AR) involves estimating the 

coefficients of the model using the method of least squared error.  

Autoregressive processes as their name implies, regress on themselves. If an 

observation made at time (t), then, p-order, [AR(p)], autoregressive model 

satisfies the equation:  

X(t) = Φ0 + Φ1X(t-1) + Φ2X(t-2) + Φ2X(t-3) + . . . . + ΦpX(t-p) + εt,  

where εt is a White-Noise series.  

The current value of the series is a linear combination of the p most recent past 

values of itself plus an error term, which incorporates everything new in the series 

at time t that is not explained by the past values. This is like a multiple regressions 

model but is regressed not on independent variables, but on past values; hence the 

term "Autoregressive" is used.  

Autocorrelation: An important guide to the properties of a time series is 

provided by a series of quantities called sample autocorrelation coefficients or 

serial correlation coefficient, which measures the correlation between 

observations at different distances apart. These coefficients often provide insight 

into the probability model which generated the data. The sample autocorrelation 

coefficient is similar to the ordinary correlation coefficient between two variables 
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(x) and (y), except that it is applied to a single time series to see if successive 

observations are correlated.  

Given (N) observations on discrete time series one can form (N - 1) pairs of 

observations. Regarding the first observation in each pair as one variable, and the 

second observation as a second variable, the correlation coefficient is called 

autocorrelation coefficient of order one.  

Correlogram: A useful aid in interpreting a set of autocorrelation coefficients is a 

graph called a correlogram, and it is plotted against the lag(k); where is the 

autocorrelation coefficient at lag(k). A correlogram can be used to get a general 

understanding on the following aspects of our time series:  

1.A random series: if a time series is completely random then for Large (N), will  

be approximately zero for all non-zero values of (k).  

2.Short-term correlation: stationary series often exhibit short-term correlation 

characterized by a fairly large value of 2 or 3 more correlation coefficients which, 

while significantly greater than zero, tend to get successively smaller. 

3.Non-stationary series: If a time series contains a trend, then the values of will 

not come to zero except for very large values of the lag.  

4.Seasonal fluctuations: Common autoregressive models with seasonal 

fluctuations, of period s are:  

X(t) = a + b X(t-s) + εt

and 

X(t) = a + b X(t-s) + c X(t-2s) +εt

where εt is a White-Noise series.  

Partial Autocorrelation: A partial autocorrelation coefficient for order k 

measures the strength of correlation among pairs of entries in the time series 

while accounting for (i.e., removing the effects of) all autocorrelations below 
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order k. For example, the partial autocorrelation coefficient for order k=5 is 

computed in such a manner that the effects of the k=1, 2, 3, and 4 partial 

autocorrelations have been excluded. The partial autocorrelation coefficient of 

any particular order is the same as the autoregression coefficient of the same 

order.  

Fitting an Autoregressive Model: If an autoregressive model is thought to be 

appropriate for modeling a given time series then there are two related questions 

to be answered: (1) What is the order of the model? and (2) How can one estimate 

the parameters of the model?  

The parameters of an autoregressive model can be estimated by minimizing the 

sum of squares residual with respect to each parameter, but to determine the order 

of the autoregressive model is not easy particularly when the system being 

modeled has a biological interpretation.  

One approach is, to fit AR models of progressively higher order, to calculate the 

residual sum of squares for each value of p; and to plot this against p. It may then 

be possible to see the value of p where the curve "flattens out" and the addition of 

extra parameters gives little improvement in fit.  

Selection Criteria: Several criteria may be specified for choosing a model 

format, given the simple and partial autocorrelation correlogram for a series:  

1. If none of the simple autocorrelations is significantly different from zero, the 

series is essentially a random number or white-noise series, which is not amenable 

to autoregressive modeling.  

2. If the simple autocorrelations decrease linearly, passing through zero to 

become negative, or if the simple autocorrelations exhibit a wave-like cyclical 

pattern, passing through zero several times, the series is not stationary; it must be 

differenced one or more times before it may be modeled with an autoregressive 

process.  
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3. If the simple autocorrelations exhibit seasonality; i.e., there are autocorrelation 

peaks every dozen or so (in monthly data) lags, the series is not stationary; it must 

be differenced with a gap approximately equal to the seasonal interval before 

further modeling.  

4. If the simple autocorrelations decrease exponentially but approach zero 

gradually, while the partial autocorrelations are significantly non-zero through 

some small number of lags beyond which they are not significantly different from 

zero, the series should be modeled with an autoregressive process.  

5. If the partial autocorrelations decrease exponentially but approach zero 

gradually, while the simple autocorrelations are significantly non-zero through 

some small number of lags beyond which they are not significantly different from 

zero, the series should be modeled with a moving average process.  

6. If the partial and simple autocorrelations both converge upon zero for 

successively longer lags, but neither actually reaches zero after any particular lag, 

the series may be modeled by a combination of autoregressive and moving 

average process.  

Forecasting: The estimates of the parameters are used in Forecasting to calculate 

new values of the series, beyond those included in the input data set and 

confidence intervals for those predicted values.  

An Illustrative Numerical Example: The analyst at Aron Company has a time 

series of readings for the monthly sales to be forecasted. The data are shown in 

the following table:  
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Aron Company Monthly Sales ($1000) 

t 

 

X(t) 

 

t 

 

X(t) t X(t) t X(t) t 

 

X(t) 

1 50.8 6 48.1 11 50.8 16 53.1 21 49.7 

2 50.3 7 50.1 12 52.8 17 51.6 22 50.3 

3 50.2 8 48.7 13 53.0 18 50.8 23 49.9 

4 48.7 9 49.2 14 51.8 19 50.6 24 51.8 

5 48.5 10 51.1 15 53.6 20 49.7 25 51.0 
 

By constructing and studying the plot of the data one notices that the series drifts 

above and below the mean of about 50.6. 

X(t) = Φ0 + Φ1X(t-1) + εt, 

where εt is a White-Noise series.  

Stationary Condition: The AR(1) is stable if the slope is within the open interval 

(-1, 1), that is:  

| Φ1| < 1 

is expressed as a null hypothesis H0 that must be tested before forecasting stage. 

To test this hypothesis, one must replace the t-test used in the regression analysis 

for testing the slope with the τ-test introduced by the two economists, Dickey and 

Fuller. The estimated AR (1) model is:  

X (t) = 14.44 + 0.715 X(t-1) 

The 3-step ahead forecasts are:  

X(26) = 14.44 + 0.715 X(25) = 14.44 + 0.715 (51.0) = 50.91 

X(27) = 14.44 + 0.715 X(26) = 14.44 + 0.715 (50.91) = 50.84 

X(28) = 14.44 + 0.715 X(27) = 14.44 + 0.715 (50.84) = 50.79 
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 As always, it is necessary to construct the graph and compute statistics and check 

for stationary both in mean and variance, as well as the seasonality test.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 5 
 

 FILTERING TECHNIQUES  
 

http://home.ubalt.edu/ntsbarsh/Business-stat/graph/TimeSeriesPlot.htm
http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/TimeSeriesStat.htm
http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/Stationary.htm
http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/TestSeason.htm
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5.1 Adaptive Filtering 

Filtering Techniques: Often on must filters an entire, e.g., financial time series 

with certain filter specifications to extract useful information by a transfer 

function expression. The aim of a filter function is to filter a time series in order 

to extract useful information hidden in the data, such as cyclic component. The 

filter is a direct implementation of and input-output function.  

Data filtering is widely used as an effective and efficient time series modeling 

tool by applying an appropriate transformation technique. Most time series 

analysis techniques involve some form of filtering out noise in order to make the 

pattern more salient.  

Differencing: A special type of filtering which is particularly useful for removing 

a trend, is simply to difference a given time series until it becomes stationary. 

This method is useful in Box-Jenkins modeling. For non-seasonal data, first order 

differencing is usually sufficient to attain apparent stationarity, so that the new 

series is formed from the original series.  

Adaptive Filtering Any smoothing techniques such as moving average which 

includes a method of learning from past errors can respond to changes in the 

relative importance of trend, seasonal, and random factors. In the adaptive 

exponential smoothing method, one may adjust α to allow for shifting patterns.  

5.2 Hodrick-Prescott Filter 

Hodrick-Prescott Filter: The Hodrick-Prescott filter or H-P filter is an algorithm 

for choosing smoothed values for a time series. The H-P filter chooses smooth 

values {st} for the series {xt} of T elements (t = 1 to T) that solve the following 

minimization problem:  

min { {(xt-st)2 ... etc. }  
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the positive parameter λ is the penalty on variation, where variation is measured 

by the average squared second difference. A larger value of λ makes the resulting 

{st} series smoother; less high-frequency noise. The commonly applied value of l 

is 1600.  

For the study of business cycles one uses not the smoothed series, but the jagged 

series of residuals from it. H-P filtered data shows less fluctuation than first-

differenced data, since the H-P filter pays less attention to high frequency 

movements. H-P filtered data also shows more serial correlation than first-

differenced data.  

This is a smoothing mechanism used to obtain a long term trend component in a 

time series. It is a way to decompose a given series into stationary and non-

stationary components in such a way that their sum of squares of the series from 

the non-stationary component is minimum with a penalty on changes to the 

derivatives of the non-stationary component. 

5.3 Kalman Filter 

Kalman Filter: The Kalman filter is an algorithm for sequentially updating a 

linear projection for a dynamic system that is in state-space representation. 

Application of the Kalman filter transforms a system of the following two-

equation kind into a more solvable form:  

x t+1=Axt+Cw t+1, and yt=Gxt+vt in which: A, C, and G are matrices known as 

functions of a parameter q about which inference is desired where: t is a whole 

number, usually indexing time; xt is a true state variable, hidden from the 

econometrician; yt is a measurement of x with scaling factor G, and measurement 

errors vt, wt are innovations to the hidden xt process, E(wt+1wt')=1 by 

normalization (where, ' means the transpose), E(vtvt)=R, an unknown matrix, 

estimation of which is necessary but ancillary to the problem of interest, which is 

to get an estimate of q. The Kalman filter defines two matrices St and Kt such that 
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the system described above can be transformed into the one below, in which 

estimation and inference about q and R is more straightforward; e.g., by 

regression analysis:  

zt+1=Azt+Kat, and yt=Gzt+at where zt is defined to be Et-1xt, at is defined to be yt-

E(yt-1yt, K is defined to be limit Kt as t approaches infinity.  

The definition of those two matrices St and Kt is itself most of the definition of the 

Kalman filters: Kt=AStG'(GStG'+R)-1, and St-1=(A-KtG)St (A-KtG)'+CC'+Kt RKt' , 

Kt is often called the Kalman gain. 

 

 

 

 

 

 

 

 

 

 

CHAPTER 6 
 

A SUMMARY OF SPECIAL MODELING 
TECHNIQUES 

6.1 Neural Network 
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An Artificial Neural Network (ANN) is an information-processing paradigm that is 

inspired by the way biological nervous systems, such as the brain, process information. 

The key element of this paradigm is the novel structure of the information processing 

system. It is composed of a large number of highly interconnected processing elements 

(neurons) working in unison to solve specific problems. ANNs, like people, learn by 

example. An ANN is configured for a specific application, such as pattern recognition or 

data classification, through a learning process. Learning in biological systems involves 

adjustments to the synaptic connections that exist between the neurons. This is true of 

ANNs as well.  

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers, and has survived at least one major setback 

and several eras. Many important advances have been boosted by the use of inexpensive 

computer emulations. Following an initial period of enthusiasm, the field survived a 

period of frustration and disrepute. During this period when funding and professional 

support was minimal, important advances were made by relatively few researchers. These 

pioneers were able to develop convincing technology that surpassed everything that had 

evolved before. Currently, the neural network field enjoys a resurgence of interest and a 

corresponding increase in funding.  

 6.2 How the Human Brain Learns? 

Much is still unknown about how the brain trains itself to process information, so theories 

abound. In the human brain, a typical neuron collects signals from others through a host 

of fine structures called dendrites. The neuron sends out spikes of electrical activity 

through a long, thin stand known as an axon, which splits into thousands of branches. At 

the end of each branch, a structure called a synapse converts the activity from the axon 

into electrical effects that inhibit or excite activity from the axon into electrical effects 

that inhibit or excite activity in the connected neurons. When a neuron receives excitatory 

input that is sufficiently large compared with its inhibitory input, it sends a spike of 

electrical activity down its axon. Learning occurs by changing the effectiveness of the 

synapses so that the influence of one neuron on another changes. 
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These neural networks are conducted by first trying to deduce the essential features of 

neurons and their interconnections. We then typically program a computer to simulate 

these features. However because our knowledge of neurons is incomplete and our 

computing power is limited, our models are necessarily gross idealizations of real 

networks of neurons. 

Working of Brain Cells 

 

 

Components of a neuron  The synapse  

THE NEURON MODEL 

 

 

 

 
 

A Simple Neuron 
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An artificial neuron is a device with many inputs and one output. 
 

6.3 Definition of Neural Network 

 
A Neural Network is a system composed of many simple processing elements operating 

in parallel which can acquire, store, and utilize experiential knowledge. 

 

6.3.1 Basic (Intuitive) Idea- 

 
► Start with desired network architecture (number of neurons/nodes, layers, 

connections). 

►  Initialize randomly the weights with small values Iterate over each training 

example (stochastic gradient descent) 

►  Present each training example, find the error term at each output node, calculate 

E (W). 

►  Compute the gradient of E (W) for this example. 

►  Update ALL weights in the network (BP algorithm shows how) 

►  Repeat iterations (thousands of times maybe), with multiple use of the training 

examples, until reasonable performance, or a preset number of iterations, or the 

error rate with a test set of examples is below a preset threshold value. Too little 

iteration will lead to undertraining, too many leads to overfitting. 

6.3.2 Two Modes Of Operation Of A Neuron 
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 TRAINING MODE: In the training mode, the neuron can be trained to fire (or 

not), for particular input patterns.  

 

 USING MODE : In the using mode, when a taught input pattern is detected at 

the input, its associated output becomes the current output. If the input pattern 

does not belong in the taught list of input patterns, the firing rule is used to 

determine whether to fire or not. 

 

6.3.3 Basic Artificial Model 

 
 Consists of simple processing elements called neurons, units or nodes 

 Each neuron is connected to other nodes with an associated weight(strength) 

which typically multiplies the signal transmitted 

 Each neuron has a single threshold value 

 Weighted sum of all the inputs coming into the neuron is formed and the 

threshold is subtracted from this value = activation 

 Activation signal is passed through an activation function(i.e. transfer function) to 

produce the output of the neuron. 

 

6.3.4 Characterization  

 
 Architecture: the pattern of nodes and connections between them 

 Learning algorithm or training method: method for determining weights of the 

connections 

 Activation function:  function that produces an output based on the input 

values received by node. 
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6.4 CHOOSING THE NETWORK STRUCTURE 

There are many ways that feed forward neural networks can be constructed. We must 

decide how many neurons will be inside the input and output layers. We must also decide 

how many hidden layers we're going to have, as well as how many neurons will be in 

each of these hidden layers. There are many techniques for choosing these parameters. 

6.4.1 The Input Layer 

The input layer to the neural network is the conduit through which the external 

environment presents a pattern to the neural network. Once a pattern is presented to the 

input later of the neural network the output layer will produce another pattern. In essence 

this is all the neural network does. The input layer should represent the condition for 

which we are training the neural network. Every input neuron should represent some 

independent variable that has an influence over the output of the neural network. 

It is important to remember that the inputs to the neural network are floating point 

numbers. These values are expressed as the primitive Java data type "double". This is not 

to say that only numeric data can be processed with the neural network. If we wish to 

process a form of data that is non-numeric we must develop a process that normalizes this 

data to a numeric representation. 

6.4.2 The Output Layer 

The output layer of the neural network is what actually presents a pattern to the external 

environment. Whatever patter is presented by the output layer can be directly traced back 

to the input layer. The number of output neurons should directly relate to the type of 

work that the neural network is to perform. 

To consider the number of neurons to use in output layer we must consider the intended 

use of the neural network. If the neural network is to be used to classify items into 

groups, then it is often preferable to have one output neurons for each group that the item 

is to be assigned into. If the neural network is to perform noise reduction on a signal then 

it is likely that the number of input neurons will match the number of output neurons. In 
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this sort of neural network we would one day want the patterns to leave the neural 

network in the same format as they entered. 

 
6.5 Neural Network for Time Series 

Neural Network: For time series forecasting, the prediction model of order p, has 

the general form:  

Dt = f (Dt-1, Dt-1,..., Dt-p) + et

Neural network architectures can be trained to predict the future values of the 

dependent variables. What is required are design of the network paradigm and its 

parameters. The multi-layer feed-forward neural network approach consists of an 

input layer, one or several hidden layers and an output layer. Another approach is 

known as the partially recurrent neural network that can learn sequences as time 

evolves and responds to the same input pattern differently at different times, 

depending on the previous input patterns as well. None of these approaches is 

superior to the other in all cases; however, an additional dampened feedback, that 

possesses the characteristics of a dynamic memory, will improve the performance 

of both approaches.  

Outlier Considerations: Outliers are a few observations that are not well fitted 

by the "best" available model. In practice, any observation with standardized 

residual greater than 2.5 in absolute value is a candidate for being an outlier. In 

such case, one must first investigate the source of data. If there is no doubt about 

the accuracy or veracity of the observation, then it should be removed, and the 

model should be refitted.  

Whenever data levels are thought to be too high or too low for "business as 

usual", such points are called the outliers. A mathematical reason to adjust for 

such occurrences is that the majority of forecast techniques are based on 

averaging. It is well known that arithmetic averages are very sensitive to outlier 

values; therefore, some alteration should be made in the data before continuing. 

http://home.ubalt.edu/ntsbarsh/stat-data/#rneural


 68

One approach is to replace the outlier by the average of the two sales levels for 

the periods, which immediately come before and after the period in question and 

put this number in place of the outlier. This idea is useful if outliers occur in the 

middle or recent part of the data. However, if outliers appear in the oldest part of 

the data, a second alternative may be followed, which is to simply throw away the 

data up to and including the outlier.  

In light of the relative complexity of some inclusive but sophisticated forecasting 

techniques, it is recommended that management go through an evolutionary 

progression in adopting new forecast techniques. That is to say, a simple forecast 

method well understood is better implemented than one with all inclusive features 

but unclear in certain facets. 

 

6.6 Modeling and Simulation 

Modeling and Simulation: Dynamic modeling and simulation is the collective 

ability to understand the system and implications of its changes over time 

including forecasting. System Simulation is the mimicking of the operation of a 

real system, such as the day-to-day operation of a bank, or the value of a stock 

portfolio over a time period. By advancing the simulation run into the future, 

managers can quickly find out how the system might behave in the future, 

therefore making decisions as they deem appropriate.  

In the field of simulation, the concept of "principle of computational equivalence" 

has beneficial implications for the decision-maker. Simulated experimentation 

accelerates and replaces effectively the "wait and see" anxieties in discovering 

new insight and explanations of future behavior of the real system.  

 

6.7 Probabilistic Models 

http://home.ubalt.edu/ntsbarsh/stat-data/#rhowsim
http://home.ubalt.edu/ntsbarsh/simulation/sim.htm
http://home.ubalt.edu/ntsbarsh/stat-data/#rhowsim
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Probabilistic Models: Uses probabilistic techniques, such as Marketing Research 

Methods, to deal with uncertainty, gives a range of possible outcomes for each set 

of events. For example, it is desired to identify the prospective buyers of a new 

product within a community of size N. From a survey result, one may estimate the 

probability of selling p, and then estimate the size of sales as Np with some 

confidence level.  

An Application: Suppose it is desired to forecast the sales of new toothpaste in a 

community of 50,000 housewives. A free sample is given to 3,000 selected 

randomly, and then 1,800 indicated that they would buy the product.  

Using the binomial distribution with parameters (3000, 1800/3000), the standard 

error is 27, and the expected sale is 50000(1800/3000) = 30000. The 99.7% 

confidence interval is within 3 times standard error 3(27) = 81 times the total 

population ratio 50000/3000; i.e., 1350. In other words, the range (28650, 31350) 

contains the expected sales. 

6.8 Event History Analysis 

Event History Analysis: Sometimes data on the exact time of a particular event 

(or events) are available, for example on a group of patients. Examples of events 

could include asthma attack; epilepsy attack; myocardial infections; hospital 

admissions. Often, occurrence (and non-occurrence) of an event is available on a 

regular basis, e.g., daily and the data can then be thought of as having a repeated 

measurements structure. An objective may be to determine whether any 

concurrent events or measurements have influenced the occurrence of the event of 

interest. For example, daily pollen counts may influence the risk of asthma 

attacks; high blood pressure might precede a myocardial infarction. PROC 

GENMOD available in SAS can be used for the event history analysis. 

 

6.9 Predicting Market Response

http://home.ubalt.edu/ntsbarsh/stat-data/#rhowsim
http://home.ubalt.edu/ntsbarsh/stat-data/#rhowsim
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Predicting Market Response: As applied researchers in business and economics, 

faced with the task of predicting market response, the functional form of the 

response is seldom known. Perhaps market response is a nonlinear monotonic, or 

even a non-monotonic function of explanatory variables. Perhaps it is determined 

by interactions of explanatory variable. Interaction is logically independent of its 

components.  

When it is desired to represent complex market relationships within the context of 

a linear model, using appropriate transformations of explanatory and response 

variables, it is understood how hard the work of statistics can be. Finding 

reasonable models is a challenge, and justifying our choice of models to our peers 

can be even more of a challenge. Alternative specifications abound.  

Modern regression methods, such as generalized additive models, multivariate 

adaptive regression splines, and regression trees, have one clear advantage: They 

can be used without specifying a functional form in advance. These data-adaptive, 

computer- intensive methods offer a more flexible approach to modeling than 

traditional statistical methods. Some modern regression methods perform quite 

well based on the results of simulation studies.  

6.10 Prediction Interval for a Random Variable 

Prediction Interval for a Random Variable: In many applied business statistics, 

such as forecasting, one is interested in construction of statistical interval for 

random variable rather than a parameter of a population distribution. For example, 

let X be a random variable distributed normally with estimated mean and 

standard deviation S, then a prediction interval for the sample mean with 100(1- 

α)% confidence level is:  

- t . S (1 + 1/n)    ,     + t . S (1 + 1/n)  

http://home.ubalt.edu/ntsbarsh/stat-data/#rhowsim


 71

This is the range of a random variable with 100(1- α)% confidence, using t-

table. Relaxing the normality condition for sample mean prediction interval 

requires a large sample size, say n over 30.  

6.11 Census II Method of Seasonal Analysis

Census II Method of Seasonal Analysis: 

Census-II is a variant of X-11. The X11 procedure provides seasonal adjustment 

of time series using the Census X-11 or X-11 ARIMA method. The X11 

procedure is based on the US Bureau of the Census X-11 seasonal adjustment 

program, and it also supports the X-11 ARIMA method developed by Statistics 

Canada. 

6.12 Delphi Analysis

Delphi Analysis: Delphi Analysis is used in the decision making process, in 

particular in forecasting. Several "experts" sit together and try to compromise on 

something upon which they cannot agree.  

6.13 System Dynamics Modeling

System Dynamics Modeling: System dynamics (SD) is a tool for scenario 

analysis. Its main modeling tools are mainly the dynamic systems of differential 

equations and simulation. The SD approach to modeling is an important one for 

the following, not the least of which is that e.g., econometrics is the established 

methodology of system dynamics. However, from a philosophy of social science 

perspective, SD is deductive and econometrics is inductive. SD is less tightly 

bound to actuarial data and thus is free to expand out and examine more complex, 

theoretically informed, and postulated relationships. Econometrics is more tightly 

bound to the data and the models it explores, by comparison, are simpler. This is 

not to say the one is better than the other: properly understood and combined, they 

are complementary. Econometrics examines historical relationships through 

http://home.ubalt.edu/ntsbarsh/stat-data/#rsensusM
http://home.ubalt.edu/ntsbarsh/stat-data/#rdelphi
http://home.ubalt.edu/ntsbarsh/stat-data/#rsysdynamic
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correlation and least squares regression model to compute the fit. In contrast, 

consider a simple growth scenario analysis; the initial growth portion of say, 

population is driven by the amount of food available. So there is a correlation 

between population level and food. However, the usual econometrics techniques 

are limited in their scope. For example, changes in the direction of the growth 

curve for a time population is hard for an econometrics model to capture. 

6.14 Transfer Functions Methodology

It is possible to extend regression models to represent dynamic relationships 

between variables via appropriate transfer functions used in the construction of 

feedforward and feedback control schemes. The Transfer Function Analyzer 

module in SCA forecasting & modeling package is a frequency spectrum analysis 

package designed with the engineer in mind. It applies the concept of the Fourier 

integral transform to an input data set to provide a frequency domain 

representation of the function approximated by that input data. It also presents the 

results in conventional engineering terms. 

6.15 Testing for and Estimation of Multiple Structural Changes

Testing for and Estimation of Multiple Structural Changes  

The tests for structural breaks that I have seen are designed to detect only one 

break in a time series. This is true whether the break point is known or estimated 

using iterative methods. For example, for testing any change in level of the 

dependent series or model specification, one may use an iterative test for 

detecting points in time by incorporating level shift  

(0,0,0,0,...,1,1,1,1,1) variables to account for a change in intercept. Other causes 

are the change in variance and changes in parameters. 

 

 

http://home.ubalt.edu/ntsbarsh/stat-data/#rtranfunmet
http://home.ubalt.edu/ntsbarsh/stat-data/#rtestmultiochang
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6.16 Combination of Forecasts

Combination of Forecasts: Combining forecasts merges several separate sets of 

forecasts to form a better composite forecast. The main question is "how to find 

the optimal combining weights?" The widely used approach is to change the 

weights from time to time for a better forecast rather than using a fixed set of 

weights on a regular basis or otherwise.  

All forecasting models have either an implicit or explicit error structure, where 

error is defined as the difference between the model prediction and the "true" 

value. Additionally, many data snooping methodologies within the field of 

statistics need to be applied to data supplied to a forecasting model. Also, 

diagnostic checking, as defined within the field of statistics, is required for any 

model which uses data.  

Using any method for forecasting one must use a performance measure to assess 

the quality of the method. Mean Absolute Deviation (MAD), and Variance are the 

most useful measures. However, MAD does not lend itself to making further 

inferences, but the standard error does. For error analysis purposes, variance is 

preferred since variances of independent (uncorrelated) errors are additive; 

however, MAD is not additive.  

Regression and Moving Average: When a time series is not a straight line one 

may use the moving average (MA) and break-up the time series into several 

intervals with common straight line with positive trends to achieve linearity for 

the whole time series. The process involves transformation based on slope and 

then a moving average within that interval. For most business time series, one the 

following transformations might be effective:  

• slope/MA,  

• log (slope),  

• log(slope/MA),  

• log(slope) - 2 log(MA). 

http://home.ubalt.edu/ntsbarsh/stat-data/#rhowerror
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6.17 Measuring for Accuracy 

Measuring for Accuracy 

The most straightforward way of evaluating the accuracy of forecasts is to plot the 

observed values and the one-step-ahead forecasts in identifying the residual 

behavior over time.  

The widely used statistical measures of error that can help you to identify a 

method or the optimum value of the parameter within a method are:  

Mean absolute error: The mean absolute error (MAE) value is the average 

absolute error value. Closer this value is to zero the better the forecast is.  

Mean squared error (MSE): Mean squared error is computed as the sum (or 

average) of the squared error values. This is the most commonly used lack-of-fit 

indicator in statistical fitting procedures. As compared to the mean absolute error 

value, this measure is very sensitive to any outlier; that is, unique or rare large 

error values will impact greatly MSE value.  

Mean Relative Percentage Error (MRPE): The above measures rely on the 

error value without considering the magnitude of the observed values. The MRPE 

is computed as the average of the APE values:  

Relative Absolute Percentage Errort = 100|(Xt - Ft )/Xt|%  

Durbin-Watson statistic quantifies the serial correlation of serial correlation of 

the errors in time series analysis and forecasting. D-W statistic is defined by:  

D-W statistic = Σ2
n (ej - ej-1)2 / Σ1

n ej
2,  

where ej is the jth error. D-W takes values within [0, 4]. For no serial correlation, a 

value close to 2 is expected. With positive serial correlation, adjacent deviates 

tend to have the same sign; therefore D-W becomes less than 2; whereas with 

negative serial correlation, alternating signs of error, D-W takes values larger than 
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2. For a forecasting where the value of D-W is significantly different from 2, the 

estimates of the variances and covariances of the model's parameters can be in 

error, being either too large or too small.  

In measuring the forecast accuracy one should first determine a loss function and 

hence a suitable measure of accuracy. For example, quadratic loss function 

implies the use of MSE. Often one has a few models to compare and one tries to 

pick the "best". Therefore one must be careful to standardize the data and the 

results so that one model with large variance does not 'swamp' the other model.  
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CHAPTER 7 

 LEARNING AND THE LEARNING CURVE 

 
 
7.1 Introduction 
 
The concept of the learning curve was introduced to the aircraft industry in 1936 

when T. P. Wright published an article in the February 1936 Journal of the 

Aeronautical Science. Wright described a basic theory for obtaining cost 

estimates based on repetitive production of airplane assemblies. Since then, 

learning curves (also known as progress functions) have been applied to all types 

of work from simple tasks to complex jobs like manufacturing. The theory of 

learning recognizes that repetition of the same operation results in less time or 

effort expended on that operation. Its underlying concept is that, for example the 

direct labor man-hours necessary to complete a unit of production will decrease 

by a constant percentage each time the production quantity is doubled. If the rate 

of improvement is 20% between doubled quantities, then the learning percent 

would be 80% (100-20=80). While the learning curve emphasizes time, it can be 

easily extended to cost as well.  

7.2  Psychology of Learning 

 Based on the theory of learning it is easier to learn things that are related to what 

you already know. The likelihood that new information will be retained is related 

to how much previous learning there is that provides "hooks" on which to hang 

the new information. In other words, to provide new connectivity in the learner's 

neural mental network. For example, it is a component of my teaching style to 

provide a preview of the course contents and review of necessary topics form 

prerequisites courses (if any) during the first couple of class meeting, before 

teaching them to course topics in detail. Clearly, change in one's mental model 

happens more readily when you have a mental model similar to the one you're 
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trying to learn; and that it will be easier to change a mental model after you 

become more consciously aware.  

 A steep learning curve is often referred to indicate that something is difficult to 

learn. In practice, a curve of the amount learned against the number of trials (in 

experiments) or over time (in reality) is just the opposite: if something is difficult, 

the line rises slowly or shallowly. So the steep curve refers to the demands of the 

task rather than a description of the process. The following figure is of a fairly 

typical of a learning curve. It depicts the fact that the learning curve does not 

proceed smoothly: the plateaus and troughs are normal features of the process.  

 

    A Typical Learning Curve 

 

The goal is to make the "valley of despair" as Shallow and as Narrow as possible. 

To make it narrow, you must give plenty of training, and follow it up with 

continuing floor support, help desk support, and other forms of just-in-time 
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support so that people can quickly get back to the point of competence. If they 

stay in the valley of despair for too long, they will lose hope and hate the new 

software and the people who made them switch.  

Valley of Despair Characteristics:  

 Who's dumb idea was this?  

 I hate this  

 I could do better the old way  

 I cannot get my work done  

Success Characteristic:  

 How did I get along without this?  

To make it as shallow as possible, minimize the number of things you try to teach 

people at once. Build gradually, and only add more to learn once people have 

developed a level of competence with the basic things. In the acquisition of skills, 

a major issue is the reliability of the performance. Any novice can get it right 

occasionally, but it is consistency which counts, and the progress of learning is 

often assessed on this basis. Need to train workers in new method based on the 

facts that the longer a person performs a task, the quicker it takes him/her:  

1. Learn-on-the-job approach:  

o learn wrong method  

o bother other operators, lower production  

o anxiety  

2. Simple written instructions: only good for very simple jobs  

3. Pictorial instructions: "good pictures worth 1000 words"  

4. Videotapes: dynamic rather than static  

5. Physical training:  

o real equipment or simulators, valid  

o does not interrupt production  
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o monitor performance  

o simulate emergencies  

 

Factors that affect human learning:  

1. Job complexity - long cycle length, more training, amount of uncertainty in 

movements, more C-type motions, simultaneous motions  

2. Individual capabilities- age, rate of learning declines in older age, amount of 

prior training, physical capabilities, active, good circulation of oxygen to brain  

Because of the differences between individuals, their innate ability, their age, or 

their previous useful experience then each turner will have his/her own distinctive 

learning curve. Some possible, contrasting, curves are shown in the following 

figure:  

 

An Individuals Differences Classification  

  

Individual C is a very slow learner but he improves little by little. Individual B is 

a quick learner and reaches his full capacity earlier than individuals A or C. But, 

although A is a slow learner, he eventually becomes more skilled than B.  

http://home.ubalt.edu/ntsbarsh/stat-data/LearnFig.Gif
http://home.ubalt.edu/ntsbarsh/stat-data/LearnFig.Gif
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Measuring and Explaining Learning Effects of Modeling: It is already 

accepted that modeling triggers learning, this is to say the modeler's mental model 

changes as effect of the activity "modeling". In "systems thinking" it also includes 

the way people approach decision situations by studying attitude changes model 

building.  

7.3  Modeling the Learning Curve 

 Learning curves are all about ongoing improvement. Managers and researchers 

noticed, in field after field, from aerospace to mining to manufacturing to writing, 

that stable processes improve year after year rather than remain the same. 

Learning curves describe these patterns of long-term improvement. Learning 

curves help answer the following questions.  

• How fast can you improve to a specific productivity level?  

• What are the limitations to improvement?  

• Are aggressive goals achievable?  

The learning curve was adapted from the historical observation that individuals 

who perform repetitive tasks exhibit an improvement in performance as the task is 

repeated a number of times.  

With proper instruction and repetition, workers learn to perform their jobs more 

efficiently and effectively and consequently, e.g., the direct labor hours per unit of 

a product are reduced. This learning effect could have resulted from better work 

methods, tools, product design, or supervision, as well as from an individual’s 

learning the task.  

A Family of Learning Curves Funtions: Of the dozens of mathematic concepts 

of learning curves, the four most important equations are:  

• Log-Linear: y(t) = k tb  

• Stanford-B: y(t) = k (t + c)b  
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• DeJong: y(t) = a + k tb  

• S-Curve: y(t) = a + k (t + c)b  

The Log-Linear equation is the simplest and most common equation and it applies 

to a wide variety of processes. The Stanford-B equation is used to model 

processes where experience carries over from one production run to another, so 

workers start out more productively than the asymtote predicts. The Stanford-B 

equation has been used to model airframe production and mining. The DeJong 

equation is used to model processes where a portion of the process cannot 

improve. The DeJong equation is often used in factories where the assembly line 

ultimately limits improvement. The S-Curve equation combines the Stanford-B 

and DeJong equations to model processes where both experience carries over 

from one production run to the next and a portion of the process cannot improve.  

7.4 An Application  

The learning effect causes the time required to perform a task to reduce when the 

task is repeated. Applying this principle, the time required to perform a task will 

decrease at a declining rate as cumulative number of repetitions increase. This 

reduction in time follows the function: y(t) = k t b, where b = log(r)/log (2), i.e., 2b 

= r, and r is the learning rate, a lower rate implies faster learning, a positive 

number less than 1, and k is a constant.  

For example, industrial engineers have observed that the learning rate ranges from 

70% to 95% in the manufacturing industry. An r = 80% learning curve denotes a 

20% reduction in the time with each doubling of repetitions. An r = 100% curve 

would imply no improvement at all. For an r = 80% learning curve, b = 

log(0.8)/log(2) = -0.3219.  

Numerical Example: Consider the first (number if cycles) and the third (their 

cycle times) columns for the following data set:  
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# Cycles Log # 

Cycles 

Cycle 

Time 

Log 

Cycle 

Time 

1 0 12.00 1.08 

2 0.301 9.60 0.982 

4 0.602 7.68 0.885 

8 0.903 6.14 0.788 

16 1.204 4.92 0.692 

32 1.505 3.93 0.594 

To estimate y = k tb one must use linear regression on the logarithmic scales, i.e., 

log y = log(k) + b log(t) using a data set, and then computing r = 2b. Using the By 

By Regression Analysis for the above data, we obtain:  

b = Slope = -0.32, y-Intercept = log(k) = 1.08 

log y = log(k) + b log(t) 

b = -0.32 

k = 101.08 = 12 

y(t) = 12 t -0.32

r = 2b = 2-0.32 = 80% 

http://home.ubalt.edu/ntsbarsh/Business-stat/otherapplets/Regression.htm
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Conclusions: As expected while number of cycles doubles, cycle time decreases 

by a constant %, that is, the result is a 20% decrease or 80% learning ratio or 80% 

learning curve with a mathematical model y(t) = 12 t -0.32  
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CHAPTER 8 

NEURAL NETWORK AND TIME SERIES ANALYSIS 

8.1 Time Series Prediction in ST Neural Networks  

In time series problems, the objective is to predict ahead the value of a variable that 

varies in time using previous values of that and/or other variables. Typically the predicted 

variable is continuous so that time series prediction is usually a specialized form of 

regression. However, without this restriction time series can also do prediction of 

nominal variables (i.e. classification).  

It is also usual to predict the next value in a series from a fixed number of previous values 

(looking ahead a single time step). When the next value in a series is generated, further 

values can be estimated by feeding the newly-estimated value back into the network 

together with other previous values: time series projection. Obviously, the reliability of 

projection drops the more steps ahead one tries to predict and if a particular distance 

ahead is required it is probably better to train a network specifically for that degree of 

lookahead.  

Any type of network can be used for time series prediction (the network type must 

however, be appropriate for regression or classification depending on the problem type). 

The network can also have any number of input and output variables. However, most 

commonly there is a single variable that is both the input and (with the lookahead taken 

into account) the output. Configuring a network for time series usage alters the way that 

data is pre-processed (i.e., it is drawn from a number of sequential cases rather than a 

single case) but the network is executed and trained just as for any other problem.  

The time series training data set therefore typically has a single variable, and this has type 

input/output (i.e. it is used both for network input and network output).  

The most difficult concept in time series handling is the interpretation of training, 

selection, test and ignored cases. For standard data sets, each case is independent and 

these meanings are clear. However, with a time series network each pattern of inputs and 

http://www.statsoft.com/textbook/glosr.html#Regression
http://www.statsoft.com/textbook/glosc.html#Classification
http://www.statsoft.com/textbook/glosr.html#Regression
http://www.statsoft.com/textbook/glosc.html#Classification
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outputs is actually drawn from a number of cases determined by the network's Steps and 

Lookahead parameters. There are two consequences of this:  

The input pattern's type is taken from the type of the output case. For example, in a data 

set containing some cases, the first two ignored and the third test, with Steps=2 and 

Lookahead=1, the first usable pattern has type Test, and draws its inputs from the first 

two cases, and its output from the third. Thus, the first two cases are used in the test set 

even though they are marked Ignore. Further, any given case may be used in three 

patterns and these may be any of training, selection and test patterns. In some sense data 

actually leaks between training, selection and test sets. To isolate the three sets entirely, 

contiguous blocks of train, verify or test cases would need to be constructed, separated by 

the appropriate number of ignore cases.  

The first few cases can only be used as inputs for patterns. When selecting cases for time 

series use, the case number selected is always the output case. The first few clearly 

cannot be selected (as this would require further cases before the beginning of the data 

set), and are not available. 

 Thus here in our examples we use two types of Network Architecture. 

8.2 The Back-Propagation Algorithm - A Mathematical Approach 

The Back-Propagation Algorithm 

In order to train a neural network to perform some task, we must adjust the weights of 

each unit in such a way that the error between the desired output and the actual output is 

reduced. This process requires that the neural network compute the error derivative of the 

weights (EW). In other words, it must calculate how the error changes as each weight is 

increased or decreased slightly. The back propagation algorithm is the most widely used 

method for determining the EW. 

The back-propagation algorithm is easiest to understand if all the units in the network are 

linear. The algorithm computes each EW by first computing the EA, the rate at which the 

error changes as the activity level of a unit is changed. For output units, the EA is simply 

http://www.statsoft.com/textbook/gloss.html#Steps
http://www.statsoft.com/textbook/glosl.html#Lookahead
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the difference between the actual and the desired output. To compute the EA for a hidden 

unit in the layer just before the output layer, we first identify all the weights between that 

hidden unit and the output units to which it is connected. We then multiply those weights 

by the EAs of those output units and add the products. This sum equals the EA for the 

chosen hidden unit. After calculating all the EAs in the hidden layer just before the 

output layer, we can compute in like fashion the EAs for other layers, moving from layer 

to layer in a direction opposite to the way activities propagate through the network. This 

is what gives back propagation its name. Once the EA has been computed for a unit, it is 

straight forward to compute the EW for each incoming connection of the unit. The EW is 

the product of the EA and the activity through the incoming connection. 

It is to be noticed that for non-linear units, the back-propagation algorithm includes an 

extra step. Before back-propagating, the EA must be converted into the EI, the rate at 

which the error changes as the total input received by a unit is changed.  

Units are connected to one another. Connections correspond to the edges of the 

underlying directed graph. There is a real number associated with each connection, which 

is called the weight of the connection. We denote by Wij the weight of the connection 

from unit ui to unit uj. It is then convenient to represent the pattern of connectivity in the 

network by a weight matrix W whose elements are the weights Wij. Two types of 

connection are usually distinguished: excitatory and inhibitory. A positive weight 

represents an excitatory connection whereas a negative weight represents an inhibitory 

connection. The pattern of connectivity characterises the architecture of the network. 
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A unit in the output layer determines its activity by following a two step procedure.  

First, it computes the total weighted input xj, using the formula:  

 

where yi is the activity level of the jth unit in the previous layer and Wij is 

the weight of the connection between the ith and the jth unit. 

Next, the unit calculates the activity yj using some function of the total weighted input. 

Typically we use the sigmoid function: 

 

Once the activities of all output units have been determined, the network computes the 

error E, which is defined by the expression: 



 88

 

where yj is the activity level of the jth unit in the top layer and dj is the 

desired output of the jth unit. 

  

The back-propagation algorithm consists of four steps: 

1. Compute how fast the error changes as the activity of an output unit is changed. This 

error derivative (EA) is the difference between the actual and the desired activity. 

 

2. Compute how fast the error changes as the total input received by an output unit is 

changed. This quantity (EI) is the answer from step 1 multiplied by the rate at which the 

output of a unit changes as its total input is changed. 

 

3. Compute how fast the error changes as a weight on the connection into an output unit 

is changed. This quantity (EW) is the answer from step 2 multiplied by the activity level 

of the unit from which the connection emanates. 

 

4. Compute how fast the error changes as the activity of a unit in the previous layer is 

changed. This crucial step allows back propagation to be applied to multilayer networks. 

When the activity of a unit in the previous layer changes, it affects the activites of all the 

output units to which it is connected. So to compute the overall effect on the error, we 
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add together all these seperate effects on output units. But each effect is simple to 

calculate. It is the answer in step 2 multiplied by the weight on the connection to that 

output unit. 

 

By using steps 2 and 4, we can convert the EAs of one layer of units into EAs for the 

previous layer. This procedure can be repeated to get the EAs for as many previous layers 

as desired. Once we know the EA of a unit, we can use steps 2 and 3 to compute the EWs 

on its incoming connections. 

8.3 Linear Perceptron Network 

The units each perform a biased weighted sum of their inputs and pass this activation 

level through a transfer function to produce their output, and the units are arranged in a 

layered feedforward topology. The network thus has a simple interpretation as a form of 

input-output model, with the weights and thresholds (biases) the free parameters of the 

model. Such networks can model functions of almost arbitrary complexity, with the 

number of layers, and the number of units in each layer, determining the function 

complexity. Important issues in Multilayer Perceptrons (MLP) design include 

specification of the number of hidden layers and the number of units in these layers. 

 

 

Training Multilayer Perceptrons  

Once the number of layers, and number of units in each layer, has been selected, the 

network's weights and thresholds must be set so as to minimize the prediction error made 

by the network. This is the role of the training algorithms.  The number of input and 

output units is defined by the problem. The number of hidden units to use is far from 

clear. As good a starting point as any is to use one hidden layer, with the number of units 

equal to half the sum of the number of input and output units. The historical cases that 

http://www.statsoft.com/textbook/glosf.html#Feedforward Networks
http://www.statsoft.com/textbook/glosm.html#Multilayer Perceptrons
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have been gathered are used to automatically adjust the weights and thresholds in order to 

minimize this error. This process is equivalent to fitting the model represented by the 

network to the training data available. The error of a particular configuration of the 

network can be determined by running all the training cases through the network, 

comparing the actual output generated with the desired or target outputs. The differences 

are combined together by an error function to give the network error. The most common 

error functions are the sum squared error (used for regression problems), where the 

individual errors of output units on each case are squared and summed together, and the 

cross entropy functions.A helpful concept here is the error surface. Each of the N weights 

and thresholds of the network (i.e., the free parameters of the model) is taken to be a 

dimension in space. The N+1th dimension is the network error. For any possible 

configuration of weights the error can be plotted in the N+1th dimension, forming an 

error surface. The objective of network training is to find the lowest point in this many-

dimensional surface. 

The choice of the set of functions f depends on the problem at hand, but a possible choice 

is the multi-layer perceptron (MLP) network.  It has often been found to provide compact 

representations of mappings in real-world problems. The MLP network is composed of 

neurons which are very close to the ones represented in the case of the linear network. 

The linear neurons are modified so that a slight nonlinearity is added after the linear 

summation. The output c of each neuron is thus  

 

where ai are the inputs of the neuron and wi are the weights of the neuron. The nonlinear 

function is called the activation function as it determines the activation level of the 

neuron. This refers to interpreting the activation as the pulse rate of biological neurons. 

Due to the nonlinear activation function, a multi-layer network is not equivalent to any 

one-layer structure with the same activation function. In fact, it has been shown that one 

layer of suitable nonlinear neurons followed by a linear layer can approximate any 

http://www.statsoft.com/textbook/glose.html#Error Function
http://www.statsoft.com/textbook/gloss.html#Sum-squared error function
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nonlinear function with arbitrary accuracy, given enough nonlinear neurons. Thus, an 

MLP network is a universal function approximator.  

The activation functions most widely used are the hyperbolic tangent tanh(x) and logistic 

sigmoid 1/(1+exp(-x)). They are actually related as (tanh(x)+1) /2 = 1/ (1+exp(-2x)). 

These activation functions are used for their convenient mathematical properties and 

because they have a roughly linear behaviour around origin, which means that it is easy 

to represent close-to-linear mappings with the MLP network.  

A graphical representation of the computational structure of an MLP network with 
one hidden layer of nonlinear neurons 
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The mapping of the network can be compactly described as: 

 
According to the usual notation with MLP networks, the vector φ denotes a vector of 

functions which each operate on one of the components of the argument vector. 
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CHAPTER 9 

IMPLEMENTATION OF TIME SERIES FORECASTING USING 

THREE DIFFERENT EXAMPLES. 

 

EXAMPLE-1 

SERIES B, IBM STOCK PRICES 

                                                    

• Closing price of common stock, daily, May 17 1961 to November 2 

1962 

• May 17 = 137th day 

 
460 457 452 459 462 459 463 479 493 490 492 498 499 497 

496 490 489 478 487 491 487 482 479 478 479 477 479 475 

479 476 476 478 479 477 476 475 475 473 474 474 474 465 

466 467 471 471 467 473 481 488 490 489 489 485 491 492 

494 499 498 500 497 494 495 500 504 513 511 514 510 509 

515 519 523 519 523 531 547 551 547 541 545 549 545 549 

547 543 540 539 532 517 527 540 542 538 541 541 547 553 

559 557 557 560 571 571 569 575 580 584 585 590 599 603 

599 596 585 587 585 581 583 592 592 596 596 595 598 598 

595 595 592 588 582 576 578 589 585 580 579 584 581 581 

577 577 578 580 586 583 581 576 571 575 575 573 577 582 

584 579 572 577 571 560 549 556 557 563 564 567 561 559 

553 553 553 547 550 544 541 532 525 542 555 558 551 551 

552 553 557 557 548 547 545 545 539 539 535 537 535 536 

537 543 548 546 547 548 549 553 553 552 551 550 553 554 

551 551 545 547 547 537 539 538 533 525 513 510 521 521 

521 523 516 511 518 517 520 519 519 519 518 513 499 485 

454 462 473 482 486 475 459 451 453 446 455 452 457 449 



 94

450 435 415 398 399 361 383 393 385 360 364 365 370 374 

359 335 323 306 333 330 336 328 316 320 332 320 333 344 

339 350 351 350 345 350 359 375 379 376 382 370 365 367 

372 373 363 371 369 376 387 387 376 385 385 380 373 382 

377 376 379 386 387 386 389 394 393 409 411 409 408 393 

391 388 396 387 383 388 382 384 382 383 383 388 395 392 

386 383 377 364 369 355 350 353 340 350 349 358 360 360 

366 359 356 355 367 357 361 355 348 343 330 340 339 331 

                       345 352 346 352 357 

 

IBM STOCK IN MATLAB 
 

INPUTDATA FOR TRAINING 
 

[460 457 452 459 462 459 463 479 493 490 492 498 499 497 496 490 489 478 487 491 

487 482 479 478 479 477 479 475 479 476 476 478 479 477 476 475 475 473 474 474 

474 465 466 467 471 471 467 473 481 488 490 489 489 485 491 492 494 499 498 500 

497 494 495 500 504 513 511 514 510 509 515 519 523 519 523 531 547 551 547 541 

545 549 545 549 547 543 540 539 532 517 527 540 542 538 541 541 547 553 559 557 

557 560 571 571 569 575 580 584 585 590 599 603 599 596 585 587 585 581 583 592 

592 596 596 595 598 598 595 595 592 588 582 576 578 589 585 580 579 584 581 581 

577 577 578 580 586 583 581 576 571 575 575 573 577 582 584 579 572 577 571 560 

549 556 557 563 564 567 561 559 553 553 553 547 550 544 541 532 525 542 555 558 

551 551 552 553 557 557 548 547 545 545 539 539 535 537 535 536 537 543 548 546 

547 548 549 553 553 552 551 550 553 554 551 551 545 547 547 537 539 538 533 525 

513 510 521 521 521 523 516 511 518 517 520 519 519 519 518 513 499 485 454 462 

473 482 486 475 459 451 453 446; 

457 452 459 462 459 463 479 493 490 492 498 499 497 496 490 489 478 487 491 487 

482 479 478 479 477 479 475 479 476 476 478 479 477 476 475 475 473 474 474 474 

465 466 467 471 471 467 473 481 488 490 489 489 485 491 492 494 499 498 500 497 

494 495 500 504 513 511 514 510 509 515 519 523 519 523 531 547 551 547 541 545 
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549 545 549 547 543 540 539 532 517 527 540 542 538 541 541 547 553 559 557 557 

560 571 571 569 575 580 584 585 590 599 603 599 596 585 587 585 581 583 592 592 

596 596 595 598 598 595 595 592 588 582 576 578 589 585 580 579 584 581 581 577 

577 578 580 586 583 581 576 571 575 575 573 577 582 584 579 572 577 571 560 549 

556 557 563 564 567 561 559 553 553 553 547 550 544 541 532 525 542 555 558 551 

551 552 553 557 557 548 547 545 545 539 539 535 537 535 536 537 543 548 546 547 

548 549 553 553 552 551 550 553 554 551 551 545 547 547 537 539 538 533 525 513 

510 521 521 521 523 516 511 518 517 520 519 519 519 518 513 499 485 454 462 473 

482 486 475 459 451 453 446 455; 

452 459 462 459 463 479 493 490 492 498 499 497 496 490 489 478 487 491 487 482 

479 478 479 477 479 475 479 476 476 478 479 477 476 475 475 473 474 474 474 465 

466 467 471 471 467 473 481 488 490 489 489 485 491 492 494 499 498 500 497 494 

495 500 504 513 511 514 510 509 515 519 523 519 523 531 547 551 547 541 545 549 

545 549 547 543 540 539 532 517 527 540 542 538 541 541 547 553 559 557 557 560 

571 571 569 575 580 584 585 590 599 603 599 596 585 587 585 581 583 592 592 596 

596 595 598 598 595 595 592 588 582 576 578 589 585 580 579 584 581 581 577 577 

578 580 586 583 581 576 571 575 575 573 577 582 584 579 572 577 571 560 549 556 

557 563 564 567 561 559 553 553 553 547 550 544 541 532 525 542 555 558 551 551 

552 553 557 557 548 547 545 545 539 539 535 537 535 536 537 543 548 546 547 548 

549 553 553 552 551 550 553 554 551 551 545 547 547 537 539 538 533 525 513 510 

521 521 521 523 516 511 518 517 520 519 519 519 518 513 499 485 454 462 473 482 

486 475 459 451 453 446 455 452; 

459 462 459 463 479 493 490 492 498 499 497 496 490 489 478 487 491 487 482 479 

478 479 477 479 475 479 476 476 478 479 477 476 475 475 473 474 474 474 465 466 

467 471 471 467 473 481 488 490 489 489 485 491 492 494 499 498 500 497 494 495 

500 504 513 511 514 510 509 515 519 523 519 523 531 547 551 547 541 545 549 545 

549 547 543 540 539 532 517 527 540 542 538 541 541 547 553 559 557 557 560 571 

571 569 575 580 584 585 590 599 603 599 596 585 587 585 581 583 592 592 596 596 

595 598 598 595 595 592 588 582 576 578 589 585 580 579 584 581 581 577 577 578 

580 586 583 581 576 571 575 575 573 577 582 584 579 572 577 571 560 549 556 557 

563 564 567 561 559 553 553 553 547 550 544 541 532 525 542 555 558 551 551 552 
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553 557 557 548 547 545 545 539 539 535 537 535 536 537 543 548 546 547 548 549 

553 553 552 551 550 553 554 551 551 545 547 547 537 539 538 533 525 513 510 521 

521 521 523 516 511 518 517 520 519 519 519 518 513 499 485 454 462 473 482 486 

475 459 451 453 446 455 452 457; 

462 459 463 479 493 490 492 498 499 497 496 490 489 478 487 491 487 482 479 478 

479 477 479 475 479 476 476 478 479 477 476 475 475 473 474 474 474 465 466 467 

471 471 467 473 481 488 490 489 489 485 491 492 494 499 498 500 497 494 495 500 

504 513 511 514 510 509 515 519 523 519 523 531 547 551 547 541 545 549 545 549 

547 543 540 539 532 517 527 540 542 538 541 541 547 553 559 557 557 560 571 571 

569 575 580 584 585 590 599 603 599 596 585 587 585 581 583 592 592 596 596 595 

598 598 595 595 592 588 582 576 578 589 585 580 579 584 581 581 577 577 578 580 

586 583 581 576 571 575 575 573 577 582 584 579 572 577 571 560 549 556 557 563 

564 567 561 559 553 553 553 547 550 544 541 532 525 542 555 558 551 551 552 553 

557 557 548 547 545 545 539 539 535 537 535 536 537 543 548 546 547 548 549 553 

553 552 551 550 553 554 551 551 545 547 547 537 539 538 533 525 513 510 521 521 

521 523 516 511 518 517 520 519 519 519 518 513 499 485 454 462 473 482 486 475 

459 451 453 446 455 452 457 449] 

 

TARGET 
 

[459 463 479 493 490 492 498 499 497 496 490 489 478 487 491 487 482 479 478 479 

477 479 475 479 476 476 478 479 477 476 475 475 473 474 474 474 465 466 467 471 

471 467 473 481 488 490 489 489 485 491 492 494 499 498 500 497 494 495 500 504 

513 511 514 510 509 515 519 523 519 523 531 547 551 547 541 545 549 545 549 547 

543 540 539 532 517 527 540 542 538 541 541 547 553 559 557 557 560 571 571 569 

575 580 584 585 590 599 603 599 596 585 587 585 581 583 592 592 596 596 595 598 

598 595 595 592 588 582 576 578 589 585 580 579 584 581 581 577 577 578 580 586 

583 581 576 571 575 575 573 577 582 584 579 572 577 571 560 549 556 557 563 564 

567 561 559 553 553 553 547 550 544 541 532 525 542 555 558 551 551 552 553 557 

557 548 547 545 545 539 539 535 537 535 536 537 543 548 546 547 548 549 553 553 

552 551 550 553 554 551 551 545 547 547 537 539 538 533 525 513 510 521 521 521 
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523 516 511 518 517 520 519 519 519 518 513 499 485 454 462 473 482 486 475 459 

451 453 446 455 452 457 449 450] 

 

SIMULATED DATA 
[450 435 415 398 399 361 383 393 385 360 364 365 370 374 359 335 323 306 333 330 

336 328 316 320 332 320 333 344 339 350 351 350 345 350 359 375 379 376 382 370 

365 367 372 373 363 371 369 376 387 387 376 385 385 380 373 382 377 376 379 386 

387 386 389 394 393 409 411 409 408 393 391 388 396 387 383 388 382 384 382 383 

383 388 395 392 386 383 377 364 369 355 350 353 340 350 349 358 360 360 366 359 

356 355 367 357 361 355 348 343 330 340 339 331; 

435 415 398 399 361 383 393 385 360 364 365 370 374 359 335 323 306 333 330 336 

328 316 320 332 320 333 344 339 350 351 350 345 350 359 375 379 376 382 370 365 

367 372 373 363 371 369 376 387 387 376 385 385 380 373 382 377 376 379 386 387 

386 389 394 393 409 411 409 408 393 391 388 396 387 383 388 382 384 382 383 383 

388 395 392 386 383 377 364 369 355 350 353 340 350 349 358 360 360 366 359 356 

355 367 357 361 355 348 343 330 340 339 331 345; 

415 398 399 361 383 393 385 360 364 365 370 374 359 335 323 306 333 330 336 328 

316 320 332 320 333 344 339 350 351 350 345 350 359 375 379 376 382 370 365 367 

372 373 363 371 369 376 387 387 376 385 385 380 373 382 377 376 379 386 387 386 

389 394 393 409 411 409 408 393 391 388 396 387 383 388 382 384 382 383 383 388 

395 392 386 383 377 364 369 355 350 353 340 350 349 358 360 360 366 359 356 355 

367 357 361 355 348 343 330 340 339 331 345 352; 

398 399 361 383 393 385 360 364 365 370 374 359 335 323 306 333 330 336 328 316 

320 332 320 333 344 339 350 351 350 345 350 359 375 379 376 382 370 365 367 372 

373 363 371 369 376 387 387 376 385 385 380 373 382 377 376 379 386 387 386 389 

394 393 409 411 409 408 393 391 388 396 387 383 388 382 384 382 383 383 388 395 

392 386 383 377 364 369 355 350 353 340 350 349 358 360 360 366 359 356 355 367 

357 361 355 348 343 330 340 339 331 345 352 346; 

399 361 383 393 385 360 364 365 370 374 359 335 323 306 333 330 336 328 316 320 

332 320 333 344 339 350 351 350 345 350 359 375 379 376 382 370 365 367 372 373 

363 371 369 376 387 387 376 385 385 380 373 382 377 376 379 386 387 386 389 394 
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393 409 411 409 408 393 391 388 396 387 383 388 382 384 382 383 383 388 395 392 

386 383 377 364 369 355 350 353 340 350 349 358 360 360 366 359 356 355 367 357 

361 355 348 343 330 340 339 331 345 352 346 352] 

 

EXAMPLE-2 

SUNSPOTS DATA FOR  300 YEARS ON EARTH’S SURFACE, 

1699-1999 
 

TRAINING DATA 

 

[0.3138 0.4231 0.4362 0.2495 0.25 0.1606 0.0638 0.0502 0.0534 0.17 0.2489 0.2824 

0.329 0.4493 0.3201 0.2359 0.1904 0.1093 0.0596 0.1977 0.3651 0.5549 0.5272 0.4268 

0.3478 0.182 0.16 0.0366 0.1036 0.4838 0.8075 0.6585 0.4435 0.3562 0.2014 0.1192 

0.0534 0.126 0.4336 0.6904 0.6846 0.6177 0.4702 0.3483 0.3138 0.2453 0.2144 0.1114 

0.0837 0.0335 0.0214 0.0356 0.0758 0.1778 0.2354 0.2254 0.2484 0.2207 0.147 0.0528 

0.0424 0.0131 0 0.0073 0.0262 0.0638 0.0727 0.1851 0.2395 0.215 0.1574 0.125 0.0816 

0.0345 0.0209 0.0094 0.0445 0.0868 0.1898 0.2594 0.3358 0.3504 0.3708 0.25 0.1438 

0.0445 0.069 0.2976 0.6354 0.7233 0.5397 0.4482 0.3379 0.1919 0.1266 0.056 0.0785 

0.2097 0.3216 0.5152 0.6522 0.5036 0.3483 0.3373 0.2829 0.204 0.1077 0.035 0.0225 

0.1187 0.2866 0.4906 0.501 0.4038 0.3091 0.2301 0.2458 0.1595 0.0853 0.0382 0.1966 

0.387 0.727 0.5816 0.5314 0.3462 0.2338 0.0889 0.0591 0.0649 0.0178 0.0314 0.1689 

0.284 0.3122 0.3332 0.3321 0.273 0.1328 0.0685 0.0356 0.033 0.0371 0.1862 0.3818 

0.4451 0.4079 0.3347 0.2186 0.137 0.1396 0.0633 0.0497 0.0141 0.0262 0.1276 0.2197 

0.3321 0.2814 0.3243 0.2537 0.2296 0.0973 0.0298 0.0188 0.0073 0.0502 0.2479 0.2986 

0.5434; 

0.4231 0.4362 0.2495 0.25 0.1606 0.0638 0.0502 0.0534 0.17 0.2489 0.2824 0.329 

0.4493 0.3201 0.2359 0.1904 0.1093 0.0596 0.1977 0.3651 0.5549 0.5272 0.4268 0.3478 

0.182 0.16 0.0366 0.1036 0.4838 0.8075 0.6585 0.4435 0.3562 0.2014 0.1192 0.0534 

0.126 0.4336 0.6904 0.6846 0.6177 0.4702 0.3483 0.3138 0.2453 0.2144 0.1114 0.0837 

0.0335 0.0214 0.0356 0.0758 0.1778 0.2354 0.2254 0.2484 0.2207 0.147 0.0528 0.0424 
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0.0131 0 0.0073 0.0262 0.0638 0.0727 0.1851 0.2395 0.215 0.1574 0.125 0.0816 0.0345 

0.0209 0.0094 0.0445 0.0868 0.1898 0.2594 0.3358 0.3504 0.3708 0.25 0.1438 0.0445 

0.069 0.2976 0.6354 0.7233 0.5397 0.4482 0.3379 0.1919 0.1266 0.056 0.0785 0.2097 

0.3216 0.5152 0.6522 0.5036 0.3483 0.3373 0.2829 0.204 0.1077 0.035 0.0225 0.1187 

0.2866 0.4906 0.501 0.4038 0.3091 0.2301 0.2458 0.1595 0.0853 0.0382 0.1966 0.387 

0.727 0.5816 0.5314 0.3462 0.2338 0.0889 0.0591 0.0649 0.0178 0.0314 0.1689 0.284 

0.3122 0.3332 0.3321 0.273 0.1328 0.0685 0.0356 0.033 0.0371 0.1862 0.3818 0.4451 

0.4079 0.3347 0.2186 0.137 0.1396 0.0633 0.0497 0.0141 0.0262 0.1276 0.2197 0.3321 

0.2814 0.3243 0.2537 0.2296 0.0973 0.0298 0.0188 0.0073 0.0502 0.2479 0.2986 0.5434 

0.4215; 

0.4362 0.2495 0.25 0.1606 0.0638 0.0502 0.0534 0.17 0.2489 0.2824 0.329 0.4493 

0.3201 0.2359 0.1904 0.1093 0.0596 0.1977 0.3651 0.5549 0.5272 0.4268 0.3478 0.182 

0.16 0.0366 0.1036 0.4838 0.8075 0.6585 0.4435 0.3562 0.2014 0.1192 0.0534 0.126 

0.4336 0.6904 0.6846 0.6177 0.4702 0.3483 0.3138 0.2453 0.2144 0.1114 0.0837 0.0335 

0.0214 0.0356 0.0758 0.1778 0.2354 0.2254 0.2484 0.2207 0.147 0.0528 0.0424 0.0131 0 

0.0073 0.0262 0.0638 0.0727 0.1851 0.2395 0.215 0.1574 0.125 0.0816 0.0345 0.0209 

0.0094 0.0445 0.0868 0.1898 0.2594 0.3358 0.3504 0.3708 0.25 0.1438 0.0445 0.069 

0.2976 0.6354 0.7233 0.5397 0.4482 0.3379 0.1919 0.1266 0.056 0.0785 0.2097 0.3216 

0.5152 0.6522 0.5036 0.3483 0.3373 0.2829 0.204 0.1077 0.035 0.0225 0.1187 0.2866 

0.4906 0.501 0.4038 0.3091 0.2301 0.2458 0.1595 0.0853 0.0382 0.1966 0.387 0.727 

0.5816 0.5314 0.3462 0.2338 0.0889 0.0591 0.0649 0.0178 0.0314 0.1689 0.284 0.3122 

0.3332 0.3321 0.273 0.1328 0.0685 0.0356 0.033 0.0371 0.1862 0.3818 0.4451 0.4079 

0.3347 0.2186 0.137 0.1396 0.0633 0.0497 0.0141 0.0262 0.1276 0.2197 0.3321 0.2814 

0.3243 0.2537 0.2296 0.0973 0.0298 0.0188 0.0073 0.0502 0.2479 0.2986 0.5434 0.4215 

0.3326; 

0.2495 0.25 0.1606 0.0638 0.0502 0.0534 0.17 0.2489 0.2824 0.329 0.4493 0.3201 

0.2359 0.1904 0.1093 0.0596 0.1977 0.3651 0.5549 0.5272 0.4268 0.3478 0.182 0.16 

0.0366 0.1036 0.4838 0.8075 0.6585 0.4435 0.3562 0.2014 0.1192 0.0534 0.126 0.4336 

0.6904 0.6846 0.6177 0.4702 0.3483 0.3138 0.2453 0.2144 0.1114 0.0837 0.0335 0.0214 

0.0356 0.0758 0.1778 0.2354 0.2254 0.2484 0.2207 0.147 0.0528 0.0424 0.0131 0 0.0073 

0.0262 0.0638 0.0727 0.1851 0.2395 0.215 0.1574 0.125 0.0816 0.0345 0.0209 0.0094 
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0.0445 0.0868 0.1898 0.2594 0.3358 0.3504 0.3708 0.25 0.1438 0.0445 0.069 0.2976 

0.6354 0.7233 0.5397 0.4482 0.3379 0.1919 0.1266 0.056 0.0785 0.2097 0.3216 0.5152 

0.6522 0.5036 0.3483 0.3373 0.2829 0.204 0.1077 0.035 0.0225 0.1187 0.2866 0.4906 

0.501 0.4038 0.3091 0.2301 0.2458 0.1595 0.0853 0.0382 0.1966 0.387 0.727 0.5816 

0.5314 0.3462 0.2338 0.0889 0.0591 0.0649 0.0178 0.0314 0.1689 0.284 0.3122 0.3332 

0.3321 0.273 0.1328 0.0685 0.0356 0.033 0.0371 0.1862 0.3818 0.4451 0.4079 0.3347 

0.2186 0.137 0.1396 0.0633 0.0497 0.0141 0.0262 0.1276 0.2197 0.3321 0.2814 0.3243 

0.2537 0.2296 0.0973 0.0298 0.0188 0.0073 0.0502 0.2479 0.2986 0.5434 0.4215 0.3326 

0.1966; 

0.25 0.1606 0.0638 0.0502 0.0534 0.17 0.2489 0.2824 0.329 0.4493 0.3201 0.2359 

0.1904 0.1093 0.0596 0.1977 0.3651 0.5549 0.5272 0.4268 0.3478 0.182 0.16 0.0366 

0.1036 0.4838 0.8075 0.6585 0.4435 0.3562 0.2014 0.1192 0.0534 0.126 0.4336 0.6904 

0.6846 0.6177 0.4702 0.3483 0.3138 0.2453 0.2144 0.1114 0.0837 0.0335 0.0214 0.0356 

0.0758 0.1778 0.2354 0.2254 0.2484 0.2207 0.147 0.0528 0.0424 0.0131 0 0.0073 0.0262 

0.0638 0.0727 0.1851 0.2395 0.215 0.1574 0.125 0.0816 0.0345 0.0209 0.0094 0.0445 

0.0868 0.1898 0.2594 0.3358 0.3504 0.3708 0.25 0.1438 0.0445 0.069 0.2976 0.6354 

0.7233 0.5397 0.4482 0.3379 0.1919 0.1266 0.056 0.0785 0.2097 0.3216 0.5152 0.6522 

0.5036 0.3483 0.3373 0.2829 0.204 0.1077 0.035 0.0225 0.1187 0.2866 0.4906 0.501 

0.4038 0.3091 0.2301 0.2458 0.1595 0.0853 0.0382 0.1966 0.387 0.727 0.5816 0.5314 

0.3462 0.2338 0.0889 0.0591 0.0649 0.0178 0.0314 0.1689 0.284 0.3122 0.3332 0.3321 

0.273 0.1328 0.0685 0.0356 0.033 0.0371 0.1862 0.3818 0.4451 0.4079 0.3347 0.2186 

0.137 0.1396 0.0633 0.0497 0.0141 0.0262 0.1276 0.2197 0.3321 0.2814 0.3243 0.2537 

0.2296 0.0973 0.0298 0.0188 0.0073 0.0502 0.2479 0.2986 0.5434 0.4215 0.3326 0.1966 

0.1365] 

 

TARGET DATA 

 

[0.1606 0.0638 0.0502 0.0534 0.17 0.2489 0.2824 0.329 0.4493 0.3201 0.2359 0.1904 

0.1093 0.0596 0.1977 0.3651 0.5549 0.5272 0.4268 0.3478 0.182 0.16 0.0366 0.1036 

0.4838 0.8075 0.6585 0.4435 0.3562 0.2014 0.1192 0.0534 0.126 0.4336 0.6904 0.6846 

0.6177 0.4702 0.3483 0.3138 0.2453 0.2144 0.1114 0.0837 0.0335 0.0214 0.0356 0.0758 
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0.1778 0.2354 0.2254 0.2484 0.2207 0.147 0.0528 0.0424 0.0131 0 0.0073 0.0262 0.0638 

0.0727 0.1851 0.2395 0.215 0.1574 0.125 0.0816 0.0345 0.0209 0.0094 0.0445 0.0868 

0.1898 0.2594 0.3358 0.3504 0.3708 0.25 0.1438 0.0445 0.069 0.2976 0.6354 0.7233 

0.5397 0.4482 0.3379 0.1919 0.1266 0.056 0.0785 0.2097 0.3216 0.5152 0.6522 0.5036 

0.3483 0.3373 0.2829 0.204 0.1077 0.035 0.0225 0.1187 0.2866 0.4906 0.501 0.4038 

0.3091 0.2301 0.2458 0.1595 0.0853 0.0382 0.1966 0.387 0.727 0.5816 0.5314 0.3462 

0.2338 0.0889 0.0591 0.0649 0.0178 0.0314 0.1689 0.284 0.3122 0.3332 0.3321 0.273 

0.1328 0.0685 0.0356 0.033 0.0371 0.1862 0.3818 0.4451 0.4079 0.3347 0.2186 0.137 

0.1396 0.0633 0.0497 0.0141 0.0262 0.1276 0.2197 0.3321 0.2814 0.3243 0.2537 0.2296 

0.0973 0.0298 0.0188 0.0073 0.0502 0.2479 0.2986 0.5434 0.4215 0.3326 0.1966 0.1365 

0.0743] 

 

 

SIMULATED DATA 

 

[0.0743 0.0303 0.0873 0.2317 0.3342 0.3609 0.4069 0.3394 0.1867 0.1109 0.0581 

0.0298 0.0455 0.1888 0.4168 0.5983 0.5732 0.4644 0.3546 0.2484 0.16 0.0853 0.0502 

0.1736 0.4843 0.7929 0.7128 0.7045 0.4388 0.363 0.1647 0.0727 0.023 0.1987 0.7411 

0.9947 0.9665 0.8316 0.5873 0.2819 0.1961 0.1459 0.0534 0.079 0.2458 0.4906 0.5539 

0.5518 0.5465 0.3483 0.3603 0.1987 0.1804 0.0811; 

0.0303 0.0873 0.2317 0.3342 0.3609 0.4069 0.3394 0.1867 0.1109 0.0581 0.0298 0.0455 

0.1888 0.4168 0.5983 0.5732 0.4644 0.3546 0.2484 0.16 0.0853 0.0502 0.1736 0.4843 

0.7929 0.7128 0.7045 0.4388 0.363 0.1647 0.0727 0.023 0.1987 0.7411 0.9947 0.9665 

0.8316 0.5873 0.2819 0.1961 0.1459 0.0534 0.079 0.2458 0.4906 0.5539 0.5518 0.5465 

0.3483 0.3603 0.1987 0.1804 0.0811 0.0659; 

0.0873 0.2317 0.3342 0.3609 0.4069 0.3394 0.1867 0.1109 0.0581 0.0298 0.0455 0.1888 

0.4168 0.5983 0.5732 0.4644 0.3546 0.2484 0.16 0.0853 0.0502 0.1736 0.4843 0.7929 

0.7128 0.7045 0.4388 0.363 0.1647 0.0727 0.023 0.1987 0.7411 0.9947 0.9665 0.8316 

0.5873 0.2819 0.1961 0.1459 0.0534 0.079 0.2458 0.4906 0.5539 0.5518 0.5465 0.3483 

0.3603 0.1987 0.1804 0.0811 0.0659 0.1428; 
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0.2317 0.3342 0.3609 0.4069 0.3394 0.1867 0.1109 0.0581 0.0298 0.0455 0.1888 0.4168 

0.5983 0.5732 0.4644 0.3546 0.2484 0.16 0.0853 0.0502 0.1736 0.4843 0.7929 0.7128 

0.7045 0.4388 0.363 0.1647 0.0727 0.023 0.1987 0.7411 0.9947 0.9665 0.8316 0.5873 

0.2819 0.1961 0.1459 0.0534 0.079 0.2458 0.4906 0.5539 0.5518 0.5465 0.3483 0.3603 

0.1987 0.1804 0.0811 0.0659 0.1428 0.4838; 

0.3342 0.3609 0.4069 0.3394 0.1867 0.1109 0.0581 0.0298 0.0455 0.1888 0.4168 0.5983 

0.5732 0.4644 0.3546 0.2484 0.16 0.0853 0.0502 0.1736 0.4843 0.7929 0.7128 0.7045 

0.4388 0.363 0.1647 0.0727 0.023 0.1987 0.7411 0.9947 0.9665 0.8316 0.5873 0.2819 

0.1961 0.1459 0.0534 0.079 0.2458 0.4906 0.5539 0.5518 0.5465 0.3483 0.3603 0.1987 

0.1804 0.0811 0.0659 0.1428 0.4838 0.8127] 

 

 

EXAMPLE 3 

TOTAL ANNUAL RAINFALL, INCHES, LONDON, ENGLAND, 

1813-1912 
23.56  26.07  21.86  31.24  23.65  23.88 

26.41  22.67  31.69  23.86  24.11  32.43 

23.26  22.57  23.00  27.88  25.32  25.08 

27.76  19.82  24.78  20.12  24.34  27.42 

19.44  21.63  27.49  19.43  31.13  23.09 

25.85  22.65  22.75  26.36  17.70  29.81 

22.93  9.22   20.63   35.34  25.89  18.65 

23.06  22.21  22.18  18.77  28.21  32.24 

22.27  27.57  21.59  16.93  29.48  31.60 

26.25  23.40  25.42  21.32  25.02  33.86 

22.67  18.82  28.44  26.16  28.17  34.08 

33.82  30.28  27.92  27.14  24.40  20.35 

26.64  27.01  19.21  27.74  23.85  21.23 

28.15  22.61  19.80  27.94  21.47  23.52 

22.86  17.69  22.54  23.28  22.17  20.84 

38.10 20.65  22.97  24.26  23.01  23.67  26.75  25.36  24.79 27.88 
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Conclusion and Comparison 
 

Conclusion: 

It has been observed that the Time series analysis Network designed in MATLAB gives 

approximately 97% accuracy in the above examples. 

The following table shows the comparison chart for three examples used above: 

S.No. Desired Output Actual Output % Accuracy

EXAMPLE-1 459 463.4469 99.03 

 463 467.3457 99.06 

 479 464.7565 97.03 

 493 484.0494 98.18 

 490 495.3209 98.91 

    

EXAMPLE-2 0.1606 0.15758 98.12 

 0.0637 0.065957 96.46 

 0.0502 0.051934 96.55 

 0.0534 0.055105 96.81 

 0.172 0.16936 98.47 

    

EXAMPLE-3 23.88 23.2719 97.45 

 26.41 26.6706 99.01 

 22.67 23.0397 98.37 

 24.11 23.3298 96.76 

 23.26 24.0728 96.51 
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APPENDIX-A 
 

SCREEN SNAPSHOTS OF TIME SERIES ANALYSIS IN 

MATLAB 
 

EXAMPLE-1  

SERIES B, IBM STOCK PRICES 

MAIN SCREEN 
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INPUT /TARGET/SIMULATED DATA FOR TRAINING 
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THE LINEAR LAYER DESIGN NETWORK STRUCTURE 
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TRAINING OUTPUT AND SIMULATED OUTPUT DATA 
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EXAMPLE-2 

SUNSPOTS DATA FOR  300 YEARS ON EARTH’S SURFACE, 

1699-1999 
 

INPUT /TARGET/SIMULATED DATA FOR TRAINING 
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THE FEEDFORWARD BACKPROPAGATION NETWORK 

STRUCTURE 
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TRAINING OUTPUT AND SIMULATED OUTPUT DATA 
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EXAMPLE 3 

TOTAL ANNUAL RAINFALL, INCHES, LONDON, ENGLAND, 

1813-1912 

 

INPUT/ TARGET/ SIMULATED DATA FOR TRAINING 
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LINEAR LAYER DESIGN NETWORK STRUCTURE 
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TRAINING OUTPUT AND SIMULATED OUTPUT DATA 
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