Design and Implementation of Data Encryption
Standard using VHDL

MAJOR PROJECT THESIS

Submitted in Partial Fulfillment of the Requirements
for the Award of the Degree of

MASTER OF ENGINEERING

In

ELECTRONICS AND COMMUNICATION
ENGINEERING

Submitted by

MAMTA RANI
Delhi University Roll No. 12681

Under the Guidance of

Ms. RAJESHWARI PANDEY

Department of Electronics and Communication

&

ORKTS
S g

Department of Electronics and Communication Engineeng
Delhi College of Engineering
Delhi-110042

CERTIFICATE

Department of Electronics and Communication Engineeng
Delhi College of Engineering
University of Delhi
Delhi-110042

REOF 5

TR
/ey
é%

IIIIEXEIL

R~ g

<=
8

This is to certify that the Major project thesiditad “Design and Implementation
of Data Encryption Standard VHDL”, being submitted bylamta Rani in the
partial fulfilment of the requirement for the degr of Master of Engineering in
Electronics and Communication in the Department B&fectronics and
Communication, Delhi College of Engineering, Unsigr of Delhi is a record of
bonafide work done by her under my supervision@uidance. It is also certified that

the dissertation has not been submitted elsewbe@fy other degree.

She has worked under my supervision and guidanbe. t&as fulfilled all the
requirements for submission of the Major Projeatsth, which has reached the

requisite standard.

Ms. Rajeshwari Pandey
Assistant Professor

Delhi College of Engineering
Bawana Road, New Delhi

ACKNOWLEDGEMENT

| am highly indebted to my Project guitiés. Rajeshwari Pandey, Department of
Electronics and Communication Engineering,for giving me the opportunity to
work under her invaluable supervision. She had eraged and guided me to

accomplish this research work.

| must acknowledg®r. Asok Bhattacharyya (Professor and H.O.D)f Electronics
and Communication Engineering Department, Delhilég@ of Engineering, for his

invaluable guidance during the research work.

| must also acknowledge the staff of DepartmenEletctronics and Communication
Engineering Laboratories, Delhi College of Engimagr for their support and help
during the research work.l would also like to essrany gratitude to all my
colleagues in particular to those at the Departroéiiectronics and Communication
Engineering for their support, co-operation anditful discussions on diverse

research topics.

| want to thank my family & friends for their sineeinterest in my work and their

moral support.

Mamta Rani

University Roll No. 12681
Delhi College of Engineering
University of Delhi, Delhi

ABSTRACT

Many people wish to communicate privately. To prévenauthorized persons from
extracting information from the communication chanar injecting misinformation

into the communication channel, messages need tlisguised by encryption. At the
transmitter, the plaintext is encrypted to prodtice ciphertext. The ciphertext is
transmitted over an insecure channel to the receiMee receiver then decrypts the

ciphertext to obtain the original plaintext.

DES, which stands for Data Encryption Standarda islock encryption algorithm
adopted by the National Bureau of Standards. Wiih a@lgorithm, a 64-bit plaintext
and a 64-bit key are provided as input. By applyargequence of initial permutation,
switch, shift on the key and plaintext, the 644ddghertext is generated at the output

after 16 clock cycles.

A test bench for simulation is critically importafar the final success of the whole

work. This test bench provides a sequence of kdy@alaintext to the DES design.

With the test bench, the pre-synthesis simulatsothén made using Active HDL 6.3.
This is an RTL level simulation which verifies thagic functionality of the code
without gatelevel information involved. After thackessful pre-synthesis simulation,

IDE Xyling Project Navigator is used to synthedize DES design.

The main objective of the project is to design atlgsizable VHDL model for Data
Encryption Standard Algorithm.The basic idea behandsynthesizable model is the
need to implement the algorithm on FPGA.Implemeantiryptographic algorithm on
reconfigurable hardware provides major benefitsr eS| and software platforms

since they offer high speed similar to VLSI andhhilgxibility similar to software.

CONTENTS

Chapter 1

1.1 Introduction
1.2 Cryptography Goals

Chapter 2

2.1 Block Ciphers and Stream Ciphers

2.2 Symmetric and Asymmetric Encryptions
2.3 Conventional Encryption

2.4 Cryptanalysis

Chapter 3

3.1 DES Overview

3.2 Key Scheduling

3.3 Plaintext Preparation

3.4 DES Core Function

3.5 Ciphertext Preparation

3.6 Encryption and Decryption

Chapter 4
4.1 FPGA Introduction
4.2 History

4.3 Architecture
4.4 Basic Process Techonology Types

Chapter 5
5.1 Implementation
5.2 Results

5.3 Conclusion and Future Scope

References

Appendix

Page No.

10

12

12
15
18
19
26
26

30

30
31
32

36
36
37

42
43

35

41

LIST OF FIGURES

Page No.
Fig. 1.1: Encryption-Decryption Flow 2
Fig. 2.1: Block Cipher ECB Mode 5
Fig. 2.2: Stream Cipher (Simple Mode) 5
Fig. 2.3: Symmetric Encryption 6
Fig. 2.4: Asymmetric Encryption 7
Fig. 2.5: Encryption Model 10
Fig. 3.1: General Depiction of DES 15
Fig. 3.2: Single Round of DES 20
Fig. 4.1: FPGA Logic Block 32
Fig. 4.2: Logic Block Pin Locations 33

Fig. 4.3: Switch Box Topology 34

CHAPTER 1

1.1 Introduction

During this time when the Internet provides essémimmunication between tens of
millions of people and is being increasingly usedaatool for commerce, security

becomes a tremendously important issue to deal with

There are many aspects to security and many apphsa ranging from secure
commerce and payments to private communicationspaoigcting passwords. One
essential aspect for secure communications is ftfatcryptography, while

cryptography is necessary for secure communicatibissnot by itself sufficient

Cryptography is the science of writing in secretle@nd is an ancient art; the first
documented use of cryptography in writing dateskitaccirca 1900 B.C. when an
Egyptian scribe used non-standard hieroglyphs imsagription. Some experts argue
that cryptography appeared spontaneously somefii@everiting was invented, with
applications ranging from diplomatic missives toriiene battle plans. It is no
surprise, then, that new forms of cryptography casoen after the widespread
development of computer communications. In data dakcommunications,
cryptography is necessary when communicating ougrumtrusted medium, which

includes just about any network, particularly theetnet.

Cryptography is usually referred to as "the stutigexret”, while nowadays is most
attached to the definition of encryption. Encryptis the process of converting plain
text "unhidden” to a cryptic text "hidden" to sesut against data thieves. This
process has another part where cryptic text neebs tdecrypted on the other end to

be understood.

Fig. 1.1 shows the simple flow of commonly usedrgpiton algorithms

A Eneryption = Decryption
; d I i d .—=_
Plain Text Gipher Text Flain Text

Fig. 1.1: Encryption-Decryption Flow

Cryptographic system is "a set of cryptographigoathms together with the key
management processes that support use of the thlgsriin some application

context."

This definition defines the whole mechanism thatvdes the necessary level of

security comprised of network protocols and datagtion algorithms.
1.2 Cryptography Goals

This section explains the five main goals behindgi€ryptography.

Every security system must provide a bundle of sgctunctions that can assure the
secrecy of the system.These functions are usuafgrred to as the goals of the

security system. These goals can be listed unédptlowing five main categories

Authentication: This means that before sending and receiving dsiteguhe system,

the receiver and sender identity should be verified

Secrecy or Confidentiality: Usually this function (feature) is how most people
identify a secure system. It means that only th#henticated people are able to

interpret the message (date) content and no oge els

Integrity: Integrity means that the content of the communcaal&ta is assured to be

free from any type of modification between the eothts (sender and receiver).

Non-Repudiation: This function implies that neither the sender ria teceiver can

falsely deny that they have sent a certain message.

Service Reliability and Availability: Since secure systems usually get attacked by
intruders, which may affect their availability atype of service to their users. Such

systems should provide a way to grant their usergtiality of service they expect.

CHAPTER 2

2.1 Block Ciphers and Stream Ciphers

Stream ciphers operate on a single bit (byte orprder word) at a time and
implement some form of feedback mechanism so tteakey is constantly changing.
A block cipher r is so-called because the schenceypts one block of data at a time
using the same key on each block. In general, dheesplaintext block will always

encrypt to the same ciphertext when using the daayén a block cipher whereas the

same plaintext will encrypt to different ciphertéxta stream cipher.

Stream ciphers come in several flavors but two vaoeth mentioning here. Self-

synchronizing stream ciphers calculate each bihénkeystream as a function of the
previous n bits in the keystream. It is termed f*sghchronizing" because the
decryption process can stay synchronized with theryption process merely by
knowing how far into the n-bit keystream it is. Op@blem is error propagation; a
garbled bit in transmission will result in n ganbldits at the receiving side.

Synchronous stream ciphers generate the keystneaarfashion independent of the
message stream but by using the same keystreamatenefunction at sender and
receiver. While stream ciphers do not propagatestrassion errors, they are, by their

nature, periodic so that the keystream will evelhtuapeat.

ECB (Electronic Codebook Mode) is the basic forntlotk cipher where data blocks
are encrypted directly to generate its corresponagohered blocks (shown in

Fig. 2.1). More discussion about modes of operatioii be discussed later.

ECB Mode

Ll

i | i | I

C=EJF]
cn—'l cn c|5-I'I

Fig. 2.1: Block Cipher ECB Mode

Stream cipher functions on a stream of data byabiperon it bit by bit. Stream cipher

consists of two major components: a key streamrgreand a mixing function.

Mixing function is usually just an XOR function, v key stream generator is the
main unit in stream cipher encryption techniquer Egample, if the key stream
generator produces a series of zeros, the outpciftedred stream will be identical to
the original plain text. Fig. 2.2 shows the opematof the simple mode in stream

cipher.

K H.Ga KR,

Synch. Stream l
Mode l €=IRXORK)

_l' @ EFEEEPTEEETENEE @ _F
f c, i
Fig. 2.2: Stream Cipher (Simple Mode)

2.2 Symmetric and Asymmetric Encryptions

Data encryption procedures are mainly categorinéu two categories depending on
the type of security keys used to encrypt/decrym secured data. These two
categories are:

Asymmetric and Symmetric encryption techniques

2.2.1 Symmetric Encryption

In this type of encryption, the sender and the inereagree on a secret (shared)
key. Then they use this secret key to encrypt aecrypt their sent messages.
Fig. 2.3 shows the process of symmetric cryptogyapdiode A and B first agree
on the encryption technique to be used in encryptend decryption of

communicated data.

Then they agree on the secret key that both of téhuse in this connection. After
the encryption setup finishes, node A starts seniiindata encrypted with the shared

key, on the other side node B uses the same kagdiypt the encrypted messages.

m m _

1
"ﬁ'
2
M
3,4
—

i- A and B agree on a cryptosystern

2- Aand B agree onthe key to be ussd,

3= A encrypts messages Using the shared key

4 B decrypis the ciphered messages using the shared key

Fig. 2.3: Symmetric Encryption

The main concern behind symmetric encryption is howshare the secret key
securely between the two peers. If the key getsvkntor any reason, the whole

system collapses.

The key management for this type of encryptiomaslilesome, especially if a unique
secret key is used for each peer-to-peer connedfi@m the total number of secret

keys to be saved and managed for n-nodes will kel)iR.

2.2.2 Asymmetric Encryption

Asymmetric encryption is the other type of encrgptwhere two keys are used. To
explain more, what Keyl can encrypt only Key2 caargpt, and vice versa. It is also
known as Public Key Cryptography (PKC), becausesusad to use two keys: public

key, which is known to the public, and private keyich is known only to the user.

Fig. 2.4 below illustrates the use of the two kbgsnveen node A and node B. After
agreeing on the type of encryption to be used & dbnnection, node B sends its
public key to node A. Node A uses the received iput#y to encrypt its messages.
Then when the encrypted messages arrive, node 8 itss@rivate key to decrypt

them.

W .

1- A and B agres on a cryptosystam.

Z- B sends iz public key to A,

A encrypis messages using the negediated cipher and B's pullic key
4- B decrypts the ciphered messages using its private key and the
negotiated cipher

Fig. 2.4: Asymmetric Encryption

This capability surmounts the symmetric encryptignoblem of managing secret
keys. But on the other hand, this unique featur@uidlic key encryption makes it
Mathematically more prone to attacks. Moreover,nasgtric encryption techniues
are almost 1000 times slower than symmetric teclesgbecause they require more
computational processing powefo get the benefits of both methods, a hybrid
technique is usually used. In this technique, asgtrim encryption is used to
exchange the secret key, symmetric encryptionas tsed to transfer data between

sender and receiver.

Advantages of Public Key Cryptography

* Only the private keys must be kept secret.

* The administration of keys on a n/w requires thespnce of only a functionally
trusted TTP.

» A private key/public key pair may remain unchangedconsiderable periods of
time e.g. many sessions or even many years.

* In alarge n/w, the number of keys necessary magohsiderably smaller than in

the symmetric key scenario.

Disadvantages of Public Key Cryptography

* Throughput rates are several orders slower thammtric key schemes.
* Key sizes are typically much larger than those irequfor symmetric key
encryption.

* No public key scheme has been proven to be secure.

Advantages of Symmetric Key Cryptography

* High rates of data throughput
* Key length is relatively short

* Produce stronger ciphers
Disadvantages of Symmetric Key Cryptography

* In a two party communication, the key must remaicrat at both ends
* In alarge n/w, there are many key pairs to be mata

» Keys are to be changed frequently, mostly for eashmunication session.

2.3 Conventional Encryption

A symmetric encryption scheme has five ingredients

Plaintext: This is the original intelligible message or datat is fed into the

algorithm as input.

Encryption algorithm: The encryption algorithm performs various substitu and

transformation on the plain text.

Secret key:The secret key is also input to the encryptioriligm.The key is value
independentof the plain text.The algorithm will guoe a different output depending

on the specific key used at that time

Ciphertext: This is the scrambled message produced at theitottgepends on the
plaintext and the secret key.For a given messagdalifierent keys will produce two
different ciphertext.The ciphertext is an apparemdndom stream of data and is

unintelligible.

Decryption algorithm: This is essentially the encryption algorithm rarréverse. It

takes the ciphertext and the secret key and prediheeoriginal plain text.

Cryptanalyst

Message |-Elaintext]'E\l:n' ion Ciphertexf| Decry Eun Plamntext | Message
sourt% Algorithm Algorithm Destmnﬁnn
Encryption it
eg' Decgegnnu

Fig. 2.5: Encryption Model
2.4 Cryptanalysis

There are two general approaches to attacking @ectional encryption scheme:

Cryptanalysis: Cryptanalysis attacks rely on the nature of tige@hm plus perhaps

some knowledge of the general characteristics ®fpthintext or even some sample
plaintext-ciphertext pairs. This type of attack lexs the characteristics of the
algorithm to attempt to deduce a specific plaintaxtio deduce the key being used. If
the attack succeeds in deducing the key, the effectatastrophic: All future and past

messages encrypted with that key are compromised.

Brute-force attack: The attacker tries possible tries every posdibleon a piece of
ciphertext until an intelligence translation intlaiptext is obtained. On average, half

of all possible keys must be tried to achieve sssc

10

2.4.1 Types of Attack on Encrypted Messages

Types of Attack

Known to Cryptanalyst

Ciphertext only

Encryption algorithm
Ciphertext to be decoded

Known plaintext

Encryption algorithm
Ciphertext to be decoded
One or more plaintext-cipher text pairs formed wiith secret key

Chosen plaintext

Encryption algorithm
Ciphertext to be decoded

Plaintext message chosen by cryptanalyst, togethén its
corresponding ciphertext generated with the sdenet

Chosen ciphertext

Encryption algorithm
Ciphertext to be decoded

Purported ciphertext chosen by cryptanalyst togethih its
corresponding plaintext generated with the seagt k

Chosen text

Encryption algorithm
Ciphertext to be decoded

Plaintext message chosen by cryptanalyst, togethén its
corresponding ciphertext generated with the sdéeet

Purported ciphertext chosen by cryptanalyst togethigh its
corresponding plaintext generated with the seagt k

11

CHAPTER 3

3.1 DES Overview

In 1972, the National Institute of Standards anahfelogy (called the National
Bureau of Standards at the time) decided thatangtcryptographic algorithm was
needed to protect non-classified information. Tlyprthm was required to be cheap,
widely available, and very secure. NIST envisionsainething that would be
available to the general public and could be usealwide variety of applications. So
they asked for public proposals for such an algoritin 1974 IBM submitted the

Lucifer algorithm, which appeared to meet most 8 Ns design requirements.

NIST enlisted the help of the National Security Age to evaluate the security of
Lucifer. At the time many people distrusted the N&@£e to their extremely secretive
activities, so there was initially a certain degodéeskepticism regarding the analysis
of Lucifer. One of the greatest worries was tha kiey length, originally 128 bits,

was reduced to just 56 bits, weakening it signiftga The NSA was also accused of
changing the algorithm to plant a "back door" ith&t would allow agents to decrypt
any information without having to know the encrgptikey. But these fears proved

unjustified and no such back door has ever beemdfou

The modified Lucifer algorithm was adopted by NI&$ a federal standard on
November 23, 1976. Its name was changed to the Batayption Standard (DES).
The algorithm specification was published in Japub®77, and with the official

backing of the government it became a very widehpleyed algorithm in a short

amount of time.

12

Unfortunately, over time various shortcut attackerevfound that could significantly
reduce the amount of time needed to find a DESoelyrute force. And as computers
became progressively faster and more powerful,ag wecognized that a 56-bit key
was simply not large enough for high security aggilons. As a result of these
serious flaws, NIST abandoned their official eneéarsnt of DES in 1997 and began
work on a replacement, to be called the Advancedryption Standard (AES).
Despite the growing concerns about its vulnerabilRES is still widely used by
financial services and other industries worldwide protect sensitive on-line

applications.

To highlight the need for stronger security thab6abit key can offer, RSA Data
Security has been sponsoring a series of DES crgqaantests since early 1997. In
1998 the Electronic Frontier Foundation won the REAS Challenge 11-2 contest by
breaking DES in less than 3 days. EFF used a djyed@veloped computer called the
DES Cracker, which was developed for under $250,00@ encryption chip that
powered the DES Cracker was capable of processinjlgn keys per second. More
recently, in early 1999, Distributed. Net used ES Cracker and a worldwide
network of nearly 100,000 PCs to win the RSA DESal@mge Ill in a record
breaking 22 hours and 15 minutes. The DES Craak@PLs combined were testing
245 billion keys per second when the correct keg Waind. In addition, it has been
shown that for a cost of one million dollars a detitd hardware device can be built
that can search all possible DES keys in abouh8uss. This just serves to illustrate
that any organization with moderate resources caakithrough DES with very little

effort these days.

13

In Depth

DES encrypts and decrypts data in 64-bit blocksygua 64-bit key (although the
effective key strength is only 56 bits). It take84abit block of plaintext as input and
outputs a 64-bit block of ciphertext. Since it aywaperates on blocks of equal size
and it uses both permutations and substitutiortearalgorithm, DES is both a block

cipher and a product cipher.

DES has 16 rounds, meaning the main algorithmpsated 16 times to produce the
ciphertext. It has been found that the number ahds is exponentially proportional
to the amount of time required to find a key usandprute-force attack. So as the

number of rounds increases, the security of therekgn increases exponentially.

The processing of the plain text proceeds in tipe@ases.First the 64 bit plaintext
passes through an initial permutation that reaearige bits to produce the permuted
input.This is followed by a phase consisting ofreé6nds of the same function, which
involves both permutation and substitution funcsiofihe output of the last round

consist of 64 bits that are a function of the inplaintext and the key.The left and the
right halves of the output are swapped to prodbeegoteoutput. Finally the preoutput
is passed through a permutation that is the invefrsiee initial permutation function,

to produce the 64 bit cipher text.

14

64-bil plaintext

+ LU +

Imitial Permutation

64-bit key

**iiil‘iil‘i

Permuted Choice 1

Permuted Choice 2

Round 2 Left circular shift

Permuted Choice 2

v | i

. Kig 48
Round 16 16 Left circular shift

Permuted Choice 2

32-bit Swap

Inverse Initial
Permutation

k_ﬂ\/_—__J

6d-bit ciphertext

Fig. 3.1: General Depiction of DES
3.2 Key Scheduling

Although the input key for DES is 64 bits long, #etual key used by DES is only 56

bits in length.

The first step is to pass the 64-bit key througfeamutation called Permuted Choice

1, or PC-1 for short. The table for this is givesldw. Note that in all subsequent

15

descriptions of bit numbers, 1 is the left-mostibithe number, and n is the rightmost

bit.

PC-1: Permuted Choice 1
Bit 0 1 2 3 4 5 6
1 57 49 41 33 25 17 9
8 1 58 50 42 34 26 18
15 10 2 59 51 43 35 27
22 19 11 3 60 52 44 36
29 63 55 a7 39 31 23 15
36 7 62 54 46 38 30 22
43 14 6 61 53 45 37 29
50 21 13 5 28 20 12 4

For example, we can use the PC-1 table to figutehow bit 30 of the original
64-bit key transforms to a bit in the new 56-bityk&ind the number 30 in the
table, and notice that it belongs to the columrelatd 5 and the row labeled 36.
Add up the value of the row and column to find tieav position of the bit within
the key. For bit 30, 36 + 5 = 41, so bit 30 becori¢égtl of the new 56-bit key.
Note that bits 8, 16, 24, 32, 40, 48, 56 and 64hef original key are not in the
table. These are the unused parity bits that aseadiled when the final 56-bit key

is created.

Now that we have the 56-bit key, the next stepigde this key to generate 16 48-bit
subkeys, called K[1]-K[16], which are used in th& rbunds of DES for encryption
and decryption. The procedure for generating tdeys - known as key scheduling -

is fairly simple:

16

Set the round number R to 1.

Split the current 56-bit key, K, up into two-BB blocks, L (the left-hand half)
and R (the right-hand half).

Rotate L left by the number of bits specifiacthe table below, and rotate R
left by the same number of bits as well.

Join L and R together to get the new K.

Apply Permuted Choice 2 (PC-2) to K to get ftimal K[R], where R is the
round number we are on.

Increment R by 1 and repeat the procedure wetihave all 16 subkeys K[1]-

K[16].

Here are the tables involved in these operations:

Subkey Rotation Table

Round Number 1{2|3|4|5|6|7|8(9]10(11|12|13|14|15]|16

Number of bits to 1(1(2(2|2|2|2(2|1|2 |2 |2 |2| 2| 2| 1

rotate

PC-2: Permuted Choice 2

Bit 0 1 2 3 4 5

1 14 17 11 24 1 5
7 3 28 15 6 21 10
13 23 19 12 4 26 8
19 16 7 27 20 13 2
25 41 52 31 37 47 55
31 30 40 51 45 33 48
37 44 49 39 56 34 53
43 46 42 50 36 29 32

17

3.3 Plaintext Preparation

Once the key scheduling has been performed, thestex is to prepare the plaintext
for the actual encryption. This is done by passhgplaintext through a permutation
called the Initial Permutation, or IP for short.igkable also has an inverse, called the
Inverse Initial Permutation, or IP~(-1). Sometim&2(-1) is also called the Final

Permutation.

Both of these tables are shown below.

IP: Initial Permutation

Bit 0 1 2 3 4 5

1 58 50 42 34 26 18 10 2

9 60 52 44 36 28 20 12 4
17 62 54 46 38 30 22 14 6
25 64 56 48 40 32 24 16 8
33 57 49 41 33 25 17 9 1
41 59 51 43 35 27 19 11 3
49 61 53 45 37 29 21 13 5
57 63 55 47 39 31 23 15 7

IP7(-1): Inverse Initial Permutation

Bit 0 1 2 3 4 5 6 7

1 40 8 48 16 56 24 64 32
9 39 7 47 15 55 23 63 31
17 38 6 46 14 54 22 62 30
25 37 5 45 13 53 21 61 29
33 36 4 44 12 52 20 60 28
41 35 3 43 11 51 19 59 27
49 34 2 42 10 50 18 58 26
57 33 1 41 9 49 17 57 25

18

These tables are used just like PC-1 and PC-2 v¥oeréhe key scheduling. By
looking at the table is becomes apparent why ommpetion is called the inverse
of the other. For example, let's examine how biis3#ansformed under IP. In the
table, bit 32 is located at the intersection of twdumn labeled 4 and the row
labeled 25. So this bit becomes bit 29 of the @4bbock after the permutation.
Now let's apply IP~(-1). In IP~(-1), bit 29 is laea at the intersection of the
column labeled 7 and the row labeled 25. So thisbbrcomes bit 32 after the
permutation. And this is the bit position that wiarted with before the first
permutation. So IP”(-1) really is the inverse of IfPdoes the exact opposite of IP.
On running a block of plaintext through IP and theass the resulting block

through IP~(-1),resultant is the original block.

3.4 DES Core Function

Once the key scheduling and plaintext preparat@avehbeen completed, the actual
encryption or decryption is performed by the maBalgorithm. The 64-bit block

of input data is first split into two halves, Ld&R. L is the left-most 32 bits, and R is
the right-most 32 bits. The following process ipaated 16 times, making up the 16

rounds of standard DES. The 16 sets of halves [@]eL[15] and R[0]-R[15].

19

-al——32 hits———- af—132 bits—»- 15 hits=—ie- ~at—— 28 hits =l
Li-1 Ri-1 Ci-l Dj g

_______________________ .
r
Expansion/permutation Left shift(s) Left shift(s)
/ (E table) '\
K,‘ .\ Permutation/contraction I

\ (Permuted Choice 2)

Substition/choice
(S-box)

a2

h

Permutation
(P

e 1 []

Fig. 3.2: Single Round of DES

R[I-1] - where | is the round number, startatdl - is taken and fed into the E-
Bit Selection Table, which is like a permutatiorcept that some of the bits
are used more than once. This expands the numbé&ij Rpm 32 to 48 bits to
prepare for the next step.

The 48-bit R[I-1] is XORed with K][I] and storea a temporary buffer so that
R[I-1] is not modified.

The result from the previous step is now spld 8 segments of 6 bits each. The
left-most 6 bits are B[1], and the right-most &laite B[8]. These blocks form the
index into the S-boxes, which are used in the seef. The Substitution boxes,
known as S-boxes, are a set of 8 two-dimensioraygreach with 4 rows and 16
columns. The numbers in the boxes are always 4irbiength, so their values

range from 0-15. The S-boxes are numbered S[1]-S[8]

20

4. Starting with B[1], the first and last bits thle 6-bit block are taken and used
as an index into the row number of S[1], which camge from O to 3, and the
middle four bits are used as an index into theroolunumber, which can range
from O to 15. The number from this position in tBebox is retrieved and
stored away. This is repeated with B[2] and S[ZB]End S[3], and the others
up to B[8] and S[8]. At this point, 8 4-bit numbgemnshich when strung
together one after the other in the order of readiegive a 32-bit result.

5. The result from the previous stage is now hs#e the P Permutation.

6. This number is now XORed with L[I-1], and movietb R][l]. R[I-1] is moved
into L[I].

7. At this point we have a new L[l] and R[l]. Hemee increment | and repeat the
core function until I = 17, which means that 16nmds have been executed and

keys K[1]-K[16] have all been used.

When L[16] and R[16] have been obtained, they airged back together in the same
fashion they were split apart (L[16] is the leftadahalf, R[16] is the right-hand half),
then the two halves are swapped, R[16] becomedefhenost 32 bits and L[16]
becomes the right-most 32 bits of the pre-outpotikband the resultant 64-bit number

is called the pre-output.

21

Tables used in the DES Core Function

E-Bit Selection Table

Bit 0 1 2 3 4 5
1 32 1 2 3 4 5
7 4 5 6 7 8 9
13 8 9 10 11 12 13
19 12 13 14 15 16 17
25 16 17 18 19 20 21
31 20 21 22 23 24 25
37 24 25 26 27 28 29
43 28 29 30 31 32 1
P Permutation
Bit 0 1 2 3
1 16 7 20 21
5 29 12 28 17
9 1 15 23 26
13 5 18 31 10
17 2 8 24 14
21 32 27 3 9
25 19 13 30 6
29 22 11 4 25

22

S-Box 1: Substitution Box 1

Row / O |1 1|2 (3|4 |5 |6 |7 |8 |9 |10|11|12(13|14|15
Column
0 1414 |(13(1|2 |15/11(8 |3 |10{6 |12|5 |9 |0 | 7
1 O [15|7 |4|14|2 |13|1 |10|6 |12(11|(9 (5 |3 | 8
2 4 |1 |14|/8(13|6 |2 |11|15|12(9 (7 [3 | 10|5 |O
3 151128 (2|4 |9 |1 |7 | 5| 143 |14|10|{0 |6 | 13
S-Box 2: Substitution Box 2
Row / 0|1|2|3|4|5(6|7|8|9(10(11|12|13|14]|15
Column
0 151 (8|14 6|11, 3| 4| 9| 7/ 213|120 | 5| 10
1 31134 | 7|15 2| 8|14{12|0(1(10{ 6| 9| 11| 5
2 0|24 7 |11/10(4 (13| 1| 5|8{12{ 6| 9| 3| 2| 15
3 13| 8 (10 1| 3|15 4| 2|11|6| 7|12, 0| 5| 14| 9
S-Box 3: Substitution Box 3
Row / O [1 1|2 |3 |4|(5 |6 |7 |8 |9 |10|11|12|13|14|15
Column
0 1010 |9 | 14{6|3 |15(5 |1 |13|12|7 |11|4 |2 |8
1 137 |0 |9 | 3|4 |6 |10{2 |8 |5 | 14/12|11|15|1
2 13|16 (4 |9 | 8/15(3 (0 | 11|1 |2 |12|5 |10|14|7
3 1 |10/13(0 (6|9 |8 |7 |4 | 15143 |11|5 |2 |12
S-Box 4: Substitution Box 4
Row / O [1 |2 |3|4 |5 |6 |7 |8 |9(10|11|12|13|14|15
Column
0 7 (13{14|3|0 |6 |9 | 10/1 |28 |5 |11]12|4 |15
1 13|18 [11(5|6 |15/0 (3 (4 | 7|2 |12|1 |[10(14|9
2 10|16 |9 (0|12|11|7 |13|15(1|3 |14|5 |2 |8 | 4
3 3 [15/{0 |6(10|1 |13|8 |9 | 4|5 |11|12|7 |2 |14

23

S-Box 5: Substitution Box 5
Row / 0|1|2|3(4|5(6|7|8|9]10|11|12(13(14|15
Column
0 21124 | 1| 7|10/11|{6 | 8| 5| 3| 1513|0149
1 141112 (12 4| 7|13 1| 5| O| 1510/ 3| 9| 8| 6
2 412 1|1110(13(7| 8|15 9|12|5| 6| 3| 0| 14
3 118 (12 7| 1|14 2 |13 6|15/ 0| 9|10/ 4| 5| 3
S-Box 6: Substitution Box 6
Row / 0|1|2|3|4|5|6|7|8|9|10(11|12|13|14|15
Column
0 1211 |10({15(9| 2| 6| 8| 0| 13 3| 4|14| 7| 5|11
1 101154 | 2| 7|12, 9| 5| 6| 1| 1314 0|11 3| 8
2 9114|15| 5|2 8|12 3| 7| 0| 4|10 1 |13|11| 6
3 41 3| 2112/9|5|15/10(11(14{ 1| 7| 6| 0| 8| 13
S-Box 7: Substitution Box 7
Row / 0|1|2|3|4|5|/6|7|8|9|10(11|12|13|14|15
Column
0 4111 2 |14(15(0| 8|13 3129 | 7| 5| 106 | 1
1 13|/ 0 (11| 7| 4|91 (10({14| 3| 5|12 2|15/ 8| 6
2 1(4]11113|12|3| 7 |14]10|15| 6| 8| O| 5| 9| 2
3 6 11{13| 8| 1|4/10| 7| 9| 5| 0| 1514 2| 3| 12
S-Box 8: Substitution Box 8
Row / 0|1|2|3|{4|5|6|7|8|9|10(11|12|13|14|15
Column
0 13| 2| 84|, 6 |15/11|1 (10| 9| 3|14/ 5| 0] 12| 7
1 1(15/13|8(10(3| 7| 4|12/5| 6|11 0 (149 | 2
2 7111 4|1{9 (12|14 2| 0| 6| 10/13(15{ 3| 5| 8
3 2| 1|14|7|4]10| 8 |13|15|12| 9| 0| 3| 5| 6| 11

24

How to use the S-Boxes

The purpose of this example is to clarify how thddXes work. Consider the
following 48-bit binary number:

011101000101110101000111101000011100101101011101

In order to pass this through steps 3 and 4 oCibw@ Function as outlined above, the
number is split up into 8 6-bit blocks, labeled Bjd B[8] from left to right:

011101 000101 110101 000111 101000 011100 101101001

Now, eight numbers are extracted from the S-boxe®e-from each box:

B[1] = S[1](01,1110) = S[1][1][14] = 3 = 0011
B[2] = S[2](01,0010) = S[2][1][2] = 4 = 0100
B[3] = S[3](11,1010) = S[3][3][10] = 14 = 1110
B[4] = S[4](01,0011) = S[4][1][3] =5 = 0101
B[5] = S[5](10,0100) = S[5][2][4] = 10 = 1010
B[6] = S[6](00,1110) = S[6][0][14] =5 = 0101
B[7] = S[7](11,0110) = S[7][3][6] = 10 = 1010

B[8] = S[8](01, 1110) = S[8][1][14] =9 = 1001

In each case of S[n][row][column], the first andtldits of the current B[n] are used

as the row index, and the middle four bits as tlaran index.

The results are now joined together to form a 3Zxbmber which serves as the input
to stage 5 of the Core Function (the P Permutation)

00110100111001011010010110101001

25

3.5 Ciphertext Preparation

The final step is to apply the permutation IP*¢djhe pre-output. The result is the

completely encrypted ciphertext.
3.6 Encryption and Decryption

The same algorithm can be used for encryption oryg¢ion. The method described
above will encrypt a block of plaintext and ret@arblock of ciphertext. In order to
decrypt the ciphertext and get the original plaihtagain, the procedure is simply
repeated but the subkeys are applied in reverss,drom K[16]-K[1]. That is, stage

2 of the Core Function as outlined above changa® R[l-1] XOR K]I] to R[I-1]

XOR K[17-1]. Other than that, decryption is perfathexactly the same as encryption
3.7 Modes of Operation

This section explains the two most common modespafrations in Block Cipher

encryption-ECB and CBCwith a quick visit to otheodes.

There are many variances of block cipher, wheréemiht techniques are used to
strengthen the security of the system. The most nomm methods are: ECB
(Electronic Codebook Mode), CBC (Chain Block ChaghMode), and OFB (Output
Feedback Mode). ECB mode is the CBC mode uses ifffeercblock from the

previous step of encryption in the current one,clwhfiorms a chain-like encryption
process. OFB operates on plain text in away sintdastream cipher that will be
described below, where the encryption key used verye step depends on the

encryption key from the previous step.

26

There are many other modes like CTR (counter), QEiBher Feedback), or 3DES
specific modes that are not discussed in this pdperto the fact that in this paper the

main concentration will be on ECB and CBC modes.

3.7.1 ECB (Electronic Code Book)

This is the regular DES algorithm, exactly as désc above. Data is divided into
64-bit blocks and each block is encrypted one tina. Separate encryptions with
different blocks are totally independent of eacheot This means that if data is
transmitted over a network or phone line, transimis®rrors will only affect the

block containing the error.

It also means, however, that the blocks can beraeged, thus scrambling a file
beyond recognition, and this action would go unctetd ECB is the weakest of the
various modes because no additional security messare implemented besides the
basic DES algorithm. However, ECB is the fastest @asiest to implement, making it
the most common mode of DES seen in commerciaicgtigins. This is the mode of

operation used by Private Encryptor.

3.7.2 CBC (Cipher Block Chaining)

In this mode of operation, each block of ECB entagxiphertext is XORed with the
next plaintext block to be encrypted, thus makitighee blocks dependent on all the
previous blocks. This means that in order to find plaintext of a particular block,
you need to know the ciphertext, the key, and ipbestext for the previous block.
The first block to be encrypted has no previoufeifext, so the plaintext is XORed
with a 64-bit number called the Initialization Vector IV for short. So if data is

transmitted over a network or phone line and th®i@ transmission error (adding or

27

deleting bits), the error will be carried forwaml &ll subsequent blocks since each
block is dependent upon the last. If the bits ast jnodified in transit (as is the more
common case) the error will only affect all of thiés in the changed block, and the

corresponding bits in the following block. The erdmesn't propagate any further.

This mode of operation is more secure than ECB usc#he extra XOR step adds

one more layer to the encryption process.

3.7.3 CFB (Cipher Feedback)

In this mode, blocks of plaintext that are lessnth@4 bits long can be

Encrypted.Normally, special processing has to Blue handle files whose size is
not a perfect multiple of 8 bytes, but this modenoges that necessity (Private
Encryptor handles this case by adding several dulwytes to the end of a file before
encrypting it). The plaintext itself is not actyappassed through the DES algorithm,
but merely XORed with an output block from it, imetfollowing manner: A 64-bit

block called the Shift Register is used as the timgdaintext to DES. This is initially

set to some arbitrary value, and encrypted withDES algorithm. The ciphertext is
then passed through an extra component called thexXViwhich simply selects the
left-most M bits of the ciphertext, where M is tmember of bits in the block we wish
to encrypt. This value is XORed with the real plaxt, and the output of that is the
final ciphertext. Finally, the ciphertext is enctgg. As with CBC mode, an error in
one block affects all subsequent blocks during deaasmission. This mode of
operation is similar to CBC and is very secure, ibig slower than ECB due to the

added complexity.

28

3.7.4 OFB (Output Feedback)

This is similar to CFB mode, except that the cipddroutput of DES is fed back into
the Shift Register, rather than the actual finphertext. The Shift Register is set to an
arbitrary initial value, and passed through the gferithm. The output from DES is
passed through the M-box and then fed back intctiiet Register to prepare for the
next block. This value is then XORed with the nglaintext (which may be less than
64 bits in length, like CFB mode), and the resslthe final ciphertext. Note that
unlike CFB and CBC, a transmission error in onecblwill not affect subsequent
blocks because once the recipient has the inihdt Register value, it will continue
to generate new Shift Register plaintext inputshaut any further data input.
However, this mode of operation is less secure @B mode because only the real
ciphertext and DES ciphertext output is neededhih the plaintext of the most recent

block. Knowledge of the key is not required.

29

CHAPTER 4

4.1 FPGA INTRODUCTION

A field programmable gate array (FPGA) is a senmdtmbor device containing
programmable logic components and programmable rcom@ects. The
programmable logic components can be programmedpbcate the functionality of
basic logic gates such as AND, OR, XOR, NOT or mooeplex combinational
functions such as decoders or simple math functidns most FPGAs, these
programmable logic components (or logic blocksFRRGA parlance) also include
memory elements, which may be simple flip-flops more complete blocks of

memories.

A hierarchy of programmable interconnects allowes ltgic blocks of an FPGA to be
interconnected as needed by the system designengvdmat like a one-chip
programmable breadboard. These logic blocks amudobnects can be programmed
after the manufacturing process by the customegdes (hence the term "field
programmable”, i.e. programmable in the field) dattthe FPGA can perform

whatever logical function is needed.

Field Programmable means that the FPGA's funcBotkefined by a user's program
rather than by the manufacturer of the device ygictl integrated circuit performs a
particular function defined at the time of manufmet In contrast, the FPGA's
function is defined by a program written by someoother than the device
manufacturer. Depending on the particular dewice,program is either 'burned' in

permanently or semi-permanently as device is paivergp. This user

30

programmability gives the user access to compleegated designs without the high

engineering costs associated with application §ipantegrated circuits

4.2 HISTORY

The historical roots of FPGAs are in complex progmaable logic devices (CPLDs)
of the early to mid 1980s. Ross Freeman, Xilinxfmeader, invented the field
programmable gate array in 1984. CPLDs and FPGARide a relatively large
number of programmable logic elements. CPLD logiteglensities range from the
equivalent of several thousand to tens of thousarid®gic gates, while FPGAs

typically range from tens of thousands to severn#iian.

The primary differences between CPLDs and FPGAsateitectural. A CPLD has a
somewhat restrictive structure consisting of onenmre programmable sum-of-
products logic arrays feeding a relatively smalmier of clocked registers. The
result of this is less flexibility, with the advage of more predictable timing delays
and a higher logic-to-interconnect ratio. The FP&#ahitectures, on the other hand,
are dominated by interconnect. This makes themmfare flexible (in terms of the

range of designs that are practical for implemeématvithin them) but also far more

complex to design for.

Another notable difference between CPLDs and FP@Athe presence in most
FPGAs of higher-level embedded functions (such @des and multipliers) and
embedded memories. A related, important differeiscthat many modern FPGAs
support full or partial in-system reconfigurati@ilowing their designs to be changed
"on the fly" either for system upgrades or for dyma reconfiguration as a normal

part of system operation.

31

Some FPGAs have the capability of partial re-camfagjon that lets one portion of

the device be re-programmed while other portiomginae running.
4.3 ARCHITECTURE

The typical basic architecture consists of an aofagonfigurable logic blocks (CLBS)
and routing channels. Multiple 1/0 pads may fitoirthe height of one row or the
width of one column in the array. Generally, ak ttouting channels have the same

width (number of wires).
An application circuit must be mapped into an FP@th adequate resources.

The typical FPGA logic block consists of a 4-inpabkup table (LUT), and a flip-

flop, as shown below.

— ! 4-Input —
Inputs :"'__ LCJEI]'U D Flip j—- Out

=
— Clock —ap 7

Fig. 4.1: FPGA Logic Block

There is only one output, which can be either #gistered or the unregistered LUT
output. The logic block has four inputs for the LW@dind a clock input. Since clock
signals (and often other high-fanout signals) amemally routed via special-purpose
dedicated routing networks in commercial FPGAs,ytland other signals are

separately managed.

For this example architecture, the locations of FER&A logic block pins are shown

below.

32

in3

in4
in2 [

out

int out

Fig. 4.2: Logic Block Pin Locations

Each input is accessible from one side of the Iddpck, while the output pin can
connect to routing wires in both the channel to rilgat and the channel below the

logic block.

Each logic block output pin can connect to anyhefwiring segments in the channels

adjacent to it.

Similarly, an I/O pad can connect to any one ofheng segments in the channel
adjacent to it. For example, an 1/0O pad at thedfogne chip can connect to any of the
W wires (where W is the channel width) in the hontal channel immediately below

it.

Generally, the FPGA routing is unsegmented. Thatdsh wiring segment spans only
one logic block before it terminates in a switchxb®y turning on some of the

programmable switches within a switch box, longathp can be constructed. For
higher speed interconnect, some FPGA architectigedonger routing lines that span

multiple logic blocks.

Whenever a vertical and a horizontal channel ietrghere is a switch box. In this
architecture, when a wire enters a switch box.etlage three programmable switches

that allow it to connect to three other wires ifaadnt channel segments. The pattern,

33

or topology, of switches used in this architectgrthe planar or domain-based switch
box topology. In this switch box topology, a wiretrack number one connects only
to wires in track number one in adjacent channghnts, wires in track number 2
connect only to other wires in track number 2 amas. The figure below illustrates

the connections in a switch box.

Pt
-

Programmable
Wire Switch
Segment

Fig. 4.3: Switch Box Topology

Modern FPGA families expand upon the above capesilito include higher level
functionality fixed into the silicon. Having thes®emmon functions embedded into
the silicon reduces the area required and givesethifanctions increased speed
compared to building them from primitives. Examptésthese include multipliers,
generic DSP blocks, embedded processors, high speebbgic and embedded

memories.

FPGAs are also widely used for systems validatiauiding pre-silicon validation,
post-silicon validation, and firmware developmenhis allows chip companies to
validate their design before the chip is produgedhe factory, reducing the time to

market.

34

4.4 Basic Process Techonology Types

There are three basic approaches in providing progrability of FPGAs:

1. On chip control latches that are set with bittgga to define the chip
configuration. This type is called SRAM FPGA becaubke set of control
latches can be considered as a static random atessery. These FPGAs are
volatile that is the programming information is mweserved after the chip is
powered down.

2. Antifuse programmed devices that are programmiledtrically to provide
connections that define the chip configuration. Pnegramming is done by
permanently closing some of the antifuse switcidsis unlike static RAM
FPGAs these devices cannot be reprogrammed. Howbese nonvolatile
FPGAs are ffaster than the SRAM type devices. @mgortant advantage of
antifuses they are very small size allowing a lange interconnections on a
chip.

3. Using several electrically programmable devideBROMs and EEPROMS)
and a shared interconnect mechanism on a singbe hicontrast to SRAM
based FPGA EEPROM and EEPROM FPGAs technologie®tdmqguie
external permanent memory to preserve chip cordigur. On the other hand

they requie more complex chip fabrication processase larger cells.

35

CHAPTER 5

5.1 Implementation

The DES algorithm in all used mainly following mammponents as desenc-The top

module which structurally implements DES encrypiibcomprises four components:

keysched- This is the key scheduling part.It inekitivo components pcl and pc2.pcl
and pc2 both are permuting bits components.pchais® bits from the key.pc2 also
discards some bits to reduce the number of bita 6 to 48.1t generates the required

keys at each of the sixteen stages.

IP- Performs initial permutation of the input biiefore delivering to the the round

function block.

roundfunc-Round function actually implements theD&gorithm by implementing
all the logical operations and transformation nedtiés the structural design which

connects the following components together

Xp
.s1,s2,s3,s4,s5,56,57,58(s-boxes)
.desxorl

-pp

.desxor2

Xp stands for expansion,since its behaviour isxfmaed the number of bitsfrom 38 to
48 bits desxorl is a giant 48 bits xor gate whiorsxthe sub key and the expanded
input of the round function.The 8 s-boxes are thakiup table.pp is permutation ie.
bits swapping.Finally another xor gate(desxor2yesponsible to xor the result of the

permutation with the left part of the precedingnd.

36

FP-Final permutation is the inverse of the inigarmutation.

The only components that will use logical resources

.desxorl
.desxor2

.S-boxes

5.2 Results

5.2.1 Output window showing encryption

@ Active-HDL 6.3 {parkhi ,des) - c:\My_Designs'parkhitdes’ srcencresult.awf == ﬂ
Eile Edit Search View ‘Workspace Design Simdlation Waweform Tools Window Help o ox
J ek 100 B B A |>|¢: (= 5= Mo simulation H?@vﬁg|ﬁ e §|§;@»
[4BR o= [hQLHQAQE WM T[] 6% %K
Ii ectestbench (th) ﬂ Name Walue Stimulator v bEDL . .00, .80 . 200 . 260 300 . 350 4 400 . 460 . GO0 . GG nSI
o|Unsorted +| 4EEFTY2063732074 ﬂ
Workspace "parkhi®: 1 [H ey 0123456789ABCOEF
SR des Aot Oy AanEs ABATARTS
K add Mew File
roclk
1 & fenc.vhd
2 & ./ resthench.vhd
3 & ftestdec,vhd
< ./ desdec.vhd
= encresult,awf
Z decresult.awf
T keychgres.awf
Hififl des library
KT |
=1 Files /&#Stru..., Res.. [||7%% dosign flow S testhench vhd, = testdec.vhd ; @lencresult

ELEREAD: Elsboration process.
ELEREAD: Elsboration time 0.3 [3].

=
Console /
—
tﬁstartl) &> 5 mamta I 1) mamta | repart - Microsoft Word “@ Active-HDL 6.3 (park... @| |« D2 !&&:&E 3 3125 PM

DES test vector used for encryption is
P=01001110011011110111011100100000011010010111000000001110100
K=00000001001000110100010101100111100010011010100110111101111
The cipher text produce is

C=001111111010010000001110100010101001100001001@0100000010101

37

5.2.2 Output window showing decryption

4 Active-HDL 6.3 {parkhi ,des) - c:\My_Designs‘parkhitdes’srcdecresult.awf =& 5[
File Edit Search Wiew ‘Workspace Design Simulation Waveform Tools Window Help o ox
Jb wor lmns 4 m 5|>|'+‘EE§ = No simulation H@-@g|ﬁwg|g e

(3 BR oo |h Qs @aa & i e
Marne Valug Stirnulator v B0 L H00 50 0 E00 . G0 300 o 350 . 400 . 450 . 50O . 550 “SI

-
0 |Unsarted & IFA0ERAIB4D4215 J

workspace ‘parkhi’s 1 key 0123466783 ABCOER

&% Add Hew File

Jencahd o o RN Ay A AR AT AT

oG rr o=

fdesdec, vhd

Z encresult.awf
decresult, awf
keychares,awf
des library

‘ | 4
[Files /$FStru... aRes... [| L% degign flow &%testbench \rhdg@ testdec.vhd : % decresult awf

o # ELBREAD: Elaboration process.
o # ELEREAD: Elsboration time 0.3 [s].
o

=
B console !
Zooms out view

Eﬁstartl a8 &) mamta I 1 mamta | repurt—Mlcrostt ‘Word “6 Active-HDL 6.3 (park...

|“ oM 20 @ e

DES test vector used for decryption is
C=00111111101001000000111010001010100110000100100100000010101
K=00000001001000110100010101100111100010011010100110111101111
The plain text produce is

P=01001110011011110111011100100000011010010111000000001110100

38

A desirable property of any encryption algorithnthat a small change in either the
plain text or the key should produce a significahtange in the cipher text.In
particular, a change in one bit of the plain texboe bit of the key should produce a

change in many bits of the cipher text.

DES exhibits a strong avalanche effect.

P=01001110011011110111011100100000011010010111000000001110100

K=00000001001000110100010101100111100010011010100110111101111

The cipher text produce is

C=110001101011101110110100011110100110110110000@@000000110011

On changing a single bit of the key,the cipher tdwtnges by 35 bits.

4 Active-HDL 6.3 {parkhi ,des) - c:\My_Designs'parkhides’srcikeychgres.awf =& 5[
File Edit Search Wiew ‘Workspace Design Simulation Waveform Tools Window Help o ox
J > bk 10 M m A e |'+‘— [= 5= Mo simulation Hﬁ gﬂ|m o §|$ =

[t2R|oahas m|aa@&\%\mnﬁ@@|mu|m;'|Aﬁ%n\

Iide:testben:h(tb) Name Valug Stimulatar CoEn. oM ot o dPrevious svent (CHPFIZN e gy 450 . B0 4 GO nSI
oY [—— = FAMIEGAIEADAT =
Workspace 'parkhi®: 1 T key #1234567E3ABCDEF
=i des [ar o Ao OoCNo0N0 ioseees sensE 0
&% Add Mew File
8 encvhd u ok JUUUIL UL L DL

TR

[+

=
F:
0
g
g
5
:
S
Z

encresult.awf
decresult, awf
keychares.awf
des library

| E— 4
[Files /$FStru... aRes... [| L% degign flow &%testbench \rhdg@ testdec.vhd : % keychgres... /

[=# ELEREAD: Elahoration process.
ELERELD: Elaboration time 0.3 [s].

=
| Console [
wes the current cursor to the previous event on the selected signal.
ﬂstartl - & 2 mamta) mamta | B8 repart - Microsaft Word “G Active-HDL 6.3 (park... | |« & oMW D@ i

39

Below is shown the RTL view of the complete roundfuwith all the other blocks

that it uses.

[xilinx ECS - [roundfunc.ngr] _{&]x]
O Fle Edit View Window Help I =]

DFH@E||sae- - @ |[aaRdsar||2ssaam|s®]
AT
=i

Optiots: lsymhols Design l

I RTL Design Hierarchy

Top Level Schematic

B r_oundlunc
T E::L:Aﬁ—

$
!

e
rrf[L’

=
=

Instance Contents
L=/ Ping

- Nets

[Instances

g

oundiuncrgr |
Ready [[243,53] |
4istart| & & | siing - Project Navigator, . " B xilink ECS - [roundfun... « 2@ 44sPm

75 xilin ECS - [s1.nar] =12
O Fle Edit View Window Help == %]
DeHg&||ree- - |l |aaxznp||ecs=srsn|+e]

K| EHE(A AT e
=E

Opfions XSymhols Design l

I RTL Design Hierarchy

sl

— b<1:6> so<14>|——

—clk

Instance Contents
[F Ping

- Nets

- Instances

oundhunc nar g |

[6s,-108] [

« @ H5EPM

Ready

Bistart| @ @ & * yments | B report - ticrosoft word | [i - Project Havigator... || xiinw EC - [s1.ngr]

40

5.3 Conclusion and Future Scope

To protect people’s privacy, cryptography technglag becoming more and more
important in the communication area. The rapid pgsg of VLSI technology benefits
the hardware realization of encryption and decoypta lot, making the devices
smaller, faster, and less power-consuming.In thésis, the complete synthesizable
unit of Data Encryption Standard is designed.ltfusictionally simulated and

synthesized showing the corresponding RTL views.

DES is not in use where high level of securityeiguired, it can be used in the form of
Triple DES and can also be replaced by strongeoridthgn like AES.But it is still

widely used if a high level of security is not vegd

The original description of DES is not optimized FPGA implementation regarding
the speed performance and the number of LUTs usedhe the future,all the
implementations can be optimized further to theptimizing goals.Various
implementations of DES can be integrated to theapplication environment to test

all the parameters.

41

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]
[10]

REFERENCES

Gael Rouvroy, Francois-Xaviet Standaert, Jemgudes Quisquater, Jean-
Didier Legat, Efficient Uses of FPGAs for Implemainns of DES and Its
Experimental Linear Cryptanalysis, IEEE Transadiamm Computers, Vol.
52, April 2003.

K.Wong, M.Wark, E.Dawson, A single chip FPGA pramentation of the
Data Encryption Standard Algorithm, 1998 IEEE.

Seung-Jo Han, Heang-Soo Oh, Jongan Park, mipeoved Data Encryption
Standard Algorithm, 1996 IEEE.

Touria Arich, Mohssine Eleuldj, Hardware Implentations of the Data
Encryption Standard, 2002 IEEE.

Ibrahim E.Ziedan, Mohammed M.Fouad, Doaa HeBalApplication of Data
Encryption Standard to Bitmap and JPEG Images, TeittnNational Radio
Science Conference, 2003.

A.Menezes, P.Van Ooschot, S.Vanstone, HandhafolCryptography, CRC
Press, 1996.

William Stallings, Cryptography and Network Seity, Pearson Education,
2003.

Andrew S.Tanenbaum, Computer Networks, Prinitied, 2007.

B.Schneier, Applied Cryptography, John WileyS&ns, 1996.

http:www.ciphersbyritter, com/LEARNING.HTM

42

APPENDIX

Code for data encryption standard algorithm

library ieee;

use ieee.std_logic_1164.all;

entity pcl is port

(key :in std_logic_vector(1 TO 64);

c0x,dOx : out std_logic_vector(1 TO 28));

end pcl;

architecture behavior of pcl is

signal XX : std_logic_vector(1 to 56);

begin

XX(1)<=key(57); XX(2)<=key(49); XX(3)<=key(41); XX{)<=key(33);
XX (5)<=key(25); XX(6)<=key(17); XX(7)<=key(9);

XX(8)<=key(1); XX(9)<=key(58); XX(10)<=key(50); XX(1)<=key(42);
XX(12)<=key(34); XX(13)<=key(26); XX(14)<=key(18);
XX(15)<=key(10); XX(16)<=key(2); XX(17)<=key(59); X(18)<=key(51);
XX(19)<=key(43); XX(20)<=key(35); XX(21)<=key(27);
XX(22)<=key(19); XX(23)<=key(11); XX(24)<=key(3); X(25)<=key(60);
XX(26)<=key(52); XX(27)<=key(44); XX(28)<=key(36);
XX(29)<=key(63); XX(30)<=key(55); XX(31)<=key(47KX(32)<=key(39);
XX(33)<=key(31); XX(34)<=key(23); XX(35)<=key(15);
XX(36)<=key(7); XX(37)<=key(62); XX(38)<=key(54); X(39)<=key(46);

XX(40)<=key(38); XX(41)<=key(30); XX(42)<=key(22);

43

XX(43)<=key(14); XX(44)<=key(6); XX(45)<=key(61); X(46)<=key(53);
XX(47)<=key(45); XX(48)<=key(37); XX(49)<=key(29);
XX(50)<=key(21); XX(51)<=key(13); XX(52)<=key(5); X(53)<=key(28);
XX(54)<=key(20); XX(55)<=key(12); XX(56)<=key(4);

cOx<=XX(1 to 28); dOX<=XX(29 to 56);

end behavior;

LIBRARY ieee ;

use ieee.std_logic_1164.all;

entity pc2 is port

(c,d :in std_logic_vector(1 TO 28);

k : out std_logic_vector(1 TO 48));

end pc2;

architecture behavior of pc2 is

signal YY : std_logic_vector(1 to 56);

begin

YY(1 to 28)<=c; YY(29 to 56)<=d;

k(1)<=YY(14); k(2)<=YY(17); k(3)<=YY(11); k(4)<=YYR4); k(5)<=YY(1);
k(6)<=YY(5);

k(7)<=YY(3); k(8)<=YY(28); k(9)<=YY(15); k(10)<=YY6); k(11)<=YY(21);
k(12)<=YY(10);

k(13)<=YY(23); k(14)<=YY(19); k(15)<=YY(12); k(16)<YY(4); k(17)<=YY(26);
k(18)<=YY(8);

k(19)<=YY(16); k(20)<=YY(7); k(21)<=YY(27); k(22)<¥Y(20); k(23)<=YY(13);

K(24)<=YY(2):

44

K(25)<=YY(41); k(26)<=YY(52); k(27)<=YY(31); k(28)<YY(37); k(29)<=YY(47);
k(30)<=YY(55);
K(31)<=YY(30); k(32)<=YY(40); k(33)<=YY(51); k(34)<YY(45); k(35)<=YY(33);
K(36)<=YY(48);
K(37)<=YY/(44); k(38)<=YY(49); k(39)<=YY(39); k(40)<YY (56); k(41)<=YY(34);
k(42)<=YY(53);
K(43)<=YY(46); k(44)<=YY(42); k(45)<=YY(50); K(46)=YY(36); k(47)<=YY(29);
k(48)<=YY(32);

end behavior;

LIBRARY ieee ;

use ieee.std_logic_1164.all;

entity keysched is port

(key : in std_logic_vector(1 to 64);
k1x,k2x,k3x,k4x,k5x,k6x,k7x,k8x,k9x,k10x,k11x,k1R4,3x,k14X,k15x,k16X
. out std_logic_vector(1 to 48));

end keysched;

architecture behaviour of keysched is
COMPONENT pc1l port

(key : in std_logic_vector(1 TO 64);
c0x,dOx : out std_logic_vector(1 TO 28));
end COMPONENT,;

COMPONENT pc2 port

(c,d :in std_logic_vector(1 TO 28);

k : out std_logic_vector(1 TO 48));

45

end COMPONENT,;

signal
c0x,c1x,c2x,c3x,c4x,c5x,c6X,c7X,c8x,c9X,c10x,c118)cc13x,c14X,c15X,c16X :
std_logic_vector(1 to 28);

signal
dOx,d1x,d2x,d3x,d4x,d5x,d6x,d7x,d8x,d9x,d10x,d112x]d13x,d14x,d15x,d16X :
std_logic_vector(1 to 28);

begin

upcl: pcl port map (key=>key, cOx=>c0x, dOx=>d0x)

clx <= c0x(2 to 28) & c0x(1); d1x <= dOx(2 to 28)d®x(1);

C2x <= c1x(2 to 28) & c1x(1); d2x <= d1x(2 to 28)dx(1);

c3x <= c2x(3 to 28) & c2x(1 to 2); d3x <= d2x(328) & d2x(1 to 2);

c4x <= c3x(3 to 28) & c3x(1 to 2); d4x <= d3x(328) & d3x(1 to 2);

c5x <= c4x(3 to 28) & c4x(1 to 2); d5x <= d4x(328) & d4x(1 to 2);

C6x <= c5x(3 to 28) & c5x(1 to 2); d6x <= d5x(328) & d5x(1 to 2);

C7x <= c6x(3 to 28) & c6Xx(1 to 2); d7x <= d6x(328) & d6X(1 tO 2);

€8x <= c7x(3 to 28) & c7x(1 to 2); d8x <= d7x(328) & d7x(1 to 2);

CI9x <= c8x(2 to 28) & c8x(1); d9x <= d8x(2 to 28)dBx(1);

c10x <= c9x(3 to 28) & c9x(1 to 2); d10x <= d9x(B28) & d9x(1 to 2);
cllx <= cl0x(3 to 28) & c10x(1 to 2); d11x <= d1Bx¢ 28) & d10x(1 to 2);
c12x <= cl1x(3 to 28) & c11x(1 to 2); d12x <= d13x¢ 28) & d11x(1 to 2);
€13x <= c12x(3t0 28) & c12x(1 to 2); d13x <= d12x¢ 28) & d12x(1 to 2);
cl4x <= c13x(3 to 28) & c13x(1 to 2); d14x <= d13x¢ 28) & d13x(1 to 2);
C15x <= c14x(3 t0 28) & c14x(1 to 2); d15x <= d13x¢ 28) & d14x(1 to 2);

€16x <= c15x(2 to 28) & c15x(1); d16x <= d15x(228) & d15x(1);

46

pc2x1:
pc2x2:
pc2x3:
pc2x4:
pc2x5:
pCc2X6:
pc2x7:
pc2x8:

pc2x9:

pc2x10:
pc2x11:
pc2x12:
pc2x13:
pc2x14:
pc2x15:

pc2x16:

end:;

pc2 port map (c=>clx,
pc2 port map (c=>c2x,
pc2 port map (c=>c3X,
pc2 port map (c=>c4x,
pc2 port map (c=>c5x,
pc2 port map (c=>c6x,
pc2 port map (c=>C7x,
pc2 port map (c=>c8x,

pc2 port map (c=>c9x,

library ieee;

use ieee.std_logic_1164.all;

entity ip is port

pc2 port map (c=>c10x,
pc2 port map (c=>cllx,
pc2 port map (c=>c12x,
pc2 port map (c=>c13x,
pc2 port map (c=>cl4x,
pc2 port map (c=>c15x,

pc2 port map (c=>c16x,

d=>d1x,
d=>d2x,
d=>d3x,
d=>d4x,
d=>d5x,
d=>d6x,
d=>d7x,
d=>d8x,

d=>d9x,

(pt : in std_logic_vector(1 TO 64);

I0x : out std_logic_vector(1 TO 32);

rox : out std_logic_vector(1 TO 32));

end ip;

k=>k1x);
k=>k2x);
k=>k3x);
k=>k4x);
k=>k5x);
k=>k6x);
k=>k7x);
k=>k8x);

k=>k9x);

d=>d10x, k=>k10x);
d=>d11x, k=>k11x);
d=>d12x, k=>k12x);
d=>d13x, k=>k13x);
d=>d14x, k=>k14x);
d=>d15x, k=>k15x);

d=>d16x, k=>k16x);

a7

architecture behavior of ip is

begin

I0x(1)<=pt(58); I0x(2)<=pt(50); I0x(3)<=pt(42); |G4)<=pt(34);
I0x(5)<=pt(26); I0x(6)<=pt(18); I0x(7)<=pt(10); IGR)<=pt(2);
10x(9)<=pt(60); I0x(10)<=pt(52); I0x(11)<=pt(44)0%(12)<=pt(36);
10x(13)<=pt(28); 10x(14)<=pt(20); I0x(15)<=pt(12APX(16)<=pt(4);
I0x(17)<=pt(62); I0x(18)<=pt(54); I0x(19)<=pt(46]x(20)<=pt(38);
10x(21)<=pt(30); 10X(22)<=pt(22); I0x(23)<=pt(14PX(24)<=pt(6);
I0x(25)<=pt(64); 10x(26)<=pt(56); I0x(27)<=pt(48Dx(28)<=pt(40);
10x(29)<=pt(32); 10x(30)<=pt(24); I0x(31)<=pt(16DX(32)<=pt(8);
rOX(1)<=pt(57); rOx(2)<=pt(49); rOx(3)<=pt(41); re¥<=pt(33);
rOX(5)<=pt(25); rOx(6)<=pt(17); rOx(7)<=pt(9); raBY<=pt(1);
rOX(9)<=pt(59); rox(10)<=pt(51); rox(11)<=pt(430x(12)<=pt(35);
rOX(13)<=pt(27); rOx(14)<=pt(19); rOx(15)<=pt(11Px(16)<=pt(3);
rOX(17)<=pt(61); rox(18)<=pt(53); rox(19)<=pt(45Px(20)<=pt(37);
rOX(21)<=pt(29); rOx(22)<=pt(21); rOx(23)<=pt(13MPx(24)<=pt(5);
r0X(25)<=pt(63); rOX(26)<=pt(55); rOX(27)<=pt(4 Tx(28)<=pt(39);
rOX(29)<=pt(31); rOx(30)<=pt(23); rOx(31)<=pt(15PxX(32)<=pt(7);

end behavior;

library ieee;

use ieee.std_logic_1164.all;
entity xp is port

(ri :in std_logic_vector(1 TO 32);

e : out std_logic_vector(1 TO 48));

48

end xp;

architecture behavior of xp is

begin

e(1)<=ri(32); e(2)<=ri(1); e(3)<=ri(2); e(4)<=ri(3¢(5)<=ri(4); e(6)<=ri(5);
e(7)<=ri(4); e(8)<=ri(5):e(9)<=ri(6); e(10)<=ri(7¥(11)<=ri(8); e(12)<=ri(9);
e(13)<=ri(8); e(14)<=ri(9): e(15)<=ri(10); e(16)<4rl):e(17)<=ri(12):
e(18)<=ri(13): e(19)<=ri(12): e(20)<=ri(13); e(2B¥(14): e(22)<=ri(15):
e(23)<=ri(16); e(24)<=ri(17);

e(25)<=ri(16): e(26)<=ri(17); e(27)<=ri(18): e(28¥(19): e(29)<=ri(20):;
e(30)<=ri(21); e(31)<=ri(20); e(32)<=ri(21):e(33)i22); e(34)<=ri(23);
e(35)<=ri(24); e(36)<=ri(25); e(37)<=ri(24); e(3&)(25); e(39)<=ri(26);
e(40)<=ri(27);

e(41)<=ri(28): e(42)<=ri(29); e(43)<=ri(28); e(44¥(29): e(45)<=ri(30);
e(46)<=ri(31): e(47)<=ri(32): e(48)<=ri(1);

end behavior;

library ieee;

use ieee.std _logic_1164.all;
entity desxorl is port

(e :in std_logic_vector(1 TO 48);
b1x,b2x,b3x,b4x,b5x,b6x,b7x,b8x
. out std_logic_vector (1 TO 6);

k :in std_logic_vector (1 TO 48));
end desxorl;

architecture behavior of desxorl is

49

signal XX : std_logic_vector(1 to 48);

begin

XX<=k xor e;

b1x<=XX(1 to 6);b2x<=XX(7 to 12);b3x<=XX(13 to 1&¥x<=XX(19 to 24),
b5x<=XX(25 to 30); b6x<=XX(31 to 36);b7x<=XX(37 #R);b8x<=XX(43 to 48);

end behavior;

library ieee;

use ieee.std_logic_1164.all;
entity sl is port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);
SO : out std_logic_vector(1 to 4));
end s1,;

architecture behaviour of sl is
begin

process(clk)

begin

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"e",
when b"000010"=> so<=x"4";
when b"000100"=> so<=x"d";
when b"000110"=> so<=x"1";

when b"001000"=> so<=x"2",

50

when b"001010"=> so<=x"f";
when b"001100"=> so<=x"b";
when b"001110"=> so<=x"8";
when b"010000"=> so<=x"3";
when b"010010"=> so<=x"a";
when b"010100"=> so<=x"6";
when b"010110"=> so<=x"c";
when b"011000"=> so<=x"5";
when b"011010"=> so<=x"9";
when b"011100"=> so<=x"0";
when b"011110"=> so<=x"7";
when b"000001"=> so<=x"0";
when b"000011"=> so<=x"f";
when b"000101"=> so<=x"7";
when b"000111"=> so<=x"4";
when b"001001"=> so<=x"e";
when b"001011"=> so<=x"2";
when b"001101"=> so<=x"d";
when b"001111"=> so<=x"1";
when b"010001"=> so<=x"a";
when b"010011"=> so<=x"6";
when b"010101"=> so<=x"c";
when b"010111"=> so<=x"b";
when b"011001"=> so<=x"9";

when b"011011"=> so<=x"5";

51

when b"011101"=> so<=x"3";
when b"011111"=> so<=x"8";
when b"100000"=> so<=x"4";
when b"100010"=> so<=x"1";
when b"100100"=> so<=x"e";
when b"100110"=> so<=x"8";
when b"101000"=> so<=x"d";
when b"101010"=> so<=x"6";
when b"101100"=> so<=x"2";
when b"101110"=> so<=x"b";
when b"110000"=> so<=x"f";
when b"110010"=> so<=x"c";
when b"110100"=> so<=x"9";
when b"110110"=> so<=x"7";
when b"111000"=> so<=x"3";
when b"111010"=> so<=x"a";
when b"111100"=> so<=x"5";
when b"111110"=> so<=x"0";
when b"100001"=> so<=x"f";
when b"100011"=> so<=x"c";
when b"100101"=> so<=x"8";
when b"100111"=> so<=x"2";
when b"101001"=> so<=x"4";
when b"101011"=> so<=x"9";

when b"101101"=> so<=x"1";

52

when b"101111"=> so<=x"7";
when b"110001"=> so<=x"5";
when b"110011"=> so<=x"b";
when b"110101"=> so<=x"3";
when b"110111"=> so<=x"e";
when b"111001"=> so<=x"a";
when b"111011"=> so<=x"0";
when b"111101"=> so<=x"6";
when others=> so<=x"d";
end case;

end if;

end process;

end:;

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity s2 is port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

SO : out std_logic_vector(1 to 4));
end s2;

architecture behaviour of s2 is
begin

process(clk)

begin

53

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"f";
when b"000010"=> so<=x"1";
when b"000100"=> so<=x"8";
when b"000110"=> so<=x"e",
when b"001000"=> so<=x"6";
when b"001010"=> so<=x"b";
when b"001100"=> so<=x"3";
when b"001110"=> so<=x"4";
when b"010000"=> so<=x"9";
when b"010010"=> so<=x"7";
when b"010100"=> so<=x"2";
when b"010110"=> so<=x"d";
when b"011000"=> so<=x"c";
when b"011010"=> so<=x"0";
when b"011100"=> so<=x"5";
when b"011110"=> so<=x"a";
when b"000001"=> so<=x"3";
when b"000011"=> so<=x"d";
when b"000101"=> so<=x"4";
when b"000111"=> so<=x"7";
when b"001001"=> so<=x"f";
when b"001011"=> so<=x"2";

when b"001101"=> so<=x"8";

54

when b"001111"=> so<=x"e";
when b"010001"=> so<=x"c";
when b"010011"=> so<=x"0";
when b"010101"=> so<=x"1";
when b"010111"=> so<=x"a";
when b"011001"=> so<=x"6";
when b"011011"=> so<=x"9";
when b"011101"=> so<=x"b";
when b"011111"=> so<=x"5";
when b"100000"=> so<=x"0";
when b"100010"=> so<=x"e";
when b"100100"=> so<=x"7";
when b"100110"=> so<=x"b";
when b"101000"=> so<=x"a";
when b"101010"=> so<=x"4";
when b"101100"=> so<=x"d";
when b"101110"=> so<=x"1";
when b"110000"=> so<=x"5";
when b"110010"=> so<=x"8";
when b"110100"=> so<=x"c";
when b"110110"=> so<=x"6";
when b"111000"=> so<=x"9";
when b"111010"=> so<=x"3";
when b"111100"=> so<=x"2";

when b"111110"=> so<=x"f";

55

when b"100001"=> so<=x"d";
when b"100011"=> so<=x"8";
when b"100101"=> so<=x"a";
when b"100111"=> so<=x"1";
when b"101001"=> so<=x"3";
when b"101011"=> so<=x"{",
when b"101101"=> so<=x"4";
when b"101111"=> so<=x"2";
when b"110001"=> so<=x"b";
when b"110011"=> so<=x"6";
when b"110101"=> so<=x"7";
when b"110111"=> so<=x"c";
when b"111001"=> so<=x"0";
when b"111011"=> so<=x"5";
when b"111101"=> so<=x"e";
when others=> so<=x"9";
end case;

end if;

end process;

end:;

LIBRARY ieee ;
use ieee.std_logic_1164.all;
entity s3 is port

(clk :in std_logic;

56

b :in std_logic_vector(1 to 6);
so : out std_logic_vector(1 to 4));
end s3;

architecture behaviour of s3 is
begin

process(clk)

begin

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"a";
when b"000010"=> so<=x"0";
when b"000100"=> so<=x"9";
when b"000110"=> so<=x"e";
when b"001000"=> so<=x"6";
when b"001010"=> so<=x"3";
when b"001100"=> so<=x"f";
when b"001110"=> so<=x"5";
when b"010000"=> so<=x"1";
when b"010010"=> so<=x"d";
when b"010100"=> so<=x"c";
when b"010110"=> so<=x"7";
when b"011000"=> so<=x"b";
when b"011010"=> so<=x"4";
when b"011100"=> so<=x"2";

when b"011110"=> so<=x"8";

57

when b"000001"=> so<=x"d";
when b"000011"=> so<=x"7";
when b"000101"=> so<=x"0";
when b"000111"=> so<=x"9";
when b"001001"=> so<=x"3";
when b"001011"=> so<=x"4";
when b"001101"=> so<=x"6";
when b"001111"=> so<=x"a";
when b"010001"=> so<=x"2";
when b"010011"=> so<=x"8";
when b"010101"=> so<=x"5";
when b"010111"=> so<=x"e";
when b"011001"=> so<=x"c";
when b"011011"=> so<=x"b";
when b"011101"=> so<=x"{",
when b"011111"=> so<=x"1";
when b"100000"=> so<=x"d";
when b"100010"=> so<=x"6";
when b"100100"=> so<=x"4";
when b"100110"=> so<=x"9";
when b"101000"=> so<=x"8";
when b"101010"=> so<=x"f";
when b"101100"=> so<=x"3";
when b"101110"=> so<=x"0";

when b"110000"=> so<=x"b",

58

when b"110010"=> so<=x"1";
when b"110100"=> so<=x"2";
when b"110110"=> so<=x"c";
when b"111000"=> so<=x"5";
when b"111010"=> so<=x"a";
when b"111100"=> so<=x"e";
when b"111110"=> so<=x"7";
when b"100001"=> so<=x"1";
when b"100011"=> so<=x"a";
when b"100101"=> so<=x"d";
when b"100111"=> so<=x"0";
when b"101001"=> so<=x"6";
when b"101011"=> so<=x"9";
when b"101101"=> so<=x"8";
when b"101111"=> so<=x"7";
when b"110001"=> so<=x"4";
when b"110011"=> so<=x"{",
when b"110101"=> so<=x"e";
when b"110111"=> so<=x"3";
when b"111001"=> so<=x"b";
when b"111011"=> so<=x"5";
when b"111101"=> so<=x"2";
when others=> so<=x"c";
end case;

end if;

59

end process;

end;

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity s4 is port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);
SO : out std_logic_vector(1 to 4));
end s4,

architecture behaviour of s4 is
begin

process(clk)

begin

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"7";
when b"000010"=> so<=x"d";
when b"000100"=> so<=x"e";
when b"000110"=> so<=x"3";
when b"001000"=> so<=x"0";
when b"001010"=> so<=x"6";
when b"001100"=> so<=x"9";
when b"001110"=> so<=x"a";

when b"010000"=> so<=x"1",

60

when b"010010"=> so<=x"2";
when b"010100"=> so<=x"8";
when b"010110"=> so<=x"5";
when b"011000"=> so<=x"b";
when b"011010"=> so<=x"c";
when b"011100"=> so<=x"4";
when b"011110"=> so<=x"f";
when b"000001"=> so<=x"d";
when b"000011"=> so<=x"8";
when b"000101"=> so<=x"b";
when b"000111"=> so<=x"5";
when b"001001"=> so<=x"6";
when b"001011"=> so<=x"f";
when b"001101"=> so<=x"0";
when b"001111"=> so<=x"3";
when b"010001"=> so<=x"4";
when b"010011"=> so<=x"7";
when b"010101"=> so<=x"2";
when b"010111"=> so<=x"c";
when b"011001"=> so<=x"1";
when b"011011"=> so<=x"a";
when b"011101"=> so<=x"e";
when b"011111"=> so<=x"9";
when b"100000"=> so<=x"a";

when b"100010"=> so<=x"6";

61

when b"100100"=> so<=x"9";
when b"100110"=> so<=x"0";
when b"101000"=> so<=x"c";
when b"101010"=> so<=x"b";
when b"101100"=> so<=x"7";
when b"101110"=> so<=x"d";
when b"110000"=> so<=x"f";
when b"110010"=> so<=x"1";
when b"110100"=> so<=x"3";
when b"110110"=> so<=x"e";
when b"111000"=> so<=x"5";
when b"111010"=> so<=x"2";
when b"111100"=> so<=x"8";
when b"111110"=> so<=x"4";
when b"100001"=> so<=x"3";
when b"100011"=> so<=x"f";
when b"100101"=> so<=x"0";
when b"100111"=> so<=x"6";
when b"101001"=> so<=x"a";
when b"101011"=> so<=x"1";
when b"101101"=> so<=x"d";
when b"101111"=> so<=x"8";
when b"110001"=> so<=x"9";
when b"110011"=> so<=x"4";

when b"110101"=> so<=x"5";

62

when b"110111"=> so<=x"b";
when b"111001"=> so<=x"c";
when b"111011"=> so<=x"7";
when b"111101"=> so<=x"2";
when others=> so<=x"e";
end case;

end if;

end process;

end:;

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity s5 is port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);
SO : out std_logic_vector(1 to 4));
end s5;

architecture behaviour of s5 is
begin

process(clk)

begin

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"2",

when b"000010"=> so<=x"c";

63

when b"000100"=> so<=x"4";
when b"000110"=> so<=x"1";
when b"001000"=> so<=x"7";
when b"001010"=> so<=x"a";
when b"001100"=> so<=x"b";
when b"001110"=> so<=x"6";
when b"010000"=> so<=x"8";
when b"010010"=> so<=x"5";
when b"010100"=> so<=x"3";
when b"010110"=> so<=x"f";
when b"011000"=> so<=x"d";
when b"011010"=> so<=x"0";
when b"011100"=> so<=x"e",
when b"011110"=> so<=x"9";
when b"000001"=> so<=x"e",
when b"000011"=> so<=x"b";
when b"000101"=> so<=x"2";
when b"000111"=> so<=x"c";
when b"001001"=> so<=x"4";
when b"001011"=> so<=x"7";
when b"001101"=> so<=x"d";
when b"001111"=> so<=x"1";
when b"010001"=> so<=x"5";
when b"010011"=> so<=x"0";

when b"010101"=> so<=x"f";

64

when b"010111"=> so<=x"a";
when b"011001"=> so<=x"3";
when b"011011"=> so<=x"9";
when b"011101"=> so<=x"8";
when b"011111"=> so<=x"6";
when b"100000"=> so<=x"4";
when b"100010"=> so<=x"2";
when b"100100"=> so<=x"1";
when b"100110"=> so<=x"b";
when b"101000"=> so<=x"a";
when b"101010"=> so<=x"d";
when b"101100"=> so<=x"7";
when b"101110"=> so<=x"8";
when b"110000"=> so<=x"f";
when b"110010"=> so<=x"9";
when b"110100"=> so<=x"c";
when b"110110"=> so<=x"5";
when b"111000"=> so<=x"6";
when b"111010"=> so<=x"3";
when b"111100"=> so<=x"0";
when b"111110"=> so<=x"e";
when b"100001"=> so<=x"b";
when b"100011"=> so<=x"8";
when b"100101"=> so<=x"c";

when b"100111"=> so<=x"7";

65

when b"101001"=> so<=x"1";
when b"101011"=> so<=x"e";
when b"101101"=> so<=x"2";
when b"101111"=> so<=x"d";
when b"110001"=> so<=x"6";
when b"110011"=> so<=x"{",
when b"110101"=> so<=x"0";
when b"110111"=> so<=x"9";
when b"111001"=> so<=x"a";
when b"111011"=> so<=x"4";
when b"111101"=> so<=x"5";
when others=> so<=x"3";
end case;

end if;

end process;

end:;

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity s6 is port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

so : out std_logic_vector(1 to 4));
end s6;

architecture behaviour of s6 is

66

begin

process(clk)

begin

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"c";
when b"000010"=> so<=x"1";
when b"000100"=> so<=x"a";
when b"000110"=> so<=x"f";
when b"001000"=> so<=x"9";
when b"001010"=> so<=x"2";
when b"001100"=> so<=x"6";
when b"001110"=> so<=x"8";
when b"010000"=> so<=x"0";
when b"010010"=> so<=x"d";
when b"010100"=> so<=x"3";
when b"010110"=> so<=x"4";
when b"011000"=> so<=x"e";
when b"011010"=> so<=x"7";
when b"011100"=> so<=x"5",
when b"011110"=> so<=x"b";
when b"000001"=> so<=x"a";
when b"000011"=> so<=x"f";
when b"000101"=> so<=x"4";

when b"000111"=> so<=x"2";

67

when b"001001"=> so<=x"7";
when b"001011"=> so<=x"c";
when b"001101"=> so<=x"9";
when b"001111"=> so<=x"5";
when b"010001"=> so<=x"6";
when b"010011"=> so<=x"1";
when b"010101"=> so<=x"d";
when b"010111"=> so<=x"e";
when b"011001"=> so<=x"0";
when b"011011"=> so<=x"b";
when b"011101"=> so<=x"3";
when b"011111"=> so<=x"8";
when b"100000"=> so<=x"9";
when b"100010"=> so<=x"e";
when b"100100"=> so<=x"f";
when b"100110"=> so<=x"5";
when b"101000"=> so<=x"2";
when b"101010"=> so<=x"8";
when b"101100"=> so<=x"c";
when b"101110"=> so<=x"3";
when b"110000"=> so<=x"7";
when b"110010"=> so<=x"0";
when b"110100"=> so<=x"4";
when b"110110"=> so<=x"a";

when b"111000"=> so<=x"1";

68

when b"111010"=> so<=x"d";
when b"111100"=> so<=x"b";
when b"111110"=> so<=x"6";
when b"100001"=> so<=x"4";
when b"100011"=> so<=x"3";
when b"100101"=> so<=x"2";
when b"100111"=> so<=x"c";
when b"101001"=> so<=x"9";
when b"101011"=> so<=x"5";
when b"101101"=> so<=x"{",
when b"101111"=> so<=x"a";
when b"110001"=> so<=x"b";
when b"110011"=> so<=x"e";
when b"110101"=> so<=x"1";
when b"110111"=> so<=x"7";
when b"111001"=> so<=x"6";
when b"111011"=> so<=x"0";
when b"111101"=> so<=x"8";
when others=> so<=x"d";
end case;

end if;

end process;

end:;

69

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity s7 is port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);
so : out std_logic_vector(1 to 4));
end s7,

architecture behaviour of s7 is
begin

process(clk)

begin

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"4";
when b"000010"=> so<=x"b";
when b"000100"=> so<=x"2";
when b"000110"=> so<=x"e";
when b"001000"=> so<=x"f";
when b"001010"=> so<=x"0";
when b"001100"=> so<=x"8";
when b"001110"=> so<=x"d";
when b"010000"=> so<=x"3";
when b"010010"=> so<=x"c";
when b"010100"=> so<=x"9";

when b"010110"=> so<=x"7";

70

when b"011000"=> so<=x"5";
when b"011010"=> so<=x"a";
when b"011100"=> so<=x"6";
when b"011110"=> so<=x"1";
when b"000001"=> so<=x"d";
when b"000011"=> so<=x"0";
when b"000101"=> so<=x"b";
when b"000111"=> so<=x"7";
when b"001001"=> so<=x"4";
when b"001011"=> so<=x"9";
when b"001101"=> so<=x"1";
when b"001111"=> so<=x"a";
when b"010001"=> so<=x"e";
when b"010011"=> so<=x"3";
when b"010101"=> so<=x"5";
when b"010111"=> so<=x"c";
when b"011001"=> so<=x"2";
when b"011011"=> so<=x"{",
when b"011101"=> so<=x"8";
when b"011111"=> so<=x"6";
when b"100000"=> so<=x"1";
when b"100010"=> so<=x"4";
when b"100100"=> so<=x"b";
when b"100110"=> so<=x"d";

when b"101000"=> so<=x"c";

71

when b"101010"=> so<=x"3";
when b"101100"=> so<=x"7";
when b"101110"=> so<=x"e";
when b"110000"=> so<=x"a";
when b"110010"=> so<=x"f";
when b"110100"=> so<=x"6";
when b"110110"=> so<=x"8";
when b"111000"=> so<=x"0";
when b"111010"=> so<=x"5";
when b"111100"=> so<=x"9";
when b"111110"=> so<=x"2";
when b"100001"=> so<=x"6";
when b"100011"=> so<=x"b";
when b"100101"=> so<=x"d";
when b"100111"=> so<=x"8";
when b"101001"=> so<=x"1";
when b"101011"=> so<=x"4";
when b"101101"=> so<=x"a";
when b"101111"=> so<=x"7";
when b"110001"=> so<=x"9";
when b"110011"=> so<=x"5";
when b"110101"=> so<=x"0";
when b"110111"=> so<=x"f";
when b"111001"=> so<=x"e";

when b"111011"=> so<=x"2";

72

when b"111101"=> so<=x"3";
when others=> so<=x"c";
end case;

end if;

end process;

end:;

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity s8 is port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);
SO : out std_logic_vector(1 to 4));
end;

architecture behaviour of s8 is
begin

process(clk)

begin

if(clk'event and clk="1") then
casebis

when b"000000"=> so<=x"d";
when b"000010"=> so<=x"2";
when b"000100"=> so<=x"8";
when b"000110"=> so<=x"4";

when b"001000"=> so<=x"6";

when b"001010"=> so<=x"f";
when b"001100"=> so<=x"b";
when b"001110"=> so<=x"1";
when b"010000"=> so<=x"a";
when b"010010"=> so<=x"9";
when b"010100"=> so<=x"3";
when b"010110"=> so<=x"e",
when b"011000"=> so<=x"5";
when b"011010"=> so<=x"0";
when b"011100"=> so<=x"c";
when b"011110"=> so<=x"7";
when b"000001"=> so<=x"1";
when b"000011"=> so<=x"f";
when b"000101"=> so<=x"d";
when b"000111"=> so<=x"8";
when b"001001"=> so<=x"a";
when b"001011"=> so<=x"3";
when b"001101"=> so<=x"7";
when b"001111"=> so<=x"4";
when b"010001"=> so<=x"c";
when b"010011"=> so<=x"5";
when b"010101"=> so<=x"6";
when b"010111"=> so<=x"b";
when b"011001"=> so<=x"0";

when b"011011"=> so<=x"e";

74

when b"011101"=> so<=x"9";
when b"011111"=> so<=x"2";
when b"100000"=> so<=x"7";
when b"100010"=> so<=x"b";
when b"100100"=> so<=x"4";
when b"100110"=> so<=x"1";
when b"101000"=> so<=x"9";
when b"101010"=> so<=x"c";
when b"101100"=> so<=x"e",
when b"101110"=> so<=x"2";
when b"110000"=> so<=x"0";
when b"110010"=> so<=x"6";
when b"110100"=> so<=x"a";
when b"110110"=> so<=x"d";
when b"111000"=> so<=x"f";
when b"111010"=> so<=x"3";
when b"111100"=> so<=x"5";
when b"111110"=> so<=x"8";
when b"100001"=> so<=x"2";
when b"100011"=> so<=x"1";
when b"100101"=> so<=x"e",
when b"100111"=> so<=x"7";
when b"101001"=> so<=x"4";
when b"101011"=> so<=x"a";

when b"101101"=> so<=x"8";

75

when b"101111"=> so<=x"d";
when b"110001"=> so<=x"f";
when b"110011"=> so<=x"c";
when b"110101"=> so<=x"9";
when b"110111"=> so<=x"0";
when b"111001"=> so<=x"3";
when b"111011"=> so<=x"5";
when b"111101"=> so<=x"6";
when others=> so<=x"b";
end case;

end if;

end process;

end:;

LIBRARY ieee ;

use ieee.std_logic_1164.all;

entity pp is
port(solx,s02x,503%,504x,505%,506x,507X,s08xdnlagic_vector(l to 4);
ppo : out std_logic_vector(1 to 32));

end pp;

architecture behaviour of pp is

signal XX : std_logic_vector(1 to 32);

begin

XX(1 to 4)<=s01x; XX(5 to 8)<=s02x; XX(9 to 12)<=3r; XX(13 to 16)<=s04X;

76

XX(17 to 20)<=s05x; XX(21 to 24)<=s06x; XX(25 t0 R&s07x; XX(29 to
32)<=508x;

PPo(1)<=XX(16); ppo(2)<=XX(7); ppo(3)<=XX(20); ppd)<=XX(21);
PPo(5)<=XX(29); ppo(6)<=XX(12); ppo(7)<=XX(28); pf)<=XX(17);
PPO(9)<=XX(1); ppo(10)<=XX(15); ppo(11)<=XX(23); pfil2)<=XX(26);
PPO(13)<=XX(5); ppo(14)<=XX(18); ppo(15)<=XX(31)pp(16)<=XX(10);
PPO(17)<=XX(2); ppo(18)<=XX(8); ppo(19)<=XX(24); p(R0)<=XX(14);
PPO(21)<=XX(32); ppo(22)<=XX(27); ppo(23)<=XX(3)pp(24)<=XX(9);
PPO(25)<=XX(19); ppo(26)<=XX(13); ppo(27)<=XX(3Q)Po(28)<=XX(6);
PPO(29)<=XX(22); ppo(30)<=XX(11); ppo(31)<=XX(4)pp(32)<=XX(25);

end:;

LIBRARY ieee ;

use ieee.std _logic_1164.all;

entity desxor2 is port

(d,I':in std_logic_vector(1 to 32);

g : out std_logic_vector(1 to 32));
end desxorz;

architecture behaviour of desxor2 is
begin

g<=d xor I;

end:;

77

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity roundfunc is port

(clk : in std_logic;

li,ri : in std_logic_vector(1 to 32);
k :in std_logic_vector(1 to 48);
lo,ro : out std_logic_vector(1 to 32));
end roundfunc;

architecture behaviour of roundfunc is
component s1 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

SO : out std_logic_vector(1 to 4));
end component;

component s2 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

SO : out std_logic_vector(1 to 4));
end component;

component s3 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

so : out std_logic_vector(1 to 4));
end component;

component s4 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

so : out std_logic_vector(1 to 4));
end component;

component s5 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

SO : out std_logic_vector(1 to 4));
end component;

component s6 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

SO : out std_logic_vector(1 to 4));
end component;

component s7 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

SO : out std_logic_vector(1 to 4));
end component;

component s8 port

(clk : in std_logic;

b :in std_logic_vector(1 to 6);

so : out std_logic_vector(1 to 4));
end component;

component pp port

79

(s01x,s02x,503x%,504X,505%,S06X,S07X,S08X
- in std_logic_vector(1 to 4);

ppo : out std_logic_vector(1 to 32));

end component;

component desxor2 port

(d,I':in std_logic_vector(1 to 32);

g : out std_logic_vector(1 to 32));

end component;

component desxorl port

(e :in std_logic_vector(1 TO 48);
b1x,b2x,b3x,b4x,b5x,b6x,b7x,b8x

. out std_logic_vector (1 TO 6);

k :in std_logic_vector (1 TO 48));

end component;

component xp port

(ri : in std_logic_vector(1 TO 32);

e : out std_logic_vector(1 TO 48));

end component;

signal e : std_logic_vector(1 to 48);
signal b1x,b2x,b3x,b4x,b5x,b6x,b7x,b8x
: std_logic_vector(1 to 6);

signal so1x,502x,503x,504x,505x%,506X,S07X,S08X
. std_logic_vector(1 to 4);

signal ppo : std_logic_vector(1 to 32);

begin

80

uxp: xp port map (ri=>ri, e=>e);

udesxorl: desxorl port map (e=>e, k=>k, b1x=>Px=>b2x, b3x=>b3x,
b4x=>b4x, b5x=>b5x,b6x=>b6x, b7x=>b7x, b8x=>b8x);

usl: sl port map (clk=>clk, b=>b1x, so=>s01x);

us2: s2 port map (clk=>clk, b=>b2x, so=>s02x);

us3: s3 port map (clk=>clk, b=>b3x, so=>s03x);

us4: s4 port map (clk=>clk, b=>b4x, so=>s04x);

us5: s5 port map (clk=>clk, b=>b5x, so=>s05x);

us6: s6 port map (clk=>clk, b=>b6x, so=>s06x);

us7: s7 port map (clk=>clk, b=>b7x, so=>s07x);

us8: s8 port map (clk=>clk, b=>b8x, so=>s08x);

upp: pp port map (S01x=>s01x, S02X=>S02X, S03X3%S804X=>S04X, SO5X=>S05X,
S06X=>S06X,S07X=>S07X, SO8X=>S08X, ppo=>ppo);

udesxor2: desxor2 port map (d=>ppo, |I=>li, g==ro)

lo<=ri;

end;

LIBRARY ieee ;

use ieee.std_logic_1164.all;
entity fp is port

(I,r : in std_logic_vector(1 to 32);
ct : out std_logic_vector(1 to 64));
end fp;

architecture behaviour of fp is

begin

81

ct(1)<=r(8); ct(2)<=I(8); ct(3)<=r(16); ct(4)<=I(d6ct(5)<=r(24); ct(6)<=1(24);
ct(7)<=r(32); ct(8)<=(32);ct(9)<=r(7); ct(10)<=I{7ct(11)<=r(15); ct(12)<=I(15);
ct(13)<=r(23); ct(14)<=1(23); ct(15)<=r(31); ct(:)I(31);ct(17)<=r(6); ct(18)<=I(6);
ct(19)<=r(14); ct(20)<=I(14); ct(21)<=r(22); ct(2A(22); ct(23)<=r(30);
ct(24)<=1(30);

ct(25)<=r(5); ct(26)<=I(5); ct(27)<=r(13); ct(28)K%3); ct(29)<=r(21);
ct(30)<=1(21); ct(31)<=r(29); ct(32)<=I(29);ct(33¥(4); ct(34)<=I(4); ct(35)<=r(12);
ct(36)<=I(12); ct(37)<=r(20); ct(38)<=I(20); ct(383r(28);
ct(40)<=1(28);ct(41)<=r(3); ct(42)<=I(3); ct(43)<drl); ct(44)<=I(11); ct(45)<=r(19);
Ct(46)<=I(19); ct(47)<=r(27); ct(48)<=I(27);

ct(49)<=r(2); ct(50)<=1(2); ct(51)<=r(10); ct(52)K20); ct(53)<=r(18);
ct(54)<=I(18); ct(55)<=r(26); ct(56)<=I(26);ct(57(1); ct(58)<=I(1); ct(59)<=r(9);
ct(60)<=1(9); ct(61)<=r(17); ct(62)<=I(17); ct(63}1(25); ct(64)<=I(25);

end;

LIBRARY ieee ;

use ieee.std_logic_1164.all;

entity desenc is port

(pt : in std_logic_vector(1 TO 64);

key : in std_logic_vector(1 TO 64);
ct : out std_logic_vector(1 TO 64);
clk : in std_logic

);

end desenc;

architecture behavior of desenc is

82

component keysched port

(key :in std_logic_vector(1 to 64);
k1x,k2x,k3x,k4x,k5x,k6x,k7x,k8x,k9x,k10x,k11x,k1R4,3x,k14X,k15x,k16X
. out std_logic_vector(1 to 48));

end component;

component roundfunc port

(clk : in std_logic;

li,ri : in std_logic_vector(1 to 32);

k :in std_logic_vector(1 to 48);

lo,ro : out std_logic_vector(1 to 32));

end component;

component ip port

(pt : in std_logic_vector(1 TO 64);

I0x : out std_logic_vector(1 TO 32);

rox : out std_logic_vector(1 TO 32));

end component;

component fp port

(I,r - in std_logic_vector(1 to 32);

ct : out std_logic_vector(1 to 64));

end component;

signal k1x,k2x,k3x,k4x,k5x,k6x,k7x,k8x%,k9x,k10x,kd,k12x,k13x,k14x,k15x,k16X :
std_logic_vector(1 to 48);

signal 10x,11x,12x,13x,14x,15x,16x,17x,18x,19x,110%1 1x,112x,113%,114x,115x%,116X :

std_logic_vector(1 to 32);

83

signal rOx,r1x,r2x,r3x,r4x,r5x,ré6x,r7x,r8x,rox,r1@k1x,r12x,r13x,r14x,r15x,r16x :
std_logic_vector(1 to 32);

begin

ukeysched: keysched port map (key=>key, k1x=>k2x=>k2x, k3x=>k3Xx,
kdx=>k4x, k5x=>k5x, k6x=>k6X,Kk7x=>k7xX, k8x=>k8x, k8>k9x, k10x=>k10x,
k11x=>k11x, k12x=>k12x, k13x=>k13x,k14x=>k14x, KESx15x%, k16x=>k16X)
uip: ip port map (pt=>pt, 10x=>10x, rOx=>r0x);

roundl: roundfunc port map (clk=>clk, li=>I0x, HrOx, lo=>I1x, ro=>r1x, k=>k1x);
round2: roundfunc port map (clk=>clk, li=>I1x, Helx, lo=>I2x, ro=>r2x, k=>k2x);
round3: roundfunc port map (clk=>clk, li=>12x, Hr2x, l0o=>I3%, ro=>r3x, k=>k3x);
round4: roundfunc port map (clk=>clk, li=>I3x, Hr3X, lo=>l4x, ro=>r4x, k=>k4x);
round5: roundfunc port map (clk=>clk, li=>14x, X, lo=>I5%, ro=>r5x, k=>k5x);
round6: roundfunc port map (clk=>clk, li=>I5x, Hrbx, l0=>I6X, ro=>r6x, k=>k6X);
round7: roundfunc port map (clk=>clk, li=>16x, He6x, lo=>I7X, ro=>r7x, k=>k7x);
round8: roundfunc port map (clk=>clk, li=>17x, H& X, l10=>I8%, ro=>r8x, k=>k8x);
round9: roundfunc port map (clk=>clk, li=>18x, Hr8x, l0=>I9%, ro=>r9x, k=>k9x);
round10: roundfunc port map (clk=>clk, li=>19x=¥ir9x,
[0=>110x,ro=>r10x,k=>k10x);

roundl11: roundfunc port map (clk=>clk, li=>110x%¥ir10x,lo=>I11x,ro=>r11x,
k=>k11x);

round12: roundfunc port map (clk=>clk, li=>111x»r11x, lo=>|12x, ro=>r12x,
k=>k12x);

round13: roundfunc port map (clk=>clk, li=>112x%»r12x, lo=>|13x, ro=>r13x,

k=>k13x);

84

round14: roundfunc port map (clk=>clk, li=>113x%7»r13x, lo=>|14x, ro=>r14x,
k=>k14x);

round15: roundfunc port map (clk=>clk, li=>114x%»r14x, lo=>|15x, ro=>r15x,
k=>k15x);

round16: roundfunc port map (clk=>clk, li=>115%»r15x, lo=>|16x, ro=>r16x,
k=>k16x);

ufp: fp port map (I=>r16x, r=>I16x, ct=>ct);

end behavior;

Testbench for encryption
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use std.textio.all;
use ieee.std_logic_textio.all;
entity enctestbench is end;
architecture tb of enctestbench is
component desenc
port (pt: in std_logic_vector(1 to 64);
key:in std_logic_vector(164);
ct:out std_logic_vector(164);
clk:in std_logic);
end component ;
signal pt: std_logic_vector(1 to 64);

signal key: std_logic_vector(1 to 64);

85

signal ct: std_logic_vector(1 to 64);
signal clk: std_logic;
begin

UUT:desenc port map(pt=>pt,key=>key,ct=>ct,clk¥3rl

process

begin

clk <='0";

wait for 5ns;

ck <=1,

wait for 5ns;
end process;
pt<="01001110011011110111011100100000011010010110000000001110100"
key<="00000001001000110100010101100111100010010010100110111101111";

end tb;

Testbench for decryption

library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use std.textio.all;

use ieee.std_logic_textio.all;

entity dectestbench is end;
architecture tb of dectestbench is
component desdec

port (pt: in std_logic_vector(1 to 64);

86

key:in std_logic_vector(lg4);
ct:out std_logic_vector¢l64);
clk:in std_logic);
end component ;
signal pt: std_logic_vector(1l to 64);
signal key: std_logic_vector(1l to 64);
signal ct: std_logic_vector(1 to 64);
signal clk: std_logic;
begin
UUT:desdec port map(pt=>pt,key=>key,ct=>ct,clkk¥c
process
begin
clk <='0";
wait for 5ns;
ck <=1
wait for 5ns;
end process;
pt<="00111111101001000000111010001010100110000000100100000010101";
key<="00000001001000110100010101100111100010010010100110111101111";

end tb;

87

