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ABSTRACT

The present thesis aims to realize problems of PafR=cognition using Genetic
Algorithm to derive the benefits of genetic algorithm ire threa of optimization
procedure, for structural pattern recognition. Among th@uartransform frameworks in
which pattern recognition has been traditionally formeda the structural approach is
considered to be the most intensively studied approadtn wiorphology (topology) of
the pattern, is going to be the main classifier of theepas. The pattern analyzed for this
study is in the form a character pattern. As the characan be well represented in the
form of their shape numbers, which is based on the rotwgi of the character, the
structural recognition approach is followed to efficientdgognize the characters. The
issues carefully taken care by the recognition systemdafeition of pattern classes,

sensing environment, pattern representation, feature satrand selection.

In order to achieve the desired objective, the featurdseaharacter are extracted. Then,

these features are used to distinguish the classes olidinacters.

Genetic Algorithm is then applied with the help of MATBAO recognize the characters
correctly.

Further, the work includes recognition of character s¢reagd characters rotated by some
degree.
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CHAPTER 1
INTRODUCTION

In practical pattern recognition problems, a clécsion function learned through an inductive dag algorithm assigns a given
input pattern to one of the existing classes ofstygem. Usually, the representation of each ippttern consists of features since
they can distinguish one class of patterns frontteran a more concise and meaningful way tharreffdy the raw representation.
In many applications, it is not unusual to find lplems involving hundreds features. However, it basn observed that, beyond a
certain point, the inclusion of additional featutesds to a worse rather than better performanceeter, the choice of features to
represent the patterns affects several aspediegfattern recognition problem such as accuraquimred learning time and necessary
number of samples. The main goal of feature sudidettion is to reduce the number of features ursethssification while
maintaining acceptable classification accuracy.

Feature subset selection in the context of practicaliagpins such as character
recognition presents a multi-criterion optimizatiomdtion, e.g. number of features and
accuracy of classification. Character recognition basn a very challenging research
field to achieve machine simulation of human readingisrdsubject of intensive study
for the last three decades. In the early days of ctearaecognition, it was restricted to
machine-printed and fixed format characters. With growing pegational power and
electronic equipments, in 1980’s, character recognitesaime applicable for handprint
and noisy forms along with machine-printed characters. 8\hiploring many different
methods, the use of genetic algorithm to recognize cleasalbhs been redefined during
the past decade. Genetic algorithms offer a particuddtipctive approach for this kind
of problems since they are generally quite effectivedpid global search of large, non-
linear and poorly understood spaces. Moreover, geneficitims are very effective in
solving large-scale problems.

The present thesis aims to realize problems of PafRcognition using Genetic
Algorithm to derive the benefits of genetic algorithm in &éinea of optimization.

1.1 APPROACH TO THESIS

The character to be recognized is available in the fdrirbonp’ image. To recognize the
text character present in the character image, fesatuased on the shape of the character
are extracted.



A Genetic Algorithm tool is developed, which tries to mmize a fitness function. This

tool uses the concept of biological evolution for effitly optimizing the problem.

Then, a fithess function is generated based on therésaextracted above, which aids the
genetic algorithm to take the decision.

Those similar looking characters that are not disigitgd in the above steps are
separately considered for improving the accuracy in theltrelSor this, some other

features are taken into account.

Finally, the tool developed aims to make the recognitiocharacter string and rotated
characters possible.

1.2 THESIS OUTLINE

Chapter 2 highlights the various aspects of Pattern Aisafjong with possible fields of
feature extraction in digital images. Chapter 3 introdubesbasic concept of Genetic
Algorithm along the various steps involved. Chapter 4 @éxplthe steps carried out for
implementation of character recognition using MATLAB toGhapter 5 presents the
MATLAB results for various kinds of problems in ChaexcRecognition. Chapter 6
concludes the thesis and provides the direction for fistuay.

CHAPTER 2
PATTERN ANALYSIS

2.1 DIGITAL IMAGE

An image may be defined as a two-dimensional functidr, ¥), where ‘x’ and ‘y’ are

spatial (plane) coordinates, and the mapping function ‘f' at paly of coordinates (X, y)



is called theintensityor gray levelof the image at that point. When ‘x’, ‘y’, and the
function (intensity) values are all finite, discrejeantities, we call the imagedital
image

A digital image is composed of a finite number of edaits, each of which has a
particular location and value. These elements aerresf to apicture elemenfamage
elementspels andpixels Pixelis the term most widely used to denote the elemenas of
digital image.

There are numerous ways to acquire images, like camseganers, sensing strips, etc.
The output of most sensors is a continuous voltage faaewhose amplitude and
spatial behavior are related to the physical phenomeeimig sensed. To create a digital
image, we need to convert the continuous sensed datagited @irm. This involves two

processessamplingandquantization.

2.1.1 Basic Concepts in Sampling and Quantization

The basic idea behind sampling and quantization is ilestia Fig. below. Figure 2.1(a)
shows a continuous image, f (X, y), that we want toved to digital form. An image
may be continuous with respect to the x- and y-coordipates also in amplitude. To
convert it to digital form, we have to sample thaduon in both coordinates and in
amplitude. Digitizing the coordinate values is cakkagnpling Digitizing the amplitude
values is calledjuantization

The one-dimensional function shown in Fig. 2.1(b) isla pf amplitude (gray level)
values of the continuous image along the line segmeninABg. 2.1(a). The random
variations are due to image noise. To sample this fumctve take equally spaced
samples along line AB, as shown in Fig. 2.1(c). The sasngte shown as small white
squares superimposed on the function. The set of theseetd locations gives the
sampled function. However, the values of the sangil#éspan (vertically) a continuous
range of gray-level values. In order to form a digitaddtion, the gray-level values also
must be convertedj(antizedl into discrete quantities. The right side of Fig. 2. B{@ws
the gray-level scale divided into eight discrete Isyvednging from black to white. The
vertical tick marks indicate the specific value assigieedach of the eight gray levels.

The digital samples resulting from both sampling andngjpation are shown in Fig.



2.1(d). Starting at the top of the image and carrying out gloegedure line by line
produces a two-dimensional digital image.
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FIGURE 2.1 Generating a digital image. (a) Continuous image. (b¢#n line fromAto
Bin the continuous image, used to illustrate the concé@@mpling and quantization.
(c) Sampling and quantization. (d) Digital scan line.

The result of sampling and quantization is a matrixeafl numbers. Generally digital
images are represented in two principle ways.

1. Assume that an image f(X, y) is sampled so thatekelting digital image has M
rows and N columns. The values of the coordinates (xoy becomaliscrete
guantities. For notational clarity and convenience getesalues should be used
for these discrete coordinates. Thus, the values afdbelinates at the origin are



(x, ¥)=(0, 0). The next coordinate values along the fiost of the image are
represented as (x, y)=(0, 1). It is important to keep mdrtinat the notation (0, 1)
is used to signify the second sample along the first tboxdoesnot mean that
these are the actual values of physical coordinates tigeimage was sampled.
Figure 2.2 shows one of the possible coordinate conventiat can be used for
the representation of digital images.
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FIGURE 2.2 Coordinate convention used for representing digital images

Thus, the complete M X N digital image can be \erittn the following compact matrix form:

£(0,0) fl0.1) o FIOLN - 1)
. fi1.0 fil.1 FILLN — 1
£z, ) .t:ll .(:]' fl : )
fIM-1.0) fiM-11) - fiM-1LN-1 (2.1-1)
The right side of this equation is by definition a digitaage. Each element of this
matrix array is called amage elemenficture elementpixel, or pel The termamage
andpixel will be used throughout the rest of our discussions to dendigital image and
its elements.
Sometimes, it is advantageous to use a more traditioaix notation to denote a digital

image and its elements:
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Clearly, g = f(x =1, y =J) = (i, J), so Egs. (2.1-1) and (2.1-&)e identical matrices.

2.1.2 Binary Image

Binary Image is the one in which the pixels can have tibyvalues, 1 (for white) and O
(for black). They are represented by 1 bits/sample. Bimaages are not useful for JPEG
or MPEG, but they are used extensively in the field odgen processing. Especially,
binary images help in separating some dominant charaasridtihe images. A Binary
image can be obtained from a gray level image afteopanig some pint operation in
spatial domain. The terspatial domainrefers to the aggregate of pixels comprising an
image. Spatial Domain methods are procedures that opliretdy on these pixels.

2.1.3Morphology

The wordmorphologydenotes a branch of biology that deals with the fomchstructure
of animals and plants. The same word is used in imageessing in the context of
mathematical morphologgs a tool for extracting image components that arelusethe
representation and description of region shape, suclo@sdaries, skeletons, and the

convex hull.

The language of mathematical morphology is set the@gts in mathematical
morphology represent objects in an image. For e.gsehef all black pixels in a binary
image is a complete morphological description of thagien In binary images the sets in
question are members of the 2-D integer spa&%, wvhere each element of a set is a
tuple (2-D vector) whose coordinates are the (x,y) coatds of the black (or white,
depending on convention) pixel in the image. Gray-scaletatlignages can be
represented as sets whose components aZ’jnlfi this case, two components of each

element of the set refer to the coordinates of al,pa®d the third corresponds to its



discrete gray-level value. Sets in higher dimensiopakas can contain other image
attributes, such as color and time varying components.

Few basic operations on binary images, in set theonybeavritten as follows:

Difference A-B= {w|wOAwDOB} Setof points that belong to A
=AnB° but not to B

Dilation ACO B:{z|(l_5>)Z n A#z¢g  Expands the boundary of A

Erosion A6 B ={z|(B), O A Contracts the boundary of A

When dealing with binary images, the principal &gilon of morphology is extracting image composahat are useful in the
representation and description of shape. In pdaticwe consider morphological algorithms for egtilag boundaries connected
components, the convex hull, and the skeletonrefj@on.[2]

2.1.3.1 Extraction of Connected Components

Extraction of connected components in binary imageentral to many automated image analysis anticagipns. Let Y represent a
connected component contained in a set A and asthaha point p of Y is known. Then the followirtgriative expression yields all
the elements of Y:

Xk = X2 OB)n A k =1,2,3.... (2.1-3)

Where %= p, and B is a suitable structuring element, asvshin figure 2.4. If X = X1
, the algorithm has converged and we let Y= X
A
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Figure 2.3(a) Set A showing initial point p (all shaded points akied 1, but are
shown different from p to indicate that they have regtheen found by the algorithm).
(b) Structuring element. (c) Result of first iteratstep. (d) Result of second step. (e)
Final result.
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The intersection with A at each iterative step elaes dilations centered on elements labeledd2 R illustrates the mechanics of
Eqg. 2.1-3. Note that the shape of the structurlegnent assumes 8 — connectivity between pixels.

2.1.3.2 Boundary Extraction

The boundary of set A, denoted B¢A), can be obtained by first eroding A by B thearfprming the set difference between A and its
erosion. That is,

B(A) = A— (A6 B) (2.1-4)

where B is a suitable structuring element.
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FIGURE 2.4 (a) Set A. (b) Structuring element B. (c) A eroded byd}.Boundary,
given by the set difference between A and its erosion

T

Fig 2.4 illustrates the mechanics of boundary extracticshows a simple binary object,
a structuring element B, and the result of using equatibi4 2Although the structuring

element in fig 2.4(b) is among the most frequently usew, lity no means unique. For
e.g. using a 5 x 5 structuring element of 1's would resudt boundary between 2 & 3
pixels thick. The origin of B is on the edges of the part of the structuring element
maybe outside the image. The normal treatment of timsliton is to assume that the
values outside the borders of the image are 0.

Fig 2.5 further illustrates the use of Eq. 2.1-4 with thecstring element of Fig 2.4(b).

In this example, binary 1's are shown in white and 0’s aclyl so the elements of the
structuring element, which are 1's, also are treated latewBecause of structuring

element used the boundary shown in Fig 2.5(b) is one titdl.

FIGURE 2.5 (a) A simple binary image, with 1's represented in wk{idg¢ Result of
using Eq. 2.1-4 with the structuring element in Fig. 2.4(b)

From the boundary, the shape of the image can bked@ut which is one of the very important featinr@attern recognition.

2.1.4 Shape Analysis



Understanding complex objects using texture, color, mationfrom the pixel statistics
have been widely investigated. Like textures, the formtlee shape is another
fundamental unit of perception and recognizing objects usinggdlomdal shape has been
gaining immense importance in diverse application areadbiikeedical image analysis,
video surveillance, biometrics, and so on.

Shape is the ensemble of all the geometrical infaomadf an object which do not
change even when the location, scale and orientatiche object are changed. Thus
shape is invariant to Euclidean similarity transformatiohisere are various ways to
describe shapes. The technique of shape analysis mategerized as (1) contour-based
shape analysis and (2) region-based shape analysis.

In contour based shape analysis methods, a shape ésepfd by a coarse discrete
sampling of the object contour. A set of landmark paanésextracted from this contour.
Since there exists variabilty amongst the shape noatte shape preserving
transformations, i.e., rigid translation, rotation asdale invariant transforms are

necessary before establishing the equivalence amomgshalpe classes.

In region based approach, on the other hand, invariapesteatures are extracted from
the interior as well as boundary pixels inside a regaom classification is carried out
using these features.[1]

2.1.4.1 Landmark Points

An interesting way to describe a shape pattern is byidgfia finite set ofandmark
pointsinside the object. Dryden & Mardia define landmarks astpmf correspondence
on each object that matches between and within the papuéatd classified these points

into three subgroups:

1. Anatomical landmark points: These points are assigned by an expert that
corresponds between organisms in some biologically meahirgdy. For
example the joints of tissues or bones may be comsldas anatomical



landmarks. Landmark points have been successfully used for medage
analysis.

2. Mathematical landmark pointsThese are the points located on an object, which
obey some interesting mathematical or geometricapeuty, such as, high
curvature or an extremum point.

3. Pseudo-landmark pointsThese are a set of constructed points on an ohjbet e
on the outline or between other landmark points andbweagppropriately defined
by the user. Continuous curvilinear shapes may be approxingtea large
number of pseudo landmark points. Usually pseudo landmarikspaiay be
chosen as a set of equispaced points along the outlnediethe pair of other
landmarks.

Landmark points may be described as nodes or vertic@poliygon enclosing the shape
pattern. They may be a set of fiducial points on saynbtac patterns like fingerprints.
They also may represent some important key points or miakations in a remotely

sensed image, e.g., the intersection between two roads.

2.1.4.2 Polygon as Shape Descriptor

An efficient representation of a planar shape maydoeatenation of the ordered pair of
an n-input polygon in k dimensions. This can be achieved by tmnatang each
dimension into a k x n-vector. The vector represantabf a two dimensional planar

shapes may thus be represented as:

X =[{X1, X2, .0y X%, {Y 1, Y21 +--, YR}

The location, scale and rotational invariant shapeesgmtation may be achieved by
establishing a coordinate reference with respect to posécale, and rotation, to which
all the shape patterns should be aligned.

Quite often we need to align shapes with one-to-oret morrespondence. Thus given
two shapes, the shape alignment procedure involves four steps



Step 1. Compute the centroid of each shape.
Step 2. Rescale each shape to have equal size.
Step 3. Align with respect to position the two shapes atrtbentroids.

Step 4. Align with respect to orientation by rotation.

2.1.4.3 Dominant Points in Shape Description

One scheme to detect a set of dominant points on the @ito determine the curvature
at each point, and computing the resultant cumulativeatur® for all the points starting
with the last detected dominant point.
Dominant points are those points along an image outhae store a lot of important
information about the shape of the image. These pargsusually points of high
curvature. It does not mean that points of small duresare devoid of such information.
In many cases, the cumulative curvature due to a larg@euof such points occurring
consecutively is significant. A large number of algorihimave been suggested for
finding curvature extrema on a digital curve. In gendrare are two approaches to the
problem.
Method I: To detect the dominant points directly through anglecomer
detection schemes.
Method Il: To obtain a piecewise linear polygon approximation of diggtal
curve depending on certain restrictions on the extenthioh the shape has been
preserved. Dominant points then correspond approximately tmtdgrsections of
adjacent line segments of the polygon. These pointalsoeknown as the vertices

or break points of the closed curve (polygon).

2.1.4.4 Curvature and its Role in Shape Determination

For a smooth curve on a real Euclidean plane, tureas defined as the change in slope as a fundfiarc length and can be
expressed in terms of first- and second- ordewdsvies. It is known that points having high cunratare rich in information content
regarding the shape of the curve. As a resultisffettt, several dominant point detection algorighuse techniques for direct
measurement of discrete curvature or its funct{afs called measures of significance). Since shaplecurvature are intimately
related, it is important to find the curvature aregaly. Keeping in mind that the curve being used digitized version of smooth
curve, precise determination of curvature is alehge. After the determination of digital curvatatesach point, the next part is to



detect the dominant points for which several sctehawe been suggested. A lot of schemes use thatere or its functions and
then determine the dominant points using a threshol

2.1.4.5 Polygonal Approximation for Shape Analysis

Given a two-dimensional image the problem of approximatingshkiape from its
polygonal representation has been achieved paramount tanper during the last
decades. Such a polygonal representation finds a numbephdéations in diverse areas
such as chromosome analysis, industrial machine part ifcassn, character
recognition, biometric data analysis etc. The outlina biko-dimensional object usually
characterizes the fundamental features of the olpaiterns. Any closed planar curve
may be approximated by a polygon in any desired accurathasds representation can
have a smooth appearance, which is a sequence of stiaglstegments. ldentifying
such a curve which passes through or near a set of givets peithe problem of
polygonal approximation.

It has been observed from the human visual informatistem, that some dominant
points along an object contour are rich in informationtent and they are sufficient to
characterize the shape of the object. An approach ty aéipplbasic philosophy of the
human understanding and recognition procedure of complexdiwensional curves
leads to detection of dominant points on the curves whioén joined by straight line

segments can approximate the shape to any desired degEiGicy.

1. There are many algorithms for the detection of d@nt points on digital curves. Piecewise linearrapimation of the
planar curve allows for a variable number of segieffter an arbitrary initial choice, the segmeats split or merged in

order to derive the error norms under a prespecii@ind.

2. A parallel algorithm is based on the determination ofraye curvature of the
points on the curve by determining the region of suppoegiach point. Since the
level of detail represented at each point on the digieve varies, a smoothing
factor based on the local properties of the curve babet used to find the
curvature at each point. This smoothing factor is determimethe region of
support. The advantage of the algorithm is that it requiressmoothing

parameter.



2.1.4.6 Active Contour Model

Segmentation of monochrome images uses basic prapeftigay-level values to detect
the isolated points, lines and edges. Alternately seghentcan also be performed by
thresholding, region growing, region splitting and mergiQuite often they produce
spurious edges and gaps, which do not necessarily correspbodrtdary objects. The
limitation of these methods is due to their compleliamee on the information contained
in the local neighborhood of the image. They ignore Inotllel-based information and
higher order organization of the image. Another probleso@ated with these methods
is edge grouping. After extracting edges from the image, ity have to be grouped or
linked in order to determine boundaries, which often doeyialot good results.
The application of prior knowledge, say geometrical kiedge, strengthens the
visual interpretation of shape via the stabilizing influeoterior expectations of the
shapes that are likely to be seen. Active contour rsaatel widely used ion detecting
object boundary shape as well as they are used foririgpekmoving object in an
image sequence. A number of approaches have been proposathper analysis
using active contours. These models utilize deformabléooosy which conform to
various object shapes and motion. They can be used forasuheurve detection,

segmentation, shape modeling and visual tracking.

2.1.4.7 Shape Distortion and Normalization

While capturing two-dimensional images, based encdmera placements, there are 4 possible basis fof planar object shape
distortions-rotation, scaling, translation and skewA good shape descriptor should be invariathé&se distortions. It is thus
important to normalize the shape patterns in iigirel and various distorted forms, such as scaladted, translated or skewed
forms, so that they all, more or less, resemblélairto each other. When an appropriate set ofifestare extracted only after such
normalization, shape classification yields muchidseiccuracy. We will consider shape normalizatiba binary image f (x, y), in
which f (x, y) = 1 indicates that (x, y) is an otfj@ixel, otherwise it is background pixel. Suchaamalization algorithm to normalize
the shapes, called shape compacting, involvesollening steps:

1. Computing the shape dispersion matrix M,
2. Aligning the coordinate axis with the eigen vectors ofavid
3. Rescaling the axis using the eigen values of M



2.1.4.8 Shape Dispersion Matrix

For a given shape its dispersion matrix M reveadsviariances and co-variances amongst the pixélieirmage. The dispersion
matrix is a key element in the normalization praecdhe alignment of the coordinate axis uses thpetdsion matrix M and takes care
of the rotation of the object. Rescaling the cooat axis is the integral component of shape cotimgaand it uses the dispersion
matrix. The basic philosophy of shape normalizapoocess is that after the normalization operatioa,shape will have a dispersion
matrix equal to an identity matrix multiplied bycanstant. This is an indication that the shapésimiost compact form.

To compute dispersion matrix first we calculate thesh@entroid

22 xarxy) > > yIf(xy)
Sty )T Y i)

The shape dispersion matrix M is a 2 by 2 matrix
m m
M - |: 11 1,2 :|
m2,l m2,2
22X oy 22 Oy
= - X ’ n'h’z = - y )
ZXny(X’ y) zxzy f(X’ y)

SE )
ZXny(X’y) ,

If we consider each object pixel as a data polmg,ghape can be viewed as a cluster of

X =

Where,

my1

M2 = M3

pixels. The shape dispersion matrix M computed aliswexactly the covariance matrix

of the cluster. It has already been discussedalsst of principle components may be
selected from the covariance matrix, which is usedlecouple the set of correlated

features. It is also necessary to scale the featswmethat the clusters become compact.
The shape dispersion matrix essentially perforrassime function; it normalizes a shape
by making it compact.

2.1.4.9 Shifting and Rotating the Coordinate Axes

The origin of the coordinate system is shifted he tenter of the shape and then the

coordinate system is rotated according to the ewgetors of the dispersion matrix M.



The matrix M has two eigen vectors & E, corresponding to theigen value3; & A..

The two normalized eigen vectors & E;of M are computed as follows:

2 2
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Now we can construct a matrix R from & E, by:

R = |:E—I:| = |:elx el’y
E;— eZ,x eZ,y
Since M is real and symmetric; B E, are orthogonal to each other. Furthermore, they
are normalized to unit length. Thus, R is an ortiraral matrix.
We now transform the coordinate system by firstglating the origin to the shape center

and then multiplying the coordinates with Matrixow, each object pixel location (x,y)

will have a new location (X', y') given by:

MR

Since R is an orthonormal matrix, the geometriertetation of the transform by R is

pure coordinate rotation. The new coordinate aresnahe same directions as & E..



The dispersion matrix D of the translated and rotategesiis given by:

5 [A O
0 A

2.1.4.10 Changing The Scales Of The Bases

In the previous steps, we have rotated the coordinatensysd that the new X — axis
points in the direction in which shape is most dispkr3ée effect of the rotation on the
dispersion matrix is that now it is a diagonal matf®nce our objective is to have a
shape whose dispersion matrix is a scaled identity xnatrthis last step we will change
the scales of the two axes according to the Eigen valu&s\,. i.e. for an object pixel

location (X', y'), the new location (%, y") is obtained through a transformation defined

by W:
Bl el

where, k is a system wide constant.

Since W is a diagonal matrix the effect of the abstep on the shape is to change the
scales of the two coordinate bases vectors satibaghape is in its most compact form
and with a normalized size. The results of thedledion, rotation and scale invariance

compact form generation has been shown in Fig. 2.6.



FIGURE 2.6 Normalized images by shape dispersion matrix : (a)efiated image of

letterK, (c)-(d) normalized results, (e)-(f) scaled and tratesl version of lettd image,

(9)-(h) normalized results.

2.2 PATTERN RECOGNITION

In digital image processing, the process of recognitiomdividual image regions is
called pattern recognition. The approaches developed farpaticognition are divided
into two principal areas: decision-theoretic and stmadt The first category deals with
patterns described using quantitative descriptors, such a$,lewmgh and texture. The
second strategy deals with patterns best described biytatjual descriptors, such as
relational descriptors.

Pattern recognition aims to classify data (patternsg¢da@n either a priori knowledge or
on statistical information extracted from the patterfise patterns to be classified are
usually groups of measurements or observations, definingsspainan appropriate
multidimensional space.[7]

The act of recognition can be divided into two broad gmtes: recognizing concrete
items and recognizing abstract items. The recognition o€rete items involves the
recognition of spatial and temporal items. Examplespatial items are fingerprints,

weather maps, pictures and physical objects. Exampleswgdoral items are waveforms



and signatures. Recognition of abstract items involvesebognition of a solution to a
problem, an old conversation or argument, etc. In othedsyosecognizing items that do
not exist physically.

2.2.1 Pattern

A patternis anarrangement of descriptarsuch as shape number, signature, number of
lines etc. The naméeatureis used often in pattern recognition literature to develop
descriptor. Apatternclassis a family of patterns that share some common ptieper
Pattern classes are denoted, wy ......ow , where W is the number of classes. Pattern
recognition by machine involves techniques for assigning patteriiseir respective
classes —automatically and with as little human ietion as possible.
A pattern is an entity, vaguely defined, that could be given a nange,

» fingerprint image

* handwritten word

* human face

* speech signal

» DNA sequence
The application of pattern recognition studied in this pragecharacter recognitionSo,
character recognition is studied here in detail.

2.3 CHARACTER RECOGNITION TECHNIQUES

Character recognition has been a very challengisgarch field to achieve machine simulation of huneading and is a subject of
intensive study for the last three decades. Iretitly days of character recognition, it was reddo machine-printed and fixed
format characters. With growing computational poesed electronic equipments, in 1980’s, charactengrition became applicable
for handprint and noisy forms along with machinevad characters.

2.3.1 Steps for Character Recognition

The character recognition process can be grouped intadheral task of preprocessing,
segmentation, representation, training and recognitiorsolne methods, some of the
stages are merged or omitted; in others a feedback metha@nigsed to update the
output of each stage.



2.3.1.1 SensingSensing is the process of acquiring an input of charpetégrn captured
from a device like a camera / scanner or extracted &oyndatabase that needs to be

recognized for analysis.

2.3.1.2 Preprocessing or filteringThe raw data, depending on the data acquisition type,
iS subjected to a number of preliminary processing stepsiake it usable in the
descriptive stages of character analysis. Preprocessigyto produce data that are easy
for the CR systems to operate accurately. The maattbgs of preprocessing are

1) Noise reduction;

2) Normalization of the data;

3) Compression in the amount of information to beimeth

4) Segmenting the document into its subcomponents.

2.3.1.3 Feature Extraction:Image representation plays one of the most importdes ro
in a recognition system. In the simplest case, gragtlev binary images are fed to a
recognizer. However, in most of the recognition sysiemsorder to avoid extra
complexity and to increase the accuracy of the algorithmnsmore compact and
characteristic representation is required. For this mapa set of features is extracted for
each class that helps distinguish it from other elsshile remaining invariant to
characteristic differences within the class. Theowsitypes of image representation can
be categorized into three major groups:[19]

1) Global Transformation and Series Expansion

2) Statistical representation and

3) Geometrical and topological representation.

2.3.1.4 Model Selection and TrainingCR systems extensively use the methodologies
of pattern recognition, which assigns an unknown sanmmie a predefined class.
Numerous techniques for CR can be investigated in four gergpedaches of pattern
recognition, as suggested in:

1) Template matching;



2) Statistical techniques;

3) Neural networks (NNs);

4) Structural techniques.

The above approaches are neither necessarily indepermadeatisjpinted from each other.
These techniques are discussed in detail in the neidrsect

The steps of character recognition are summarizéle Fig. 2.7

Dimensicnality Model
Measurin
devicas 9 Preprocessing reduction Prediction selection
Py . . f
The u Vflv|| n Analysis
“real world’ ﬂ% $ : results
o 1y
Sensors Feature selection Crmoss-validafion
Cameras Fealure projection Bootstrap
Databases
Noise filtering Llassification
Feature extraction Regression
Description

FIGURE 2.7 Modules of a basic character recognition
system

2.3.2 Recognition Techniques

Some of the techniques for character recognition are:[8]

2.3.2.1 Template Matching

The conventional method is to consider a region, whicludes the letter. If a line
passes through a pixel, we give the corresponding palua of 1; otherwise it is taken
as 0. Thus we have to store the pixel value combinafamnsvery letter. Now when an
input pattern is given, a suitable match with these stpat¢terns is checked. Only if the
new input pattern exactly matches with any of the stortdrpg, it will be recognized.
This method has several limitations. First we needdme ®very pattern that we want to



get recognized in future. So, large memory space is requebnd, it takes a lot of
time for matching the input pattern with the stored patger producing the results.
Third this method cannot handle noise or variation initpet. That is, the input pattern
should he exactly similar to one of the stored pattestieerwise the systems will not be
able to recognize it. So this method is poor at generalizati

2.3.2.2 Atrtificial Neural Networks (ANNS)

A Neural Networkis defined as a computing architecture that consists roéssively
parallel interconnection of adaptive “neural” processBexause of its parallel nature, it
can perform computations at a higher rate compared toldksical techniques. Because
of its adaptive nature, it can adapt to changes in theastatdearn the characteristics of
input signal. A NN contains many nodes. The output fromrmue is fed to another one
in the network and the final decision depends on the @mpteraction of all nodes.
Because of it's all these characteristics it has imecwoery efficient tool for character
recognition.

The drawback of this method is that the size of inputoras very large for large images.
There will be a large number of input units and hidden uSibssthe complexity of the

neural network will be large.

2.3.2.3 Statistical Techniques

Statistical decision theory is concerned with stiabstdecision functions and a set of
optimality criteria, which maximizes the probability tife observed pattern given the
model of a certain class. Statistical techniques aretlyndmsed on three major
assumptions.

a) Distribution of the feature set is Gaussiamahe worst-case uniform.

b) There are sufficient statistics availabledach class.

c¢) Given ensemble of images, one is able tmeka set of features, which represents distimct class of patterns.

The measurements taken from n features of each wordamlte thought to represent an
n-dimensional vector space and the vector, whose cabedincorrespond to the
measurements taken, represents the original word.[10]



2.3.2.4 Structural Techniques

The techniques discussed above deal with patterns qievetlly and largely ignore any
structural relationships inherent in a pattern’s shape.stituetural methods, however,
seek to achieve pattern recognition by capitalizing precisaly these types of
relationships.

Matching Shape Numbers

The degree of similarity ‘k’, between two region boundaries (shapes) is definedhas t
largest order for which their shape numbers still cdimciFor example, let ‘a’ and ‘b’
denote shape numbers of closed boundaries represented tBctdbdal chain codes.
These two shapes have a degree of similarity ‘K’ if
s5(@) =9g() forj=4,6,8,....,k
s@=9g(b) forj=k+2,k+4,...
Where s indicates shape number and the subscriptiadiorder. Thdistancebetween
two shapes ‘a’ and ‘b’ is defined as the inverse of tthegree of similarity:
D(a, b) = 1/k
The distance satisfies the following properties:
D(a, b)=0
D(a, b)=0 iffa=b
D(a, c)< max [D(a, b), D(a, c)].
Either 'k’ or ‘D’ may be used to compare two shapeshdf tlegree of similarity is used,
the larger ‘k’ is, the more similar the shapes aregbat k is infinite for identical
shapes). The reverse is true when the distance messised.
Suppose that we have a shdand want to find its closest match in a set of fiveeoth
shapes (a, b, ¢, d and e), as shown in Fig. 2.8(a). Thieprablanalogous to having five
prototype shapes and trying to find the best match to a giMamwn shape. The search
may be visualized with the aid of similarity tree showifrig. 2.8(b). The root of the tree

corresponds to the lowest possible degree of similantych, for this example, is 4.



Suppose that the shapes are identical up to degree 8, wixtieption of shape ‘a’,
whose degree of similarity with respect to all otbleapes is 6. Proceeding down the tree,
we find that shape ‘d’ has degree of similarity 8 wispect to all others, and so on.
Shapes ‘f' and ‘c’ match uniquely, having a higher degredamilegity than any other
two shapes. At the other extreme, if ‘a’ had been amawk shape, all we could have
said using this method is that a was similar to the diikershapes with a degree of
similarity 6. The same information can be summarinetthe form of asimilarity matrix

as shown in fig 2.8(c).

(@)

(b) (c)
FIGURE 2.8 (a) Shapes. (b) Hypothetical similarity tree. (c) fanity matrix.

Structural technigues can be also applied to handwritteraatiearrecognition. In this
case a structure can be broken into parts, it can belukbtry the features of these parts
and can also by the relationships between these paitscdn be a either topological or
geometrical feature. By choosing proper features eaalacter can be described such
that corresponding character is identified clearly.[11]



CHAPTER 3
GENETIC ALGORITHM



3.1 INTRODUCTION

A genetic algorithm (GA) is a search technique used in computer science to find
approximate solutions to optimization and search probleg@enetic algorithms are a
particular class of evolutionary algorithms that usehnepes inspired by evolutionary
biology such as inheritance, mutation, natural selectiod,recombination (or crossover).

Genetic algorithms are typically implemented as a coempaimulation in which a
population of abstract representations (callddomosomés of candidate solutions
(called individualg to an optimization problem evolves toward bettetutsons.
Traditionally, solutions are represented in binary asigdériof Os and 1s, but different
encodings are also possible. The evolution starts &@mpulation of completely random
individuals and happens in generations. In each generatienfittiess of the whole
population is evaluated, multiple individuals are stocbabyi selected from the current
population (based on their fithess), modified (mutatedesombined) to form a new
population, which becomes current in the next iteratidhealgorithm.
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FIGURE 3.1 Problem solution using evolutionary algorithms

3.2 OVERVIEW

Evolutionary algorithms are stochastic search methbds mimic the metaphor of

natural biological evolution. Evolutionary algorithms cggeron a population of potential
solutions applying the principle of survival of the fittest groduce better and better
approximations to a solution. At each generation, a setvwof approximations is created
by the process of selecting individuals according to tleeel of fitness in the problem

domain and breeding them together using operators borroamdnttural genetics. This
process leads to the evolution of populations of individtkes are better suited to their
environment than the individuals that they were createdn,frjust as in natural

adaptation.

Evolutionary algorithms model natural processes, suche&xt®n, recombination,

mutation, migration, locality and neighborhood. Figurén@ves the structure of a simple
genetic algorithm. Evolutionary algorithms work on populaiohindividuals instead of

single solutions. In this way the search is performeal parallel manner.
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FIGURE 3.2 Structure of a single population evolutionary algorithm

Evolutionary algorithms differ substantially from morgaditional search and

optimization methods. A few of the most significarftetiences are:[14]

- Evolutionary algorithms do not require derivative informatar other auxiliary
knowledge; only the objective function and correspondimg$s levels influence
the directions of search.

- Evolutionary algorithms use probabilistic transition syleot deterministic ones.

3.3 SELECTION

Selection determines, which individuals are chosen for mating
(recombination) and how many offspring each selected individual
produces. In selection the individuals producing offspring are chosen. The
first step is fitness assignment. Each individual in the selection pool
receives a reproduction probability depending on the own objective value
and the objective value of all other individuals in the selection pool. This
fitness is used for the actual selection step afterwards.

The first step fitness assignment is by:



« Proportional fithess assignment or

« Rank-based fitness assignment

The actual selection is performed in the next steperPa are selected according to their
fitness by means of one of the following algorithms:

+ Roulette-wheel selection

« Stochastic universal sampling
+ Local selection

« Truncation selection or

+ Tournament selection

3.3.1 Rank-Based Fitness Assignment

In rank-based fitness assignment, the population is s@tedrding to the objective
values. The fitness assigned to each individual dependsamnlgs position in the
individuals rank and not on the actual objective value.
Rank-based fitness assignment overcomes the scaling meohié the proportional
fitness assignment. The reproductive range is limitedh&ono individuals generate an
excessive number of offspring. Ranking introduces a unifocaling across the
population and provides a simple and effective way of ctinigcselective pressure.
Rank-based fitness assignment behaves in a more robaiséntaan proportional fithess
assignment and, thus, is the method of choice.
ConsiderNind the number of individuals in the populatioRps the position of an
individual in this population (least fit individual haBos=1, the fittest individual
Pos=Nind) andSPthe selective pressure. The fitness value for an uhdaliis calculated
as:
Linear ranking:

FitnessPog = 2 -SP+ 2-SP- 1)-Pos- 1) / Nind - 1)

Linear ranking allows values of selective pressure in (L@,



A new method for ranking using a non-linear distributiomisoduced. The use of non-
linear ranking permits higher selective pressures thalnger ranking method.

Non-linear ranking:

FitnessPog = Nind-X*(Pos- 1) / sumK~(i - 1));i = 1:Nind
Xis computed as the root of the polynomial:

0 = (SP- 1)XA(Nind - 1) +SPXA(Nind - 2) + ... +SPX + SP

Non-linear ranking allows values of selective pressufé.0,Nind - 2.0].
Fig. 3.3 compares linear and non-linear ranking graphically.
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FIGURE 3.3 Fitness assignment for linear and non-linear ranking

The probability of each individual being selected for nwis its fitness normalized by
the total fitness of the population.

Selection intensity:
SelinkanSP) = (SP-1)-(1/sqrt(pi)).
Loss of diversity:
LOSSDi\Rank(SP) = (Sp-l)/4
Selection variance:
SelVakand SP) = 1-((SP-1)"2/pi) = 1-Selkat( SP)"2.
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FIGURE 3.4 Properties of linear ranking

3.3.2 Roulette Wheel Selection

The simplest selection scheme is roulette-wheetgefe also called stochastic sampling
with replacement. This is a stochastic algorithm andivm#the following technique:

The individuals are mapped to contiguous segments of a liok,tBat each individual's
segment is equal in size to its fitness. A random nunsbgenerated and the individual
whose segment spans the random number is selectegirddess is repeated until the
desired number of individuals is obtained (called mating fabijua). This technique is
analogous to a roulette wheel with each slice propottionsize to the fitness, see Fig.
3.5.

Table 3.1 shows the selection probability for 11 individuaigar ranking and selective
pressure of 2 together with the fitness value. Individua the most fit individual and
occupies the largest interval, whereas individual 10 @asé¢cond least fit individual has
the smallest interval on the line (see figure 3.5).Middial 11, the least fit interval, has a

fitness value of 0 and get no chance for reproduction

Number of individuall 2 3 4 5 6 7 8 9 10 11



Fitness value 2.01.8 16 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0
Selection probability0.1€0.1€/0.150.13/0.11 0.090.070.0€/0.03/0.02 0.0

TABLE 3.1 Selection probability and fitness value

For selecting the mating population the appropriate nurolbarniformly distributed
random numbers (uniform distributed between 0.0 and 1.0l&pendently generated.

Sample of 6 random numbers:
0.81, 0.32, 0.96, 0.01, 0.65, 0.42.

Fig. 3.5 shows the selection process of the individualstHerexample in table 3.1,

together with the above sample trials.

trial 4 trial 2 trial & trial 5 trial 1 trial 3

innchi caal |l 1 I i ll 3 l 4 |l 5 0y 6 l 7B |i9| o
I 1 1 1 1 1 1 — 1 Il

0.0 018 0.34 0.4% 062 073 082 0.5 1.0

FIGURE 3.5 Roulette-wheel selection

After selection the mating population consists oftte individuals:
1,2,35,6,09.
The roulette-wheel selection algorithm provides a zers bt does not guarantee

minimum spread.

3.3.3 Stochastic Universal Sampling

Stochastic universal sampling provides zero bias and mmispread. The individuals
are mapped to contiguous segments of a line, such thatrehieidual's segment is equal
in size to its fitness exactly as in roulette-wheséstion. Here equally spaced pointers
are placed over the line as many as there are indivituaks selected. Considspointer



the number of individuals to be selected, then the ristebetween the pointers are
1/NPointerand the position of the first pointer is given byaadomly generated number
in the range [0, NPointei.

For 6 individuals to be selected, the distance betweeipainters is 1/6=0.167. Figure 6
shows the selection for the above example.

Sample of 1 random number in the range [0, 0.167]:
0.1.

pointer 1 pointer 2 pointer 3 pointer 4 pointer 5 pointer 6
1ndw1duall ll I 2l I 3i [ 4 il 5 Ilﬁ I TIELIQHIEI

| I | | | | | | |
0.a T 0.1s 0.34 0.49 0.6 0.73 0.8z 0.95 1.0

random numhber

FIGURE 3.6 Stochastic universal sampling

After selection the mating population consists of the indiduals:

1,2,3,4,6,8.
Stochastic universal sampling ensures a selection gfroféswhich is closer to what is
deserved then roulette wheel selection.

3.3.4 Local Selection

In local selection every individual resides inside astained environment called the
local neighborhood. (In the other selection methods theolevtpopulation or
subpopulation is the selection pool or neighborhood.)vishgials interact only with
individuals inside this region. The neighborhood is definethbystructure in which the
population is distributed. The neighborhood can be seémeagroup of potential mating
partners.



Linear neighbourhood (distance=2)

FIGURE 3.7 Linear neighborhood: full and half ring

The first step is the selection of the first haltloé mating population uniform at random
(or using one of the other mentioned selection algorithims,example, stochastic
universal sampling or truncation selection). Now a laoaighborhood is defined for
every selected individual. Inside this neighborhood thangaartner is selected (best,
fitness proportional, or uniform at random).

Twodimensional neighbourhood (distance=1)

full cross half eross

FIGURE 3.8 Two-dimensional neighborhood: full and half cross



The structure of the neighbourhood can be:

Linear
o Fullring, half ring (see Fig. 3. 7)
Two-dimensional
o Full cross, half cross (see Fig. 3. 8)
o Full star, half star (see Fig. 3. 9)
Three-dimensional and more complex with any combinationthef above

structures.

The distance between possible neighbors togetherthetistructure determines the size
of the neighborhood. Table 3.2 gives examples for thee gfizhe neighborhood for the

given structures and different distance values.

Twodimensional neighbourhood (distance=1)

full star half star

FIGURE 3.9 Two-dimensional neighborhood: full and half star

Between individuals of a population an 'isolation by dista exists. The smaller the
neighborhood, the bigger the isolation distance. Howebecause of overlapping
neighborhoods, propagation of new variants takes placs. a84sures the exchange of

information between all individuals.



distatice
structure 1 2
fill ring 2 4
half ring 1 2
fidl cross 4 (12
half cross 2 4 (5
fidll star a 24
half star 3 a

TABLE 3.2 Number of neighbors for local selection

The size of the neighborhood determines the speed of prapagatti information
between the individuals of a population, thus deciding &etwrapid propagation or
maintenance of a high diversity/variability in the popola A higher variability is often
desired, thus preventing problems such as premature convergeaclocal minimum.
Local selection in a small neighborhood performed bélign local selection in a bigger
neighborhood. Nevertheless, the interconnection efwhole population must still be
provided. Two-dimensional neighborhood with structure half gsing a distance of 1 is
recommended for local selection. However, if the pomnat bigger (>100 individuals)
a greater distance and/or another two-dimensional neightdishould be used.

3.3.5 Truncation Selection

Compared to the previous selection methods modeling nasetattion truncation
selection is an artificial selection method. It issed by breeders for large
populations/mass selection.

In truncation selection individuals are sorted accordmgheir fithess. Only the best
individuals are selected for parents. These selectedtpgeyduce uniform at random
offspring. The parameter for truncation selectiorhétruncation threshol@runc Trunc
indicates the proportion of the population to be settas parents and takes values
ranging from 50%-10%. Individuals below the truncation thwé&kldo not produce



offspring. The term selection intensity is often usedruncation selection. Table 3.3
shows the relation between both.

Truncation thresholdl1% |10%|20% 40%|50% 80%
Selection intensity| 2.66.76/ 1.2 1 0.97 0.8 0.34

TABLE 3.3 Relation between truncation threshold and selechtensity

Selection intensity:
Sellntrund Trunc) = 1/Trunc/sqrt(2:pi)-exp(A(R)/2).
Loss of diversity:
LossDivrund Trunc) = 1-Trunc.
Selection variance:
SelVaknd Trunc) = 1-Sellntund Trunc)- (Sellntund Trunc)-t).
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FIGURE 3.10 Properties of truncation selection

Comparison of selection schemes

Fraction of 1's in generation gen:



p(gen) = 0.5-(1+sin(Selint/sqrt(n)-gen+asing2:))

(n: dimension of objective function,g:pfraction of 1's in initial random population)
Convergence is characterized by p(GenConv) = 1.
special case:qp= 0.5:

GenConv = pi/2-sqgrt(n)/Selint.
Number of generations to reach convergence:
Ranking selection:

GenConyank = sqrt(pi-n)/(2-(SP-1)).
Truncation selection:

GenConvyync = pif2-sgrt(n)/Sellftunc
Tournament selection:

GenCony,,r = pif2-sqrt(n/(2-(log(Tour)-log(sqrt(4.14-log(Tour)))))).
The number of generations to reach convergence with alesiggmetic algorithm is
proportional tosgrt() and inversely proportional to selection intensity. (Pagulation
should be large enough to converge to the optimum anihitted population should be
generated at random.) This would suggest a high selectiensity as best selection
scheme. However, a high selection intensity leadsrémature convergence and thus a
poor quality of the solutions. The genetic algorithm worksstreffectively with the
minimal population sizé\*. This is the size where the population still convergethé
optimum. N* depends on the dimension of the objective function ded selection
intensity.
As shown above the three selection methods behavéassiassuming similar selection
intensity. Figure 3.11 shows the relation between seteatitensity and the appropriate
parameter of the selection methods (selective presgunacation threshold and
tournament size). It should be stated, that with touard selection only discrete values
can be assigned and linear ranking selection allows osiyadler range for the selection

intensity.
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However, the behavior of the selection methods femiht. Thus, the selection methods
will be compared on the parameters loss of diversity. (3.12) and selections variance
(Fig. 3.13) on the selection intensity.
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FIGURE 3.12 Dependence of loss of diversity on selection intgnsi

Truncation selection leads to a much higher loss igdrsity for the same selection

intensity compared to ranking and tournament selecfionncation selection is more



likely to replace less fit individuals with fitter offapg, because all individuals below a
certain fitness threshold don't have a probabilitygsélected. Ranking and tournament
selection seem to behave similar. However, rankingcsete works in an area where

tournament selection doesn't work because of the disalefracter of tournament

selection.
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FIGURE 3.13: Dependence of selection variance on selection iyens

For the same selection intensity truncation selack@ads to a much smaller selection
variance than ranking or tournament selection. As szan clearly ranking selection
behaves similar to tournament selection. However,nagaiking selection works in an
area where tournament selection doesn't work becaug@eofliscrete character of

tournament selection.



3.4 RECOMBINATION

3.4.1 Real Valued Recombination

3.4.1.1 Discrete recombination
Discrete recombination performs an exchange of varialleydetween the individuals.

Consider the following two individuals with 3 variablezled3 dimensions), which will
also be used to illustrate the other types of recombimati

individual 1 12 25 5

individual 2 123 4 34

For each variable the parent who contributes its bbrido the offspring is chosen
randomly with equal probability.

sample 1 2 2 1

sample 2 1 2 1

After recombination the new individuals are created:
offspringl 123 4 5
offspring 2 12 4 5

O possible offspring

W parents

variahle 2

O ®

variahle 1

w

FIGURE 3.14 Possible positions of the offspring after discrete mdmpation

Discrete recombination generates corners of the hyperdabned by the parents. Fig.

3.14 shows the geometric effect of discrete recombination



Discrete recombination can be used with any kind of vasafllinary, real or symbols).

3.4.1.2 Intermediate Recombination

Intermediate recombination is a method only applicableébvariables (and not binary
variables). Here the variable values of the offspringcli@sen somewhere around and
between the variable values of the parents.

Offspring are produced according to the rule:
offspring = parent 1 + Alpha (parent 2 - parent 1),

Where Alpha is a scaling factor chosen uniformly at ramdoer an interval i, 1 +d].

In intermediate recombinaticth= 0, for extended intermediate recombinatibr 0. A
good choice is d = 0.25. Each variable in the offspring is eékaltr of combining the
variables according to the above expression with aAlpha chosen foeachvariable.
See Fig. 3.15 for a picture of the area of the variabige of the offspring defined by the

variables of the parents.

parent 1 parent 2

area of parents

possible area of offspring

-0.25 0 1 1.25

FIGURE 3.15 Area for variable value of offspring compared to parentistermediate

recombination

Consider the following two individuals with 3 variableslea
individual 1 12 25 5
individual 2 123 4 34



The chosen Alpha for this example are:
sample 1 05 11 -01
sample 2 0.1 08 0.5

The new individuals are calculated as:
offspringl 675 19 21
offspring2 23.1 8.2 195

Intermediate recombination is capable of producing any pathtnaa hypercube slightly
larger than that defined by the parents. Fig. 3.16 showso®ble area of offspring after

intermediate recombination.

O O possible offspring
O B parents

variahle

variahle 2

FIGURE 3.16 Possible area of the offspring after intermediatemdmoation

3.4.1.3 Line Recombination

Line recombination is similar to intermediate recomborgtiexcept that only one value
of Alpha for all variables is used:

individual 1 12 25 5

individual 2 123 4 34

The chosen Alpha for this example are:



sample 1 0.5
sample 2 0.1

The new individuals are calculated as:
offspringl 67.5 14.5 195
offspring2 23.1 229 7.9

Line recombination can generate any point on the line debyetthe parents. Fig. 3.17
shows the possible positions of the offspring after@@@mbination.

variable 2 parents

"k_ line of possible offspring
variable 1 "

FIGURE 3.17 Possible positions of the offspring after line recombimatio

3.4.1.4 Extended Line Recombination

Extended line recombination generates offspring in a dweatefined by the parents
(line recombination). It tests more often outside tha defined by the parents and in the
direction of parent 1. The point for the offspring isidedl by features of the mutation
operator of the Breeder Genetic Algorithm (Real valuedation). The probability of
small step sizes is greater than that of bigger steps figare ). Extended line

recombination is only applicable to real variables (artdoim@ry or integer variables).

Offspring are produced according to the following rule:



+ offspring 1 = parent 1 + RecMxrangedeltadiff,
offspring 2 = parent 2 RecMxrangedelta (-diff).

+ RecMx= 1 (- with probability 0.9),

« range= 0.5-domain of variable (search interval),

« delta = sumé(i)- 2™), a(i) = 1 with probability Ih, elsea(i) = 0; m = 20;
i=0:(m-1),

« diff = (parent 1 - parent 2)/parent 1 - parent 2

Consider the following two individuals with 3 variableslea
individual 1 12 25 5
individual 2 123 4 34

The chosen variables for this example are:

RecMx -1

range 50 50 50
delta 0.015625

diff -0.95 0.18 -0.25

The new individuals are calculated as:
offspring 1  12.7 24.8 5.19
offspring2 11.2 25.1 4.80

3.4.2 Binary Valued Recombination (Crossover)

3.4.2.1 Single-Point Crossover

In single-point crossover one crossover positigh,2,...,Nvarl], Nvar. number of
variables of an individual, is selected uniformly at randord the variables exchanged
between the individuals about this point, then two néfepang are produced. Fig. 3.18
illustrates this process.

Consider the following two individuals with 11 binary variabésach:

individual1 0111002121010

individual2 10101100101



The chosen crossover

crossover position

position is:
5

After crossover the new individuals are created:

offspringl 01110100101
offspring2 10101011010

parents

AN

AN

offspring

AN

FIGURE 3.18 Single-point crossover

3.4.2.2 Multi-Point Crossover

For multi-point crossovem crossover positionk[1,2,...,Nvarl], i=1:m, Nvar. number
of variables of an individual, are chosen at random withduplicates and sorted in
ascending order. Then, the variables between successesseer points are exchanged
between the two parents to produce two new offspring. SEotion between the first

variable and the first crossover point is not exchangssveen individuals. Fig. 3.19

illustrates this process.

Consider the following two individuals with 11 binary variabésach:

individuall 01110011010
individual2 10101100101

The chosen crossover
cross pos. (m=3) 2

positions are:
6




After crossover the new individuals are created:
offspringl 01101101111
offspring2 1 0/1100/0010]0

parents offspring

LERMMMMTIINY

o
Z

S,

FIGURE 3.19 Multi-point crossover

The idea behind multi-point, and indeed many of the vanaton the crossover operator,
is that parts of the chromosome representation thatricote to the most to the
performance of a particular individual may not necelssde contained in adjacent
substrings. Further, the disruptive nature of multi-pomissover appears to encourage
the exploration of the search space, rather thanufang the convergence to highly fit
individuals early in the search, thus making the seate mobust.

3.4.2.3 Uniform Crossover

Single and multi-point crossover defines cross pointplases between loci where an
individual can be split. Uniform crossover generalizes shieeme to make every locus a
potential crossover point. A crossover mask, the sangth as the individual structure is
created at random and the parity of the bits in the nmalséates which parent will supply
the offspring with which bits.

Consider the following two individuals with 11 binary variabéach:

individuall 01110011010

individual2 10101100101



For each variable the parent who contributes its bbridao the offspring is chosen
randomly with equal probability. Here, the offspring bisduced by taking the bit from
parent 1 if the corresponding mask bit is 1 or the binfiparent 2 if the corresponding
mask bit is 0. Offspring 2 is created using the inverse ofndmek, usually.

sample 1 01100011010

sample 2 10011100101

After crossover the new individuals are created:
offspringl 11101111111
offspring2 00110000000

Uniform crossover, like multi-point crossover, has rbedaimed to reduce the bias
associated with the length of the binary representased and the particular coding for
a given parameter set. This helps to overcome the misiagle-point crossover towards
short substrings without requiring precise understandinghef significance of the
individual bits in the individuals representation. Spead Be Jong demonstrated how
uniform crossover may be parameterized by applying a prolyatmlithe swapping of
bits. This extra parameter can be used to control theuat of disruption during
recombination without introducing a bias towards the lenfithe representation used.

The algorithm of uniform crossover is identical to degerrecombination.

3.4.2.4 Shuffle Crossover

Shuffle crossover is related to uniform crossover.igle crossover position (as in
single-point crossover) is selected. But before theables are exchanged, they are
randomly shuffled in both parents. After recombinatitwe, variables in the offspring are
unshuffled. This removes positional bias as the variadrlesandomly reassigned each

time crossover is performed.



3.4.2.5 Crossover With Reduced Surrogate

The reduced surrogate operator constrains crossover tgsapwaduce new individuals
wherever possible. This is implemented by restrictirgy ldtation of crossover points
such that crossover points only occur where gene valtfes di

3.5 MUTATION

After recombination offspring undergo mutation. Offspring afales are mutated by the
addition of small random values (size of the mutatiep)s with low probability. The
probability of mutating a variable is set to be invergaigportional to the number of
variables (dimensions). The more dimensions one indivithasl as smaller is the
mutation probability. Different papers reported results tfte optimal mutation rate.
Writes, that a mutation rate ofriiproduced good results for a broad class of test function
However, the mutation rate was independent of the sidgegdopulation. Similar results
are reported in. For unimodal functions a mutation raté/rowas the best choice. An
increase of the mutation rate at the beginning connectbdawdecrease of the mutation
rate to 1 at the end gave only an insignificant acceleratiorhefdearch. However, for
multimodal functions a self-adaptation of the mutatiate could be useful.

3.5.1 Real Valued Mutation

Fig. 3.20 shows possible mutations for a real valued indiViduao dimensions.

F 5

O before mutation

variahle 2
after mutation

w

variahle 1




FIGURE 3.20 Effect of mutation
The size of the mutation step is usually difficult t@cbke. The optimal step size depends
on the problem considered and may even vary during thmiagtion process. Small
steps are often successful, but sometimes bigger stegaieker.
The mutation operator of the Breeder Genetic Algoridisnproposed is:

« mutated variable = variablerangedelta (+ or - with equal probability)
« range= 0.5-domain of variable; (search interval),
« delta=sum@(i) 2"i), a(i) = 1 with probability Irh, elsea(i) = 0;m = 20.

This mutation algorithm is able to generate most pointeenhypercube defined by the
variables of the individual and range of the mutatioawklver, it tests more often near
the variable, that is, the probability of small stegesiis greater than that of bigger steps
(see Fig 3.21). Witlm=20, the mutation algorithm is able to locate the optinmnto a

precision ofrange2~-19)
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FIGURE 3.21 Probability and size of mutation steps (compared to range)

3.5.2 Binary Mutation



For binary valued individuals mutation means flipping of alale values. For every
individual the variable value to change is chosen unifdrrardom. Table 3.4 shows an
example of a binary mutation for an individual with 1liables, variable 4 is mutated.

Before mutatior0(1/11/21/00/1/12/010
After mutation 0/21/112/000/1/2/010

TABLE 3.4 Individual before and after binary mutation

Assuming that the above individual decodes a real numb#reirbounds [1, 10], the
effect of the mutation depends on the actual coding. Taldeshows the different
numbers of the individual before and after mutation fbmary/gray and
arithmetic/logarithmic coding.

Arithmetic | Logarithmic
Binary Gray Binary Gray
5.05374.28872.8211.2.3196

4.49103.33462.44281.8172

TABLE 3.5 Result of the binary mutation

3.6 REINSERTION

Once the offspring have been produced by selection, recotiobirend mutation of
individuals from the old population, the fitness of thespfing may be determined. If
less offspring are produced than the size of the origiopulation then to maintain the
size of the original population, the offspring have tadiaserted into the old population.
Similarly, if not all offspring are to be used at eayeneration or if more offspring are
generated than the size of the old population then aemion scheme must be used to
determine which individuals are to exist in the new popuiatio



The used selection method determines the reinsertion scheeal reinsertion for local
selection and global reinsertion for all other sédectmethods.

3.6.1 Global Reinsertion

Different schemes of global reinsertion exist:

+ Produce as many offspring as parents and replace alltpdrgrthe offspring
(pure reinsertion).

« Produce less offspring than parents and replace parentsnolgifat random
(uniform reinsertion).

« Produce less offspring than parents and replace the vpaisnts (elitist
reinsertion).

« Produce more offspring than needed for reinsertion andgerimnly the best
offspring (fithess-based reinsertion).

Pure Reinsertion is the simplest reinsertion sch&wery individual lives one generation
only. This scheme is used in the simple genetic algoriHhmwever, it is very likely, that

very good individuals are replaced without producing bettéspring and thus, good
information is lost.

The elitist combined with fitness-based reinsertion prisvéims losing of information
and is the recommended method. At each generation, a givaber of the least fit
parents are replaced by the same number of the modtsfiring (see Fig. 3.22). The
fitness-based reinsertion scheme implements a truncagtection between offspring
before inserting them into the population (i.e. befthey can participate in the
reproduction process). On the other hand the best indigidaa live many generations.
However, every generation some new individuals aretedelt is not checked whether

the parents are replaced by better or worse offspring.
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FIGURE 3.22 Scheme for elitist insertion

Because parents may be replaced by offspring with a loiness, the average fithess of
the population can decrease. However, if the insertisprafg are extremely bad, they

will be replaced with new offspring in the next generat

3.6.2 Local Reinsertion

In local selection individuals are selected in a boundéghberhood. The reinsertion of
offspring takes place in exactly the same neighborhoduis,Tthe locality of the
information is preserved.

The used neighborhood structures are the same as insileation. The parent of an
individual is the first selected parent in this neighborhood

For the selection of parents to be replaced and fectgen of offspring to reinsert the

following schemes are possible:

« Insert every offspring and replace individuals in neighbod uniform at
random,

« Insert every offspring and replace weakest individualseighborhood,

« Insert offspring fitter than weakest individual in neighiimod and replace
weakest individuals in neighborhood,

« Insert offspring fitter than weakest individual in neightmod and replace parent,

« Insert offspring fitter than weakest individual in neighiimod and replace

individuals in neighborhood uniform at random,

Insert offspring fitter than parent and replace parent.



3.7 PARALLEL IMPLEMENTATIONS

3.7.1 Migration

The migration model divides the population in multiplebmopulations. These
subpopulations evolve independently from each other fertaio number of generations
(isolation time). After the isolation time a numbsrindividuals is distributed between
the subpopulations (migration). The number of exchangegiduals (migration rate),
the selection method of the individuals for migratiord ghe scheme of migration
determines how much genetic diversity can occur in the guitgtions and the exchange
of information between subpopulations.

The parallel implementation of the migration model sbédwot only a speedup in
computation time, but it also needed less objective fonatvaluations when compared
to a single population algorithm. So, even for a sipgteessor computer, implementing
the parallel algorithm in a serial manner (pseudo-paradlelivers better results (the
algorithm finds the global optimum more often or witkd function evaluations).

The selection of the individuals for migration can takece:

« Uniform at random (pick individuals for migration in a randmanner),

+ Fitness-based (select the best individuals for migration

Many possibilities exist for the structure of the migratiof individuals between
subpopulations. For example, migration may take place:

+ Between all subpopulations (complete net topology estricted), see Fig. 3.23,
« Inaring topology, see Fig. 3.25,
« In a neighborhood topology, see Fig. 3.26



SubPop4

FIGURE 3.23 Unrestricted migration topology (Complete net togglo

The most general migration strategy is that of unstti migration (complete net
topology). Here, individuals may migrate from any subpagn to another. For each
subpopulation, a pool of potential immigrants is consédictrom the other

subpopulations. The individual migrants are then uniformigaatiom determined from
this pool.

Fig. 3.24 gives a detailed description for the unrestrictegranon scheme for 4

subpopulations with fitness-based selection. Subpopula2io®snd 4 construct a pool of
their best individuals (fithess-based migration). 1 vilial is uniformly at random

chosen from this pool and replaces the worst individuaubpopulation 1. This cycle is
performed for every subpopulation. Thus, it is ensurednbiaubpopulation will receive

individuals from itself.

subpopulation 2 subpopulation 3

EENN HEEX HBE

A

1 individual
subpopulation 1 at random subpopulation 1
HE N weewnnd 8 1 R |
before exchange replace worst indgvidual after exchange
B bestindividual [ ] worst individual

FIGURE 3.24 Scheme for migration of individuals between subpopulations



The most basic migration scheme is the ring topolétgre individuals are transferred
between directionally adjacent subpopulations. For el@m individuals from
subpopulation 6 migrate only to subpopulation 1 and individual® subpopulation 1
only migrate to subpopulation 2.

SubPop6

SubPop3

FIGURE 3.25 Ring migration topology

A similar strategy to the ring topology is the neightmod migration of Fig. 3.26. Like
the ring topology, migration is made only between rsameighbors. However,
migration may occur in either direction between subpdjauns. For each subpopulation,
the possible immigrants are determined, according to theedeselection method, from
adjacent subpopulations and a final selection is mada flos pool of individuals
(similar to Fig. 3.25).

SubPop3

-+

,J

SubPop4

FIGURE 3.26: Neighborhood migration topology (2-D implementation)



Fig3.26 shows a possible scheme for a 2-D implementatfothe neighborhood
topology. Sometimes this structure is called a torus.
With the Multipopulation genetic algorithm, for everynf@iion tested better results were

obtained than for a single population algorithm with prapoally more individuals.

7.2 Global model - worker/farmer

The global model employs the inherent parallelism okgeralgorithms (population of

individuals). The Worker/Farmer algorithm is a possiblple@mentation.

FARMER

selection
fithess assignment

/

i

-

WORKER 1 WORKER 2 WORKER n

recombination recombination recombination
mutation mutation mutation
function evaluation function evaluation function

FIGURE 3.27 Worker/Farmer genetic algorithm

3.7.2 Diffusion Model

The diffusion model handles every individual separatety selects the mating partner in
a local neighborhood similar to local selection. Thausliffusion of information through

the population takes place. During the search virtualdslasee Fig. 3.28 will evolve.
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FIGURE 3.28: Diffusion genetic algorithm




CHAPTER 4
CHARACTER RECOGNITION

The aim of this dissertation is to recognize all tloevels and consonants of printed
English characters using Genetic Algorithm. The additideatures included in the

project are:

» Multiple character recognition
» Rotational invariance

The recognition process uses two-stage classificapgnoach, which is a hybrid of
structural technique and genetic algorithm. For recognitiba, character image is
subjected to an algorithm for finding out the primitive ort@i@ structural features of
characters. These features are then applied in fitiwession that is used by genetic
algorithm to find the character in the image. In théofing sections, the various stages

involved in the recognition process are described.

4.1 STEPS FOR CHARACTER RECOGNITION

English is the most widely used language all over theldwdt consists of 26 total
characters, which include 5 vowels and 21 consonants.idtheflall the alphabets is

given below:

HBLDEFGEHIAKLM
NOPORSTUVIHNXYZ

The steps to perform single character recognitrershown in Fig. 4.1. All the vowels and consonantsincluded during
recognition.

The stages of single character recognition include:
1. Extracting character matrix pixels from the image.

2. Extraction of features of the character.



3. Developing a genetic algorithm tool.[13]
4. Developing a fitness function for the genetic algoritimml tbased on the
features extracted.

5. Determination of the character with the best recagmiéccuracy.

Extracting
character matrix
pixels from the

imaage

|

Extraction of
character
features

|

Developing genetic
algorithm tool

|

Developing a fitness
function for the genetic
algorithm tool based on
the features extracted.

|

Determination of the
character with the best
recognition accuracy

FIGURE 4.1 Steps for Character Recognition

These steps for achieving character recognition and adalitieatures are discussed in
detail in the following sections.

4.2 EXTRACTING CHARACTER MATRIX PIXELS FROM THE IMAGE



For recognition purpose 26 characters are taken intodsyasion. In order to locate the
data (in our case character) position in the imag#, dtep is to clip the background and
obtain the pixels that contain only data. This not dips in locating the data pixels in
the whole image but also reduces the size of the datarfiwhich we have to perform
further computations. For this purpose first the RGB forafathe image is converted
into binary image format (first to gray image and thealfy to binary format). This will
convert the M x N x 3 image format into M x N formathere, M X N is the size of the
image. Image can be in any of the formats compatiltle MATLAB tool i.e. bmp, tiff,
jpeg, png, ico, ras, pmp, hdf, xwd etc. But here ‘.bmp’gesais used. Now once the
image is converted to binary image, we get a matrix inah@ of 1's and 0’s. As the
image will have data points in the form of 0’s (blackind background pixels as 1's
(white), we can separate out our character from ale&dround.

This step is shown in detail by the following figures:

An arbitrary input data image carrying the character teebegnized is shown fig. 4.2:

Fle Edit ‘Wiew Insert Toolk Deskiop Window Help

Deds kh Ra0® ¢ 0E 50

FIGURE 4.2 Input data image

The image left after extraction of the data charastshown in Fig. 4.3:
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FIGURE 4.3 Image with extracted data character

4.3 EXTRACTION OF FEATURES OF THE CHARACTER

After the character pixels are segmented from thegennext step is to represent it in a
form suitable for the further processing. Representati@region involves two choices:
1. In terms of its external characteristics (its luamg)
2. Interms of its internal characteristics (theefs comprising the region)
An external representation is chosen when the priftenys is on shape characteristics
while an internal representation is selected when thaapyi focus is on regional
properties, such as color and texture. Characters caecbgnized depending on their
shape. So features chosen are in the form of theirneteharacteristics like shape

number, number of horizontal, vertical or slant lieés

4.3.1 Shape Number

To get the shape number of a particular characteryrésnian Chain Code is detected.
Chain codes are used to represent a boundary by a connemieticge of straight-line
segments of specific length and direction. Typicdiig representation is based on 4- or
8-connectivity of the segments. A pixel ‘p’ at coordirsafe, y) has four horizontal and
vertical neighbors whose coordinates are given by:

(x+1,y), (x-1,), (x, y+1), (x, y-1)
This set of pixels, called the 4-neighbors of p, is dehbteNs(p). Each pixel is a unit
distance from (x, y), and some of the neighbors of plitside the digital image if (x, y)
is on the border of the image.

The four diagonal neighbors of p have coordinates:



(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)
and are denoted bypp). These points, together with the 4-neighbors, dtedcthe 8-
neighbors of p, denoted by(y).
To establish if two pixels areonnectedit must be determined if they are neighbors and
their gray levels satisfy a specified criterion of $amiy (for e.g., they have same
values).
The direction of each segment of connected sequensteaight-line, in chain codes, is

coded by using a numbering scheme such as the ones shbign4i3

(a) (b)
FIGURE 4.3 Direction numbers for (a) 4 directional chain code glolrectional chain
code

Digital images usually are acquired and processed irdaf@mnat with equal spacing in
the x- and y- directions, so a chain code could be g&wby following a boundary in ,
say, a clockwise direction and assigning a directiohesegments connecting every pair
of pixels. This method is generally unacceptable for i&cal reasons:
1. The resulting chain of codes tends to be quite long and
2. Any small disturbances along the boundary due to noise aqerfect
segmentation cause changes in the code that may noatezire the shape of the
boundary.
An approach frequently used to circumvent the problemsljsstissed is to resample the
boundary by selecting larger grid spacing, as illustratedignr& 4.4a. Then, as the
boundary is traversed, a boundary point is assigned to madd of the large grid,
depending on the proximity of the original boundary to theade, as shown in Figure



4.4b. The re-sampled boundary obtained in this way thebeaepresented by a 4- or 8-
code, as shown in Figure 4.4c & d, respectively. The stapbint in figure 4.4c is
(arbitrarily) at the top, left dot, and the boundary & shortest allowable 4- or 8- path in
the grid of Figure 4.4b. The boundary representation in Figute is the chain code
0033....01, and in Figure 4.4d, it is the code 0766....12. As might be erpdbe

accuracy of the resulting code representation dependkeospacing of the sampling

grid.
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FIGURE 4.4 (a) Digital boundary with resampling grid superimposedRgsult of
resampling. (c) 4-directional chain code. (d) 8-directia@halin code.

The chain code of a boundary depends on the starting. ptomtever, the code can be
normalized with respect to the starting point by strafghtvard procedure: we simply
treat the chain code as a circular sequence of direstiotbers and redefine the starting
point so that the resulting sequence of numbers formstager of minimum magnitude.
We can normalize also for the rotation by using thst filifference of the chain code
instead of the code itself. This difference is obtaitgdcounting the numbers of



direction changes (in a counter-clockwise direction) segarate two adjacent elements
of the code. For an instance, the first differencéhefcode direction of the 4- direction
chain code 10103322 is 3133030. If we elect to treat the code rasilarcsequence then
the first element of the difference is computed by usih@gttansition between the last
and first components of the chain. Here, the resi88&33030. Size normalization can
be achieved by altering the size of the re-sampling grid.[2]

The shape number follows from the first differencslaswn in the Figure 4.5
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Deffgaeace: 30303030 33133030 300330023

Shapooo: D 3G IDI0OY 03633133 80330033

FIGURE 4.5 All shapes are from Fig. 4.3(a) and the dots indicatstédming point.

The original image obtained and its boundary shape arersim the Fig. 4.6
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FIGURE 4.6 (a) Original image. (b) Boundary shape.

Its, sampled image and connected images are shown iA.Fig.
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FIGURE 4.7 (a) Sampled image. (b) Connected image.

Now the shape number of this image comes out to be:
>> shape_No
shape No =

O 6 0 4 2 0 2 4 @

4.3.2 Line Detection Algorithm

The next feature used is based on detection of puwiilines of a particular orientation. To traeg such lines in any binary image,
convolution of masks in spatial domasncarried out.

4.3.2.1 Convolution of Masks in Spatial Domain

Some neighborhood operations work with the valdéh@image pixels in the neighborhood and theesponding values of a
subimage that has the same dimensions as the efgidd is called éilter, mask, kernel, template or windovhe values in a filter
subimage are referred to ezefficients rather than pixels.

The concept of filtering has its root in the usd-ofirier Transform for the signal processing ingbecalledrequency domairBut,
filtering operations that are performed directlytba pixels of an image are termedspatial filteringto differentiate this type of
process from the more traditional frequency donfiitering.

The mechanics of spatial filtering are illustratedrig. 4.8(a). The process consists simply of mguhe filter mask from point to
point in an image. Fdmear spatial filtering, the response at each point)(isygiven by a sum of products of the filter coménts
and the corresponding image pixels in the arearszhhy the filter mask. For the 3 x 3 mask showRim 4.8(a), the result (or
response), R, of linear filtering with the filterask at a point of (x,y) in the image is

R =w(-1,-1)f (x-1, y-1) +w(-1,0)f (x-1, y) +...... +w(0,0)f (X, y)+...... +wW(1,0)f (x+1, y) +wW(1,1)f (x+1, y+1)

which is the sum of products of the mask coeffitsemith the corresponding pixels directly under theesk. In particular the
coefficient w (0,0) coincides with image value fy(x indicating that the mask is centered at (when the computation of the sum of
products takes place. For a mask of size m x rgsgame that m = 2a+1 and n = 2b+1, where a & b@menegative integers.

In general, linear filtering of an imadef size M x N with a filter mask of size m x ngaven by the Eq. 4.3-1

a b
G(xy)= z z w(s,t) f(x+s,y+t) (4.3-1)

s=-at=-

Where, a = (m-1)/2 and b = (n-1)/2. To generaterapiete filtered image, this equation must be agppfor x = 0,1,2...... M-1andy
=0,1,2.....N-1. This assures that the mask proceskpiels in the image.

The process of linear filtering given in Eq. 4.8sXimilar to a frequency domain conceptvolution For this reason, linear spatial
filtering often is referred to as “convolving a rkagith an image”. Similarly, filter masks are somegs callecconvolution maskL6]



When interest lies on the response, R, of an nmask at any point (x,y) and not on the mechaniémpfementing mask
convolution, the notation is simplified by usingtfollowing equation:

R=wiz + W2 +WsZg +....coounene.n. + WinZmn



where thew's are the mask coefficients, tt#s are the values of the image gray levels corredppgy to those coefficients, anthis
the total number of coefficients in the mask. Frar 8 x 3 general mask shown in Fig.4.8 (b), thparse at any point (X, y) in the
image is given by:

Consider the masks shown in Fig. 4.9. If the finstsk were moved around in a image it would respoark strongly to lines (one
pixel thick) oriented horizontally. With a constdreckground, the maximum response would result vthetine past through the
middle row of the mask. This is easily verified ¢ketching a simple array of 1's with a line of diént gray levels (say, 5's) running
horizontally through the array. A similar experirherould reveal that the second mask in Fig 4.6aedp best to lines oriented at +
45°%; the third mask to vertical lines; and the founask to lines in the —45° direction. These dioas can be established also by
noting that the preferred direction of each maskegghted with a larger coefficient (i.e., 2) thether possible directions. Note that
the coefficients in the each mask sum to zero attfig a zero response from the masks in areasnstaat gray level.

Once a particular mask has been moved around an imagayrtiber of lines of that

particular orientation can be calculated in the image

The results carried out with one of the mask's shiowFig. 4.9 are:

17-1 | -1 111712 1|2 -1 2 -1 -1
2 |2 2 112 1 1|2 -1 12 -1
-1-1 -1 2 1 -1 12 -1 -1-1 2
Horizonta +4Fk° Vertical -45°

FIGURE 4.9 Line Masks

The original image and the image after horizontal maak moved around the image are

shown in Fig. 4.10
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FIGURE 4.10 (a) Original image. (b) Image after horizontal masls weved around



the image.
The number of horizontal lines were:
>> horz_lines
horz_lines =

2

4.4 DEVELOPING A GENETIC ALGORITHM TOOL

The genetic algorithm is a method for solving both cams®d and unconstrained
optimization problems that is based on natural selectie process that drives biological
evolution. The genetic algorithm repeatedly modifies pufadion of individual solutions.
The GA tool has been implemented in four steps:

1. Creation of initial population: Choosing random population members within the
possible range created the initial population. In our,dagepossible range is from Ascii
value of A to Ascii value of Z. For simplicity point gfew, to apply GA, these values are
converted to their binary equivalent before processing atat bn converted back to
their decimal value.
E.g.: When this step was used, considering the parameters as

Population size = 10;

Lower limit = 65 (Ascii value of ‘A’);

Upper limit = 90 (Ascii value of ‘Z’);

The answer was:

init_pop =

89

71

80

77

88

84



76
65
86
81

2. Reproduction: It generates a mating pool by selecting good fitnessgstrirom the
population. Although there are numerous reproduction opeydairshe essential idea in
all of them is the same: strings with fitness’s \abaverage are picked from the current
population and strings with fitness’s below averageramoved from the population.
This procedure may involve maintaining multiple copies of getadgs in order to keep
the population size fixed. The reproduction operator acssfétering mechanism for the
selection of the good strings in a population.
In our case, we have uséournament selectiotecause of its simplicity. In a typical
tournament selection two strings are randomly chosen the population, and the fitter
of the two is selected for insertion into the mating pool
E.g.: When it was applied on the abowdial population, for the character ‘B’, the
results obtained were:
rep_pop =

89

71

87

77

80

84

71

65

84

81

3. Crossover: After reproduction, the crossover operator is appliedttongs of the

mating pool. Once again, there are a number of crosspemators, but almost all of



them pick two strings from the mating pool at randomthed exchange some portion of
the strings. In a single point crossover operatiampasover site is chosen at random and
all bits to the right of the crossover site are exgednbetween the two strings as shown
below:
110|010 110|110
100|110 100[010

in such an exchange operation, good sub strings from eithentpatring can be
combined to form a better child string provided the righssower site is chosen. Since
we don’t know the best crossover site in advancandam site is chosen. This is simple
to implement but random crossover sites can genendtlken strings that have a poorer
fitness than the parents themselves. This is, howewéra problem, since the GA will
automatically eliminate such poor quality strings duringrigae reproduction cycles.
In our case, we have used two-point crossover openator sites along the string are
chosen at random and the sub strings included between siteseare exchanged
between the parents. Single point crossover presettvesmaximum amount of
information between generations, but two-point cressgives better search capability.
Normally, crossover is not performed on the entire pajmmaA crossover probability of
pc dictates that yox 100 percent strings in the population are used in thesaves
operation and that the best (1)} p 100 percent of the population are simply copied to the
new population,. This preserves some of the bettegstfor the next generation.
In our case we have takegtp be 0.8
Now, applying crossover operator on the above generatdotey following results:
xoverKids =

89

87

77

87

89

84

71

65



76
87

4. Mutation: In addition to the crossover operator, a mutation opeifatalso used to
enhance the search in a GA. The mutation operator fljitsima string with a very small
mutation probability pn. Mutation is necessary to maintain diversity in the paipamn,
which would otherwise converge very quickly to very simg#&rings. For e.g., assume
that in a specific bit position every string in the popolatias a value 1. Further, assume
that a O is required in that position in order to obtam optimum. Then neither the
reproduction nor the crossover operator described will be t&blcreate a 0 in that
position. It is only the application of a mutation operathat introduces a finite
probability that 1 flipping into a O.
In our case we have taken f be 0.2.
Now, applying mutation operator on the above generation gidtd®wing results:
mutKids =

89

87

87

77

80

84

88

65

84

81

4.5 DEVELOPING A FITNESS FUNCTION FOR THE GENETIC
ALGORITHM TOOL BASED ON THE FEATURES EXTRACTED



Thefitness functions the objective one want to minimize using GA. Theefss function
used in our case was based on shape number. A randompiofiislation was generated
using creation step. Now one by one the shape numblee characters in this population
was calculated using steps 1 & 2 of the algorithm. The shapder of the ‘data’ image
was also calculated on the same steps. Then thehaye siaumbers were matched, and
deviation was found. If the deviation came to be zemctiaracter was recognized. Else,
the current population was used to create the childrémidlee up the next generation.
The genetic algorithm creates three types of childreth®next generation:
» Elite childrenare the individuals in the current generation with thst Bithess
values. These individuals automatically survive to the gereration.
» Crossover childrerare created by combining the vectors of a pair of parents
* Mutation childrenare created by introducing random changes, or mutatorzs,
single parent.
The schematic diagram shown in Fig. 4.11, illustratestiree types of children:

el

Elite thild

&
D>ﬂ]

Crossover thild

R
Muratinn ¢hild

FIGURE 4.11 Three types of children generated by GA.
Now, the same process is repeated for the new populdflese steps are repeated

recursively until a match is obtained or the genenatexceed a predetermined value[13]
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FIGURE 4.12 Flowchart for implementation of Genetic Algorithm
4.6 DETERMINATION OF THE CHARACTERS WITH THE BEST

RECOGNITION ACCURACY

This is the last step in the character recognition psoCHse purpose of including this
step was to recognize the character with best accuitawas necessary to include tis
step, as few of the characters have the same shapeeaod the same shape number.
These characters cannot be distinguished only by using shapbers. The other
features extracted, in the feature extraction step wsed to distinguish these similar
characters.

The shape number of ‘O’ and ‘Q’; ‘B’ and ‘D’ were found be same. So, these
characters were distinguished based on the differeamcie number of horizontal,
vertical or slant lines in their shapes.[15]

The steps for distinction between 'O' and 'Q' are:

The original images of ‘O’ and ‘Q’ appears as falbo
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FIGURE 4.13(a) Original Image of ‘O’. (b) Original Image of ‘Q’

Fig. 4.14 gives their shapes:

) Figure 1 E“E'E' J [Figure 1 E”E”s__q

Fil EA®UE Inse Toc Desk Winc He -~ Fil Ed wie Inse Toc Desk Winc He

DEEE K |a” D& k a7

(a) (b)
FIGURE 4.14 (a) Shape of ‘O’. (b) Shape of ‘Q".

Thus, it can be clearly seen that both are havtiegsame shapes. But if original images are coresiglé®’ is found to have an extra
horizontal line as is evident from the followingpires, which are obtained using horizontal maskherimages. This is shown in
Fig. 4.15.
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FIGURE 4.15 (a) Horizontal Lines in ‘O’ (b) Horizontal Lines i’

When number of horizontal lines was calculatedathof them, results were as:
For ‘O
>> horz_lines
horz_lines =
2
For ‘Q”
>> horz_lines
horz_lines =
3
Thus, the two characters can be distinguished onakis bf their number of horizontal
lines.
The steps for distinction between 'B' and 'D' are:
The original images of ‘B’ and ‘D’ appear as shown @.F.16.
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FIGURE 4.16 (a) Original Image of ‘B’ (b) Original Image of ‘D’

Fig. 4.17 shows their shapes.
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FIGURE 4.17 (a) Shape of ‘B’. (b) Shape of ‘D'.

Thus, it can be clearly seen that both are havimgst the same shapes, and when the shape nunibkee walculated after sampling,
it will come exactly same. But if original image®aonsidered, ‘Q’ is found to have an extra harabline as is evident from the
following pictures, which are obtained using horitad mask on the images. This is shown in Fig. 4.18
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FIGURE 4.18 (a) Horizontal Lines in ‘B’ (b) Horizontal Lines i°

When number of horizontal lines was calculated in béothem, results were as:

For ‘B

>> horz_lines

horz_lines =

3

For ‘D’

>> horz_lines

horz_lines =

2

Thus, the two characters can be distinguished onakis bf their number of horizontal

lines.

4.7 MULTIPLE CHARACTER RECOGNITION

This was the additional feature included. To recognizertinéple characters in a single
line the characters were separated and then the sanesgreas implemented on each
separated character. To separate the characters tectiony principle was used.



The Figs. 4.19(a) & (b) show, 4-connected and 8-conneaisgpanents respectively.
Here since background pixels are all ‘0’, we can sepataecomponents from the
background. Also if somehow different numbers can bengioalifferent components, as

shown in Fig 4.19(c) & (d), the job of separating différeharacters is almost over.

/N
Zl1|[No]olo 0 0 1[1]No]o] o] o d
1/1]1 o)1 Iy o O 1l1[aYo/I 2] o @
1]1]1\o\1] 1/ Q O 1la]1fop a4 0 @
1[1]1]lo] 07 0]/ 1) o 1[1]1]]o] 0] OfY] O
1[1]a]jo[ol o] 1] 0 1[1]1]o] o] of 1]
1]/1]1]Jo] o] oA\Y O 1]/1][1]o]l 0] o) 2 @
1[1]1]/o[o(1) 0 O 1]1[1fol o0
\;\\1/100‘600 \L[1]Z4]0]0] 0 0 (0

(a) (b)
1]/1]1]0] 0] o] 0] O 1/1[1]0]o]/ 0] 0 O
1/1]1]0[ 2] 2[ 0 0 1/1[1]0]2[ 2/ 0 0
1/1]1]0] 2] 2] 0 0O 1/1[1]0]2[ 2/ 0 0
1/1]1]0] 0] 0] 4 0 1/1[1]0]lo]/o0] 20
1/1]1]0][ 0] 0] 4 0 1/1[1]0]o0/0] 20
1/1]1] 0] 0] 0] 4 0 1/1[1]0]lo0]/o0] 20
1/1]1]0][ 0] 3/ 0 O 1/1[1]0]0[ 20 0
1/1]1]0]/ 0]/ 0] 0 O 1/1[1]0]0/0/ 0 O

(©) (d)

FIGURE 4.19 Connected components (a) four 4-connected componeniBuw(hg-
connected components. (c) Label matrix obtained usirgndectivity. (d) Label matrix
obtained using 8-connectivity.

By using this logic, the characters separated on the laengre shown below:
The input image in which multiple characters were clditogether is shown in Fig. 4.20
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FIGURE 4.20 Input image with multiple characters.

The images obtained for individual characters, afggrasting them are shown in Fig.

4.21.
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FIGURE 4.20 Images obtained for separated characters.

Now, since the characters have been separated, clharmgnition can be performed
independently on each one of them.

4.8 ROTATIONAL INAVARIANCY

This was also the additional feature included. Due t@ticotal inavariancy even if the
character was rotated by 90°, 180° or 270° lsarrecognized. This relives from the
burden of placing the image in the correct direction wéskenning.

To make the shape number rotation invariant, one ofiéiseriptor of boundary, length
was used. The length of a boundary is one of its sshglescriptors. The length of a 4-
connected boundary is simply the number of pixels inkbendary, minus 1. If the
boundary is 8- connected, we count vertical and horiztratasitions as 1, and diagonal
transitions as/2.

The length can be used to find diameter of the bounddmy.diameter of a boundary is
defined as the Euclidean distance between the two fapgbeds on the boundary. These
points are not always unique, as in a circle or a sqbategenerally the assumption is
that if the diameter is to be a useful descriptors ibest applied to boundaries with a
single pair of farthest point. (When more than 1 péilarthest points exists, they should
be near each other and be dominant factors in detegnbboundary shape.) The Line
segment connecting these points is called the majerodthe boundary. The minor axis
of a boundary is defined as the line perpendicular to @ernaxis and of such length
that a box passing through the outer 4 points of iettien of the boundary with the two
axes completely encloses the boundary. This box isccélebasic rectangleand the
ratio of the major to the minor axis is called geeentricityof the boundary.

The shape number of a boundary, generally based on 4tiatigdd-reeman chain codes,
is defined as the first difference of smallest magnitdde order of a shape number is
defined as the number of digits in its representatiouwliréctional Freeman chain codes
can be made insensitive to starting point by using the intdgemimum magnitude and

made insensitive to rotations that are multiples fl®0using the first difference of the



code. Thus shape numbers are insensitive to the startinggral to rotations that are

multiples of 90.

If the character image is shown by the Fig. 4.21.
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FIGURE 4.20 Character image
Then the rotated image of the boundary is shown by Eig. 4.
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FIGURE 4.21 Rotated image

But here since the character is in square, thus thdrd@vimany diameters. But this
discrepancy can be resolved easily, as the shape nwillbee the same, except that the
rotated values of shape numbers will be there.
Rotational inavariancy also introduces confusion of soroee characters, if recognized
only on the basis of the shape number. These characeers

‘N and ‘Z’

‘C’and ‘U’
‘M’ and ‘W’

These characters were distinguished based on the dd&eie the number of horizontal,



vertical or slant lines in their shapes.
The steps for distinction of 'N' and 'Z' when rotated areshown as below:
The 'N' in its normal form looks like Fig. 4.22.
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FIGURE 4.22'N' in its normal form

'Z' when rotated at 270o0ks like follows Fig. 4.23.

Fil Ed Wie Inst Toc Desk Wind He «
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FIGURE 4.23'Z' when rotated at 270

Since both pictures appear exactly same their shape nugndlso same. so, one cannot
distinguish based on shape numbers.

But if their corresponding matrices are analyzed, thayehvalues of some pixels
different, at the points where slant lines begin. €hemtrices cannot be shown here
because of their large sizes, (they are 30 X 30 majri&ut if number of lines were
calculated, then because of these changed pixel valnes Isasic difference was found
in their number of lines. This difference is showrolel

In 'N' the lines are:
>> horz_lines
horz_lines =

4
>> vert_lines

vert_lines =



2
and in 'Z' the lines come out to be:
>> horz_lines
horz_lines =
5
>> vert_lines
vert_lines =
2

Thus, as clear from above results, the two characen be distinguished based on horizontal nurobares.
The steps for differentiation of 'M' and 'W' when rotated is shown as below:
The 'M' in its normal form looks like Fig. 4.24
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FIGURE 4.24'M’ in its normal form

The 'W' when rotated by an angle of 188oks as shown in Fig. 4.25.
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FIGURE 4.25'W' when rotated at 180

Again, since both pictures appear exactly same their shapber is also same. So, these
characters cannot be distinguished based on their shag®ers.

If the two matrices were compared at pixel level, isvi@und that their matrices were not
exactly equal; rather there was some difference eastarting points of the slant lines.

Thus when numbers of lines were calculated, followirsglte were obtained:



For ‘M’

>> pos_slant_lines

pos_slant_lines =
0

>> neg_slant_lines

neg_slant_lines =
5

For rotated ‘W'

>> pos_slant_lines

pos_slant_lines =
1

>> neg_slant_lines

neg_slant_lines =
3

Thus, as clear form above, 'M' and 'W' can be diffdated based on the number of positive or negaticlined lines, in their shape.

The 'C' and 'U’" when rotated cannot be distinguished, asnhotheir shape but matrices
also become exactly equal after rotation.

CHAPTER 5

EXPERIMENTAL RESULTS AND SYSTEM
OVERVIEW

WHEN THE INPUT IMAGE CONTAINED SINGLE CHARACTER:

Input/Data Image:
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FIGURE 5.1 Input Image

Processed Input Image:
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FIGURE 5.2 Processed Image



Image after Extraction of Boundary:
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FIGURE 5.3 Boundary of the input image

Image after Rotation of Boundary along the Diameter is:
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FIGURE 5.4 Rotated Image

The shape number of the given boundary is:

0O 2 6 6 6 2 6 6 % 6 4 2 2

The total number of generations undergone is:
11

ans =

The 1th character is J

>>



WHEN THE INPUT IMAGE CONTAINED SINGLE ROTATED CHARAC TER:

Input/Data Image:
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FIGURE 5.5 Input Image

Processed Input Image:
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FIGURE 5.6 Processed Image

Image after Extraction of Boundary:
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FIGURE 5.7 Input Image

Image after Rotation of Boundary along the Diameter is:
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FIGURE 5.8 Boundary of the input image

The shape number of the given boundary is:



2 6 6 2 4 2 6 6 4H& 4 0 2 4
The total number of generations undergone is:

3
ans =
The 1 th character is R

>>

WHEN THE INPUT IMAGE CONTAINED MULTIPLE CHARACTERS:

Input/Data Image:
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FIGURE 5.9 Input Image

Processed Input Image:
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Boundary Images of the Separated Characters are:
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FIGURE 5.10 Processed Image
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FIGURE 5.11 Separated Characters

Their Respective Images after Rotation of Boundary albediameter are:
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FIGURE 5.12 Boundaries of the rotated Images

The respective characters that were recognized aee gs.

The shape number of the given boundary is:



Columns 1 through 16
O 4 2 6 2 4 2 6 @ 6 4 2 6
Columns 17 through 21
2 2 2 4 6
The total number of generations undergone is:
0
ans =
The 1 th character is G
The shape number of the given boundary is:
2 5 7 4 2 2 6 6 6
The total number of generations undergone is:
17
ans =
The 2 th characteris T
The shape number of the given boundary is:
O 4 6 6 6 2 4 0 @ 7 4 2 6
The total number of generations undergone is:
1
ans =
The 3 th character is N

>>



CHAPTER 6

CONCLUSION AND SCOPE FOR FUTURE WORK

In this study, a tool has been developed usingtgebased fitness module to solve the problem afr@tter Recognition. This tool
has been previously applied to a variety of proldgut character recognition seems to be compliets. iay be due to the high
amount of information needed to classify a characterectly and because of the high degree of anitylamong character shapes.
Nonetheless, an encouraging solution to the prolbl@asrbeen found, by using a feature extraction teodehich absorbs much of the
misleading similarity, and a genetic based fitmasslule, which produces descriptions of charactepsh, discriminating between
features essential for distinguishing among diffexharacter classes.

Genetic techniques have the facility of discovermgel solutions to the problems using a subtletumexof user defined elementary
operations, fithess driven selection, pure luckl brute force. The technique was modeled using MAB Isimulator tool.

The experimental result of this method for recommjzhe character strings has shown promising peidace. The character strings
have been recognized with 100% accuracy, incorpgrabtational invariability.

The future workwould encompass broadening the character recognitiontheotby
including font size invariability and recognition of handvertticharacters.
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